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Abstract

We approach the problems of approximate sampling and counting in spin models on graphs, sur-

veying the most significant results in the area and introducing the necessary background from

statistical physics. We pay particular attention to the general algorithm design frameworks devel-

oped by Weitz and Barvinok, as well as to the newer results on counting and sampling independent

sets of given size. In addition, we discuss the adaptation of the arguments behind these results to

count and sample colorings with fixed color sizes, explaining in detail the current research line we

are undertaking.

Keywords: spin model, statistical physics, hard-core model, approximate counting, approximate

sampling, combinatorics, graph theory

MSC2020: 05C85
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Resumen

En este trabajo abordamos los problemas de muestreo y conteo aproximado en modelos de espines

en grafos, recopilando los resultados más significativos del campo e introduciendo el conocimiento

previo necesario del área de la f́ısica estad́ıstica. En particular, prestamos especial atención a los

métodos generales de diseño de algorismos desarrollados por Weitz y Barvinok, aśı como a los

avances recientes en cuanto al conteo y muestreo de conjuntos independientes de un tamaño dado.

Aśı mismo, discutimos cómo se podŕıan adaptar estos argumentos al problema de contar y muestrear

coloraciones con el tamaño de cada color fijo, explicando en detalle la ĺınea de investigación que

estamos llevando a cabo actualmente.

Palabras claves: modelo de espines, f́ısica estad́ıstica, hard-core model, conteo aproximado,

muestreo aproximado, combinatoria, teoŕıa de grafos

MSC2020: 05C85
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Resum

En aquest treball abordem els problemes de mostreig i comptatge aproximat en models d’espins en

grafs, recopilant els resultats més significatius de l’àrea i introdüınt els coneixements previs necessaris

del camp de la f́ısica estad́ıstica. En particular, prestem especial atenció als mètodes generals de

disseny d’algorismes desenvolupats per Weitz i Barvinok, aix́ı com els avenços recents en matèria

de comptatge i mostreig de conjunts independents de mida donada. Aix́ı mateix, discutim com es

podrien adaptar aquests arguments als problemes de comptatge i mostreig de coloracions amb les

mides de cada color fixades, explicant amb detall la ĺınia de recerca actual que estem duent a terme.

Paraules clau: model de spins, f́ısica estad́ıstica, hard-core model, comptatge aproximat, mostreig

aproximat, combinatòria, teoria de grafs

MSC2020: 05C85
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Chapter 1

Introduction

The aim of this thesis is to provide an introduction to the problem of approximately sampling and

counting in spin models on graphs, surveying the general results from the last three decades and

focusing at the end on the newer results for structures of fixed size.

Chapter 2 constitutes a self-contained introduction to the concepts from statistical physics that

are used throughout the thesis. Though we often make an effort to provide the necessary physical

intuition behind the definitions, the view is heavily shifted towards a combinatorial interpretation,

so we omit much of the content that would typically appear in an introductory statistical physics

course. For a rigorous mathematical take on the subject that still covers the whole breadth of the

topic, we recommend the textbook by Friedli and Velenik [FV17].

Chapter 3 introduces the main problems of approximate sampling and counting, describing both

the original results by Jerrum and Sinclair that raised interest on the topic and introducing two of

the main methods used to construct efficient approximate counting algorithms nowadays: the cor-

relation decay argument by Weitz, based on the self-avoiding tree construction, and the polynomial

interpolation argument by Barvinok. Though most of the proofs of this chapter have appeared in

various papers, we have made an effort to compile the most significant ones and reexplain them

without assuming much previous knowledge about the topic.

Chapter 5 builds on Chapter 3 by exploring a variation of the same problems, in which we try to

design algorithms that only count (or sample) the objects that have a certain given size. For the

counting and sampling of independent sets, we describe the significant advances that have been

achieved in the last few years. For the counting and sampling of colorings with given sizes, which

is still mostly unexplored, we provide a detailed description of a future line of research to approach

the problem.

Chapter 4 deviates a bit from the general line of the rest of the thesis, focusing on the problem of

proving the existence of colorings with certain given color sizes. This does not bear much relation

with the general topic, but it is a prerequisite for the design of sampling algorithms for colorings in

8
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Chapter 5.



Chapter 2

Fundamentals of Statistical Physics

2.1 Introduction

In this chapter we introduce the main tools from statistical physics that we will use to study

combinatorial problems. Many of the definitions and examples are taken from [Per22], [Per20]

and [FV17]. First, however, we give a short introduction on what is the kind of problems that

statistical physics deals with and why the probabilistic and statistical approach is useful for studying

deterministic physical systems.

