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Highlights

• Development of a framework to derive kinetic-energy- and pressure-equilibrium-preserving schemes for discontinuity-free, real-gas
compressible flows.

• Conditions to obtain pressure-equilibrium for linear finite-differencing schemes.
• Demonstration of a barrier related to the discrete fulfillment of the chain rule.
• Derivation of a novel class of stable and oscillation-free schemes.
• Discrete enforcement of pressure equilibrium is of utmost importance in high-pressure transcritical flows.
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Abstract

Numerical simulations of compressible turbulent flows governed by real-gas equations of state, such as
high-pressure transcritical flows, are strongly susceptible to instabilities. In addition to the inherent multi-
scale nature of the flow, the presence of a pseudo-interface can generate spurious pressure oscillations when
conventional schemes are utilized. This study proposes a general framework to derive and analyze discretiza-
tion methods that are able to preserve kinetic energy by convection, and simultaneously maintain pressure
equilibrium in discontinuity-free compressible real-gas flows. The formal analysis reveals that the discrete
pressure-equilibrium condition can be fulfilled at most to second-order accuracy, as it requires the spatial
differential operator to satisfy a discrete chain rule when total, or internal energy, are directly discretized.
A novel class of schemes based on the solution of a pressure equation is thus proposed, which preserves
mass, momentum, kinetic energy and pressure equilibrium, but not total energy. Extensive numerical tests
of increasing complexity confirm the theoretical predictions, and show that the proposed scheme is capable
of providing non-dissipative, stable and oscillation-free simulations, unlike existing methods tailored for the
transcritical regime.

Keywords: Kinetic-energy-preserving schemes, Pressure-equilibrium-preserving schemes, Total energy
conservation, High-pressure, Supercritical fluids, Turbulence

1. Introduction

Supercritical fluids are substances operating at temperatures and pressures above their critical values
(Tc, Pc), where no clear phase separation is present. However, within this region, they can be distinguished
between: (i) supercritical fluids with gas-like density and transport coefficients, and (ii) liquid-like fluids
with a large density, and transport coefficients similar to those of a liquid [1]. In so-called transcritical
conditions, flows operate in virtually multi-phase conditions, i.e., there is coexistence of both gas-like and
liquid-like states. However, unlike subcritical two-phase flow, single-component transcritical flows are always
in the continuous regime, as a consequence of the small Knudsen numbers (Kn ≪ 1) resulting from small
mean free paths at high pressures [2, 3]. Trans- and supercritical fluids are relevant in many engineering
applications, including internal-combustion and rocket engines, among others. Furthermore, the peculiar
thermophysical characteristics described above can be fine-tuned for several purposes. For instance, they
can be leveraged to achieve turbulent regimes in microfluidic devices [4], a concept of remarkable interest
for energy applications given the enhanced mixing and transfer rates of turbulent flows [5, 6].

High-fidelity numerical simulations can be an invaluable tool to elucidate the underlying physics of trans-
and supercritical fluids turbulence and to conduct application-oriented in-silico experiments, especially in
light of the difficulties associated with in-vitro characterizations of this regime. Nonetheless, they come with
remarkable challenges. The inherent broadband nature of the flow at sufficiently high Reynolds numbers

∗Corresponding Author
Email address: francesco.capuano@upc.edu (Francesco Capuano)

Preprint submitted to Journal of Computational Physics August 31, 2023



requires methods with minimum dissipation and dispersion errors, in order to capture the vast range of
time/length scales and to correctly represent the inter-scale energy transfer. However, a straightforward
implementation of non-dissipative central schemes is known to promote unbounded amplification of aliasing
errors through non-linear interactions, especially on marginally-resolved grids [7, 8]. Furthermore, failure of
maintaining pressure equilibrium at the (pseudo-)interface between liquid-like and gas-like phases can result
in spurious pressure oscillations, a phenomenon also observed when simulating material interfaces in ideal-gas
multi-component flow problems [9], or even in single-component conditions [10]. For supercritical regimes
governed by real-gas equations of state, the situation is further exacerbated by the fact that thermodynamic
relations can become strongly non-linear, especially across the pseudo-boiling region. This can intensify
the amplitude of the pressure oscillations and even lead to solution divergence [11]. Therefore, numerical
methods for trans-/supercritical fluids turbulence should ideally be:

1. free of numerical and artificial dissipation1;

2. free of spurious pressure oscillations;

3. stable, i.e., non-divergent when run at inviscid conditions.

Several numerical strategies have been developed to deal with supercritical turbulence. Special research
efforts have been devoted to prevent the generation of spurious pressure oscillations, an issue that has
long hampered the feasibility of scale-resolving simulations of, for instance, transcritical fuel injection. The
corresponding approaches can be roughly divided into two classes: (i) double-flux models and (ii) pressure-
based approaches. In both cases, the idea is to enforce the pressure equilibrium in the vicinity of the pseudo-
phase interface. The double-flux concept was originally proposed by Abgrall and Karni [12] in the context
of multi-fluid simulations. In this approach, internal energy is “frozen” within the time-integration step to
artificially enforce pressure equilibrium at a material interface. This method has been recently extended
to transcritical flows by Ma et al. [13]. In pressure-based approaches [14, 15], an equation for pressure is
solved in place of, for example, one for total energy. This permits to have direct control on pressure, and has
allowed stable simulations of transcritical flows, although with the addition of artificial dissipation. More
recently, Lacaze et al. [16] compared pressure-, enthalpy- and internal-energy-based formulations in terms
of stability and pressure behaviour. In all of the above-mentioned works, the discretization was based on
the conservative (divergence) formulation of the convective terms of the Navier-Stokes equations, which is
known to be non-linearly unstable in convection-dominated problems [7]. Stability was therefore achieved
using either filtering [17] or hybridization with upwind-biased methods, such as HLLC [18] or WENO
schemes [19]. While succeeding in stabilizing the simulations, these approaches have several drawbacks:
(i) robustness is achieved at the expense of suppressing part of the turbulent energy spectrum; (ii) it is
challenging to distinguish instabilities related to the convective term from those associated with the lack of
pressure equilibrium; and (iii) the filtering process can interfere with thermodynamic non-linearities and in
turn amplify pressure oscillations [16].

In this work, a novel approach inspired by the paradigm of physics-compatible discretizations is proposed
and assessed. The idea is to construct numerical schemes that are simultaneously able to enforce: (i) discrete
kinetic-energy preservation (KEP) by convection, i.e., ensuring that convective terms do not spuriously
contribute to the discrete kinetic energy balance, and (ii) discrete pressure-equilibrium preservation (PEP),
i.e., the property of maintaining constant pressure when both pressure and velocity are initially uniform. The
literature on KEP methods is now relatively vast. A popular way of enforcing this property is to expand
the convective terms in so-called split forms. A scheme of this kind was initially proposed by Feiereisen
et al. [20], based on a quadratic expansion of the convective terms. This approach has been subsequently
extended to cubic splittings by Kennedy and Gruber [21], then recast in a locally-conservative formulation
by Pirozzoli [22] and recently generalized to a two-parameter class of KEP split forms [7, 23]; the latter
family will constitute the basis for the developments presented in this paper. Recent KEP schemes based on
split forms [24, 25] have been designed to also enforce the correct exchange of internal and kinetic energy at

1Here a distinction is made between numerical dissipation, namely an undesired dissipative-like behaviour of the discretiza-
tion method employed, and artificial dissipation, which is instead deliberately added to stabilize the simulation.
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the discrete level [26]. In other notable approaches, square-root variable formulations have been utilized to
mimic the skew-symmetry of the convective operators as in incompressible flows [27, 28], or to extend the
rotational form to variable-density models [29]. All the above-mentioned KEP schemes have demonstrated
excellent robustness with no numerical dissipation, and are therefore considered an essential component
for scale-resolving simulations of compressible turbulent flows. On the other hand, the idea of enforcing
pressure-equilibrium preservation at a discrete level is relatively recent and has been receiving considerable
attention over the past few years. In this regard, PEP schemes have been proposed and analyzed for ideal-
gas flows [10, 30], later extended to stiffened-gas thermodynamics [31] and, very recently, to non-reacting
multi-component mixtures of calorically-perfect species [32], based again on a carefully-designed split of
the convective terms. The extension of this approach to real-gas thermodynamics is challenging due to the
non-linear relationship between pressure and internal energy, and is yet to be attempted. It is conjectured
that the enforcement of both KEP and PEP can lead to stable and reliable simulations of supercritical
turbulence without the need for any form of artificial stabilization. The objectives of this work are therefore
twofold: (i) introduce a framework to derive KEP and PEP schemes for discontinuity-free2 compressible
flows governed by a general, real-gas equation of state; and (ii) assess the properties of the resulting schemes
and their overall behavior with respect to several state-of-the-art methods. In this regard, the paper is
organized as follows. First, in Section 2, the flow physics modeling of supercritical fluids is presented. Next,
the discretization frameworks considered in this work are described and numerically analyzed in Section 3.
Numerical results are presented in Section 4. Finally, Section 5 reports concluding remarks and future
directions.

