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Abstract

English

Artin’s Conjecture about primes with a prescribed primitive root is one of the

simplest to state open questions in mathematics. In its most classical form it asks

the following question: are there infinitely many primes p such that 2 is a primitive

root modulo p? The purpose of this work is to introduce some of the most important

results towards answering this and related questions. In particular, we give an in depth

review of [LT65, Artin’s Observation], [Bil37], [Hoo67], [W77] and [KR20; KM22]. In

Section 4.2.3 and Section 5.2 the author has been able to make modest contributions

about some open questions in the area.

Keywords: Analytical Number Theory, Artin’s primitive root conjecture, Sieve

Theory, Global Fields. MSC Codes: 11A07, 11N05, 11N35, 11N36

Català

La Conjectura d’Artin sobre la densitat del conjunt de nombres primers amb una

arrel primitiva prescrita és un dels problemes matemàtics oberts més fàcils d’enunciar.

En la seva versió més clàssica, es planteja la següent pregunta: hi ha infinits nombres

primers p tal que 2 és una arrel primitiva mòdul p? El propósit d’aquest treball és

introduir les tècniques més importants que s’han utilitzat per donar resultats parcials en

aquesta àrea. En particular, fem una revisió detallada de [LT65, Artin’s Observation],

[Bil37], [Hoo67], [W77] i [KR20; KM22]. A la Secció 4.2.3 i a la Secció 5.2 l’autor ha

pogut fer dues contribucions modestes a problemes oberts a l’area.

Paraules Clau: Teoria de Nombres Anaĺıtica, Conjectura d’Artin de les Arrels

Primitives, Teoria de Garbells, Cossos Globals. Codis MSC: 11A07, 11N05, 11N35,

11N36
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Español

La Conjetura de Artin sobre la densidad del conjunto de números primos con

una ráız primitiva prescrita es uno de los problemas matemáticos abiertos más fáciles

de enunciar. En su versión más clásica, plantea la siguiente pregunta: hay infinitos

números primos p tal que 2 es una ráız primitiva módulo p? El propósito de este trabajo

es introducir las técnicas más importantes que se han utilizado para dar resultados

parciales en este área. En particular, hacemos una revisión detallada de [LT65, Artin’s

Observation], [Bil37], [Hoo67], [W77] y [KR20; KM22]. En la Sección 4.2.3 y en la

Sección 5.2 el autor ha podido hacer dos contribuciones modestas a problemas abiertos

en el área.

Palabras Clave: Teoŕıa de Números Anaĺıtica, Conjetura de Artin de las Ráıces

Primitivas, Teoria de Cribas, Cuerpos Globales. Códigos MSC: 11A07, 11N05, 11N35,

11N36
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1. Introduction

As it often happens in Mathematics, the history of Artin’s Conjecture can be traced

back to the writtings of Carl Friedrich Gauss. In the articles 314-317 of his 1801

Disquisitiones Arithmeticae [GWC86], Gauss asks the following elementary question.

Why does the decimal expression of 3
7

have a period of length 6, while the expression

of 1
11

has a shorter period, of only 2 digits?

3

7
= 0.428571 428571 428571 . . .

1

11
= 0.09 09 09 . . . (1.1)

When p is a prime 6∈ {2, 5} and a ∈ Z ∩ [1, p − 1], it turns out that the length of

the period of a
p

is exactly ord(Z/pZ)×(10). To see this, note that

a

p
=
(a1

10
+ · · ·+ as

10s

)(
1 +

1

10s
+ · · ·

)
=
(
10s−1a1 + · · ·+ as

) 1

10s − 1
(1.2)

This in turn implies that 10s = 1 mod p. But for any s′ < s with 10s
′
= 1 mod p,

let M ∈ Z such that a(10s − 1) = pM . Choosing the ai to be the base 10 digits of M ,

we could give a shorter periodic expression of a
p
.

The article continues with the following remark. If one had another b ∈ Z∩[1, p−1]

such that b = 10λa mod p for some λ, then period of b
p

would just be the period of a
p

translated λ decimal places to the right.

bi =

⌊
10ib

p

⌋
mod 10 =

⌊
10i(10λa+Np)

p

⌋
mod 10 =

⌊
10i+λa

p

⌋
mod 10 = ai+λ

(1.3)

Therefore, if 10 was a primitive root modulo p, the periods of the a
p

would be in

bijection with the possible translations of the period of 1
p
. The question of when is 10

a primitive root as we iterate p over the primes was not addressed by Gauss but will

be the central topic of this Undergraduate Thesis.

In September of 1927, in a private conversation with Helmut Hasse, Emil Artin
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CHAPTER 1. INTRODUCTION

gave a precise conjecture about the density of primes with a prescribed primitive root

[LT65, Pages vii-x]. Namely, he stated that given a non-square integer a ∈ Z>1 \ Z2,

the density of primes where a is a primitive root should be

A(a) =
∏

l prime

(
1− 1

l(l − 1)

)
≈ 0.3739558 (1.4)

which has since become known as Artin’s constant. To obtain such a precise

conjecture, he used the Chebotarev’s Density Theorem [Che26] over a certain family

of Kummer Fields. This theorem had been proven in 1922 on the doctoral thesis of

Nikolai Chebotarev and had just been published in 1926. With this powerful tool and

assuming a certain passing to the limit argument, one reaches the conjectured density.

Nonetheless, this limit argument is where the incredible difficulty of Artin’s Conjecture

lies. Since its conception in 1927, there have been many attempts at solving Artin’s

problem yet, so far, no mathematician has been able to give an unconditional proof.

In 1934, Hasse would propose Artin’s problem to his doctoral student, Herbert

Bilharz. After one year of work, they heard from Harold Davenport that Paul Erdős

believed to have a proof. In April 5th 1935, Hasse wrote a letter to Erdős

“... My friend Davenport has told me that you believe to have solved a problem which

is close to my heart: the problem of the density of those primes that have a given

number as a primitive root... In case you have already dealt with this problem, I

obviously have to find as quickly as possible a new PhD subject for Mr. Bilharz, who is

working on this topic for already a year”

Because of this, Bilharz was forced to develop his thesis about the equivalent con-

jecture over the Function Field Fq(x). In the end, Erdős’ attempt ended up depending

both on the Riemann Hypothesis and on an argument about the distribution of primes

that he was unable to justify and was never published. To this day, Erdős argument

remains a mystery from which we only know the few details that he wrote in a letter to

Hasse [Coj02, Appendix II]. Nonetheless, the sudden change of topic in Bilharz’ thesis

had a happy ending. In 1937, he would publish a proof of Artin’s Conjecture over Fq(x)

[Bil37] that depended on the Riemann Hypothesis over Function Fields of Curves over

Fq. This version of the Riemann Hypothesis was settled by André Weil 1940 [Wei40].

In 1957, Emma and Derrick Lehmer computed some numerical estimates of Artin’s

8



CHAPTER 1. INTRODUCTION

constant with the aid of a computer. They realized that density of the set of primes

with a prescribed primitive root at a didn’t seem to be independent of a, as Artin had

conjectured. After some correspondence, Artin realized that for certain values of a, his

conjectured density formula missed a correction factor that could be given explicitly.

This mistake came from a miss-calculation of the degree of a certain Kummer extension.

As Artin sums it up in [Leh90]

“... So I was careless but the machine caught up with me.

Cordially, E. Artin”

The first major advancement towards a proof of the conjecture came in 1967, by

Christopher Hooley [Hoo67]. He showed that the Generalized Riemann Hypothesis on

a certain family of Kummer Fields would imply Artin’s Conjecture. His proof is heavily

inspired by the development of Sieve Theory in recent years. Hooley was able to reduce

Artin’s Conjecture to a problem about counting primes. Under the assumption of

the Riemann Hypothesis, he proved a statement about the vertical distribution of the

Riemann zeroes. With this, he gave a sufficiently fine estimation of the prime counting

function which was enough to settle the conjecture.

Removing the Riemann Hypothesis condition has proven to be a hard problem

on its own. In 1983, an important step in this direction was given by Rajiv Gupta

and Ram Murty [Gup84]. They were able to give a set of 13 integers and proved

unconditionally that at least one of these must follow Artin’s Conjecture. In 1985,

Heath-Brown [Hea86] refined their argument showing that at least one of a ∈ {2, 3, 5}
follows Artin’s Conjecture.

Over the last century, Artin’s Conjecture has remained one of the few elusive

problems originated in Elementary Number Theory. As such, it has generated interest

on a number of related problems, from which we give two notable examples. First, in

1976, J. P. Serre [Ser03] used a version of Hooley’s argument to count the number of

primes p ≤ x where the modulo p reduction of given Elliptic Curve is cyclic. Second,

in 1977, H. W. Lenstra [W77] showed that Hooley’s argument can be extended to

settle a more general conjecture which has implications in the discovery of Euclidean

Algorithms for certain rings of integers.

Note from the author: The historical introduction that you have just read has

been pieced together from a number of sources that I would like to exhaustively list in

the interest of full acknowledgement and proper book-keeping.
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CHAPTER 1. INTRODUCTION

• The prologue of [LT65], written by two of Artin’s doctoral students, John T. Tate

and Serge Lang, gives a detailed accounting of the birth of the conjecture.

• The correspondence between Erdős, Davenport and Hasse seems to have been

compiled and publicly published for the first time in 2002, in A. Cojocaru’s PhD

thesis [Coj02, Appendix II].

• The correspondence between the Lehmers and Artin was re-discovered in 2001

and is currently available in the Lehmer Archives [Leh90] of the Bancroft Library

at U. C. Berkeley.

• A general overview of the history Artin’s Conjecture can be found in Ram Murty’s

Survey [Mur88].

• A delightful historical exposition about the correction factor in Artin’s constant

is available in Stevenhagen’s article [Ste03].
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2. Notation and background

It is the author’s aim to make the present document self-contained enough to be readable

by any undergraduate in mathematics (and in particular, by his peers working in other

areas of mathematics). Following this objective, this section introduces a series of classic

results in Number Theory that may not be necessarily covered in the core courses of a

Mathematics degree.

2.1 Notation

• Z,Q,R,C denote the integer, rational, real and complex numbers respectively.

To avoid confusion, we will use either Z>0 or Z≥0 instead of N.

• The functions Re(z) and Im(z) give the real and imaginary part of a z ∈ C,

respectively.

• Unless otherwise stated, p will an arbitrary prime, q = pr and l will be a prime

l 6= p.

• Fq denotes the finite field of q elements

• Given a group G and a ∈ G, ordG(a) denotes the multiplicative order of a and

indG(a) := |G|
ordG(a)

is the index.

• For p ∈ Z a prime and a ∈ Q, ordp(a) = max{k ∈ Z | pk | a}. Warning! Note

that ordF∗p and ordp are different functions. This distinction could be a source of

confusion.

• Given a group G, an element of a ∈ G is called a primitive root if G = {an | n ∈
Z≥0} or, equivalently, ordG(a) = |G|. A primitive root mod p is a primitive root

of F∗p. Abusing notation, we also call a primitive root mod p to an element of Z
or Q that has a well-defined image in F∗p and whose image is a primitive root.

• For a, b ∈ Z, we denote its greatest common divisor with (a, b) or gcd(a, b)

• A function f : Z→ C is weakly multiplicative if f(ab) = f(a)f(b) ∀a, b ∈ Z with

11



CHAPTER 2. NOTATION AND BACKGROUND

(a, b) = 1. The following functions are weakly multiplicative

– µ(n) denotes the Möebius Inversion function, namely

µ : Z −→ {−1, 0, 1}

n 7→

0 k2 | n

(−1)r n = p1 . . . pr

(2.1)

– φ(n) denotes Euler Totient function, namely

φ(n) = n
∏
p|n

(
1− 1

p

)
(2.2)

– w(n) denotes the number of distinct prime divisors of n

• If L/K is a finite extension of Global or Local Fields with Dedekind Domains

B/A, we denote

– SpecA is the set of prime ideals of A

– ∆L the discriminant over K

– Tr,N : L→ K the trace and norm respectively

– Spl(L/K) or {L/K} is the set of primes in L that split completely over K.

When the base field is clear by context, we will write Spl(L) or {L}.

– If p ∈ SpecK is unramified, we will denote the Frobenius conjugacy class as

Frobp(L/K) or by the Artin’s symbol (p, L/K).

2.2 Global Field Theory

One of the primary objectives of Algebraic Number Theory is to understand the solution

set of a given polynomial equation in the rationals or in the integers. Nonetheless,

a lot of insight can be extracted from studying the solution set over more general

rings. This idea was initially explored by Ernst Kummer’s on his work about Fermat’s

Last Theorem. Yet, the systematic study of Number Fields as we know it today was

introduced by Richard Dedekind.

12



CHAPTER 2. NOTATION AND BACKGROUND

Definition 2.1 (Number Field). A Number Field K is a finite (hence, algebraic)

field extension of Q. For example Q[i], called the Gaussian rationals.

The paper of the subring Z ⊆ Q can also be generalized in the following way.

Definition 2.2 (Ring of integers). Given a Number Field K/Q, its ring of integers

is the set OK of elements x ∈ K such that their minimal (monic) polynomial have

coefficients in Z ⊆ Q. For example, the ring of integers of Q[i] is Z[i].

Remark 2.3. We call OK a ring because it is indeed one, with the natural opera-

tions inherited by being a subset of K. [Neu99, Ch. 1.2]

At this point, it is necessary to remark that the paper of Q and Z in the construc-

tions above can be seamlessly (at least for the moment) interchanged with Fq(x) and

Fq[x], where Fq is the finite field of q = pr elements. The finite field extensions of Fq(x)

are called Function Fields. The analogy between Number Fields and Function Fields

is strong because Z and Fq[x] are both principal ideal domains with finite quotients.