2.1.1 Why statistical physics?

In classical physics, in order to accurately model the behaviour of a system with n particles, one

needs to use Newton’s laws to construct a system of equations with 6n variables, 3 for the position

of each particle and 3 for the velocity. Thus, to model a macroscopic object of, say, a mole of

particles, we would need to solve a system of the order of 1024 equations, which is totally unfeasible.

The same is true for the Lagrangian or Hamiltonian reformulations of classical mechanics, which

do not change the total number of variables one needs to compute.

One way to approach this issue is that of thermodynamics, which completely ignores the under-

lying constituents of matter and focuses only on macroscopic properties, deriving their governing

equations by empirical methods. That method allowed early 19th century physicists to derive the

equation of state of an ideal gas PV = nRT without having any knowledge about the existence of

atoms, relying only on experimental data.

This approach provides a certain robustness to thermodynamics that many other branches of physics

lack. Indeed, if a new fundamental particle were to be discovered tomorrow, all the standard

model of subatomic physics would need to be rewritten from scratch, while thermodynamics would

remain largely unaffected, as it does not base its validity on any assumptions about the microscopic

constituents of matter. This is what Albert Einstein meant when he stated that “[Thermodynamics]

10



2.1. INTRODUCTION 11

is the only physical theory of universal content which I am convinced will never be overthrown”.

However, having to derive the equations of state from experiments is an incredibly arduous process,

and it is very limited in terms of what can one achieve with it. The field of statistical physics,

as we understand it today, was created in the end of the 19th century in order to deal with these

issues, providing an alternative and more rigorous way of proving the results given by classical

thermodynamics.

The basic idea of statistical physics is that, instead of keeping track of all the microscopic variables

(e.g. position and velocity of each particle), we can describe the system by specifying the probability

distribution that these microscopic variables follow. Intuitively, we imagine having a large number

of independent copies of our system, each of them with the same macroscopic state (i.e. in the

case of an ideal gas, same pressure, volume and temperature), but each with a different microscopic

state. Then we ask about the probability that one of these copies chosen at random (not necessarily

uniformly, see the discussion on entropy maximization) will have a certain microscopic value.

Once we have a probabilistic microscopic description of the system, we can approximate any macro-

scopic quantity by computing its expected value in the probabilistic model. By the law of large

numbers, (and with some extra assumptions that are followed by all reasonable macroscopic quan-

tities of interest) this probabilistic approximation will be very close to the real value.

2.1.2 Microscopic description and ensembles

Suppose we have a physical system, and let Σ be the set of the microscopic states of the system

(which we assume for simplicity to be finite). The energy of the system can be calculated from its

microscopic description (by computing the interaction between each pair of particles 1), giving a

map H : Σ −→ R that associates each state to its energy. This map is called the Hamiltonian of

the system.

As explained before, the statistical physics approach consists on defining a probability measure

µ : Σ −→ [0, 1], and considering that any macroscopic observable A : Σ −→ R can be approximated

by Eµ[A]. The specific measure µ that we choose will depend on the restrictions we impose on the

system. Typically, the 3 following cases are considered:

• Microcanonical ensemble: the system cannot exchange either particles or energy with its

surroundings.

• Canonical ensemble: the system cannot exchange particles but it can exchange energy with

its surroundings (i.e. it is in contact with a thermal bath at constant temperature).

• Grand canonical ensemble: the system can exchange either particles or energy with its

1We could also consider a more general model in which we also include k-way interactions, for k > 2. Then,
the graph G would be substituted with a non-uniform hypergraph, and the Hamiltonian could potentially have a
contribution from every hyperedge of this hypergraph.
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surroundings (i.e. it is contact with a thermal bath at constant temperature and with a particle

reservoir with constant chemical potentials for each of the different types of particles).

We take as an axiom that the probability measure µ chosen should be the one with maximum

Shannon entropy over those that agree with the restrictions of the system:

Maximum Entropy Principle ([Jay57], [FV17]): For a given probability measure µ : Σ −→ R,
let S(µ) := −

∑
σ∈Σ µ(σ) logµ(σ) be its Shannon entropy. Then, the µ that best describes our

knowledge of the system is the one that maximizes S(µ) over all µ compatible with the restrictions

on the system.