2. Flow physics modeling

The framework utilized for studying supercritical fluids turbulence in terms of (i) equations of fluid
motion, (ii) real-gas thermodynamics and (iii) high-pressure transport coefficients is described below.

2.1. Equations of fluid motion

The turbulent flow motion of supercritical fluids is generally described by the following set of conservation
equations of mass, momentum, and total energy

∂ρ

∂t
+∇ · (ρu) = 0, (1a)

∂ (ρu)

∂t
+∇ · (ρuu) = −∇P +∇ · τ , (1b)

∂ (ρE)

∂t
+∇ · (ρuE) = −∇ · q −∇ · (Pu) +∇ · (τ · u) , (1c)

where ρ is the density, u is the velocity vector, P is the pressure, E is the specific total energy, τ =
µ
(
∇u+∇uT

)
− (2µ/3)(∇ ·u)I is the viscous stress tensor with µ the dynamic viscosity and I the identity

matrix, and q = −κ∇T is the Fourier heat conduction flux with κ the thermal conductivity.
The transport equation for total energy, Eq. (1c), can be equivalently substituted by the evolution

equation of another thermodynamic variable using the equation of state and basic rules of calculus. In this
work, special emphasis will be placed on pressure. Assuming generically that P = P (ρ, e) and expanding
the time derivative of pressure using the chain rule with respect to time leads to

∂P

∂t
= Pρ

∂ρ

∂t
+ Pe

∂e

∂t
, (2)

2In the present work, all the thermo-fluid-dynamic quantities are considered to be smoothly varying in space, even across
(pseudo-)interfaces.
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where e is the specific internal energy and

Pρ =

(
∂P

∂ρ

)
e

, Pe =

(
∂P

∂e

)
ρ

, (3)

are the Jacobians of pressure with respect to the state variables ρ and e. This particular choice for the
state-variables pair is especially advantageous due to the existence of closed-form expressions for the Jaco-
bians, specifically: Pe = (1/cv) (∂P/∂T )ρ and Pρ = 1/ (ρβs) −

(
P/ρ2

)
Pe, where cv = T (∂s/∂T )ρ is the

isochoric specific heat capacity with s the specific entropy, and βs = −(1/v) (∂v/∂P )s is the isentropic
compressibility with v = 1/ρ the specific volume. The analytical expressions for (∂P/∂T )ρ ,βs and cv within
the Peng-Robinson framework are reported in [2]. Upon properly deriving the material derivative of density,
momentum and internal energy from Eqs. (1a)-(1c), and using the product rule and the chain rule with
respect to space, the pressure evolution equation can be finally written as

∂P

∂t
+∇ · (Pu) = −

(
ρc2 − P

)
∇ · u+

1

ρ

βv

cvβT
(τ : ∇⊗ u−∇ · q), (4)

where c2 = 1/(ρβs) = Pρ + P/ρ2Pe is the speed of sound, βv = (1/v) (∂v/∂T )P is the volume expansivity,
and βT = −(1/v) (∂v/∂P )T is the isothermal compressibility. The system constituted by Eqs. (1a)-(1b)
and Eq. (4) is formally equivalent to the one evolving total energy; however, it can lead to different discrete
properties, as it will be outlined in Section 3.

2.2. Real-gas thermodynamics

The thermodynamic space of solutions for the state variables pressure P , temperature T , and density ρ
of a single substance is described by an equation of state. One popular choice for systems at high pressures,
which is used in this study, is the Peng-Robinson equation of state [33] written as

P =
RuT

v̄ − b
− a

v̄2 + 2bv̄ − b2
, (5)

with Ru the universal gas constant, v̄ =W/ρ the molar volume, andW the molecular weight. The coefficients
a and b take into account real-gas effects related to attractive forces and finite packing volume, respectively,
and depend on the critical temperature Tc, critical pressure Pc, and acentric factor ω. They are defined as

a = 0.457
(RuTc)

2

Pc

[
1 + c̃

(
1−

√
T/Tc

)]2
and b = 0.078

RuTc

Pc
, (6)

where coefficient c̃ is provided as a function of the acentric factor ω by

c̃ =

{
0.380 + 1.485ω − 0.164ω2 + 0.017ω3 if ω > 0.49,
0.375 + 1.542ω − 0.270ω2 otherwise.

(7)

The Peng-Robinson real-gas equation of state needs to be supplemented with the corresponding high-
pressure thermodynamic variables based on departure functions calculated as a difference between two
states. In particular, their usefulness is to transform thermodynamic variables from ideal-gas conditions
(low pressure - only temperature dependant) to supercritical conditions (high pressure). The ideal-gas parts
are calculated by means of the NASA 7-coefficient polynomial [34], while the analytical departure expressions
to high pressures are derived from the Peng-Robinson equation of state as detailed in Jofre & Urzay [2].

2.3. High-pressure transport coefficients

The high pressures involved in the analyses conducted in this work prevent the use of simple relations
for the calculation of the dynamic viscosity µ and thermal conductivity κ. In this regard, standard methods
for computing these coefficients for Newtonian fluids are based on the correlation expressions proposed by
Chung et al. [35, 36]. These correlation expressions are mainly function of critical temperature Tc and
density ρc, molecular weight W , acentric factor ω, association factor κa and dipole moment M, and the
NASA 7-coefficient polynomial [34]; further details can be found in dedicated works, like for example [2, 37].
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3. Discretization frameworks

This section describes: (i) a general framework to attain kinetic-energy-preservation (KEP) and pressure-
equilibrium-preservation (PEP) schemes for compressible flows governed by a general equation of state, and
(ii) existing methods utilized for trans-/supercritical fluids turbulence.

3.1. KEP and PEP schemes

The equations of fluid motion introduced in Section 2.1 are numerically tackled by employing a stan-
dard semi-discretization procedure, i.e., they are firstly discretized in space and then integrated in time.
Spatial differential operators are treated using centered finite-differencing formulas; a second-order scheme
is considered in this paper, although the results can be generalized to formulas of any order that satisfy
a discrete summation-by-parts rule (unless otherwise indicated). The discussion will be specifically based
on a finite-difference framework; however, the proposed approach also encompasses finite-volume schemes;
the reader is referred to, e.g., [38] for details about the relationship between the two formulations. All the
flow variables are assumed to be colocated in space. Time derivatives are treated analytically; in practice,
temporal errors (in this case associated with Runge-Kutta methods) are assumed to be kept under control
by using sufficiently small time steps [39]. Since both KEP and PEP are inviscid properties, the Euler
equations will be considered in this section; also, for simplicity, but without loss of generality, developments
will be presented for the one-dimensional case. Under such hypotheses, the semi-discretized equations read:

ρt = −Cρ, (8a)

(ρu)t = −Cρu − δxP, (8b)

(ρE)t = − (Cρe + Cρk)︸ ︷︷ ︸
CρE

−ΠρE , (8c)

where subscript t indicates derivation with respect to time, C represents the (semi-discretized) convective
terms, and δx is the discrete second-order centered derivative operator, which satisfies the summation-by-
parts rule but not, e.g., the product rule. The convective term in the total energy equation has been split
into convection associated with internal (Cρe) and kinetic energy (Cρk); ΠρE = δx(Pu) is the pressure term.
Within this discrete framework, each of the variables in Eqs. (8a)-(8c) is a N−sized vector, where N is the
number of grid points, and δx can be represented as a N ×N derivative matrix. The conservation equations
are supplemented by the equation of state, which hereinafter is generically written as P = P (ρ, e).