Function Fields take their name because they represent the meromorphic functions of

a certain curve over Fq. For example Fq(x) are the meromorphic functions from the

projective line over Fq. Number Fields and Function Fields are, together, called Global

Fields.

Important distinctions between these classes of fields will appear during this thesis

and are a central topic in Algebraic Number Theory. In general, problems over Function

Fields are much better understood than their arithmetical counterparts because of the

availability of geometric tools that often have no arithmetical parallel. For example, the

Riemann Hypothesis, Langland’s Functoriallity Conjecture, Artin’s Conjecture are all

theorems over Function Fields but extremely hard open problems over Number Fields.

2.2.1 Function Fields

Function Fields are much better understood that their arithmetical counterparts. A

good reference for this material is M. Rosen’s book Number Theory in Function Fields

[Ros02]. For our purposes, it is worth to introduce an extra piece of structure which

will be important in Section 4.1. This is the concept of the field of constants.

13



CHAPTER 2. NOTATION AND BACKGROUND

Note the difference between the following algebraic extensions of Fq(x).

Example 2.4. Let K = Fq(x) and A = Fq[x]. Let L = FracB, where B will be

specified in each case

1. B = Fq2 [x], Then L represents the meromorphic functions of the same abstract

curve that K, namely the projective line. What has been extended is the “field

of constants”

2. B = Fq[x, y]/(y2 − x3). In this case, L and K represent birationaly different

curves.

3. B = Fq2 [x, y]/(y2 − x3) is a mix of the above

Definition 2.5 (Field of constants). Let L/Fq(x) be a Function Field. The field

of constants of L are the elements of L that are algebraic over Fq, denote it by F .

By definition, F is an algebraic extension of Fq and by being a subfield of L, it is

a finite extension, hence a finite field.

Definition 2.6 (Constant Extension). Let K/Fq(x) be a Function Field with field

of constants F . Let L/K a Function Field extension, with extension of constants

E/F . L/K is called a constant extension (or an extension of constants) if L = EK

(this is tantamount with the extension of constants accounting for the full degree

of L/K).

Any Function Field extension can be separated into a constant extension and a fully

geometrical extension. Because the underlying geometry is maintained, the theory of

Constant Extensions is tightly related with the theory of Finite Field extensions, and

hence, it is very well understood. A full account can be found in [Ros02, Chapter 8].

2.2.2 Dedekind Decomposition

An interesting, yet well understood, difficulty in the study of Global Fields comes from

the fact that the concept of a prime element does not generalize neatly. In particular, the

all important prime decomposition often stops being unique, as shown by the following

notable example.

14



CHAPTER 2. NOTATION AND BACKGROUND

Example 2.7. In O = Z[
√
−5], 6 = 2 · 3 = (1 +

√
−5)(1−

√
−5), even though 2, 3

and 1±
√
−5 are all irreducible elements (namely, they cannot be expressed as a · b,

with a, b ∈ O).

Nonetheless, Dedekind discovered that a uniqueness theorem can be given about

the ideal decomposition into prime ideals.

Theorem 2.8 (Dedekind unique decomposition). Given a Global Field K, its ring

of integers OK and an ideal I ∈ OK , there exists a tuple of prime ideals (with

possible repetitions) p1, . . . , pn such that I =
∏

pi. This tuple is unique up to

permutations.

Remark 2.9. Warning! The product above is an ideal product, not a Cartesian

product.

An important note is that Dedekind’s theorem does not hold for all abstract com-

mutative rings (nor for all integral domains). It is a remarkable property of the rings

of integers of Global Fields. The integral domains that follow Dedekind’s theorem are

called Dedekind domains.

Going back to the example of Z[
√
−5], one can see that even though 2 is irreducible

as an element, as an ideal (2) is not prime. Indeed, it decomposes as (2) = (2, 1 +
√
−5)(2, 1−

√
−5), which are prime but not principal. Then, the ideal (6) has a unique

prime decomposition, namely

(6) = (2, 1 +
√
−5)(2, 1−

√
−5)(3, 1 +

√
−5)(3, 1−

√
−5) (2.3)

2.2.3 Hilbert’s ramification theory

An important part of the study of the ring of integers of a Global Field is to understand

how the primes in Q (or any other base field) lift through Dedekind ring extensions.

Given a Number Field K and its ring of integers O and a rational prime p ∈ Z, we

know that the ideal (p)O := pO decomposes as some

pO = pe11 · · · pegg (2.4)
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CHAPTER 2. NOTATION AND BACKGROUND

We say pi are the primes above p. On the other hand, for each i, the ring extension

O over Z quotients to give an extension of “residue” fields O/pi over Z/pZ = Fp.
Denote fi = [O/pi : Fp], called the residue field extension’s degree.

Definition 2.10 (Inert, Ramified, Split). A rational prime p ∈ Z

1. is inert if and only if pO is prime in O.

2. is ramified if and only if there is some ei > 1. It is non-ramified if all ei = 1.

3. is split or completely split if and only if all the ei = 1 and all the fi = 1.

These notations generalize to any extension of Dedekind Domains, we are only

taking Q as the base field for simplicity.

The ramification theory of primes over Dedekind extensions is an extensive topic

which can be found in most Algebraic Number Theory textbooks, for example [Neu99].

This section only states a few results that will make an appearance in this Undergrad-

uate Thesis. All the proofs are excluded but can be found in [Neu99, Ch.1.1-1.7]

Theorem 2.11 (Hilbert’s ramification theorem). Given a Number Field K/Q, let

n = [K : Q]. Given a p ∈ Z, let ei, fi and g be the integers defined above. Then,

the following equation holds

n =

g∑
i=1

eifi (2.5)

When the extension K/Q is Galois, even more can be said. If it is not, it will often

be useful to consider it as a subextension of its Galois closure.

Theorem 2.12. Let K be a Number field such that K/Q is Galois and let p ∈ Z a

prime. Then, the Galois group acts transitively on the set of primes above p. This

implies e1 = e2 = · · · = eg =: e and f1 = f2 = · · · = fg =: f . Hence, the previous

theorem states

n = e · f · g (2.6)
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2.2.4 Frobenius elements

Another important piece of structure that can be studied in the Galois case are the so

called Frobenius elements. These are special elements in the Galois group Gal(K/Q)

that come from lifts of the Frobenius automorphisms x 7→ xp in the residue field ex-

tensions of each prime p. Because the Frobenius automorphism generates the Galois

group of the residue extension, their lifts in Gal(K/Q) will “encode the information”

of their residue extensions.

Definition 2.13 (Decomposition subgroups). Let K/Q be a number field, p a prime

and p a prime ideal of K over p. The decomposition subgroup at p is

Dp = {σ ∈ Gal(K/Q)|σ(p) = p} ⊆ Gal(K/Q) (2.7)

Theorem 2.14. Let K be a Number Field such that K/Q is Galois and p ∈ Z an

unramified prime. Let p be a prime over p. Then the natural map

κ : Dp → Gal((OK/p)/Fp) (2.8)

is an isomorphism of groups. Hence, the Frobenius automorphism in the right has

a unique anti-image in the left, which we denote Frobp ∈ Dp ⊆ Gal(K/Q).

Definition 2.15 (Frobenius conjugacy class). Let K be a number field, p ∈ Z an

unramified prime. Then the set

{Frobp | p prime over p} (2.9)

is a conjugacy class of the Galois Group, which we denote Frobp(K/Q) or by the

Artin’s Symbol (p,K/Q). By abuse of notation, it is sometimes called the Frobenius

element at p.

The Frobenius element will have an important role in the study of Artin’s conjec-

ture. This will be explained in detail in Section 3.2.
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2.3 Chebotarev’s Density Theorem

As it was briefly explained in the Introduction (Section 1), Artin’s conjecture about

primes with a prescribed primitive root asks a question about the density of a certain

set of primes. It is therefore imperative to discuss what we mean by “density over the

primes”.

The straight forward definition is the following

Definition 2.16 (Natural Density). Let K be a Number Field andOK its Dedekind

Domain. Given an S ⊆ SpecOK , define

∆(S, x) =
{p ∈ S|Np < x}

{p ∈ SpecOK |Np < x}
(2.10)

We say S has natural Density ∆(S) if limx→∞∆(S, x) exists and is equal to ∆(S).

In 1837, Peter Gustav Lejeune Dirichlet was the first to realize that the natural

notion of density is ill-behaved for number theoretical applications. He did so in his

groundbreaking paper [Dir37, In German] about the infinitude of primes of the form

an+b when a and b are coprime. He proves that the sum
∑

p=an+b
1
p

diverges by relating

said quantity with a special value of a certain L-function. The gist of this remarkable

result is precisely that the sum of reciprocals is a good notion of density. It is good

for two reasons. On one hand, it is a “density” because its quantity gives information

about the finitude of a certain set of primes. On the other hand, it has good number

theoretical properties, as it will be possible to relate it with special values of certain

L-functions.

This is essence that the following definition aims to capture. Let K be a Global

Field with Dedekind Domain OK .
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Definition 2.17 (Dirichlet’s Density). If S ⊆ SpecOK , define

δ(S, s) =

∑
p∈S

1
(Np)s∑

p∈SpecOK
1

(Np)s

(2.11)

We say S has Dirichlet Density δ(S) if lims→1 δ(S, s) exists and is equal to δ(S).

Define

δ+(S) = lim sup
s→1

δ(S, s) and δ−(S) = lim inf
s→1

δ(S, s) (2.12)

These two notions of density are related in most cases, but one can give artificial

counterexamples that set these definitions apart. A full discussion on these two settings

can be found in the following exposition by P. Stevenhagen and H. W. Lenstra [SH94].1

Unless otherwise stated, in this thesis the word “density” will always mean Dirichlet

density.

Theorem 2.18 (Chebotarev’s Density Theorem). Let L/K be a finite Galois ex-

tension with Gal(L/K) = G and let C ⊆ G formed as a union of conjugacy classes.

The Dirichlet Density of the set S of primes p ⊆ K that have (p, L/K) ∈ C exists

and equals δ(S) = |C|
|G| .

An important particular case of the previous theorem if when C = {Id}. In this

case, the primes with (p, L/K) = Id are precisely the primes that split completely over

the extension, as shown in the proof of Lemma 3.23. Chebotarev’s theorem shows that

their density is 1
[L:K]

.

1 I encourage the reader to read both of Stevenhagen et. Lenstra’s papers cited throughout this
thesis. [Ste03] and [SH94] for their wonderful historical notes interwoven with distinctively well exposed
mathematics.
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3. Artin’s Conjecture

In 1927, Emil Artin famously asked the following question pertaining to Elementary

Number Theory.

Question 3.1. For a given a ∈ Z, are there infinitely many primes p ∈ Z such that

a mod p is a primitive root in Z/pZ?

Definition 3.2. We will denote P (a) = {p ∈ Z | a is a primitive root mod p}.

We are interested in whether the cardinal of P (a) is infinite or not. For certain

values of a ∈ Z, the question is easily answered in the negative.

Lemma 3.3 (Necessary condition in Artin’s Conjecture). If a ∈ Z is ∈ {−1, 0, 1} or

a perfect square, then there are only finitely many primes for which it is a primitive

root. Namely, P−1 = {2, 3} and, for k ≥ 0,

Pk2 =

∅ 2 | k

{2} otherwise
(3.1)

Proof. If a = 0, then a mod p = 0 is not invertible ∀p. If a = −1, then a mod p has

order ∈ {1, 2} as (−1)2 = 1 mod p. Hence, −1 can be, at most, a primitive root for

primes p ∈ {2, 3}.

On the other hand, suppose a = k2 with k ≥ 1 has ordF∗p(a) = p − 1. Denote

r = ordF∗p(k). Then, r | p− 1 and k2r = 1 = ar mod p =⇒ p− 1 | r so r = p− 1. But

if p > 2, then r = p−1 is even and ar/2 = kr = 1, which contradicts ordF∗p(a) = p−1 �

Remark 3.4. The previous lemma does not have an analogue for l-th powers, with

l > 2. This is because p − 1 6= 0 mod 2 only happens at p = 2, yet p − 1 6= 0

mod l happens for infinitely many primes.
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Remark 3.5. Note that a ∈ {−1, 0, 1} do not follow the conjecture. We can exclude

them from all our future attempts to prove that these conditions are sufficient. This

resolves irrelevant corner cases in future lemmas.

Conjecture 3.6 (Artin’s primitive root conjecture). If a ∈ Z is not ∈ {−1, 0, 1} or

a square, the set P (a) has positive density over the set of primes.

There are no values of a for which the conjecture has been proven to hold uncon-

ditional to the Riemann Hypothesis.

3.1 Studied generalizations

This long-lasting conjecture has raised interest in a number of related problems. This

section describes some of these generalizations, which will be studied in more detail in

the rest of the document. The generalizations listed here were explored and understood,

albeit often conditionally to some version of the Riemann Hypothesis, in Lenstra’s

article [W77]. Section 6.1 of this thesis gives a detailed accounting of the results in this

paper.

3.1.1 Prescribed root at a ∈ Q

One could be interested in posing Artin’s problem for a ∈ Q instead of restricting to

only a ∈ Z, which creates the following problem.

Problem 3.7. Let a ∈ Q∗ and Pa the set of primes in Z following

(1) ordp(a) = 0 and (2) ordF∗p(a) = p− 1

Is Pa infinite?