Remark. In all of the 3 ensembles we consider that the system is in equilibrium. This is often

defined informally by saying that a physical system is in equilibrium if its macroscopic variables do

not change with time. However, this characterization is not entirely accurate. Even in a system

in equilibrium, microscopic changes occur constantly, which imply fluctuations on the value of the

macroscopic variables. What it means to be in equilibrium is that the timescale of this fluctuation is

much smaller than that of our measuring procedures. Thus, when we measure a certain macroscopic

variable, we will obtain the average of the fluctuations, which will be a constant value.

In statistical physics, we consider that a measurement over a long enough timescale is equivalent

to taking an average with respect to the probability measure µ. Then, for example, if the system

has a measured internal energy of U , that means that our measure has to satisfy that Eµ[H] = U .

Hence, allowing energy to fluctuate (by putting the system in contact with a thermal bath), induces

a restriction on µ that does not exist in the microcanonical ensemble, in which we are restricted

to states with H(σ) = U . As will be seen next, this extra restriction implies that the probability

measure µ will not be uniform.

2.1.3 Microcanonical ensemble

In the microcanonical ensemble, the system is isolated from its surroundings both in terms of energy

and particle exchange, so it can only exist in microstates σ with energy H(σ) = U and number of

particles N (σ) = N . Therefore, the measure on microstates will be the one that maximizes the

Shannon entropy over those with support in Σ′ = {σ ∈ Σ : N (σ) = N, H(σ) = U}. By a classical

result, the maximizer is the uniform measure:

Proposition 2.1. Let X be a finite ground set, and let µ : X −→ [0, 1] be a probability measure on

X. Let µunif be the uniform probability measure on X (i.e. µunif(x) := 1/ |X| for all x ∈ X). Then,

S(µ) ≤ S(µunif)

with equality if, and only if, µ = µunif.

Proof. First note that the function f(x) = x log x, defined for all x ≥ 0 (with f(0) := 0), is strictly
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convex, since f ′′(x) = 1/x > 0 for all x > 0. Then, by Jensen’s inequality,

S(µ) = −
∑
x∈X

µ(x) logµ(x) = −
∑
x∈X

f(µ(X)) ≤

≤ − |X| f

(
1

|X|
∑
x∈X

µ(x)

)
= − |X| f(1/ |X|) = S(µunif)

As f is strictly convex, the equality will only hold if all the averaged points are the same, that is,

if µ(x) = 1/ |X| for all x ∈ X.

Remark. As an aside, this property of the entropy is what allows it to be used as a tool in enumerative

combinatorics. For any probability measure, its entropy will be at most S(µunif) = log(|X|), so one

can derive a lower bound on |X| by computing the entropy of any probability measure on X. This is

the idea behind the recent advances in the Union-Closed Conjecture (see [Gil22]). For an accessible

introduction to entropy techniques in combinatorics, see [Gal14].

2.1.4 Canonical ensemble

In the canonical ensemble, we consider a system in contact with a thermal bath at constant tem-

perature, so the energy is allowed to fluctuate (while keeping the average value Eµ[H] = U). Thus,

the measure that maximizes the entropy will be the solution to the following optimization problem:

minimize
∑
σ∈Σ

µ(σ) logµ(σ)

subject to
∑
σ∈Σ

µ(σ) = 1∑
σ∈Σ

µ(σ)H(σ) = U

(2.1)

Proposition 2.2. (Theorem 12.1.1 from [CT05]) For any feasible U (i.e. infσH(σ) ≤ U ≤
supσH(σ)), the solution to 2.1 is given by

µ(σ) =
1

Z(β)
e−βH(σ)

where β ∈ R is the only value that makes Eµ[H] = U , and Z(β) :=
∑

σ∈Σ e
−βH(σ) is the normalizing

factor.

Proof. We solve 2.1 with the method of Lagrange multipliers. The Lagrange function is

L(µ) =
∑
σ∈Σ

µ(σ) logµ(σ) + α

(∑
σ∈Σ

µ(σ)− 1

)
+ β

(∑
σ∈Σ

µ(σ)H(σ)− U

)
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At the optimum, ∇L = 0, so the derivative with respect to each µ(σ) has to be zero. This gives us

the form of the distribution:

∂L

∂µ(σ)
= logµ(σ) + 1 + α+ βH(σ) = 0 =⇒ µ(σ) = e−βH(σ)e−1−α

By imposing that these all sum to 1, we get the desired normalization factor, and by imposing that

Eµ[H] = U , we get the condition on β.