3.1.1. KEP conditions

Non-dissipative, stable simulations of compressible discontinuity-free turbulent flows have been shown
to be achievable by enforcing the KEP property, i.e., ensuring that the discretization of the convective term
does not spuriously contribute to the discrete kinetic energy balance. For compressible flow, a family of
KEP formulations for the convective term has been recently derived [23], and is briefly summarized here.
The underlying idea is to express the convective terms appearing in Eqs. (8a)–(8c) as a linear combination
of split forms, i.e., all the possible consistent expressions of the derivative of the triple product ρuϕ:

CD
ρϕ = δxρuϕ, (9a)

Cϕ
ρϕ = ϕδxρu+ ρuδxϕ, (9b)

Cu
ρϕ = uδxρϕ+ ρϕδxu, (9c)

Cρ
ρϕ = ρδxuϕ+ ϕuδxρ, (9d)

CL
ρϕ = ρϕδxu+ ρuδxϕ+ ϕuδxρ, (9e)

where ϕ is the transported scalar, e.g., ϕ = 1 for Cρ and ϕ = u for Cρu. The generalized energy is defined

as Gϕ = ρϕ2/2, and it discretely evolves according to Gϕ
t = ϕ(ρϕ)t − ϕ2/2ρt; of note, its evolution depends

exclusively on the equation-pair constituted by the continuity and the ρϕ-equation. Kinetic energy ρk = Gu
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is of particular interest for both physical and stability reasons; upon enforcing discrete conservation of global
kinetic energy by convection [23, 38]:

d

dt

∑
N

ρk = −
∑
N

[
uCρu − u2

2
Cρ

]
︸ ︷︷ ︸

=0

−
∑
N

uδxP, (10)

a two-parameter family of energy-preserving formulations can be found [23]. In particular, the requirement
of local conservation of primary invariants (mass, momentum, total energy) leads to the exclusion of CL

ρϕ,
which cannot be expressed as a difference of fluxes [23]. As a consequence, a one-parameter family of locally
conservative KEP formulations is finally obtained:

CKEP
ρϕ = ξ

CD
ρϕ + Cϕ

ρϕ

2
+ (1− ξ)

Cu
ρϕ + Cρ

ρϕ

2
, (11)

where the cases ξ = 0, ξ = 1 and ξ = 1/2 provide the Feiereisen, the “C” form [23] and the so-called
Kennedy-Gruber-Pirozzoli (KGP) formulations respectively. For each form of this family, it is possible
to define an associated numerical flux based on an arithmetic mean of the flow variables or of their cross-
products; see [23] for details3. Working directly in a finite-volume framework, other classes of schemes can be
obtained that may or may not be recast as a linear combination of finite-difference split forms. For instance,
numerical flux functions based on the logarithmic average, or on its generalizations, have been developed to
achieve entropy conservation for ideal-gases [40, 41], polytropic models [42], or thermally-perfect gases and
multi-component flows [43, 44, 45, 46]. An approach based on a square-root density splitting was recently
proposed by Edoh [29], which induces a geometric average in the numerical fluxes. The present study
focuses on the family provided by Eq. (11), mostly due to its simplicity, ease of implementation and efficient
computational cost, and as a first step towards the analysis of supra-conservative discretizations for real-gas
thermodynamics [47]. General classes of numerical flux functions with secondary conservation properties
will be considered as part of future work.

When Eq. (11) is used for ϕ = 1 and ϕ = u, the resulting algorithm preserves mass, momentum and
kinetic energy by convection both globally and locally. In particular, the KGP scheme has proved to be
particularly robust in previous works, compared to other kinetic-energy-preserving splittings [23]. Any
scheme presented in this section is based on the KGP splitting for continuity and momentum. The symbol
CKGP

ρϕ will be used for convective terms expressed in KGP form.
An unspecified degree of freedom remains with regards to the discretization of the convective and pressure

terms in the total energy equation. With regards to the pressure term ΠρE , as a double product it can be
generally discretized as a combination of a conservative and an advective formulation:

ΠρE = ηδx(Pu) + (1− η)(pδxu+ uδxP ), (12)

where η is a free parameter. Alternatively, it can be reformulated as the triple product

ΠρE = δx(ρp̂u), (13)

where p̂ = P/ρ, and therefore all the split forms in Eq. (9) apply. In some previous works [22, 48], the
pressure term in Eq. (8c) was expressed as in Eq. (13) and incorporated into convection, and the KGP split
was applied to enthalpy (i.e., ϕ = h = e + u2/2 + p̂). The scheme obtained by evolving Eqs. (1a)–(1c),
with the KGP split applied to all the convective terms and to enthalpy in the total energy equation will
be referred hereinafter to as KGP-Et. The application of a KEP scheme to CρE leads to preservation of
GE = ρE2 by convection, which is a quantity with no clear physical meaning. Many other choices are

3For instance, the advective formulation Cρ
ρ admits a numerical flux Fi+1/2 = 1/2 (ρi+1ui + ρiui+1), while the KGP

formulation CKGP
ρϕ corresponds to Fi+1/2 = 1/8(ρi + ρi+1)(ui + ui+1)(ϕi + ϕi+1).
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possible and lead to different discrete properties; for instance, the split for CρE does not necessarily need to
be in KEP form, and/or it can be of different type for Cρe and Cρk. Also, a different variable can be evolved
in place of total energy. The numerical treatment of the energy equation and the associated conservation
properties are extensively discussed in a recent paper in the context of ideal-gas thermodynamics [49].

In this regard, besides recent interest on the PEP property (discussed in the next section) many research
efforts have been devoted over the lasts decades to enforce discrete conservation of entropy. This is indeed a
strong physics-based proxy of non-linear stability for compressible flows, especially in the presence of shocks,
to ensure correct production of entropy and convergence towards weak solutions. In the context of linear
split-based formulations such as those considered in this work, Honein and Moin [50] proposed to evolve
entropy instead of total energy, thus obtaining a scheme that is KEP and entropy-preserving, but did not
conserve total energy. More recently, the kinetic-energy and entropy-preserving (KEEP) scheme proposed
in [24] corresponds to discretizing the internal energy equation with its convective term expressed in KGP
form. This scheme satisfies additional analytical relations in terms of internal/kinetic energy exchange
at the discrete level, and has favorable entropy-conservation properties, although it is strictly not fully
entropy preserving [25]. Both approaches have shown that enforcing discrete entropy conservation (even
approximately) in addition to KEP can lead to enhanced fidelity and robustness of turbulent compressible
flow simulations, also in the absence of shocks. Using Tadmor-type [40] flux functions, a KEP numerical flux
that conserves total energy, entropy and is PEP was recently proposed for ideal gases [30]. Since the present
study focuses on low-Mach number turbulent flows with a (pseudo-)interface, the main focus was devoted
on enforcing the KEP and PEP properties; entropy conservation has not been taken into consideration and
might be part of future work.

3.1.2. PEP conditions

The second component of the novel framework is the enforcement of the PEP condition introduced
in Section 1. This property can be easily demonstrated in a continuous setting by considering the one-
dimensional velocity-evolution equation, which can be derived by subtracting the mass equation multiplied
by velocity from the momentum equation, yielding

ut = −1

ρ

[
∂

∂x
(ρuu) +

∂P

∂x
− u

∂

∂x
(ρu)

]
, (14)

and a one-dimensional, inviscid version of the general pressure evolution equation, Eq. (4),

Pt = − ∂

∂x
(Pu)− (ρc2 − P )

∂u

∂x
. (15)

Based on Eqs. (14)-(15), it can be immediately deduced that when the initial pressure and velocity are
spatially constant (with density varying in space), i.e., u = ū and P = P̄ , then neither pressure nor velocity
change in time; it is therefore highly desirable that this equilibrium is discretely preserved also in numerical
simulations. From a physical standpoint, this equilibrium condition arises and is of crucial importance in
any situation that involves a material interface with no pressure jumps, for instance multi-phase interfaces
with no or negligible surface tension (i.e., in the limit of high Weber numbers), multi-component mixing (a
fundamental process in reactive systems) or, as in the present study, pseudo-interfaces that generate when
a fluid crosses the pseudo-boiling line. Numerical methods generally fail to reproduce the PEP property
discretely, even when the variation of the thermo-fluid-dynamic properties across the interface is smooth (as
assumed in this study), and regardless of the thermodynamic model.