Remark 3.8. Note that condition (1) is placed so that a mod p is well-defined

and non-zero, which makes ordF∗p(a) well-defined.
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3.1.2 Artin’s conjecture over Global Fields

The original conjecture studies the set of p ∈ Z for which a mod p generates the

multiplicative group of the residue field (Z/pZ)∗. The same question can be naturally

extended to more general rings. We will be specially interested in the rings of integers

of field extensions of Q and Fq(x), also known as Global Fields. The rings of integers

of Global Fields are examples of Dedekind Domains with infinitely many primes and

finite residue fields. Without both of these conditions the conjecture is trivially false.

Note that this excludes Local Fields and extensions of K(t) for any non-finite field K.

Problem 3.9 (Artin’s Conjecture over Global Fields). Let K be a Global Field,

OK its ring of integers and a ∈ K∗. Are there infinitely many prime ideals in

p ∈ SpecOK such that

(1) ordp(a) = 0 and (2) a mod p generates (OK/p)∗?

For instance, writing Problem 3.9 for Fq(x) we obtain the following question.

Question 3.10 (Artin’s Conjecture over Fq(x)). Given an a(x) ∈ Fq[x] monic,

are there infinitely many v(x) ∈ Fq[x] monic and irreducible such that a(x) is a

primitive root of Fq[x]/(v) ' Fqdeg v?

Section 4.1 focuses on Artin’s conjecture over Function Fields. In this case, the

necessary and sufficient conditions were found by Bilharz in 1937 [Bil37] conditional

to the Riemann Hypothesis over Function Fields of Curves, which was settled shortly

after by André Weil [Wei40]. Note that Bilharz’ result came three decades before

significant progress was made on the original conjecture over Q by Hooley [Hoo67].

The main reason for this is that certain L-functions related to Artin’s Conjecture have

a multiplicative closed form over Function Fields.

Remark 3.11. By the same rationale exposed in Remark 3.5, the values a ∈
λ(K) ∪ {0} will never follow the conjecture, where λ(K) are the roots of unity of

the Global Field K. We will ignore these values in all further considerations.
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3.1.3 Restricting FrobT/Q(p)

One may be interested in imposing congruence conditions for the primes being counted.

For example, one can show that there are no primes p = ±1 mod 8 where 2 is a

primitive root, as for those p,
(

2
p

)
= 1. A natural question would be to ask if there

are infinitely many primes p = 3 mod 8 such that 2 is a primitive root. For the

general conjecture over a Global Field K, these modular restrictions are expressed as

restrictions on the Frobenius element over an arbitrary Abelian extension T/K.

Problem 3.12. Let K be a Global Field, a ∈ K∗, T/K an Abelian field extension

and C ⊆ Gal(T/K) a subset formed of conjugacy classes. Are there infinitely many

prime ideals p ∈ SpecK such that

(1) ordp(a) = 0, (2) ord(K/p)∗(a) = Np− 1, (3) Frobp(T/K) ∈ C?

Remark 3.13. Note that T = K and C = {1} recovers the original problem.

3.1.4 Arbitrary set of generators

One more way Artin’s Conjecture can be generalized is by choosing a more general set

W to take the role of the prescribed primitive root a.

Problem 3.14. Let W ⊆ Q∗ and let Γ = 〈W 〉 be the multiplicative group Γ ⊆ Q
generated by W . Are there infinitely many primes p ∈ Z such that the quotient

Γ→ F ∗p is well-defined and surjective?

Note that this is equivalent to ordp(w) = 0 ∀w ∈ W and Γp = {γ mod p | γ ∈
Γ} = F∗p

Remark 3.15. Note that W = {a} recovers the original conjecture.

This generalization comes up in applications of Artin’s Conjecture in finding Eu-

clidean Algorithms on Global Fields [CW75].
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3.1.5 Primes with indF ∗
p
(a) | m,m ∈ Z

One can weaken the surjectivity condition of the quotient map 〈a〉 → F∗p. This results

in the following problem.

Problem 3.16. Given a m ∈ Z>0 and a ∈ Q, are there infinitely many primes such

that ordp(a) = 0 and indF∗p(a) | m?

Remark 3.17. m = 1 recovers de original conjecture.

3.2 Artin’s observation

In the letter that proposed the conjecture, Artin gave a relevant observation that links

the set P (a) with the set of completely split rational primes over an explicit family

of Kummer fields. This link with Algebraic Number Theory is a central piece in the

attempts at solving the conjecture. It begins to explain why the Generalized Riemann

Hypothesis will play an important role.

The work presented in this section can be generalized to the related conjectures

described in Section 3.1. We have chosen to expose the classical setting first, as the

general setting doesn’t introduce any new ideas but complicates the notation. We will

discuss a general version of Artin’s Observation in Section 6.1.

Let a ∈ Z \ {−1, 0, 1} and p > 2 a prime with p - a.

Remark 3.18. The prime p = 2 is a corner case in some of the following Lemmas.

We explicitly exclude it from consideration as, in Artin’s conjecture, we are only

interested in density problems unaffected by finite exceptions.

Lemma 3.19. a is a primitive root mod p if and only if there isn’t any l ∈ Z prime

such that

(1) l | p− 1 and (2) a
p−1
l = 1 mod p

Proof. If the ordF∗p(a) = r 6= p−1, it must r | p−1. Take l any non-trivial prime factor

of p−1
r
6= 1 and b such that bl = p−1

r
. Then l | p−1

r
| p− 1 and a

p−1
l = arb = 1 mod p.
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For the reciprocal, note that ordF∗p(a) ≤ p−1
l
< p− 1. �

Lemma 3.20. Let l be a prime l | p − 1. Then a
p−1
l = 1 mod p is equivalent to

xl = a mod p having a solution in F∗p.

Proof. Recall that F∗p is a cyclic group, with some primitive root ζ. Let a = ζ i, so

ζ i
p−1
l = 1 mod p. Hence, p− 1 | ip−1

l
. There is a b ∈ Z such that b(p− 1) = ip−1

l
=⇒

bl = i =⇒ l | i. Then u = ζ
i
l is a solution of xl = a mod p.

For the reciprocal, if u ∈ F∗p is the solution to ul = a, then a
p−1
l = up−1 = 1. �

Remark 3.21. Note that xl = a mod p might have solutions when l - p − 1. In

that case, all the elements in F∗p are l-residues as the group endomorphism x 7→ xl

must have trivial kernel and, hence, full image.

Definition 3.22 (Kummer Fields relevant to Artin’s Conjecture). For l prime l - a
and k square-free integer coprime with a, let Ll = Q(ζq, l

√
a) and Lk =

∏
l|k

prime

Ll

the compositum. Denote Ck = Q(ζk).

Lemma 3.23. Let l be a prime. A prime p ∈ Z>2 splits completely in Cl/Q if and

only if l | p− 1.

Proof. For l = 2, C2 = Q and the result is trivial. Otherwise, recall that the ring of

integers of a cyclotomic field is Z[ζl] [Lan94, Th. 4 Page 75], which is generated by the

primitive element. By the classical theorem in Ramification Theory [Neu99, Ch 1 Prop.

8.3], the splitting behavior of p is equivalent to the splitting of the minimal polynomial

of ζl, namely Φl(x) = xl−1
x−1 , modulo p.

If Φl(x) mod p splits completely, in particular it has one root u 6= 1 mod p which

ul = 1 =⇒
l prime

l | p − 1. For the reciprocal, let ζ be a primitive root of F∗p. Then, if

l | p− 1, xl = 1 mod p has solutions {ζ p−1
l , ζ2

p−1
l , . . . , ζ l

p−1
l = 1} which are all unique.

Hence, Φl(x) splits completely.

�
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Second proof (using Frobenius substitution). For l = 2, C2 = Q and the result is trivial.

Otherwise, recall that the discriminant of a prime cyclotomic field is (−1)
l−1
2 ll−2. Hence,

p ramifies at p = l which does not follow l | p−1. For p unramified, p is completely split if

and only if Frobp(Cl/Q) = 1. Now, ζpl = ζl mod p =⇒ ζp−1l = 1 mod p =⇒ l | p−1

or l = p = 2.

For the other direction, let Frobp(Cl/Q) = a ∈ Gal (Cl/Q) = (Z/lZ)∗ such that

ζl 7→ ζal . By the property of the Frobenius element on the residue field ζal = ζpl
mod p =⇒ ζp−al = 1 mod p =⇒ l | p − a. As l | p − 1 and 1 ≤ a ≤ l − 1, the only

possibility is a = 1. �

The proofs of the following Lemmas 3.25 and 3.26 are taken from M. Rosen book

Number Theory in Function Fields, where they are given for Function Fields [Ros02,

Propositions 10.3-4]. A version of these Lemmas is true for general Dedekind Domains.

Remark 3.24. Recall, for l prime, xl − a is irreducible over K if and only if a is

not an l-th power over K. [Lan05, Th. 9.1 Page 297]

Lemma 3.25. Let l be a prime. Let p be a prime ideal of Cl with (p) = p∩Z, such

that p > 2 and l | p− 1. Then, p ramifies over Ll/Cl if and only if l | ordp(a)

Proof. Let O = Z[ζl] be the ring of integers of Cl and Op its localization ring at P and

π a uniformizer element of Op. Let Rp be the integral closure of Op over Ll.

If l | ordp(a), then a = πlhu with u a unit of Op. Then µ :=
l√a
πh
∈ Ll. Clearly,

Ll = Cl(µ). Now, Op[µ] is a full rank free Op-module under Rp. By a classical theorem

in Algebraic Number Theory, if the discriminant of Op[µ] is a unit in Op we must have

Rp = Op[µ].

Hence, let’s compute DiscOp[µ]/Op = Det((Tr(µiµj))ij). If l - k, then uk cannot be

an l-th power as u is not one and l - k. Hence, the minimal polynomial of µk is xl− uk.
On the other hand, if l | k, we must have l = 0 or l = k. In the first case, Tr(1) = l
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and in the second, Tr(µl) = Tr(u) = lu. We conclude that

TrLl/Cl(µ
k) =


l k = 0

lu k = l

0 0 ≤ k ≤ 2l − 1, k 6∈ {0, l}

(3.2)

From this, we can compute DiscOp[µ]/Op = ±llul−1. Indeed, this is a unit in Op

as u is one by definition and l 6= p, hence Rp = Op[µ]. Furthermore, p - Disc so p is

unramified.

For the other direction, suppose l - ordp(a). Let P be a prime over p in Ll/Cl.

Since ( l
√
a)
l
= a, we have

l ordP( l
√
a) = ordP(a) = e(P/p) ordp(a) (3.3)

Hence, l | e(P/p). Because the extension has degree l, we know e ≤ l so e = l. This

means that p is totally ramified. �

Lemma 3.26 (Key Lemma). Let l be a prime. Let p be a prime in Cl and (p) =

p∩Z, such that ordp(a) = ordp(a) = 0, p > 2 and l | p− 1. p splits completely over

Ll/Cl if and only if xl = a mod p has a solution.

Proof. Let Op be the localization of the ring of integers of Cl away from p and let

Rp be its integral closure over Ll. The hypothesis ordp(a) = 0 implies that a is a

unit over Op and, as shown in the proof of Lemma 3.25, Rp = Op[ l
√
a]. Note that,

by Lemma 3.25, p does not ramify over Ll/Cl as l | 0 = ordp(a). Also note that

l | p − 1 =⇒ l | Np − 1 = |Op/p|. Hence, the residue field contains some primitive

l-root, ζl = ζ
Np−1
l , where ζ is the generator of (Op/p)∗.

The case where a is an l-th power over Cl is trivial. Discard that case, which

implies xl− a is irreducible over Cl. Now, the extension Rp/Op is generated by a power

basis with minimal polynomial xl−a. Hence, the ramification properties of p are equal

to the ramification of xl−a mod p. If p is totally split, xl−a splits mod p, so there is

at least one solution. If xl = a mod p has one solution, as ζl ∈ Cl, all the solutions are

{ζl l
√
a, ζ2l

l
√
a, . . . , ζ ll

l
√
a = l
√
a} which are all distinct mod p. Hence, p totally splits. �
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Second proof (using Frobenius Substitution). See [Ros02, Proposition 10.4] �

Lemma 3.27. A prime l follows the conditions of Lemma 3.19 for p > 2 if and

only if p is completely split over Ll/Q.

Proof. Application of Lemmas 3.23 and 3.26. Recall that xl = a mod P has a solution

if and only if a
NP−1

l = 1 mod P. As p splits completely, NP = Np. Also, because

both sides of the identity are in Op/p ⊆ Rp/P, we can lower the modulo a
Np−1
l = 1

mod p ⇐⇒ xl = a mod p is solvable. �

Lemma 3.28. For k square free, all the primes li | k follow conditions of Lemma 3.19

if and only if p is completely split over Lk/Q. By Chebotarev’s theorem, these

primes p have density 1
[Lk:Q]

.

Proof. A prime splits completely in the compositum if and only if it splits completely

in each factor. Using the previous Lemmas, we obtain the desired result. �

Theorem 3.29 (Artin’s observation). Let a ∈ Z not -1 nor a square and k a square

free integer coprime to a. The density of primes for which there is no l | k following

the conditions of Lemma 3.19 is

Ak(a) =
∑
k′|k
k′≥1

µ(k′)

[Lk′ : Q]
(3.4)

where µ is the Moebius Inversion function.

Proof. By Lemma 3.28, we know the density of primes such that all l | k follow condi-

tions of Lemma 3.19. The Inclusion-Exclusion Principle yields the desired result. �
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Remark 3.30. Note that taking k → ∞ over the primorials coprime to a, the

density Ak(a) counts primes where a is “close” to being a primitive root, in the

sense that an l following the conditions of Lemma 3.19 would need to be very

large. Hence, one might expect the limit of Ak(a) to be the density of primes

with a prescribed primitive root at a. This is precisely what Artin conjectured.