Proposition 2.2 implies that, when working with systems where the energy is allowed to fluctuate

(but the number of particles is not), the probability of being on a certain microscopic state σ ∈ Σ

is proportional to e−βH(σ), where β ∈ R is some constant value depending on the mean energy of

the system. This is the motivation behind the definition of a Gibbs measure in the next section,

which is supposed to model this behaviour for the case of an abstract spin model on a graph (not

necessarily representative of any physical system).

2.2 Spin models on graphs

In the previous section we have assumed that the state space Σ is finite. There are also statistical

physics models that deal with a continuous state space, but usually one tries to discretize the

problem so Σ is finite, or at least countably infinite. This raises the question of how to translate a

real-world problem, in which space and time are continuous, into a discrete representation.

The usual approach is to divide the space into a 3-dimensional lattice, with cells of negligible size.

Then we can describe the positions of the particles by the cell that they are in (not caring about

their specific position inside the cell). This immediately suggests defining a graph G in which the

vertices are the discretized cells, and there is an edge between two cells if they are close enough

that a particle in one will interact noticeably with a particle in the other. These kind of models are

expressed abstractly as spin models on graphs:

Definition 2.1 (Spin configuration). Given a graph G and a finite set of spins Ω, we define a

configuration σ ∈ ΩV (G) as an assignment of a spin from Ω to each vertex of the graph G. For

simplicity of notation, we usually denote σ(v) as σv.

Definition 2.2 (Spin model). Given a graph G and a finite set of spins Ω, we define a spin model

on G as a Hamiltonian H : ΩV (G) −→ R∪{+∞} that assigns an energy to every spin configuration.

We require that the Hamiltonian respects the structure of the graph, that is, that it takes the form

H(σ) =
∑

v∈V (G)

f(σv) +
∑

uv∈E(G)

g(σu, σv)

for some functions f : Ω −→ R and g : Ω× Ω −→ R ∪ {+∞}.



2.2. SPIN MODELS ON GRAPHS 15

Remark. From a physical point of view, each spin represents the internal state of the particle on

the cell. Then the function g from the Hamiltonian measures the energy due to the interaction

between particles in different cells (restricted only to the edges of G, as we consider negligible all

other interactions), while function f measures the energy added to the system by the internal state

of the particle. Usually this latter effect is thought of as having an external field that interacts

differently with each kind of spin (e.g. a magnetic field that interacts differently with each particle

depending on the orientation of its magnetic dipolar moment).

Remark. This formalism can also be used to model systems with a variable number of particles. In

this case, we choose as spin set Ω = {0, 1}, representing whether the cell is occupied or not by a

particle. As the number of particles of the system can vary, in this case we should work with the

grand canonical ensemble. Doing a very similar calculation to the one on the previous section, we

find that the grand canonical ensemble induces the measure:

µ(σ) ∝ e−β(H(σ)+νN)

where N is the number of particles and ν is a constant that can be identified with the chemical

potential of the particle reservoir in contact with the system. For our purposes it will not matter

whether we are working with the canonical or grand canonical ensemble, as we can define an auxiliary

Hamiltonian H̃(σ) := H(σ) + µN , incorporating the µN term into the f function.

Definition 2.3 (Gibbs measure, partition function). Given a spin model on a graph G, defined by

a Hamiltonian H, and given a constant β ∈ R, we define the Gibbs measure associated to the model

with parameter β as the probability measure on the space of spin configurations ΩV given by

µG,β(σ) :=
1

Z(β)
e−βH(σ)

where Z(β) :=
∑

σ∈ΩV e−βH(σ), the so-called partition function, is the required normalization con-

stant.

Definition 2.4 (Hard constraint). We say that a spin model on graphs has a hard constraint if

there is some pair of spins ω, ω̃ ∈ Ω such that g(ω, ω̃) = +∞.

Remark. For β ∈ R+, states with less energy are favored by µG,β, so an infinite value of g means

that the interaction between spins ω and ω̃ is so energetically unfavorable that it will occur with

probability zero. This can be used to forbid certain structures in the spin configurations. For

example, for Ω = {1, . . . , q}, we can model proper q-colorings of the graph by imposing a hard-

constraint g(i, i) = +∞ for all i ∈ Ω. Then, configurations with a monochromatic edge will be

given probability zero by µG,β.