While the KEP property depends exclusively on how the continuity and momentum equations are dis-
cretized, the fulfilment of the PEP property depends directly on the choice of the energy variable, and
how the corresponding equation is numerically treated. When the total or the internal energy are directly
discretized, the pressure equation is an induced equation, and whether ut = 0 and Pt = 0 are satisfied or
not has to be verified on a case-by-case basis by deriving the corresponding discrete evolution equations for
velocity and pressure. In a pressure-equilibrium framework, i.e., when u = ū, it is useful to preliminarily
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observe that any combination of the split forms in Eq. (9) reduces to

Cρ = ūδxρ; Cρu = ū2δxρ; Cρk =
ū3

2
δxρ. (16)

The induced discrete equation for velocity reads:

ut = −1

ρ

(
Cρu − ūCρ + δxP̄

)
(17)

which, in light of Eq. (16), is easily seen to satisfy ut = 0 for any choice of the split forms for Cρ and Cρu.
The induced pressure equation can instead be obtained by time-differentiating the equation of state and

applying the chain rule with respect to the time variable,

Pt = Pρρt + Peet = Pρρt +
Pe

ρ
[(ρe)t − eρt]. (18)

The behaviour of the induced Eq. (18) depends on the discretization of the energy equation (i.e., choice
of the energy variable and corresponding numerical treatment). In the following, two cases will be firstly
considered in which the total energy and the internal energy equations are directly discretized. Finally, the
case in which an evolution equation for pressure is utilized will be discussed.

Total energy equation. The first class of methods under consideration is one where the total energy equation,
Eq. (8c), is directly discretized. In this case, the internal energy evolution is in turn an induced equation,
which can be obtained by subtracting the (induced) discrete kinetic energy equation to Eq. (8c), yielding

(ρe)t = (ρE)t − (ρk)t = (ρE)t −
[
u(ρu)t −

u2

2
ρt

]
=

= −
[
Cρe + Cρk −

(
uCρu − u2

2
Cρ

)]
− [ΠρE − uδxP ] .

(19)

Upon substituting Eq. (16) into Eq. (19), and then into Eq. (18), and taking into account that pressure and
velocity are constant in the PEP framework, the induced pressure equation reads

Pt =

[
Pe

ρ
e− Pρ

]
ūδxρ−

Pe

ρ
[Cρe +ΠρE ] . (20)

In order to further develop Eq. (20) and verify the fulfilment of the PEP condition, a choice has to be made
regarding the discretization of the terms ΠρE and Cρe. For the former, it is straightforward to notice that
Eq. (12) is in PEP form for any value of η, while Eq. (13) is PEP only if discretized using the divergence
form. Upon inspection, the method KGP-Et is thus easily seen to be not PEP. Regarding the latter term,
under the assumption of constant velocity, its expansion again reduces to the combination of conservative
and advective formulations:

Cρe = χūδx(ρe) + (1− χ)ū(eδxρ+ ρδxe). (21)

However, any value of χ ̸= 0 leads to the presence of the term δx(ρe), which cannot be further manipulated
for general equations of state and for lack of a discrete product rule. On the contrary, by picking χ = 0 and
plugging Eq. (21) into Eq. (20), and by further assuming that ΠρE = 0, one is left with

Pt = −ū(Pρδxρ+ Peδxe) ≈ −ūδxP̄ = 0. (22)

The approximate equality in the r.h.s. of Eq. (22) is related to the discrete fulfilment of the chain rule with
respect to space. Second-order centered derivative operators satisfy a discrete version of the chain rule [51]:

δxP = P̃ρδxρ+ P̃eδxe, (23)

where P̃ρ and P̃e are possibly non-linear operators acting on the Jacobian functions. Compared to their
continuous counterparts, the discrete Jacobians are second-order accurate for interior nodes. Importantly,
the result in Eq. (23) cannot be generalized to higher-order derivative operators [51]. In summary, algorithms
based on the direct discretization of the total energy equation that employ:
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• Eq. (21) for Cρe with χ = 0, which in turn implies any linear combination of Cϕ
ρe and Cρ

ρe;

• any split form for Cρk;

• Eq. (12) for ΠρE with any value of η or Eq. (13) in divergence form,

require the sole discrete reproduction of the chain rule by the spatial differential operator to accomplish the
PEP property. All the other combinations, including the method KGP-Et, require the product rule to be
also discretely invoked. This class of schemes is hereinafter labeled as CR (chain rule). In this work, one
specific scheme is selected for numerical testing, in which the KGP formulation is used for Cρ, Cρu, Cρk,
while Cρe = Cϕ

ρe, and η = 1; this scheme is labeled as KGP-Et-CR.
It is worth to observe that in the case of the ideal-gas equation of state, i.e., P = (γ − 1)ρe, then

Pρ = (γ−1)e and Pe = (γ−1)ρ, leading to cancellation of the first term in the r.h.s. of Eq. (20). Therefore,
the PEP requirement in this case simplifies to Cρe + ΠρE = 0, as previously reported [52]; this condition
can be satisfied in several ways. Upon leveraging the linear relation between P and ρe for ideal gases, the
contribution due to Cρe can be cancelled by splitting this term based on a linear combination of CD

ρe and Cu
ρe.

Accordingly, Shima et al. [10] recently proposed a PEP scheme for ideal gases where Cρe = (CD
ρe + Cu

ρe)/2,
with every other term discretized as in the previously proposed KEEP scheme; this scheme is labeled as
PEP-IG.

Finally, it is worth noticing that if ρe is chosen as a state variable instead of e, i.e., P = P (ρ, ρe), similar
conclusions can be achieved for the case of general equations of state. However, in this case, χ = 1 should
be used in Eq. (21) to get to Eq. (22), and the resulting split form would be PEP for ideal gases.

Internal energy equation. If the internal energy equation,

(ρe)t = −Cρe − Pδxu, (24)

is directly discretized in place of Eq. (8c), the induced pressure equation becomes

Pt =

[
Pe

ρ
e− Pρ

]
ūδxρ−

Pe

ρ
Cρe. (25)

Similar conclusions can be obtained as those already drawn for the previous approach in which total energy
is directly discretized. In particular, when Cρe is split using χ = 0, the resulting method only requires
the discrete application of the chain rule to enforce the PEP condition; otherwise, the product rule also
needs to be used. The scheme selected for testing is based on Cρe = Cϕ

ρe, and is labeled KGP-et-CR. Of
note, schemes based on the internal energy equation are total-energy conserving (TEC), as long as a KEP
method is used, if Cρe is discretized using a locally-conservative formulation, and the induced pressure term
results in an advective formulation of δxpu. This latter condition is true as long as the pressure term in the
internal energy equation is discretized as in Eq. (24), and the derivative matrices acting on u and p satisfy a
reciprocal skew-symmetric relationship [52]. The same derivative operator is used for all terms in this work,
thus the condition is indeed satisfied. Hence, KGP-et-CR is also TEC.

Pressure equation. Finally, the case in which the pressure equation is evolved in place of Eq. (8c) is analyzed.
A one-dimensional, inviscid, semi-discrete version of Eq. (4) reads

Pt = −Cp − (ρc2 − P )δxu, (26)

where Cp = δx(Pu); therefore, the family of split forms in Eq. (12) also applies to Cp. Obviously, for
constant pressure and velocity, any value of η will lead to Pt = 0. The case η = 0 is selected and the
corresponding PEP scheme is labeled as KGP-Pt.

In this case, however, total energy conservation is sacrificed; indeed, both the discrete chain and the
product rules are needed to demonstrate TEC, regardless of the split forms considered. This can be shown
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by deriving the induced total energy equation, as the sum of the induced discrete evolution equations of
internal and kinetic energy. Isolating (ρe)t from Eq. (18), and adding the contribution of (ρk)t, one gets to

(ρE)t =

(ρe)t︷ ︸︸ ︷
ρ

Pe
(Pt − Pρρt) + eρt +

(
uCρu − u2

2
Cρ

)
− uδxP︸ ︷︷ ︸

(ρk)t

. (27)

Substituting Eq. (26) with η = 0, using Eq. (23), and taking into account that c2 = Pρ + P/ρ2Pe, yields:

(ρE)t = −

P1︷ ︸︸ ︷(
P̃e

Pe
ρuδxe+ eCρ

)
−

P2︷ ︸︸ ︷(
uCρu − u2

2
Cρ

)
− (uδxP + Pδxu)︸ ︷︷ ︸

P3

+

P4︷ ︸︸ ︷
ρ
Pρ

Pe

(
Cρ −

P̃ρ

Pρ
uδxρ− ρδxu

)
. (28)

Demonstrating conservation of total energy is equivalent to show that the r.h.s. of Eq. (28) can be expressed
in a locally conservative formulation (i.e., as a difference of fluxes). The terms P1, P2 and P3 are the induced
contributions of internal energy, kinetic energy and pressure, while P4 is a spurious error term. In particular,
P2 is in locally conservative form for any KEP scheme belonging to the class discussed in this paper; P3 is an
advective instance of the product δx(Pu), and thus can also be recast as a difference of fluxes [23]. However,

the chain rule in space needs to be satisfied exactly (i.e., P̃e = Pe and P̃ρ = Pρ) to potentially satisfy
TEC. Even in this case, the product rule is also necessary: if Cρ = Cu

ρ , then P4 = 0, but P1 provides CL
ρe,

which is a non-conservative split form. On the other hand, selecting Cρ = CD
ρ , the induced internal energy

contribution becomes of type Cϕ
ρe, hence conservative, but the product rule is again needed to eliminate P4.