Nonetheless, the step of taking the limit is where the difficulty in Artin’s conjecture

lies. This is fundamentally a question pertaining to Sieve Theory and we will

continue to see this strong relation in Section 5.1.

Hence, Artin arrived at the following specific conjecture.

Definition 3.31 (Artin’s constant). For a ∈ Z \ {−1, 0, 1}, we define Artin’s con-

stant as

A(a) =
∑
k≥1

µ(k)

[Lk : Q]
(3.5)

Conjecture 3.32 (Artin primitive root Conjecture II). Given a ∈ Z \ {−1, 0, 1},
the set of Pa has Dirichlet density A(a). Furthermore, A(a) > 0 if and only if a is

not a perfect square.

Assuming this conjecture was true, one can compute the [Lk : Q] and show posi-

tivity without using any version of the Riemann Hypothesis. We do so in the following

sections.

3.2.1 Computation of the degree

Definition 3.33 (Constants relevant in Artin’s observation). Let h = max{h′ |
a is an h′-perfect power in Z}, which is well-defined as a 6∈ {−1, 0, 1}. Let k =

l1 . . . lr be square-free integer coprime to a and ka = k
(k,h)

. Note that ka is the

product of the prime divisors l of k such that a is not a l-th power.

Definition 3.34 (Fields relevant to Artin’s Conjecture II). Denote Rk = Q( ka
√
a)

and Ik = Ck ∩Rk.
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Lemma 3.35. The field Lk =
∏

l|k
prime

Q(ζq, l
√
a) is precisely Q(ζk, ka

√
a). It is also

Q(ζk, k
√
a).

Proof. First we prove Q(ζk, ka
√
a) ⊆ Lk. Let xi = k

li
∈ Z. The gcd(x1, . . . , xr) = 1 and

Bézout’s identity gives ai ∈ Z such that
∑
aixi = 1. Now,

∏
l|k

prime

(ζq)
ai = e2πi·

∑ ai
l =

e2πi
1
k = ζk. By the same method that k

√
a ∈ Lk. The other inclusion holds because

ζq = ζ
k/l
k and

l
√
a =

∈ Q if l|h

( ka
√
a)
ka/l otherwise

(3.6)

An analogous argument proves the second expression. �

Remark 3.36. Even though the second expression might seem more canonical, in

the computation of the degree, the first expression will be more useful. This is

because the extension Q(ζk, k
√
a)/Q(ζk) could be trivial if, for example, a was a

k-th power in Z. This is accounted by substituting k by ka.

Lk = Q(ζk, kq
√
a)

Ck = Q(ζk) Rk = Q( ka
√
a)

Ik = Q(ζk) ∩Q( ka
√
a)

Q

ϕ(k) ka

Following the identity [Lk : Q] = [Lk : Ck][Ck : Q] = [Lk : Ck]ϕ(k), we aim to

compute [Lk : Ck]. When Artin proposed the conjecture, he claimed [Lk : Ck] = ka.

This was found to be incorrect by D. H. and E. Lehmer and corrected in a private

correspondence with Artin. Independently, Hooley [Hoo67] attributes this correction

to Heilbronn. The full history of this correction is delightfully exposed in the first part

of [Ste03], including the original letters from the Berkeley archives.
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Lemma 3.37 (Degree correction, Heilbronn). Let a = a1a
2
2 be the square free

decomposition of a. Then, the degree [Lk : Ck] is

[Lk : Ck] =

ka
2

if 2a1|k and a1 = 1 mod 4

ka otherwise
(3.7)

Proof. Ck/Q is Galois. A classical proposition of Galois Theory [Mil22, Proposition

3.19] concerning the Galois group of a compositum states

[Ck : Q][Rk : Q] = [Lk : Q][Ik : Q] =⇒ ka = [Lk : Ck][Ik : Q] (3.8)

If q is a prime factor of [Ik : Q], then [Ck( q
√
a) : Ck] is either 1 or q and [Ck( q

√
a) :

Ck] | [Lk : Ck] = ka
[Ik:Q]

. But q does not divide ka
[Ik:Q]

as ka is square-free and q | [Ik : Q].

Hence, [Ck( q
√
a) : Ck] = 1 =⇒ q

√
a ∈ Ck. Lastly, because Q(ζq, q

√
a) ⊆ Ck, the

extension Q(ζq, q
√
a)/Q must be an Abelian extension. Hence, q can only be an even

prime and [Ik : Q] can only be either 1 or 2. It will be 2 precisely when k is even and
√
a ∈ Ck ⇐⇒

√
a1 ∈ Ck.

A classical application of Gauss Sums [Neu99, Ex. 4 Chapter 1.10] proves that the

only quadratic subfields in the k-th cyclotomic field are of the form

Q

(√(
−1

D

)
D

)
⊆ Q(ζk) (3.9)

where D > 1 is a square-free odd divisor of k. Hence, we need a1 to be an odd divisor

of k and a1 = 1 mod 4 ⇐⇒
(
−1
a1

)
= 1. �

Warning 3.38. This corner case is an inconvenience in further computations.

Artin’s conjecture is already an interesting and open problem for any particular

value of a ∈ Z. For the duration of this document, we will ignore these exceptional

a and refer the reader to the precise bookkeeping in other references.
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3.2.2 Positivity of Artin’s constant

In Artin’s conjecture over Q, we end up having a conjectured density

A(a) =
∑
k≥1

µ(k)e(k)

φ(k)ka
, where e(k) =

2 2a1|k and a1 = 1 mod 4

1 otherwise
(3.10)

Lemma 3.39 (Euler product of A(a)). Let a = a1a
2
2 be the square-free decompo-

sition of a, and let h be the largest integer such that a is an h-power in Z. The

following identity is true.

A(a) = δa1
∏

q|h prime

(
1− 1

q − 1

) ∏
q-h prime

(
1− 1

q(q − 1)

)
(3.11)

where, δa1 = 1 if a1 6= 1 mod 4 and

δa1 = 1− µ(a1)
∏
q|a1
q|h

prime

1

q − 2

∏
q|a1
q-h

prime

1

q(q − 1)− 1
(3.12)

otherwise.

Proof. When a1 6= 1 mod 4, note that e(k) = 1 ∀k and the function ψ(k) = µ(k)
φ(k)ka

is

weakly multiplicative. Hence, it has a representation as an Euler Product.

A(a) =
∑
k≥1

µ(k)1

φ(k)ka
=
∏

q prime

(
1− 1

qa(q − 1)

)
(3.13)

Now, qa is either q or 1 precisely when a is a q-th power or not, respectively. Or

equivalently, precisely when q|h or not, respectively.

When a1 = 1 mod 4, this computation is more cumbersome. See [Hoo67, Eq.

31-32]. �

Lemma 3.40 (Positivity of Artin’s constant). Let a 6∈ {−1, 0, 1}. Then, A(a) > 0

if and only if a is not perfect square.
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Proof. If a is perfect square, h would be even and the term 1 − 1
2−1 = 0. Hence,

A(a) = 0. For the other direction, if A(a) = 0, either it has a 0 factor in its product

expression or it tends to 0 in the limit. Yet the infinite product is

∏
q prime

(
1− 1

q(q − 1)

)
>
∏

q prime

(
1− 1

q2

)
=

1

ζ(2)
=

6

π2
> 0 (3.14)

Hence, if A(a) = 0, we must have a 0 term. The only possibility is 2 | h ⇐⇒ a is a

perfect square. �
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4. Function Field setting

This chapter focuses on Artin’s Conjecture in the Function Field setting. First, we give

an exposition of the original proof of Artin’s Conjecture over Function Fields by Bilharz.

The original paper [Bil37] is in German, so the main source for our exposition has been

the translation of Bilharz’ result found in the book Number Theory in Function Fields

by M. Rosen [Ros02, Chapter 10]. On the other hand, we present a second independent

proof of the result found in 2020 by Kim-Murty [KR20; KM22] developing on ideas of

Davenport and Erdos [Dav39].

The abstract of [KR20] announces that their proof is independent of the Riemann

Hypothesis on Function Fields. To the best of the author’s knowledge, we have found

a small technical error in their paper that invalidates this claim. The proof can be

fixed assuming a weaker version of R. H. The author of the present document has been

unable to find a condition-less fix.

Notation 4.1 (Relevant constants and fields in Artin’s Conjecture over Function

Fields). For the remaining of this section, q = pr is an arbitrary prime power, K is

a Function Field with field of constants Fq and let a ∈ K∗. To study Problem 3.9

over K, we will need to study the ramification properties of primes p ∈ SpecOK
over extensions Ll/K with l a rational prime and Ll = K(ζl, l

√
a). Also, for k ∈ Z+

denote Ck = K(ζk).

Remark 4.2. If a ∈ F∗q ⊆ K∗, then ordK∗(a) | q, hence a can only be a primitive

root for finitely many primes. We may assume a ∈ K∗ \ F∗q.
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El = K(ζl, l
√
a) OEl

Cl = K(ζl) p

K OK OK/p = Fqfp

x− c

Fq(x) Fq[x] Fq[x]/(x− c) = Fq

a ∈

Remark 4.3. Note that we define the rings of integers of a Function Field as

the integral closure of Fq[x]. As discussed in [Neu99, Chapter 1.14], this decision

is somewhat arbitrary and, for example, we could choose to center over Fq[1/x].

Nonetheless, for Artin’s Conjecture this makes no difference, as it only changes the

behavior of the finitely many primes at infinity.

4.1 Bilharz’ Theorem

An analogue of Artin’s observation, presented in Section 3.2, can be given for general

Global Fields, as will be discussed in Section 6.1. From this starting point, formalized

by Theorem 4.6, Bilharz [Bil37] gave an argument to justify the step to the limit in the

Function Field setting. This final step in his argument is remarkably ad-hoc and only

valid for Function Fields. For the advancement of the conjecture over Number Fields,

Hooley [Hoo67] was able to replace this ad-hoc argument by a more general solution,

reducing the conjecture to problem of counting primes.

As discussed in Section 3.2.1, Artin’s original conjecture had a small flaw in the

density formula that came from a miss-computation of the degree Ll/Q for some values

of a. Bilharz’ proof contains a similar overlook but, in the Function Field case, the

correction error doesn’t appear. In the translation and exposition of Bilharz’ result

in M. Rosen’s book [Ros02], this error is patched by assuming that the value of the

prescribed primitive root a is a Geometric Element of K, as defined bellow. In the

present document, we show that this condition is not necessary.
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Definition 4.4 (Geometric Element). Let K be a Function Field with constant

field Fq. An element a ∈ K is said to be geometric at a prime l ∈ Z if and only

if the integral closure of Fq over K( l
√
a) is Fq, or, in order words, if K( l

√
a)/K is

a geometric extension. An a ∈ K is a Geometric Element if it is geometric at all

primes.

Lemma 4.5. a ∈ K is a primitive root modulo p ∈ SpecOK if and only if there is

no l ∈ Z prime that follows both

(1) l | Np− 1 and (2) a
Np−1
l = 1 mod p

We can assume l 6= p = charK as condition 1 is never true for l = p.

Theorem 4.6 (Artin’s observation for Function Fields). Let a ∈ K, and k square-

free and p = char(K) - k. The density of primes such that there is no l | k that

follows conditions of Lemma 4.5 is

Ak(a) =
∑
k′|k

µ(k′)

[Lk′ : Q]
(4.1)

4.1.1 Computation of the degree

Definition 4.7. Given k ∈ Z square free p - k, let f(k) = ord(Z/kZ)×(q), where Fq is

the field of constants of K. This is well-defined as (q, k) = (pr, k) = 1. Analogous

to Definition 3.33, we denote ka the product of all l | k primes such that a is not

an l-th power in K.

Lemma 4.8. The extension K(ζk)/K is Galois and has degree [K(ζk) : K] = f(k).

Proof. Notice that K(ζk) = K · Fq(ζk). On one hand, Fq(ζk)/Fq is a finite field exten-

sion, so it is Galois and has a Galois group generated by φq : x 7→ xq. Hence it has

degree [Fq(ζk) : Fq] = f(k). On the other hand Fq(ζk) ∩ K = Fq as we have chosen

q such that Fq is the field of constants of K. A classical proposition of Galois The-

ory [Mil22, Proposition 3.19] concerning the Galois group of a compositum states that,
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with the given conditions, K(ζk)/K is Galois and its Galois group is isomorphic to

Gal(Fq(ζk)/Fq). This concludes [K(ζk) : K] = f(l). �

Lemma 4.9. If a ∈ K∗ \ (K∗)2, a 6∈ Fq is a non-constant non-square element, then

a is a 2-geometric element of K. Namely, the extension K(
√
a)/K is geometric.

Proof. If a is not geometric at l = 2, then the extension K(
√
a)/K must be exactly

K · Fq2/K as it is of degree 2 and must extend the constants. Nonetheless, if a ∈
K∗ \ (K∗)2, the extension K(

√
a)/K ramifies at p | a but K · Fq2/K doesn’t ramify

anywhere. �

Lemma 4.10. If a ∈ K∗ \ (K∗)2, a 6∈ Fq is a non-constant non-square element, the

degree [Lk : K(ζk)] = ka, where Lk = K(ζk, k
√
a) =

Lemma 3.35
K(ζk, ka

√
a).

Proof. Following the argument of Lemma 3.37, it is sufficient to see that Ik := K( ka
√
a)∩

K(ζk) is Ik = K. Suppose not, then for some l | k, K( l
√
a) ⊆ K(ζk). If l 6= 2, we find a

non-abelian extension K(ζl, l
√
a)/K embedded in an abelian one K(ζk)/K, which is a

contradiction.