We will now introduce three examples of spin models in graphs. The Ising model is one of the most

classical examples of a statistical physics model (as it is one of the simplest models with a phase
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transition), while the hard-core model and the Potts model will be used extensively in the following

chapters to study independent sets and colorings, respectively.

Example 2.1 (Ising model). The Ising model was proposed by Lenz in 1920 as a simplified model

of ferromagnetism. In one dimension, one can imagine n particles in a row, each with its magnetic

dipole moment pointing either up or down (represented by spins +1 and −1). We assume that

each particle only interacts with its two nearest neighbors, and that the interaction is ferromagnetic

(that is, particles “tend” to have the same spin as their neighbors). Formally, this is modeled by

taking β > 0 and the Hamiltonian

H(σ) =
n−1∑
i=1

−σiσi+1

so that the energy H(σ) is higher the more pairs of neighboring particles there are with different

spin, and thus the probability of these configurations µG,β(σ) ∝ e−βH(σ) is lower.

According to the formalism introduced earlier, this one-dimensional version corresponds to taking

the graph G = Pn (a path with n vertices). Similarly, one can define a d-dimensional version of the

Ising model by taking G to be a d-dimensional lattice. In section 2.5 we will see how, for d ≥ 2, the

d-dimensional model has a very significant qualitative difference to the 1-dimensional version, as it

exhibits a phase transition.

Remark. From a combinatorics perspective, the Ising model can be thought of as a distribution on

the cuts of the graph G (by taking the vertices with spin +1 to be one side of the cut and the

vertices with spin −1 to be the other). Then, each cut has weight proportional to e−2β|∂E|, where

∂E := {ij ∈ E : σi ̸= σj} is the set of edges that “cross” the cut.

By the same argument used in Proposition 2.2, one can show that the Gibbs distribution from the

Ising model is the one that maximizes the entropy over all the distributions on the set of cuts of G

with a given expected number of crossing edges (actually, Theorem 12.1.1 from [CT05] is stated in

more generality than Proposition 2.2 and can be applied to prove this directly).

Example 2.2 (Hard-core model). The hard-core model attempts to model the situation of having

an ideal (i.e. non-interacting) gas with a variable number of particles in a lattice. The width and

height of the cells of the lattice is chosen smaller than the radius of the particles, so that two

particles in adjacent cells would overlap. Hence, the model imposes the restriction that no two

neighboring cells can be occupied at the same time.

Under the previous formal framework, for a general graph G (not necessarily a lattice), we define

the hard-core model with spins Ω = {0, 1} (1 corresponding to the vertex being occupied by a

particle, and 0 to the vertex being unoccupied) and the Hamiltonian given by f(σv) = −σv, and
g(1, 1) = +∞, g(0, 0) = g(0, 1) = g(1, 0) = 0.
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Then, the probability of a certain spin assignment is

µG,β(σ) ∝ e−βH(σ) = eβ|V |1V ∈I(G)

where V is the set of vertices with σv = 1, and I(G) is the set of independent sets of the graph.

The term 1V ∈I(G) comes from the hard constraint imposed by g, under the assumption that β > 0.

Note that (restricting first µ only to the configurations that correspond to independent sets), the

probability of a certain configuration only depends on the number of occupied vertices. The quan-

titative nature of the dependence is determined by the parameter λ := eβ ∈ R+, usually called

fugacity or activity. For λ < 1, states with lower number of vertices will be more probable; while for

λ > 1, states with higher number of vertices are favored. For λ = 1, µ corresponds to the uniform

distribution on I(G).

Expressing everything in terms of the fugacity (and identifying spin configurations by the set of

occupied vertices I ∈ I(G)), the Gibbs measure of the hard-core model becomes

µG,λ(I) =
1

Z(λ)
λ|I|

with partition function

Z(λ) =
∑

I∈I(G)

λ|I|

This partition function is known in combinatorics as the independence polynomial of the graph, and

can be seen as the generating function of the sequence {ik}k, where ik is the number of independent

sets of G with k vertices. Thus, one can obtain a lot of information about the independent sets of the

graph by knowing Z(λ). For instance, the independence number α(G) (i.e. the size of the biggest

independence set of G) corresponds to the degree of Z(λ), while the total number of independent

sets of the graph is Z(1).