It is important to remark that the induced kinetic energy balance is independent of the discretization of the
energy equation, and is preserved for KEP schemes. Therefore, the lack of conservation of total energy is
only associated with an incorrect (induced) discrete internal energy balance.

3.1.3. Summary of KEP and PEP schemes

Table 1 summarizes a subset of notable schemes emerged from the previous theoretical analysis, which
have been selected for further numerical assessment. All the schemes are based on the KGP split form for
the convective terms in the continuity and the momentum equations, and as such they all preserve mass,
momentum and kinetic energy both globally and locally.

In the scheme labeled KGP-Et, the total energy is directly solved for, and the KGP split is applied to
enthalpy (i.e., the convective and pressure terms in the total energy equation are combined); this scheme
has been previously proposed and used in, e.g., [22, 53]. Upon deriving the induced equation for pressure, it
is shown that this method requires application of both the product and the chain rules to be PEP. On the
other hand, a careful choice of the split formulation for Cρe in the total energy equation leads to a class of
schemes that would be PEP if the chain rule alone was discretely satisfied by the spatial derivative operator.
One particular instance of this class of schemes, named KGP-Et-CR, has been selected for testing. Of note,
the specific split family to be chosen for Cρe to obtain this class of schemes depends on the choice of the
thermodynamic state-variables pair. Similar results are obtained if the internal energy is directly discretized;
a method from this family, called KGP-et-CR, is proposed for testing. Notice that there is a subtle difference
between the schemes KGP-Et-CR and KGP-et-CR, stemming from the induced kinetic-energy and pressure
terms. In other words, if Cρk and ΠρE in the KGP-Et-CR were discretized à la KEEP, as proposed by Kuya
et al. [24], the two methods would be identical. This difference is deliberately kept in this work to observe
the different numerical behaviour, and for consistency with the reference KGP-Et scheme.

In summary, the discrete chain rule appears to constitute a barrier for the development of PEP methods,
at least for discretizations based on linear finite-differencing schemes. Based on current knowledge, a discrete
form of the chain rule is only available for second-order differential operators, and is satisfied to O(h2). To
overcome this barrier, a class of schemes is proposed and analyzed in which pressure is evolved in place
of total or internal energy. In this case, the PEP condition can be easily satisfied, but a formal analysis
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Label Energy Cρe Cρk ΠρE Cp TEC PEP

KGP-Et Eq. (8c) CKGP
ρe CKGP

ρk CKGP
ρp̂ – ✓ ×

KGP-Et-CR Eq. (8c) Cϕ
ρe CKGP

ρk η = 1 – ✓ ⃝
KGP-et-CR Eq. (24) Cϕ

ρe – – – ✓ ⃝
KGP-Pt Eq. (26) – – – η = 0 × ✓

PEP-IG Eq. (24) (CD
ρe + Cu

ρe)/2 CKGP
ρk – η = 0 ✓ ×

Table 1: Discretization and properties of the selected formulations considered in this work. In all cases, the continuity and
momentum equations are assumed to be discretized with a KGP form. ✓: condition satisfied; ×: discrete product and chain
rules are needed; ⃝: only chain rule is needed. This table refers to a general equation of state P = P (ρ, e).

shows that discrete total energy conservation is sacrificed. The resulting approach, which combines the KGP
scheme with the solution of an evolution equation for pressure, is, to the best of the authors’ knowledge,
novel, and has been labeled KGP-Pt. In Section 4, the schemes listed in Table 1 will be numerically assessed
and compared with standard methods, briefly summarized in the next section.

3.2. Existing methods for supercritical fluids turbulence

This sections briefly describes several existing approaches commonly employed for solving the equations
of fluid motion for compressible flow, and in some cases schemes that have been specifically tailored for
trans-/supercritical regimes. Three representative categories are taken into consideration, as reported in the
following, which will be numerically tested in this study for comparison with the novel schemes.

3.2.1. Conservative method with stabilization

This class is representative of a rather “traditional” approach in the compressible flow community, which
consists in solving the classical set of governing equations, Eqs. (1), with all the convective terms discretized
in divergence formulation. This approach is hereinafter labeled as D. It is inherently unstable in multi-scale
simulations due to lack of KEP (see also Section 3.1.1), and thus it is typically coupled with a stabilization
method, e.g., low-pass filtering. In this work, the focus is placed on a class of implicit filters initially proposed
by Lele [54] and later exploited by Visbal and Gaitonde [17], where each conservative variable is filtered
according to

αf φ̄i−1 + φ̄+ αf φ̄i+1 =

Nf∑
n=0

an
2
(φi+n + φi−n), (29)

where φ̄ is the filtered variable and an the filter coefficient parameters. A fourth-order filter, F4, with
αf = 0.495 and the corresponding filter coefficients a0 = 5/8+3/4αf , a1 = 1/2+αf and a2 = −1/8+1/4αf

is employed at each Runge-Kutta stage and at each time step, without changing the filter coefficients;
the resulting method is labeled D+F4. Low-pass filters introduce numerical dissipation, but are generally
successful in stabilizing the solution when a non-linearly unstable scheme is used. On the other hand,
as reported in [16], filtering can amplify pressure oscillations due to the interaction with thermodynamic
non-linearities, particularly across the pseudo-boiling line. Even though increasing the order of the filter
obviously leads to a less dissipative filter, here the stencil is limited to a four-point function for efficiency
purposes; indeed, increasing the stencil width is known to significantly deteriorate parallel computational
performances, especially when dealing with implicit spatial schemes [55]. Methods of this class (although of
higher spatial order) have been previously used for supercritical simulations in, e.g., [56]. Finally, it is worth
to note that when the filter coefficients are not re-scaled according to the time step size, this is known to
introduce a temporal inconsistency in terms of how much dissipation is added to the solution, with potential
risks of over-dissipation. In this regard, temporally-consistent filtering techniques, such as those proposed
in [57, 58], might be considered for future work.
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Label Ref. Energy Cρϕ ΠρE Cp Notes

D – Eq. (8c) CD
ρϕ η = 1

– Unstable; only used for comparison

D+F4 [56] Eq. (8c) CD
ρϕ – Use of Eq. (29) with αf = 0.495 and Nf = 1

D-Pt+F4 [14] Eq. (26) CD
ρϕ – η = 1 Use of Eq. (29) with αf = 0.495 and Nf = 1

UB-Df [13] Eq. (8c) HLLC4

η = 1
– Use of double-flux method

KGP-Df novel Eq. (8c) CKGP
ρϕ – Use of double-flux method

Table 2: Summary of existing schemes for transcritical flows assessed in this work. The last row is a novel combination. In the
column for Cρϕ, it is assumed that the same scheme is used for any variable ϕ.

3.2.2. Pressure-based approach in divergence formulation

As mentioned in Section 1, solving an equation for pressure to have better control of spurious pressure
oscillations has been previously proposed by, e.g., Terashima and Koshi [14]. However, convection was
otherwise discretized using the divergence formulation. As a representative scheme of this class, a method
analogous to D+F4 is tested, but in which pressure is solved instead of total energy, called D-Pt+F4.

3.2.3. Double-flux methods

The double-flux approach [12] was recently extended to supercritical flows by Ma et al. [13]. In this
method total energy is discretized, but the internal energy is fixed within the time-integration step to
artificially enforce pressure equilibrium. If the relationship between internal energy and pressure for real
gases is generically rewritten as ρe = P/(γ∗ − 1) + e∗0, where e∗0 and γ∗ are non-linear functions of the
thermodynamic states, then in the double-flux approach γ∗ and e∗0 are “frozen” both in space and time
during each time step; details can be found in [13], where the solution was found to be free of spurious
pressure oscillations. The double-flux approach has been typically coupled with upwind-biased schemes;
here, following [13], it will be tested in conjunction with the HLLC scheme [59]; the resulting method has
been labeled UB-Df (upwind-biased double-flux). The PEP property in this case is obviously achieved at
the expenses of KEP. For the sake of comparison, the double-flux method will be also assessed for the first
time in conjunction with the KGP-Et scheme, here denoted as KGP-Df.