For l = 2, Lemma 4.9 shows that a ∈ K is a Geometric Element at l = 2. A

subextension of a constant extension must also be constant extension, which implies

that the field of constants of K(
√
a) is Fq2 . This precisely contracts the geometric

condition. �

4.1.2 Bilharz’ contribution

Notation 4.11. Let P = {p1 = 2, p2 = 3, . . .} be the usual enumeration of the

rational primes. Let Prn =
∏

i≤n pi be the n-th primorial.

To match our notation with the source [Ros02, Ch.10] we define Mk(a) :=

PPrk(a) andM(a) = P (a). The value a will remain constant throughout the section,

so we drop the parenthesis and use Mk and M.
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The remaining step in Artin’s conjecture is to relate the family Mk with the set

M.

Mk = {p ∈ SpecOK | @ l ≤ k prime following the conditions of Lemma 4.5}

M = {p ∈ SpecOK | a is a primitive root mod p} =

= {p ∈ SpecOK | @ l prime following the conditions of Lemma 4.5}

From Artin’s observation, we compute the density δ(Mk) as the finite sum found

in Theorem 4.6. We aim to prove that the density of M is δ(M) := limk δ(Mk).

Remark 4.12. This is not trivial as the Dirichlet measure is not well-behaved with

respect to infinite intersection of sets. For example, note that for Sn = {p prime |
p ≥ n}, we have 0 = δ(∩nSn) 6= limn δ(Sn) = 1. Weinberger [Wei72] found an

example close to Artin’s conjecture where this equality also fails.

We begin by introducing two preliminary theorems without proof.

Theorem 4.13 (Romanoff). Let q ∈ Z>1 be a prime power, m ∈ Z with (q,m) = 1

and f(m) = ord(Z/mZ)×(q) which is well-defined as (q,m) = 1. Then the following

sum converges. ∑
m∈Z>0

m square-free
(m,q)=1

1

m · f(m)
(4.2)

Proof. See [Ros02, Theorem 10.8] �

Lemma 4.14 (Upper bound on genus of Ll). Let gl be the genus of the field Ll.

There exist constants A,B ∈ R, A > 0 such that ∀l prime gLl = Al + B. This

implies there are A1, A2 ∈ R+ such that ∀l prime, A1l < gl < A2l.

Proof. Application of Riemann-Hurwitz Identity. See [Ros02, Proposition 10.4] �

The next step of the proof uses a finer version of Chebotarev Theorem to upper

bound the function δ(Mn, s)− δ(M, s). Following Artin’s observation, we can give the

following properties of the sets Mn and M.
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Observation 4.15. The sets Mn and M follow

1. M⊆Mm ⊆Mn for all m > n

2. ∩n≥1Mn =M

3. Mn \M ⊆ ∪i≥n+1 Spl(Lli)

For s ∈ R, these properties translate to Dirichlet Densities as

1. δ(M, s) ≤ δ(Mm, s) ≤ δ(Mn, s) for all m > n

2. limn δ(Mn, s) exists and is ≥ δ(M, s).

3. δ(Mn, s)− δ(M, s) ≤
∑

i≥n+1 δ(Spl(Lli), s)

Lemma 4.16 (Fine version of Chebotarev’s Theorem). If L/K is Galois, and s ∈ R

δ(Spl(L), s) <
1

[L : K]

log ζL(s)

log ζK(s)
(4.3)

Proof. The classical proof of Chebotarev’s Theorem 2.18 shows this finer result, before

taking the limit s→ 1. �

Lemma 4.17 (Main Lemma for Theorem 4.20). There exists a real number s1 > 1

such that ∑
i≥1

1

[Lli : K]

log ζLli (s)

log ζK(s)
(4.4)

converges uniformly on the interval (1, s1).

Proof. For a geometric, [Ll : K] = lf(l) for all but a finite amount of l. Hence, it

suffices to prove ∑
l prime
l 6=p
l-h

1

lf(l)

log ζLl(s)

log ζK(s)
(4.5)

is uniformly convergent in an interval (1, s1).
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A classical theorem of Function Field extensions [Ros02, Theorem 3.5] states

ζLl(s) = ζRl(s)PLl(s) (4.6)

where PLl(s) is a polynomial in q−f(l)s of degree 2gl, where gl is the genus of Ll. Sub-

stituting back, the sum in Equation 4.5 splits in two parts. It is sufficient to see that

these two terms uniformly converge.

First we bound the ζRl term. Note that the zeta function of a cyclotomic field has

a closed formula

ζRl(s) =
1

(1− q−f(l)s)(1− qf(l)(1−s))
≤ 1

(1− q−s)(1− q1−s)
= ζR(s) (4.7)

Hence, the term is bounded as follows. Note that order 1 pole in each ζ cancels out

and the sum converges by Romanoff result 4.13.

∑
l prime
l 6=p
l-h

1

lf(l)

log ζRl(s)

log ζK(s)
≤ log ζR(s)

log ζK(s)

∑
l prime
l 6=p
l-h

1

lf(l)
(4.8)

Now we turn to the PLl term. If one writes the monomial factorization of P as

PLl(s) =

2gl∏
j=1

(
1− πjq−f(l)s

)
(4.9)

the Riemann Hypothesis on the Function Field Ll states that the πj have absolute value

qf(l)/2. This, together with Lemma 4.14, gives the following bounds.

2A1l log
(

1− q−
f(l)
2

)
< logPLl(s) < 2A2l log

(
1 + q−

f(l)
2

)
(4.10)

Using that for x > 0, log(1 +x) < x and − log(1−x) =
∑

k≥1
xk

k
<
∑

k≥1 x
k = x

1+x

and letting r = max(A1, A2), we conclude

∣∣ log(PLl(s))
∣∣ < rl

√
q

√
q − 1

q−
f(l)
2 (4.11)
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Because | log ζK(s)| has a pole at 1, 1
| log ζK(s)| < C for s close to 1. Hence,

∑
l 6=p

| log ζPLl (s)|
| log ζK(s)|

< rlC

√
q

√
q − 1

∑
l 6=p

1

f(l)qf(l)/2
(4.12)

�

Lemma 4.18. The sum
∑

l 6=p
1

f(l)qf(l)/2
converges

Proof. Separate the sum in two parts, regarding if l ≤ qf(l)/2 or not. The first term is

now convergent by Romanoff’s result 4.13.

∑
l 6=p

l≤qf(l)/2

1

f(l)qf(l)/2
<

∑
l 6=p

l≤qf(l)/2

1

f(l)l
(4.13)

For the second term, we may use a sieving method. For a given f ∈ Z+, we can

estimate how many primes l > qf/2 will have f(l) = f . All such l will be prime divisors

of qf − 1, and since l1l2 > (qf/2)2 > qf − 1, there can be at most 1. Hence

∑
l 6=p

l>qf(l)/2

1

f(l)qf(l)/2
<
∞∑
f=1

1

fqf/2
= − log(1− q1/2) <∞ (4.14)

�

Remark 4.19. Note that the full Riemann Hypothesis is not needed for this result.

A Re(z) > 1− ε zero-free region is enough as

∞∑
f=1

1

fq(1−ε)f
= − log(1− q1−ε) <∞ (4.15)
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Theorem 4.20 (Bilharz). Let K be a Function Field with field of constants Fq.
Let a ∈ K an arbitrary element Geometric at l = 2. The Dirichlet density of the

set Ma is

δ(Ma) =
∑
k≥1
p-k

µ(k)

[Lk : K]
=
∑
k≥1
p-k

µ(k)

kaf(k)
(4.16)

This sum converges by Theorem 4.13.

Proof. By Property 3 of Observation 4.15 and Lemma 4.16

0 ≤ δ(Mn, s)− δ(M, s) ≤
4.15

∑
i≥n+1

δ({Lli}, s) <
4.16

∑
i≥n+1

1

[Lli : K]

log ζLli (s)

log ζK(s)
(4.17)

Fixing s < s1, by Lemma 4.17, the right-hand side converges to 0 as n → ∞. By a

classical Lemma of Uniform Convergence [Ros02, Lemma 10.2], the limits n→∞ and

s→ 1 can be swapped, which concludes

δ(M) = lim
n→∞

δ(Mn) (4.18)

as desired. �

4.1.3 Positivity conditions

In the previous section, we have concluded that when a ∈ K is a Geometric Element

at l = 2, then Artin’s constant for the Function Field K is

δ(M) =
∑
k≥1
p-k

µ(k)

f(k)ka
(4.19)

Note that f(k) is weakly multiplicative. If a, b are coprime integers, f(ab) =

ordZ/abZ(q) = ordZ/aZ(q) · ordZ/bZ(q) = f(a)f(b) by the Chinese Reminder Theorem.

Hence, this series has an Euler Product.
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Lemma 4.21 (Euler product). Let K be a Function Field with field of constants

Fq and a ∈ K a Geometric Element at l = 2. Let Sa the finite set of primes l such

that a is an l-th power. Then, Artin’s Constant can be expressed as the following

Euler Product.

δ(M) =
∏

l prime
l∈Sa

(
1− 1

f(l)

) ∏
l prime
l 6∈Sa

(
1− 1

lf(l)

)
(4.20)

Proof. Perform the product expansion formally. Romanoff’s Theorem 4.13 shows con-

vergence. �

Theorem 4.22 (Positivity conditions). Let K be a Function Field with field of

constants Fq and a ∈ K a Geometric Element at l = 2. Then a follows Artin’s

Conjecture on K if and only if a is not an l-th power for a prime l with f(l) = 1.

In order words, for a prime l such that l | q − 1.

Proof. If a is an l-th power with l | q − 1 then there is a 0-factor, so δ(M) = 0. For

the other direction, if δ(M) = 0 it can either have a 0-factor or it can tend to 0 in the

limit. If it has a 0-factor, it must be for some l ∈ Sa with

1− 1

f(l)
= 0 =⇒ f(l) = 1 (4.21)

On the other hand, the infinite part of the product can be lower bounded using

that log(1− x) > −x for 0 < x ≤ 1
2
.

∏
l prime

(
1− 1

lf(l)

)
= exp

( ∑
l prime

log

(
1− 1

lf(l)

))
> exp

( ∑
l prime

1

lf(l)

)
(4.22)

The exponent converges by Romanoff Theorem 4.13 which in turn implies that its

exponential converges to a non-zero value. �
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4.2 Modern proof by Kim-Murty

The article [KR20] (and its corrigendum [KM22]) present a new proof of Theorem 4.20

only for the case of K = Fq(x). The paper’s abstract claims that their proof doesn’t

depend on the Riemann Hypothesis over Function Fields, unlike the original [Bil37].

We believe that there is a small flaw in their argument that invalidates this claim.

We first give an exposition of the strategy followed by this paper. After this, we

describe the technical error in their argument and how a reduced Riemann Hypothesis

patches it. This proof with a reduced Riemann Hypothesis was already observed by

Davenport [Dav39] without details. To this day, the author of the present document

has not found a way to patch this proof without blackboxing the Riemann Hypothesis

in Function Fields.

4.2.1 Proof Strategy

The paper aims to prove the conjecture by proving a series of bounds of polynomial

character sums, following the next Lemma.

Lemma 4.23 (Sufficient condition). Given a(x) ∈ Fq[x] monic. If there is some

c > logq(2) such that for all n ∈ Z≥1 and all non-trivial characters χ : Fqn → C, we

have ∣∣∣∣∣∣
∑
θ∈Fqn

χ(a(θ))

∣∣∣∣∣∣ = o

(
qn(1−

c
logn)

log n

)
(4.23)

then, Artin’s Conjecture holds for a(x). In practice, we will try to prove that the

character sum described is O(qnB) for B < 1.

Remark 4.24. This condition will not be necessary. We know from Theorem 4.22

that a ∈ Fq[x] will be a primitive root modulo infinitely many irreducible polyno-

mials v if and only if a is not a d-th power for some d | q − 1.

But note that if a is a d-power for a d | qi− 1 for any i ≥ 1, then the character

χ : Fqni → C with χ(γ) = ζ
(qni−1)/d
qni−1 would make the character sum trivial for

m = ni arbitrarily large. Therefore, this proof will only show that a subset of the

a in Theorem 4.22 follow Artin Conjecture over Fq(x).
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In the rest of the section, we aim to give a sketch of the proof of Lemma 4.23.

Definition 4.25 (Sifting function). Given a cyclic group G, define

SG : G→ C

g 7→ ϕ(m)

m

1 +
∑
d|m
d>1

µ(d)

ϕ(d)

∑
ordχ=d

χ(g)

 (4.24)

where ϕ is Euler’s totient function and where the last sum runs over all group

characters of order exactly d.

Remark 4.26. Note that the first term comes from the trivial character and d = 1.

We only separate the first term as a presentation convenience, because it will be

the asymptotically significant term.