4. Numerical results

The rationale for the design of the numerical tests was to first (i) verify the theoretical framework and
assess the PEP and TEC properties for all the proposed schemes, along with the asymptotic behaviour of the
corresponding errors, using a 1D inviscid advection of a density wave, as previously proposed in Bernades
et al. [60]; then (ii) to investigate the importance of enforcing the PEP property in a multi-dimensional
context, by inspecting the local quality of the flow field for a 2D multiphase problem, i.e., an inviscid mixing
layer under transcritical conditions, simulated by a state-of-the-art KEP scheme (KGP-Et) in comparison
with the novel pressure-based KEP+PEP scheme (KGP-Pt); finally (iii) apply the KGP-Pt scheme to a
complex turbulent flow, particularly the direct numerical simulation (DNS) of a transcritical channel flow.

4.1. 1D advection of a density wave

The main objectives of this test are to: (i) verify the TEC and PEP theoretical predictions presented
in Table 1 for the KEP schemes; (ii) assess the overall behaviour of all the schemes presented in Table 1

4In this case, the HLLC scheme is used for the discretization of the convective terms Cρ, Cρu and CρE .
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and Table 2; and (iii) verify the asymptotic behaviour of the TEC and PEP errors. To this end, following
previous works [10, 13], the inviscid one-dimensional advection of a density wave,

ρ(x, t = 0) =
ρmin + ρmax

2
+

(
ρmax − ρmin

2

)
sin (2πx), (30)

is simulated at constant velocity v0 = 1m/s. Despite its simplicity, this test has proven to be very challenging
for standard numerical schemes, as it is highly sensitive to the generation of spurious pressure oscillations.
With the aim of testing the theoretical framework in a consolidated context, ideal-gas conditions will be
analyzed first. Then, results for transcritical conditions with real-gas thermodynamics will be presented.

4.1.1. Ideal-gas thermodynamics

In low-pressure, ideal-gas conditions, the 1D advection test is performed with the following setup: ref-
erence bulk pressure of P0 = 1Pa, ρmin = 1kg/m

3
and ρmax = 3kg/m

3
, with reference ρ0 = 2kg/m

3
. The

domain length is L = 1m, discretized with 41 equally-spaced grid points and acoustic CFL= 0.3. The flow
is advanced up to t/tc = 11 (tc = 1s) using a standard fourth-order Runga-Kutta time integrator. From
Table 1, only KGP-Et and KGP-Pt were tested, as the other schemes were specifically developed for general
equations of state; in addition, Shima et al.’s method [10] (PEP-IG) was also included for comparison. From
Table 2, double-flux does not apply in this case, hence UB-Df and KGP-Df become simply UB and KGP-Et;
also, filtering was not used in this case, because (i) this test is not susceptible to aliasing-related instabilities,
and (ii) the D-based schemes are PEP for ideal gases (see Section 3.1.2). Finally, another method (hybrid,
H), where the sensor proposed by Ducros et al. [61] is used to switch between KGP and HLLC, was also
tested.

Two main conclusions can be drawn from the results shown in Figure 1. First, only three schemes are
free from pressure oscillations: D, in accordance with the theoretical framework (however, this scheme is not
KEP and is generally unstable for multi-dimensional flows), PEP-IG and the novel KGP-Pt. The KGP-Et
is not PEP and indeed suffers from spurious pressure oscillations, which in turn affect the thermophysical
quantities. On the other hand, dissipative methods minimize these oscillations, although not completely, as
seen for H in the detailed zoom area from Figure 1(b). The second (expected) conclusion is that the UB
scheme leads to dissipation of the density wave, while the hybrid H scheme is dissipating at a slightly lower
rate. It should be noted, however, that the sensor is mostly active as a result of the oscillations, and the
upwind-biased scheme is governing the discretization of the convective term. In all cases, the density field
suffers from a time lag due to the dispersion error of the second-order scheme.

4.1.2. Real-gas thermodynamics

A transcritical 1D advection test is simulated, as previously proposed by Ma et al. [13]. The test is
carried out with the same domain length, mesh size and time integrator as in the ideal-gas case. In this
case, N2 is the supercritical fluid operating at bulk (constant) pressure of P0 = 5MPa and advected at
initial constant velocity u0 = 1m/s. The density profile is assigned with ρmin/ρc = 0.182 (T = 300K) and
ρmax/ρc = 2.531 (T = 100K), with reference density ρ0/ρc = 0.305 (T = 200K).

Numerical results are depicted in Figure 2. All the schemes listed in Table 1 and Table 2 are tested, with
the exception of D and with the addition of PEP-IG. Six main conclusions can be drawn: (i) as theoretically
anticipated, KGP-Et is not PEP, while the schemes of the CR family do not seem to offer practical advantages
in terms of mitigating pressure oscillations; (ii) the PEP-IG scheme is not PEP for real-gas equations of state,
as better highlighted in the zoomed inset plot in Figure 2(b), (iii) the double-flux formulation is apparently
able to prevent the amplification of pressure disturbances only if it is coupled with an upwind-biased (UB)
method, whereas the pressure equilibrium is altered when the Df is used in conjunction with the KGP
method; (iv) filtering is unable to suppress pressure oscillations; also, disturbances are particularly severe
when crossing the pseudo-boiling line at x/L ≈ 0.65 − 0.85, in accordance with previous results showing
that filters may amplify pressure oscillations due to the interaction with non-linear thermodynamics [16];
(v) dissipative methods alter the thermodynamic properties [i.e., density in Figure 2(a)], especially UB-Df.
A small amount of dissipation is present even when utilizing a low-dissipative filter, D+F4; and (vi) pressure
equilibrium is maintained only for D-Pt+F4 and for the novel KGP-Pt.
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Figure 1: 1D advection test under ideal-gas conditions (γ = 1.4), at t/tc = 11, for several schemes (see text and tables for
details). Shown are normalized (a) density and (b) pressure.

In addition, a grid-refinement study was performed to analyze the asymptotic behaviour of the error for
the conservation of total energy (in the case of the KGP-Pt scheme) and of pressure-equilibrium preservation.
In particular, the following quantities are introduced:

εTEC = |⟨ρE⟩|, εPEP = ∥P (x, t = tf )− P0∥2, (31)

where tf is the final time of integration, ∥ · ∥2 is the L2 norm, the overline f indicates integration over the
spatial domain and the operator ⟨f⟩ is defined, for a generic variable f , as

⟨f⟩ = f(x, t = tf )− f(x, t = 0)

f(x, t = 0)
. (32)

Figure 3 shows the error quantities defined in Eq. (31) for the schemes from Table 1. Total energy is preserved
to machine accuracy for schemes based on total or internal energy, in accordance with the theoretical analysis,
while it appears to follow (on average) a scaling of type O(h2) for KGP-Pt, as reported in Fig. 3(a).
Importantly, the total energy decreased in all cases [Fig. 3(a) reports the absolute value]. On the other
hand, Fig. 3(b) shows that the PEP error εPEP is also (mostly) second-order accurate, except in the first
and last tracts of the KGP-Et-CR and KGP-Et, respectively. This behaviour is assumed to be associated
with the unstable character of the pressure oscillations, that hamper the achievement of a pure asymptotic
behaviour. The schemes KGP-Et and KGP-et-CR behave similarly (at least up to h = 0.025m), while the
KGP-Et-CR method provides PEP errors of several orders of magnitude higher than the other schemes. As
elaborated in Section 3.1.3, the KGP-et-CR can be interpreted as a version of KGP-Et-CR in which the
consistency of the internal and kinetic energy fluxes is also enforced, similarly as done in [24]. This could
explain the better behaviour of the internal-energy based method compared to the total energy one. Based
on the results of this 1D test, two schemes are isolated for further assessment: the novel KGP-Pt (the only
one to be simultaneously KEP and PEP) and a reference KEP scheme, KGP-Et.

4.2. 2D inviscid transcritical mixing layer

The overall numerical stability and practical benefits of the newly proposed scheme KGP-Pt are here
demonstrated for a two-dimensional inviscid transcritical mixing layer, as compared with a reference KEP
and TEC method such as KGP-Et. A 2D mixing layer of N2 is simulated in a domain x ∈ [−0.5, 0.5] and
y ∈ [−0.25, 0.25] discretized with 256×128 uniformly spaced grid points, corresponding to h = 0.0039m. The
mixing layer is defined by setting a temperature difference between top T/Tc = 0.75 and bottom T/Tc = 1.5
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Figure 2: 1D advection test under transcritical thermodynamic conditions, at t/tc = 10−2, for several schemes (see text and
tables for details). Shown are normalized (a) density and (b) pressure.
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Figure 3: Results of grid-refinement study for the 1D advection test under transcritical thermodynamic conditions. Errors (a)
εTEC and (b) εPEP at t/tc = 10−2 for several schemes (see text and tables for details).
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(a) (b)

Figure 4: 2D inviscid transcritical mixing layer at t/tc = 2. Results were obtained using the KGP-Pt scheme, 256× 128 mesh
size with CFL= 0.3. Contours of normalized (a) density and (b) cp with respect to critical point values.

boundaries, and a bulk pressure of P/Pc = 2. The left and right boundaries are periodic, whereas for the top
and bottom ones a symmetry condition is imposed for the vertical velocity and a homogeneous Neumann
condition is prescribed for all the other conserved variables. The initial condition is defined as

u = u0[1 +Au tanh (δ̄y)],

v = 0, (33)

T = Tc[3At −At tanh (δ̄y)],

with At = Au = 3/8 and u0 = 25m/s. These values, along with the factor δ̄ = 20, establish that the velocity
and temperature fields change from bottom- to top-boundary values within y = ±0.1m. In order to trigger
the Kelvin-Helmholtz (KH) instability, perturbations are applied on the velocity field within the region in
which the profiles change from bottom- to top-boundary values [62]. The perturbation field up = [Up, Vp] is
defined as a superposition of sinusoidal- and random-based functions as

Up = Vp = ay[sin (kπx) + agg(x)], (34)

where ay = ∆u[e−(y−Ly/2)
2/θ + e−y2/θ + e−(y+Ly/2)

2/θ], k = 6 in order to trigger 3 vortices roll-ups within
the domain (wavelength λ = 1/k = 1/3m), the amplitude of the fluctuations is set to ag = 1/10, and
g(x) is the randomly-defined perturbation with values varying in the range [−0.5, 0.5] across the x-direction.
Finally, A = 0.1 is the amplitude factor reduction, ∆u = 10m/s is the difference between bottom and top
boundaries, and θ is the momentum thickness defined as

θ =

∫ Ly/2

−Ly/2

u(y)− ubw

∆u

(
1− u(y)− ubw

∆u

)
dy, (35)

where the bottom boundary velocity is ubw = 20m/s.
Figure 4(a) shows a contour of the density field at t/tc = 2, where tc = λ/∆u = 2/(k∆u) = 0.033 s,

obtained with the KGP-Pt scheme. The typical KH rollers have developed and are starting to promote the
mixing of the liquid-like layer (top) and the gas-like layer (bottom). Fig. 4(b) highlights the narrow range
close to the pseudo-boiling line (max cp) where highly non-linear thermodynamic changes occur.

A detailed analysis of the time evolution of several integral quantities up to t/tc = 2, provided by the
novel KGP-Pt scheme, is shown in Fig. 5; all the quantities are reported according to the normalization
given in Eq. (32). Mass and momentum are preserved to machine accuracy [see Figs. 5(a)-(b)], while
Fig. 5(c) shows that total energy is not conserved, as anticipated by the theoretical analysis and as also
reported in the previous subsection. Since KGP-Pt is based on a KEP method, kinetic energy is only slightly
dissipated, supposedly as a result of the temporal integrator, given the very low Mach number of this test
[Fig. 5(d)]; therefore, the lack of TEC translates into a lack of internal energy conservation by convection,
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as displayed in Fig. 5(e) and theoretically expected. Finally, Fig. 5(f) reports the time evolution of global
(normalized) entropy; although the scheme is not entropy preserving, it shows good entropy conservation
properties, at least within the integration time explored in this work. The simulations were repeated at three
different spatial resolutions, showing that the TEC property is asymptotically recovered at a rate O(h2), in
accordance with results of Section 4.1.2. Of note, the TEC error has again a dissipative character, i.e., it
was not detrimental to the robustness of the simulation.

Finally, to examine the influence of the spurious oscillations on the flow field, a comparison between the
KGP-Pt novel and KGP-Et current method is reported. Figure 6 shows the distribution of pressure and
streamwise velocity comparing both approaches on a coarse mesh of 64 × 32 at an early stage of the flow
evolution (t/tc = 0.2); instants before the KGP-Et computation diverges. Due to lack of discrete pressure
equilibrium, the existing KEP method (KGP-Et) produces a noisy pressure field, which also contaminates
the velocity distribution [Figs. 6(a)-(c)]. Pressure oscillations are larger on the liquid-like region with respect
to the ones arising in the gas-like region, close to the bottom boundary. This is in line with the spatial
distribution of the pseudo-boiling line, which follows the roll-up KH structures and transports the oscillations
closer to the top boundary. Of note, these results are qualitatively in line with those reported by Terashima
and Koshi [14] for a transcritical jet. On the other hand, the newly proposed KEP+PEP method, KGP-Pt,
is able to capture the pressure variations correctly, without the need of any artificial mechanism, and despite
the limited number of points used to resolve the density gradient. This further underlines the importance
of enforcing the PEP property for this class of problems, and demonstrates that: (i) the KEP property
alone is not sufficient to tackle transcritical flows, and that (ii) the simultaneous enforcement of KEP and
PEP provides stable and high-quality simulations without the need of any additional oscillation-suppressing
mechanism.

Further insight is given in Fig. 7, where overshoots of pressure and density are clearly shown for the
KGP-Et method compared to KGP-Pt. These are present both along a horizontal section [y/L = 0.125,
Fig. 7(a)-(b)], as well as along the vertical centerline [x/L = 0, Fig. 7(c)-(d)]. In particular, the latter subset
of figures highlights that the spurious oscillations become more severe near the top region, and the density
field is clearly affected in the vertical direction. On the contrary, the KGP-Pt scheme provides smooth
thermodynamic fields in either direction.

4.3. Direct numerical simulation of a transcritical channel flow

The DNS of a transcritical channel flow is finally computed utilizing the in-house flow solver RHEA [63] to
demonstrate the applicability of the proposed KGP-Pt scheme in a complex turbulent case, and to compare
it to KGP-Et. Despite the lack of the PEP property, the latter proved to be a stable scheme within high-
pressure turbulent conditions at relatively low Reynolds numbers [60], and it is therefore used as a reference
for comparison. For consistency, the configuration is similar to the mixing layer defined in Section 4.2: N2

is used as operating fluid, whose critical pressure and temperature are Pc = 3.4MPa and Tc = 126.2K, and
its acentric factor is ω = 0.0372. The system operates at a supercritical bulk pressure of Pb/Pc = 2 and
confined between bottom (bw) and top (tw) isothermal walls, separated in this case at a distanceH = 2δ with
δ = 100µm the channel half-height, at Tbw/Tc = 0.75 and Ttw/Tc = 1.5, respectively. This configuration
forces the fluid to undergo a transcritical trajectory by operating within a thermodynamic region across the
pseudo-boiling line. Following previous work [5], the friction Reynolds number selected at the bottom wall
is Reτ,bw = ρbwuτ,bwδ/µbw = 100 to ensure fully-developed turbulent flow conditions [4]. The corresponding

dimensional parameters are: dynamic viscosity µbw = 1.6 · 10−4 Pa · s, density ρbw = 839.4 kg/m
3
, and

friction velocity uτ,bw = 1.9 · 10−1 m/s. The computational domain is 4πδ × 2δ × 4/3πδ in the streamwise
(x), wall-normal (y), and spanwise (z) directions, respectively. The grid is uniform in the streamwise and
spanwise directions with resolutions in wall units (based on bw values) equal to ∆x+ = 9.8 and ∆z+ = 3.3,
and stretched toward the walls in the vertical direction with the first grid point at y+ = yuτ,bw/νbw = 0.1 and
with sizes in the range 0.4 ≲ ∆y+ ≲ 2.3. Thus, this arrangement corresponds to a grid size of 128×128×128
points. Based on the estimates provided by Jofre and Urzay [1], the characteristic length scale for density
gradients in this case is approximately 10× larger than the Kolmogorov scale, therefore the latter is the
driving factor to select mesh resolution. The selected grid size is thus assumed to resolve all the relevant
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Figure 5: Temporal evolution of several quantities for the 2D inviscid mixing, for 64× 32 (solid-blue), 128× 64 (dashed-green)
and 256 × 128 (dotted-red) mesh size for (a) ρ, (b) ρu, (c) ρE, (d) ρui

2, (e) ρe and (f) ρs normalized according to Eq. (32).
Scheme used: KGP-Pt.
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(a) (b)

(c) (d)

Figure 6: 2D inviscid mixing layer in a transcritical regime. Contours at t/tc = 0.2 for 64 × 32 mesh size with CFL = 0.3
comparing the KGP-Et (a,c) and the KGP-Pt (b,d) schemes for normalized (a,b) pressure (with respect to the critical point)
and (c,d) streamwise velocity (with respect to δ u = 10m/s).

flow scales as it is finer than any of the resolutions used in the DNS by Lee and Moser [64], and 2× finer
in each direction with respect to Chevalier et al. [65]. The simulation strategy starts from a linear velocity
profile with random fluctuations [66], which is advanced in time to reach turbulent steady-state conditions
after approximately five flow-through-time (FTT) units; based on the bulk velocity ub and the length of the
channel Lx = 4πδ, a FTT is defined as tb = Lx/ub ∼ δ/uτ . In this regard, flow statistics are collected for
roughly 10 FTTs once steady-state conditions are achieved.