Lemma 4.27. With the definition above, we have

SG(g) =

1, g is a primitive root of G

0, otherwise
(4.25)

Proof. Fixed a g ∈ G, the function

f(d) =
µ(d)

ϕ(d)

∑
χ:G→C
ordχ=d

χ(g) (4.26)

is weakly multiplicative, so SG(g) has an Euler Product decomposition. Now, denote

G = 〈λ|λm = 1〉 and g = λk, we have

SG(g) =
ϕ(m)

m

∏
p|m

1− 1

p− 1

∑
χ:G→C
ordG χ=p

χ(g)

 =
ϕ(m)

m

∏
p|m

(
1− 1

p− 1

∑
1≤i<p

ζ ikp−1

)

(4.27)

If a is not a primitive root, (k,m) = a > 1 and for any p | a, the p-th Euler Factor will
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be 0. Otherwise, (k,m) = 1 and each factor is∑
1≤i<p

ζ ikp−1 = −1 =⇒ Πp =
p

p− 1
=⇒ = SG(g) = 1 (4.28)

�

Definition 4.28. Given an a(x) ∈ Fq[x] monic, define Wa : Fq[x]irr → Z,

Wa(v) =

deg v, a is a primitive root modulo v

0, otherwise
(4.29)

We aim to count irreducible v where a is a primitive root modulo v, but we will find

it easier to count them if we weight them with a multiplicity deg v. This is analogous

to the role that the Von Mangoldt function

Λ(n) =

log p, if n = pk

0, otherwise
(4.30)

takes in the original proof of the prime number theorem, by Hadamart and de la Vallée

Poussin.

Lemma 4.29. For all n ∈ Z>0, the following equality holds.∑
v∈Fq [x]monic, irr

deg v|n

Wa(v) =
∑
θ∈F∗qn

SF∗qn (a(θ)) (4.31)

Proof. Let v ∈ Fq[x]monic, irr with deg v = n and let θ1, . . . , θn be the roots of v in Fqn .

Then, each root gives a bijection Fq[x]/(v) ' Fq[θi] = Fqn where a 7→ a(θi). Adding

over all the possible v yield the desired equation. �

46



CHAPTER 4. FUNCTION FIELD SETTING

Remark 4.30. Note that the definition of the sifting function and the linear sieve

over primes can be effortlessly translated to Artin’s problem over Z. Nonetheless,

this bijection between irreducible polynomials and their set of roots does not have

an analogue over Number Fields. This greatly increases the difficulty of bounding

the character sums that arise in the Z setting.

Lemma 4.31. The set of upper bounds described in Lemma 4.23 imply that∑
θ∈F∗qn

SF∗qn (a(θ)) diverges as n→∞.

Proof. Use Definition 4.25 to fully expand the sum

∑
θ∈F∗q

SF∗qn (a(θ)) =
∑
θ∈F∗q

ϕ(qn − 1)

qn − 1

1 +
∑
d|qn−1
d>1

µ(d)

ϕ(d)

∑
χ:F∗qn→C
ordχ=d

χ (a(θ))

 =

= ϕ(qn − 1) +
∑
d|qn−1
d>1

µ(d)

ϕ(d)

∑
χ:F∗qn→C
ordχ=d

∑
θ∈F∗q

χ (a(θ))

(4.32)

Applying a triangular inequality and using the set of upper bounds in Lemma 4.23,

the leading term is absolutely asymptotically bigger than all the other combined. Hence,

the sum diverges.

∣∣∣∣∣∣∣∣
∑
d|qn−1
d>1

µ(d)

ϕ(d)

∑
χ:F∗qn→C
ordχ=d

∑
θ∈F∗q

χ (a(θ))

∣∣∣∣∣∣∣∣ ≤
∑
d|qn−1
d>1

d sq-free

1

ϕ(d)

∑
χ:F∗qn→C
ordχ=d

∣∣∣∣∣∣
∑
θ∈F∗q

χ (a(θ))

∣∣∣∣∣∣ =

=
Lemma 4.23

o

(
2w(q

n−1) q
n(1− c

logn)

log n

)
= o (ϕ(qn − 1))

(4.33)

On the last step we have used that w(N) < logN
log logN

and ϕ(qn − 1) > qn

log log qn
. �
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4.2.2 Bound of the Polynomial Character Sums

Remark 4.32. Bounding for each n independently is not enough, as we need the

implicit constant to be independent on n. That’s why proving the case n = 1 and

then base changing from Fq to Fqn doesn’t work.

In this part of the proof, the initial paper [KR20] has an error which, a priori,

is fixed in the corrigendum [KM22]. Initially, their method only works for characters

of Fqn that are lifts of characters of Fq, meaning that χ : Fqn → C factorizes as

χ = χ′ ◦ NFqn/Fq : Fqn → Fq → C, where NFqn/Fq is the norm of the field extension and

χ′ is a character of Fq.

In theory, this error is corrected in the corrigendum, but we have found a flaw in

the correction that we believe invalidates the proof of Artin’s Conjecture. The details

are described in the next section.

4.2.3 Potential error in the corrigendum [KM22]

The second page of the corrigendum [KM22] introduces the following L-function.

Definition 4.33. Given a fix a ∈ Fq[x] monic of degree K and an arbitrary char-

acter of the algebraic closure χ : Fq → C, define

L(s, χ) := exp

(∑
n≥1

Nn(χ)
q−sn

n

)
(4.34)

with

Nn(χ) :=
∑
θ∈Fqn

χ(a(θ)) (4.35)

The next paragraph states that this L-function is another form of the L-function

given in the original paper [KR20]. We believe the error is in this equality of L-functions.

The L-function of the original paper is defined as follows.
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Definition 4.34. Given an r-tuple of characters χ′i : Fq → C and an r-tuple of

monic irreducible polynomials fi ∈ Fq[x], define

χ̂ : Fq[x]→ C

g 7→
r∏
i=1

χ′i( (fi, g) )
(4.36)

where (fi, g) indicates the resultant. Then, define

L′(s, χ̂) =
∑

g∈Fq [x]
monic

χ̂(g)

(qdeg g)s
(4.37)

To equalize Definition 4.34 with Definition 4.33, I understand that the natural

choice is to take r = #irreducible factors of a, (f1, . . . , fr) the irreducible components

of a.

Setting the χ′i = χ doesn’t work as, to start, the χi should be characters of Fq
and χ is a character of Fq. Even if we stretch the Definition 4.34 to include characters

of Fq, this choice of χi will still not work, as I will show in a moment. For now, let’s

just set them all equal to each other χ′i = χ′, letting χ′ be an arbitrary character of Fq
(possibly a character of Fq, if we need to stretch the definition).

Note that we have χ̂(g) = χ′( (a, g) ) as a =
∏
fi. We have split a into irreducible

components just to match the conditions of the Definition 4.34.

Question 4.35. Is L = L′?

Taking the logarithm of the Euler product of second L-function, we get

logL′(s, χ̂) =
∑

v∈Fq [x]
monic irreducible

− log

(
1− χ̂(v)

qdeg vs

)

=
∑

v∈Fq [x]
monic irreducible

∑
k≥1

1

k
·
(
χ̂(v)

qdeg vs

)k (4.38)
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=
∑
m≥1

∑
v∈Fq [x]

monic irreducible
deg v=m

∑
k≥1

1

k
· χ̂(v)kq−mk·s

=
∑
n≥1


∑
m|n

∑
v∈Fq [x]

monic irreducible
deg v=m

m · χ̂(v)n/m

 q−sn

n

(4.39)

where, in the last equality, we have set n = mk

For this to be equal to Definition 4.33, we would need the equality of all the

coefficients. Namely, ∀n ≥ 1

Nn(χ) =
∑
θ∈Fqn

χ(a(θ))
?
=
∑
m|n

∑
v∈Fq [x]

monic irreducible
deg v=m

m · χ′( (a, v) )
n/m

(4.40)

If χ = χ′ ◦NFnq /Fq , this is true. For any v ∈ Fq[x] irreducible polynomial of degree

m, let θ1, . . . , θm be its roots. Now

χ(a(θ1)) + · · ·+ χ(a(θm)) = χ′(N(a(θ1))) + · · ·+ χ′(N(a(θm)))

=
∑
i

χ′

(∏
j

a(θj)

)n/m


= m · χ′
(∏

i

a(θi)

)n/m

= m · χ′( (a, v) )
n/m

(4.41)

Adding over all conjugation classes, we get the desired identity.

But, given an arbitrary χ : Fq → C which is not the lift of any character on the

base field, there doesn’t seem to be a natural choice of χ′ that makes the identity true.
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4.2.4 Flaw in the proof of Artin’s conjecture

The equality of the two L-functions is not merely a presentation problem. It is logically

used in the proof of Artin’s conjecture.

Davenport [Dav39] proves that the L-function on Definition 4.34 is a polynomial.

Only in the case χ = χ′ ◦N he uses this to find an equality of the character sum with

an exponential sum over the zeroes of the L-function, named si.

∑
θ∈Fqn

χ(a(θ)) =
∑

qnsi (4.42)

Because there are only finitely many characters on the base field and each L-

function gives rise to finitely many zeros, one can take the B = max |si|. Then, B < 1

by a result analogous to the classical argument of the proof of the Prime Number

Theorem by Hadamart and de la Vallée Poussin. Hence, we have the following uniform

bound for the character sums coming from lifts of base characters.

∣∣∣∣∣∣
∑
θ∈Fqn

χ(a(θ))

∣∣∣∣∣∣ = O(qnB) (4.43)

For the χ 6= χ′ ◦N , the character sum that one needs to bound doesn’t even come

up as a coefficient in the L-series of Definition 4.34. It only comes up as a coefficient in

the Definition 4.33, which, a priori, is not a polynomial nor does it follow an equality

similar to the one found by Davenport.

4.2.5 Conditional fix

Given a χ : Fqn → C that is not a lift, its character sum comes up in an L-series

like the one in Definition 4.34 via base change from Fq to Fq′ with q′ = qn. In this

case, the zeroes of this its L-series are not linked in any explicit way to the family of

L-series of the base field characters, considered when defining B. Hence, the zeros of

this L-function are not necessarily ≤ B. So one would have to take B′ = sup |si| which,

a priori, can be 1.

Assuming a 1 − ε Riemann Hypothesis, which, in Function Fields is a theorem,
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would be sufficient to see B′ < 1. This looks similar to the bound given in [KR20,

Theorem 4] but that upper bound isn’t enough. Under base change, it gives

1− c

(K − 1) log(qn)
= 1− c

n(K − 1) log q
(4.44)

which is not enough as, when n→∞ it tends to 1.
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5. Number Field Setting

This chapter focuses on Artin’s conjecture over Number Fields where the problem

remains open. In Section 5.1, we give an exposition of Hooley’s conditional proof

of Artin’s Conjecture [Hoo67] over Q. Following that, in Section 5.2, we propose a

new Conjecture 5.18. This self-contained conjecture would reduce the strength of the

Riemann Hypothesis assumed in Hooley’s result. There is strong numerical evidence

that the conjecture holds, as shown in Figure 5.1.

Before that, we can reproduce the computation of Lemma 3.40 to find the con-

jecture necessary condition of Artin’s conjecture over Number Fields, albeit purposely

ignoring the values from Warning 3.38. If one wants to include the values from Warn-

ing 3.38, the extra “entanglement” term in the Euler Product has been studied in [Ste03].

Lemma 5.1 (Necessary condition in Number Fields). Given a Number Field K/Q,

let λ(K) be the roots of unity of K and h−1 = |λ(K)|. Choose a generic element

(namely one missing the corner case described in Warning 3.38) a ∈ OK \ λ(K).

Then, let ha = max{r | a = zr for some z ∈ K}. Artin conjecture does not hold

for a if and only if

1. gcd(h−1, ha) 6= 1

2. 2 | ha ⇐⇒ a is a “perfect square” on OK

This is summed up as a follows Artin’s Conjecture if and only if (2h−1, ha) 6= 1.

In the classical setting, only Condition 2 can be met as h−1 = 2. Nonetheless, for

general Number Fields, Condition 1 is necessary and has full meaning (namely, it is not

implied by condition 2).

Proof. Ignoring the values of a for which K(ζk) ∩ K(a1/k) 6= K, we have that the

expression for Artin’s Conjecture has an Euler Product form, as shown in 3.39. For a

given square-free k, define k−1 = k
(k,h−1)

and ka = k
(k,ha)

. Then, by the argument used

in Lemma 3.37, the degree [Lk : K] = φ(k)
φ((h−1,k))

ka = φ(k−1)ka.
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For a prime l, we have

[Ll : K] = [K(ζl, a
1/l) : K] =



1 l | h−1 and l | ha
l l | h−1 and l - ha
l − 1 l - h−1 and l | ha
l(l − 1) l - h−1 and l - ha

(5.1)

And the conjecture density by Conjecture 6.10 is

A(a) =
∏
l

(
1− 1

[Ll : K]

)
(5.2)

The tail of product converges to a non-zero value by the argument used in Lemma 3.40.

Hence, for A(a) = 0, one of the two cases has to be met. �

5.1 Hooley’s Theorem

In his 1967 paper [Hoo67], Hooley published a conditional proof of Artin’s conjec-

ture 3.32 under the assumption that the Generalized Riemann Hypothesis holds for an

explicit family of Kummer fields. His proof follows a structure classically pertaining to

Sieve Theory. Namely, there will be a certain sum to be asymptotically approximated

which will be separated into segments and attacked by different methods.

Hooley’s proof is given for the original problem over Z but, as we will see in Sec-

tion 6.1, it is not hard to generalize the argument for general Number Fields. Another

relevant takeaway of his proof is that it reduces Artin’s Conjecture to the problem of

counting primes over certain Kummer Fields. The assumption of the Riemann Hypoth-

esis is used to give an extremely fine estimate of the prime counting function.

5.1.1 Preparation

For this chapter, we return to the notations of Definition 3.33. To match the notations

used in Hooley’s paper [Hoo67], we introduce the following functions.
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Definition 5.2 (Prime counting functions in [Hoo67]).

1. Ra(q, p) =

1 q follows Lemma 3.19

0 otherwise

2. Na(x) = #{p < x |a is a primitive root mod p}

3. Na(x, ξ) = #{p < x | 6 ∃ q following Lemma 3.19 in the range q < ξ}

4. Ma(x, ξ1, ξ2) = #{p < x |∃ q following Lemma 3.19 in the range ξ1 < q ≤ ξ}

5. Pa(x, k) = #{p < x | ∀q|k, q follows Lemma 3.19}

Lemma 5.3 (Basic observations of the newly defined functions).

1. Na(x) = Na(x, x− 1)

2. Na(x) ≤ Na(x, ξ)

3. Na(x) ≥ Na(x, ξ)−Ma(x, ξ, x− 1)

4. Ma(x, ξ1, ξ2) ≤
∑

ξ1<q≤ξ2 Pa(x, q)

Lemma 5.4. Na(x, ξ) =
∑

l′ µ(l′)Pa(x, l
′), where the sum is over all l′ square free

with factors ≤ ξ. Note that

l′ ≤
∏
q≤ξ

q = e
∑
q≤ξ log q ≤ e2ξ (5.3)

where in the last inequality we have used the prime number theorem.

Lemma 5.5. Let ξ1 = 1
6

log x, ξ2 = x1/2 log−2 x, ξ3 = x1/2 log x. From the previous

observations, we get

Na(x) = Na(x, ξ1) +O(Ma(x, ξ1, ξ2))+

+O(Ma(x, ξ2, ξ3)) +O(Ma(x, ξ3, x− 1))
(5.4)

Hooley proves that the first is the leading term, being ∼ A(a) x
log x

for an explicit

constant A(a). Moreover, he proves that, the other 3 terms will be asymptotically

smaller, upper bounded by O
(

x
log2 x

)
. This concludes that Na(x) ∼ A(a) x

log x
, which is
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precisely Artin’s conjecture. The choice of ξi is taken carefully to fulfill the estimates.

The bounds of terms 3 and 4 use elementary techniques. For terms 1 and 2, the

Riemann Hypothesis is needed. As we will detail in the following section, the estimation

of term 1 only needs the 2/3-zero free region but the upper bounding of term 2 will

need the full 1/2 Riemann Hypothesis. The Conjecture 5.18 that we propose gives an

equally good bound for term 2 using less strength of the Riemann Hypothesis We do so

by improving the bound on term 4, which makes it possible to choose a lower ξ3, which

at its turn makes it possible to choose lower ξ2 without disrupting the bound of term

3. Having a lower ξ2 gives the possibility of conserving the bound of the second term

but using less strength of the Riemann Hypothesis.

The estimation of the first term still needs the 2/3 Riemann Hypothesis, so the

best this possible improvement can hope to do is lower the conditions, but not give a

condition-less proof.

5.1.2 Bounds on the 3rd and 4th term

Lemma 5.6 (Bound of the 4th term). Let ξ3 = x1/2 log x, then

Ma(x, ξ3, x− 1) = O

(
x

log2 x

)
(5.5)

Proof. If q follows Lemma 3.19, in particular a
p−1
q = 1 mod p. Hence, if there is a

q > ξ3 that follows the Lemma, there will be an m < x
ξ3

such that p|am − 1. All the

primes counted on Ma(x, ξ3, x− 1) need to be divisors of

Sa(x/ξ3) :=
∏

m<x/ξ3

(am − 1) (5.6)

Hence, 2Ma(x,ξ3,x−1) < Sa(x/ξ3) which implies Ma(x, ξ3, x − 1) < logSa(x/ξ3) <

log a
∑

m<x/ξ3
m = O

(
(x/ξ3)

2) = O
(

x
log2 x

)
. �
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Remark 5.7. One is forced to choose ξ3 = x1/2 log x for the last equality to be

true. Yet, in this document we conjecture a refined upper bound for the number

of primes diving Sa(n) =
∏

m<n(am − 1). Using our conjecture, one will be able to

choose a lower ξ3.

Lemma 5.8 (Bound of the 3rd term). Let ξ2 = x1/2 log−2 x and ξ3 = x1/2 log x.

Then Ma(x, ξ2, ξ3) = O
(

x
log2 x

)
.

Proof. By Lemma 5.3, we may express Ma(x, ξ2, ξ3) ≤
∑

ξ2<q≤ξ3 Pa(x, q).

Now, if q follows Lemma 3.19, then in particular p ≡ 1 mod q. By Brun’s method,

which is an inequality related to Dirichlet’s Theorem, we have

Pa(x, q) ≤
∑
p≤x

p≡1 mod q

1 ≤ A1x

(q − 1) log(x/q)
(5.7)

From this we obtain the bound

Ma(x, ξ2, ξ3) = O

(
x

log x

∑
ξ2<q≤ξ3

1

q

)
=

= O

(
x

log2 x

(
log

ξ3
ξ2

+O(1)

))
= O

(
x log log x

log2 x

) (5.8)

�

Remark 5.9. This lemma forces to choose the polynomial degree of ξ2 to be the

same as ξ3, a priori 1/2. Yet a key takeaway from this lemma is that the bound

only depends on the ratio ξ3/ξ2. If we manage to lower ξ3, we can automatically

lower ξ2 without disturbing this bound.

5.1.3 Reduction to counting primes

Using basic facts of Ramification Theory, the following lemmas link the prime counting

function over certain Kummer Fields to the sums we are interested in estimating
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Definition 5.10 (Prime counting function). For k ∈ Zsquare-free
>0 , let Lk = Q( ka

√
a, ζk)

the Kummer Field relevant in Artin’s conjecture and n(k) = [Lk : Q]. Then, define

π(x, k) := #{p prime ideal of Lk | Np ≤ x} (5.9)

Lemma 5.11.

n(k)Pa(x, k) = π(x, k) +O(n(k)w(k)) +O(n(k)x1/2) (5.10)

Proof. This is a Corollary of Theorem 2.11. �

5.1.4 Prime counting theorem

By Lemma 5.11, an estimate of π(x, k) will give an estimate of Pa(x, k) and which in

turn will give an estimate of the first and second term in Equation 5.4, by Lemmas 5.3

and 5.4. The final part of Hooley’s article deduces a good enough prime counting

theorem.

Theorem 5.12. Assuming the Generalized Riemann Hypothesis for ζLk , we have

the estimate

π(x, k) =
x

log x
+O(n(k)x1/2 log kx) (5.11)

Sketch of the proof. Hooley starts from the classical idea that π can be expressed in

terms of the zeroes of ζLk . He deduces a theorem about the vertical distribution of

zeroes and, together with the assumption that the zeroes are in the 1/2 line, he is able

to deduce the desired bound.

The key Lemma in Hooley’s paper is the result on the vertical distribution of the

Riemann zeros under the Generalized Riemann Hypothesis[Hoo67, Page 215-216]. 1 �

1 The proof of this Lemma is too technical for the present author to be able to give an exposition
that is any better than the original. We have hence chosen not to include it in the text.
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Remark 5.13. If you follow Hooley’s proof only assuming the zero-free region

Re(s) > f , you get the estimate

π(x, k) =
x

log x
+O(n(k)xf log kx) (5.12)

From the rest of the Section, f will note the value up to which the Riemann

Hypothesis is assumed.

5.1.5 Bounds for the 1st and 2nd term

By Lemma 5.11, one gets an estimate of Pa and unrolling Lemmas 5.3 and 5.4 one

gets estimates of the first and second term in Equation 5.4. They are explained in the

following lemmas.

Lemma 5.14 (Estimation of the 1st term).

Na(x, ξ1) =
∑
l′

µ(l′)

(
x

log x · n(l′)
+O(xf log x)

)
=

=
l′<e2ξ1by Prop. 5.4

x

log x

∑
l′

µ(l′)

n(l′)
+O

∑
l<e2ξ1

xf log x

 =

= A(a)
x

log x
+O(e2ξ1xf log x) =

= A(a)
x

log x
+O(xf+1/3 log x)

(5.13)

Remark 5.15. Very significantly, note that for the extra term to be irrelevant,

we only need f to be f < 2/3. For this, it is sufficient to assume an R(s) ≥ 2/3

zero-free region.
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Lemma 5.16 (Bound of the 2nd term).

Ma(x, ξ2, ξ3) ≤
∑

ξ1<q≤ξ2

(
x

log x · q(q − 1)
+O(xf log x)

)
=

= O

(
x

log x

∑
q>ξ2

1

q2

)
+O

(
xf log x

∑
q≤ξ2

1

)
=

= O

(
x

ξ1 log x

)
+O

(
xfξ2 log x

log ξ2

)
= O

(
x

log2 x

)
(5.14)

Remark 5.17. Note that in the last equality we did need f = 1/2 because ξ2 =

x1/2 log−2 x. If we manage to lower the polynomial degree of ξ2, we would be able

to conserve the bound using a higher f , hence reducing the conditions in Hooley’s

proof.

5.2 Proposed improvement

We propose the following self-contained conjecture.

Conjecture 5.18. Let Sa(n) :=
∏

m<n (am − 1). Let w(N) = #{distinct primes p|N}.
Is it true that w(Sa(n)) = O(n · poly-log)?

We claim that this would reduce the conditions on Hooley’s conditional proof from

the full R. H. to an R(s) ≥ 2/3 zero free region. The weaker conjecture w(Sa(n)) =

O(n2−ε ·poly-log) for ε > 0 would already improve the conditions to an R(s) ≥ 1/2+ε/3

zero-free region.

The conjecture can be reformulated as follows. Note that it is asking a similar

question to the original Artin’s conjecture but instead of asking for the density of

primes with high ordp(a) = p− 1 it asks for primes with low ordp(a).

Conjecture 5.19. Let P (n) = #{p prime | ordp(a) < n}, is P (n) = O(n ·
poly-log)?
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Remark 5.20. For the application on Artin’s Conjecture, the value of a can be

asked to be a non-square. Yet, numerical evidence in Figure 5.1 seems to imply that

the conjecture is true regardless. This doesn’t contradict the necessary condition in

Artin’s Conjecture as a being a non-square is still necessary for Artin’s observation.

Remark 5.21. The polylogarithmic part will take no paper in the application to

Artin’s Conjecture, can be taken as large as one wants.

Remark 5.22. Note that, following the factorization am − 1 =
∏

d|m Φd(a), the

conjecture is very related to the values of w(Φd(a)), where Φd is the d-th cyclotomic

polynomial. There seems to be a conjecture by Erdós [MS19] on P (Φ(a)), the largest

prime divisor which has a very similar flavor.

5.2.1 Upper bound w(Sa(n)) = O(n2)

It is not hard to prove w(Sa(n)) = O(n2). For example, 2w(Sa(n)) < Sa(n), from which

the desired bound follows. This bound can be improved by logarithmic factors in a

number of ways. For instance using the well-known bound w(N) = O
(

logN
log logN

)
, which

can be proven by looking at N =
∏

p<n p the primorials.

5.2.2 Lower bound w(Sa(n)) = Ω(n)

A trivial application of Zsigmondy’s theorem[Zsi92] shows w(Sa(n)) = Ω(n).

5.2.3 Numerical evidence

We believe that the strong conjecture is true. Numerical evidence is shown in Figure 5.1,

for a = 2.
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Figure 5.1: Numerical Evidence of Conjecture 5.18. The lower bound w′ is the number
of distinct primes in S2(n) in the range < 108. The upper bound has an extra correction

term of n(n−1)
2

log108(2) which over counts the number of primes that S2(n) can have on
the range ≥ 108.

The limitation of these numerical computations is the number of primes can be

saved in a computer in practice. The current program, found in the Appendix, checks

for primes up to L = 108 through an Eratosthenes Sieve. Yet S2(n) grows very quickly

so, a priori, it could start having prime factors larger than our range. We can only give

an exact value of w(Sa(n)) for n relatively small (∼ 10). For higher values, we compute

a lower and higher bound for w(S2(n)).

The lower bound w′(S2(n)) is just the number of distinct primes dividing S2(n)

that are in the range p < L which we compute by counting. The upper bound is

w′+ n(n−1)
2

logL(2). This is an upper bound because any extra prime of S2(n) not in our

range is at least ≥ L, hence there can only be, at most, logL(S2(n)) ≤ logL(2
∑
m<nm) =

n(n−1)
2

logL(2).

5.2.4 Improvement on Artin’s conjecture

Conjecture 5.18 gives a finer upper bound for the 4th term in Equation 5.4. This will

let us choose a smaller ξ′3. For this section, we assume Conjecture 5.18 and, to simplify

the computations, we let the polylogarithmic part be trivial L(n) = 1. Hence, suppose

w(Sa(n)) ≤ Ca · n
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Lemma 5.23 (New Bound of the 4th Term). Let ξ′3 = log2 x, then

Ma(x, ξ
′
3, x− 1) = O

(
x

log2 x

)
(5.15)

Proof. As seen in the original proof Ma(x, ξ3, x − 1) ≤ w(Sa(x/ξ3)). Now Hooley uses

the trivial bound w(Sa(n)) = O(n2) and concludes that Ma(x, ξ3, x−1) = O ((x2/ξ23)) =

O
(

x
log2 x

)
. In the new case, Ma(x, ξ

′
3, x− 1) = O(w(Sa(x/ξ

′
3))) = O(x/ξ′3) = O

(
x

log2 x

)
.

�

Now let ξ′2 = log−3 x, which makes the ratio ξ′3/ξ
′
2 = log5 x. Lemma 5.8 still holds

with these new brackets. But now, having ξ′2 = log−3 x makes the bound of the 2 term

condition-free. This can be seen in the last equality of Lemma 5.16.