Figure 8 presents a comparison in terms of non-dimensional first-order statistics; in particular, Fig. 8(a)
shows that there are no significant differences between the two numerical schemes in terms of mean stream-
wise velocity in wall units. Similarly, Fig. 8(b) depicts the time-averaged temperature in viscous units
T+ = (T −Tw)/Tτ , with Tw the wall temperature and Tτ = [κ/(ρcPuτ )(d⟨T ⟩/dy)], and no visible differences
are displayed. Similar conclusions can be drawn for the Favre-averaged fluctuations reported in Fig. 9 for
(a) bottom wall and (b) top wall. The profiles of the two schemes match to plotting accuracy, which reliably
confirms the applicability and robustness of the novel scheme in the context of transcritical 3D applica-
tions. For completeness, Favre-averaged fluctuations for temperature are shown in Fig. 10(a) for bottom
and walls, while the Prandtl number Pr = cpµ/κ and the compressibility factor Z = P/(RuρT ) are reported
in Fig. 10(b). The analysis again confirms that the novel scheme KGP-Pt does not induce any drift in terms
of momentum and thermal diffusivity, and that non-ideal gas effects are well captured.

5. Conclusions

This work has focused on the derivation and analysis of kinetic-energy-preserving (KEP) and pressure-
equilibrium-preserving (PEP) numerical schemes for the computation of discontinuity-free compressible flows
governed by a general real-gas equation of state. The underlying premise is that these two properties are
especially crucial for high-fidelity scale-resolving simulations of turbulent flows in the trans- and supercritical
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Figure 7: Comparison of KGP-Pt and KGP-Et for the 2D mixing layer in a transcritical regime at t/tc = 0.2, with a 64× 32
mesh and CFL = 0.3. Plots of normalized (a,c) pressure and (b,d) density with respect to critical point at (a,b) y/Ly = 0.125
along horizontal direction and at (c,d) x/Lx = 0 along vertical direction.
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Figure 9: Favre-averaged fluctuations of u+, v+ and w+ along the wall-normal direction y+ at (a) the bottom (bw) and (b)
top (tw) walls for KGP-Pt and KGP-Et.
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thermodynamic regimes. Previous works have struggled to tackle this class of fluid flows, which is relevant in
many engineering applications; so far, the practical solution has relied on stabilized discretization methods,
at the expense of the simulation fidelity. In this work, it is conjectured that the simultaneous enforcement
of the KEP and PEP properties at the discrete level can lead to stable, dissipation-free and physically-
compatible simulations of transcritical turbulent flows, even on relatively coarse grids.

A rigorous framework for the derivation and analysis of KEP/PEP methods has been introduced. While
the enforcement of the KEP property is directly inherited from the results previously obtained for ideal-gas
flows, the derivation of PEP schemes (i.e., discretizations capable of maintaining constant pressure when
both pressure and velocity are initially uniform) is far from trivial in the case of general, non-linear equations
of state of type P = P (ρ, e). When total or internal energy are directly discretized along with mass and
momentum, a novel class of schemes –named CR– has been derived. For these methods, the use of a discrete
product rule is not necessary to demonstrate the discrete enforcement of PEP. However, it is found that the
discrete satisfaction of the chain rule by the spatial differential operator is still needed and constitutes a
barrier for the derivation of PEP schemes based on the evolution of total or internal energy, regardless of the
split forms selected. Classical second-order centered schemes are indeed known to satisfy a modified chain
rule that is only accurate to second order. A novel class of schemes based on the solution of an evolution
equation for pressure has thus been introduced. One of the methods of this class, labeled KGP-Pt, is PEP
and globally and locally preserves mass, momentum and kinetic energy. On the other hand, total energy
conservation (TEC) is sacrificed, as both the chain and the product rules need to be invoked at the discrete
level to satisfy TEC, again regardless of the split form utilized for the non-linear terms.

The novel schemes have been numerically assessed in a series of tests of increasing complexity, and
compared to several existing methods commonly utilized for compressible flows and/or tailored for trans-
/supercritical turbulence. In a one-dimensional advection test of a density wave, the only schemes that were
able to maintain the pressure equilibrium in a real-gas framework were the novel KGP-Pt and a stabilized
pressure-based formulation with convective terms expressed in divergence form, and with compact filtering
applied to the conservative variables. However, the latter scheme is inherently dissipative in nature. Simi-
larly, other strategies specifically developed for this class of problems, like the double-flux scheme, required
numerical dissipation to remain stable and free of pressure oscillations. An asymptotic analysis of the errors
revealed that the total energy conservation error of the KGP-Pt has a slightly dissipative character and
scales as O(h2), as predicted by the theoretical framework; on the other hand, methods of the CR class did
not show any significant practical advantage over other non-PEP schemes. A subsequent two-dimensional
test (transcritical mixing layer) further emphasized the importance of enforcing the PEP property: a ref-
erence state-of-the-art KEP scheme based on total energy, labeled KGP-Et, generated significant pressure
disturbances at the pseudo-interface, while KGP-Pt provided smooth flow fields and stable integration for
this challenging inviscid test, even on coarse grids, and without the need of any stabilization mechanism,
while only slightly dissipating internal energy. Finally, the applicability of the KGP-Pt was demonstrated
for the direct numerical simulation of a transcritical channel flow. For this case, pressure oscillations are
mitigated by physical viscosity and standard KEP schemes can be profitably applied. The lack of TEC
of the novel scheme did not cause any deviation for first- and second-order statistics, as well as for other
thermodynamic quantities, when compared to KGP-Et.

In summary, based on the analysis presented in this paper, the development of methods that are total
energy conservative, and simultaneously KEP and PEP, appears to be hampered by the lack of a discrete
chain rule for linear finite-differencing schemes, in the case of real-gas equations of state. This problem is
analogous to the long-standing issue of entropy conservation by finite-difference or finite-volume schemes
based on arithmetic averages of flow variables, i.e., based on the split forms presented in this paper. More
in general, this issue is relevant for any invariant quantity that is related to primary variables through
non-linear, non-algebraic relationships. A potential solution to overcome the above-mentioned barrier is to
formulate the discretization directly in a finite-volume framework, and select proper non-linear averages for
the construction of the numerical fluxes. This option was not considered in this study and could be the
subject of future work. For real-gas equations of state such as the Peng-Robinson one, however, this process
is anticipated to be quite cumbersome due to its highly non-linear character; some sort of “compromise”
(e.g., local linearization) is therefore expected in any case.
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In the specific context of trans-/supercritical fluids turbulence, the newly proposed KGP-Pt scheme
appears to be a suitable candidate for stable high-fidelity scale-resolving simulations, and has shown supe-
rior behaviour compared to existing KEP-only methods, as well as to previous methods tailored for this
thermodynamic regime. In the results reported in the paper, the lack of TEC was not detrimental to the
results, whereas enforcing the PEP property was of utmost importance in guaranteeing solution fidelity
and stability. Nonetheless, care should be taken in terms of generalizing this conclusion, especially when
considering different flow regimes; further analyses are warranted in this regard. Generally speaking, the
relative importance of the various (primary and secondary) conservation properties appears to be strongly
associated with the physics of the problem under study. While enforcing as many conservation properties
as possible is certainly beneficial, sacrificing some over others according to the specific flow regime might be
a necessary compromise to obtain stable and physically relevant solutions, especially if “fully-conservative”
approaches are challenging to obtain or costly to implement/use.

Future work should focus on (i) further characterizing the properties and numerical behaviour of the
proposed class of schemes at higher Reynolds and Mach numbers, and (ii) seeking the simultaneous enforce-
ment of KEP, TEC, PEP and potentially entropy conservation based on non-linear fluxes in the context of
thermally-perfect and real-gas thermodynamics.
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