Hence, the only condition that remains is the R(s) ≥ 2/3 zero-free region used for

estimation the first term.
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6. Common Factor

6.1 Lenstra’s Theorem

In 1977, Lenstra published a paper [W77] where he fully settled a generalization of

Artin’s conjecture that had arisen in relation to the discovery of Euclidean Algorithms

in Global Fields. The applications of this theorem to Euclidean Algorithms are not of

principal importance for this thesis. Lenstra’s article is interesting because it is a prime

example of an algebraic generalization of Hooley’s Sieve. In particular, his paper settles

all the generalizations we defined in Section 3.1, often conditional to some version of

the Riemann Hypothesis.

Question 6.1. Let K be a global field with Dedekind Domain OK . Let F/K a

finite abelian extension and C ⊆ Gal(F/K) a subset formed as a union of conjugacy

classes. Let W = 〈w1, . . . , wr〉 ⊆ K∗ a finitely generated subgroup of rank r ≥ 1

and let k ∈ Z≥1. Let M = M(K,F,C,W, k) be the set of non-archimedean primes

of K such that

1. The Frobenius Element (p, F/K) ∈ C

2. ordp(wi) = 0

3. The quotient map ψ : W → (OK/p)∗ has index [(OK/p)∗ : ψ(W )] | k

Does M have positive density?

Following Artin’s observation, one arrives at the following conjecture

Definition 6.2. Let l 6= p a prime number and define q(l) = min{la | la - k}. Then,

let Ll = K(ζq(l),W
1/q(l)). For n ∈ Z>0, let Ln =

∏
l|n Ll and q(n) =

∏
l|n q(l). Note

that q(l) = l for almost all the l primes.
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Definition 6.3. Define Cn ⊆ Gal(F · Ln/K) as

Cn = {σ ∈ Gal(F · Ln/K) | σ|F ∈ C and σ|Ll 6= Id∀l | n} (6.1)

and let an = |Cn|
|Gal(F ·Ln/K)| .

Remark 6.4. Note that for n | m, an ≥ am ≥ 0 as any σ ∈ Cm must have σ|Ln ∈ Cn
and for every σ′ ∈ Cn, there are at most m/n extensions to Cm ⊆ Gal(F · Lm/K).

Hence, the series an has a limit, when n is iterated over the square-free integers.

Conjecture 6.5. The density δ(M) = limn an

Lenstra’s main contribution is given by the following theorem

Theorem 6.6. If h is the product of the primes l such that W ⊆ (K∗)q(l), the

following are equivalent

1. limn an = 0

2. There is some n such that an = 0

3. There exists some σ ∈ Gal(F (ζh)/K) such that

• (σ|F ) ∈ C

• (σ|Ll) 6= IdLl for all l with Ll ⊆ F (ζh)

By the previous Remark, 2 =⇒ 1 is trivial. This following sections will discuss

the implication 1 =⇒ 2. The implications 2 ⇐⇒ 3 are a useful characterization of

the necessary conditions but will not be explained in this dissertation.

6.1.1 Artin’s observation revisited

In this section, we will sketch how the Lemmas of Artin’s observation, described in

Section 3.2, generalize to the problem studied by Lenstra.
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Lemma 6.7 (Lemma 2.5 of [W77]). Let p ⊆ K such that

1. ordp(w) = 0 ∀w ∈ W

2. ordp(2∆K) = 0 if K is a number field

Then, [(K/p)∗ : ψ(W )] | k if and only if for all l 6= p, (p, Ll/K) 6= IdLl

Sketch of the proof. This Lemma is a generalization of Lemma 3.26. Condition 1 needs

to be added for ψ to be a well-defined group homomorphism. Condition 2 is asking for

the prime p/p to be non-ramified, as the Frobenius Element needs to be well-defined,

and not above p = 2. The corner case at p = 2 also appeared in Section 3.2 and

can be ignored, because we are only interested in density questions. Also, note that

the dependency of k in the right-hand side of the double implication is hidden in the

definition of Ll.

We refer to the details of this proof to the original source [W77, Lemma 2.5] �

Definition 6.8. LetMn be the set of primes p ⊆ with (p, F/K) ∈ C and (p, Ll/K) 6=
IdLl for all l|n

Theorem 6.9 (Generalized Artin’s observation). The density δ(Mn) = an. One

may express it as an =
∑

d|n
µ(d)c(d)
[F ·Ld:K]

, where c(d) = |C ∩Gal(F/F ∩ Ld)|.

Proof. Chebotarev’s theorem directly states that δ(Mn) = an. It suffices to see that

the equality with the sum on the right hand side holds.

Let Dn = {σ ∈ Gal(F · Ln/K) | σ|F ∈ C and σ|Ll = IdLl ∀l | n}. The Inclusion-

Exclusion lemma implies |Cn| =
∑

d|n µ(d)|Dd|. Furthermore, any σ′ ∈ Gal(F/F ∩ Ld)
can be extended to a σ ∈ Dd in [F · Ln : F · Ld] ways, so |Dd| = [F · Ln : F · Ld]c(d).

This again uses [Mil22, Proposition 3.19] about the Galois Groups in a compositum

tower where one of the side extensions is Galois.
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F · Ln

F · Ld Ln

F Ld

F ∩ Ld

K

Putting all together results in the desired identity. �

Conjecture 6.10. δ(M) = δ(∩Mn) = a equals limn δ(Mn) = limn an.

One side of the conjecture trivially holds.

Lemma 6.11. With the notations from Question 6.1, δ+(M) ≤ a.

Proof.

δ+(M) = δ+(∩Mn) ≤ δ+(Mn) = an =⇒ δ+(M) ≤ lim an = a (6.2)

�

For the case F = K, C = {IdK}, this conjecture has already been fully explored

by Bilharz [Bil37] and Cooke-Weinberger [CW75] (extending Hooley’s argument) in

Function Fields and Number Fields respectively. Hence, to deal with the full conjecture,

only the following Lemma is needed.

Lemma 6.12 (Lemma 3.2 in [W77]). Conjecture 6.10 is true if and only if it is true

for the case, F = K, C = {IdK}.

Proof. LetM = M(K,F,C,W, k), M ′ = M(K,F,C ′,W, k) andN = M(K,K, {IdK},W, k),

where C ′ is the complementary of C in Gal(F/K). Then, let a, a′ and b, be each of their

conjectured densities. Clearly, a+ a′ = b. We claim that if δ(N) = b, then δ(M) = a.
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Now, note thatN only differs by a finite set fromM∪M ′ (at most, they differ by the

set of ramified primes over F/K). Hence b = δ−(N) ≤ δ−(M) + δ+(M ′) ≤ δ−(M) + a′,

so δ−(M) ≥ a. Together with Lemma 6.11, this completes the proof. �

6.2 Other generalizations

One might be interested in investigating what is the most general type of algebraic

object where Artin’s problem can be posed. To the best of the author’s knowledge, the

only cases where Artin’s conjecture has been studied are Number Fields and Function

Fields. There is a class of generalizations of Artin’s conjecture to Elliptic Curves and

Abelian Varieties but these no longer talk about primitive roots of the residue fields,

but instead they talk about primitive roots of the geometric group structure on the

points of over Fp.

6.2.1 Geometric setting in SpecZ[x]

The conjectures over Function Fields and Number Fields tie together as statements in

the following geometric object.

Lemma 6.13. SpecZ[x] has exactly the following elements

1. Height 0. (0)

2. Height 1. (p) for p ∈ Z prime

3. Height 1. (f(x)) for f(x) ∈ Z[x] irreducible

4. Height 2. (p, f(x)) for f(x) irreducible, p prime and f(x) irreducible in Fp.
These are maximal, with residue field Fp[x]/(f) ' Fpdeg f

This scheme is visualized in Figure 6.1 as a 2D plane with primes in the abscissa

and irreducible polynomials of Z[x] in the coordinate axis. The vertical lines at each

p are the sub-schemes V (p) ' SpecZ[x]/(p) = SpecFp[x]. The horizontal lines are

V ((f)) ' SpecZ[x]/f . In particular, the horizontal line at f(x) = x is V ((f)) =

Z[x]/x = Z. We have defined a geometric object for which the open conjecture is a

statement on a horizontal line x = 0 and the solved conjectures over Function Fields

appear as statements over vertical lines.
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Figure 6.1: 2D Geometry of SpecZ[x]. Picture taken from [Mum04]

In this setting, Artin’s problem can be restated as follows.

Question 6.14. Given a ∈ Z[x] and a closed subscheme V ⊆ SpecZ[x], are there

infinitely many closed points m in of V where a mod m is a primitive root of the

residue field?

6.2.2 Horizontal Lines and Orders of Number Fields

Question 6.15. What happens on other horizontal lines?

This question can be solved completely. If f ∈ Z[x] is a monic irreducible poly-

nomial, the conjecture over the sub-scheme V (f) ' SpecZ[x]/f is equivalent to the

conjecture over the ring Z[x]/f . This ring may not be the ring of integers of a number

field, for example for f(x) = x2− 5, but it is always an Order, i.e. a maximal rank free

Z-submodule of a Number Field.

Even though orders are not Dedekind Domains, one can normalize via the following

construction. Given an order O, let O be the integral closure of O over its field of

fractions. Then, O is the ring of Integers of FracO. The theory of orders [Neu99,

Chapter 1.12] shows that the set of prime ideals in the ring O and O differ only by a

finite amount, the divisors of the conductor of O/O. Because Artin’s conjecture can

ignore finite exceptions, Artin’s problem over an order is equivalent to solve it over its
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normalization. Conditioned to the Riemann Hypothesis, we have shown in Section 6.1

that one can solve Artin’s problem over the rings of integers of Number Fields.

6.2.3 Multiple base fields conjecture

Even though the question over a specific horizontal line is solved, the geometric setting

of Figure 6.1 inspires a related question. It is practically the same as before, but you

allow the wiggle room of changing between a “simple” set of horizontal lines for each p.

Question 6.16. For a given a ∈ Z[x], can we find a “simple” family of F =

{f1, . . . , }, fi ∈ Z[x] irreducible such that there are infinitely many rational primes

p ∈ Z such that there exists an index i for which

(1) fi is irreducible modulo p and (2) a is a primitive root modulo (fi, p)

If we managed to prove this problem unconditionally for a family of size 1 F = {f},
we would have proven Artin’s conjecture over a Number Field Q[x]/f . This is a hard

open problem that we don’t expect to be able to solve.

Nonetheless, the question as is posed gives more wiggle room as we can play with

choosing families of polynomials of size > 1. For example, if we let F be all the irre-

ducible polynomials in Z[x], the problem follows from Artin’s conjecture over Function

Fields (vertical lines). This gives an interesting intermediate conjecture. If one chooses

a finite F , the infinite amount of primes required by the conjecture implies that at

least one of (finitely many) associated Number Field would follow Artin’s conjecture.

Possibly, by not pinning which f , one could give an existence result.

The conjecture would prove a theorem of the following type.

Objective 6.17. Let a ∈ Z[x] and F = {f1, . . . }. Then a follows Artin’s conjecture

on at least one of the Number Fields Q[x]/fi

Choosing F = {x, x2 + 1} already gives a conjecture that, to the best of my

knowledge, is new. It reads as follows
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Conjecture 6.18. Given ζ(x) ∈ Z[x], are there infinitely many primes p ∈ Z such

that either

1. ζ(0) mod p is a primitive root in Fp

2. p ≡ 3 mod 4 and ζ(i) mod p is a primitive root in Fp[i]

Proving a conjecture of this type could be an indirect way of proving the existence

of some Number Field and some value where Artin’s conjecture is true.
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[Zsi92] K. Zsigmondy. “Zur Theorie der Potenzreste”. In: Monatshefte für Math-

ematik und Physik 3 (1892), pp. 265–284. doi: https://doi.org/

10.1007/BF01692444. url: https://link.springer.com/

article/10.1007/BF01692444#citeas.

[Che26] N. Chebotarev. “Die Bestimmung der Dichtigkeit einer Menge von Primzahlen,

welche zu einer gegebenen Substitutionsklasse gehören”. In: Mathematische
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A. More numerics for Conjecture 5.18

A.1 Estimates for a ∈ {3, 4, 5, 6}

Estimates for a = 2 are given in Figure 5.1. For a ∈ {3, 4, 5, 6}, they are given below.

These values include a square and a composite number. A detailed explanation of the

lower and upper bounds can be found in Figure 5.1.

Figure A.1: Computations w(S3(n)) Figure A.2: Computations w(S4(n))

Figure A.3: Computations w(S5(n)) Figure A.4: Computations w(S6(n))
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A.2 Program computing estimations of w(Sa(n))

This is the exact version of the program used to compute the data in Figure 5.1.

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

ll L = 1e8;

// Eratosthenes Sieve

vector<ll> sieve(ll n) {

vector<ll> primes;

vector<bool> prime(n, true);

for (ll i=2; i<n; i++) {

if (prime[i]) {

primes.push_back(i);

for (ll m=2*i; m < n; m += i) prime[m] = false;

}

}

return primes;

}

// Fast exponentiation

ll poww(ll a, ll n, ll p) {

if (n == 0) return 1LL;

ll mid = poww(a, n/2, p);

ll twomid = (mid*mid)%p;

if (n%2 == 0) return twomid;

else return (a * twomid)%p;

}

int main() {

vector<ll> primes = sieve(L);
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APPENDIX A. MORE NUMERICS FOR CONJECTURE ??

ll a = 2;

ll N = 100;

for (ll n=1; n<N; n++) {

cerr << n << endl;

ll count = 0;

for (ll p : primes) {

ll num = 1;

for (ll m=1; m<n; m++) {

num *= (poww(a, m, p) + p - 1) % p;

num %= p;

}

if (num == 0) count += 1;

}

long double logVal = 0;

for (ll m=1; m<n; m++) logVal += m*log(a);

cout << n << "," << count << "," << count + logVal / log(L) << endl;

}

}
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