The partition function of the hard-core model is also closely related to the probability generating

function of |I|, where I ∼ µG,λ. Indeed, taking P (t) := pgf(|I|), we have that

P (t) =
∑
k≥0

ik(G)
λk

Z(λ)︸ ︷︷ ︸
Pr[|I|=k]

tk =
Z(λt)

Z(λ)

Example 2.3 (Potts model). The Potts model is a generalization of the Ising model to more than

2 spins. It is defined by the set of spins Ω = {1, . . . , q}, for some q > 2, and the Hamiltonian

H(σ) = −
∑
uv∈E

1σu=σv = −MG(σ)
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where MG(σ) is the number of monochromatic edges under the spin assignment σ. In graph theory

the concept of assigning an integer to each vertex is known as coloring, so in this model we will

refer to spins as colors and we will say that edges that have the same spin on both endpoints are

monochromatic. This Hamiltonian induces the Gibbs measure

µG,β(σ) =
1

Z(β)
eβMG(σ)

where Z(β) =
∑

σ e
βMG(σ).

Often in graph theory one is interested in proper colorings, i.e. colorings with no monochromatic

edges. We can force µ to be only supported on proper colorings by imposing a hard constraint on

g. In this case, we will also introduce a fugacity λi for each color i ∈ [q], so the Gibbs measure ends

up being

µG,λ(σ) =
1

Z(λ)

(∏
v∈V

λσv

) ∏
uv∈E

1σu ̸=σv

where λ = (λ1, . . . , λq) is the vector of fugacities of the colors.

Note that, if we take λ1 = · · · = λq =: λ ∈ R, each proper coloring is weighted by the same factor

λn, so the distribution is uniform over all proper colorings. Taking a different fugacity for each color

allows us to break the symmetry, prioritizing the colorings that have more occurrences of the colors

with greater λi.

2.3 Cumulants and joint cumulants

We will see that from the partition function we can recover very easily the cumulants of the random

variable H(σ). Let us first introduce the necessary definitions:

Definition 2.5 (cumulant generating function, n-th order cumulant). Let X be a random variable

with finite moments. We define the cumulant generating function KX(t) := logE[etX ] as the

logarithm of the moment generating function. If KX(t) is analytic at t = 0, we then define the n-th

order cumulant of X as the n-th coefficient in the Taylor series of KX around 0: κn(X) := K
(n)
X (0).

Note that the cumulant generating function receives its name because it is the exponential generating

function of the cumulants {κn(X)}n≥1:

KX(t) =
∑
n≥1

κn(X)
tn

n!

(there is no independent term because KX(0) = 0 from its definition).

The cumulants can be seen as analogues to the moments, as κ1(X) = E[X], κ2(X) = Var[X],
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and κ3(X) is the third central moment. From then on the cumulants do not exactly coincide with

moments, though we can still express ones in function of the others. We are going to use the

following two properties of the cumulants:

Proposition 2.3. The n-th order cumulant is an homogeneous function of degree n, i.e. κn(λX) =

λnκn(X), for any λ ∈ R.

Proof. Let g(t) = λt. By definition,

KλX(t) = logE[etλX ] = KX(λt) = KX(g(t))

Thus, each derivative of KλX(t) brings out a constant λ factor, corresponding to g′(t). Hence,

K
(n)
λX(t) = λnKX(λt)

so κn(λX) = λnκn(X).

Proposition 2.4. Let X be a random variable with E[X],E[X2] < ∞. Then, X follows a normal

distribution if, and only if, κn(X) = 0 for all n ≥ 3.

Proof.

( =⇒ ) The forward direction is by direct computation. For X ∼ N(µ, σ2), the moment generating

function is

E[etX ] =

∫ +∞

−∞
etx

1√
2πσ

e−(x−µ)2/2σ2
dx

We rewrite the exponent to get rid of the linear term in x:

tx− (x− µ)2

2σ2
= t(x− µ)− (x− µ)2

2σ2
+ tµ = −

(
x− µ√

2σ
+
tσ√
2

)2

+
t2σ2

2
+ tµ

Therefore, we can transform this integral into a Gaussian integral by doing the change of

variable y ← x− µ+ tσ2, giving

E[etX ] =
1√
2πσ

∫ +∞

−∞
eµt+

1
2
σ2t2e−y2/2σ2

dy =
1√
2πσ

eµt+
1
2
σ2t2
√
2πσ = eµt+

1
2
σ2t2

Then the cumulant generating function is KX(t) = µt + 1
2σ

2t2, so the cumulants of order

n ≥ 3 vanish.

(⇐= ) In general the distribution of a random variable might not be uniquely determined by its

moments or cumulants. However, uniqueness is guaranteed as long as the moment generating

function does not blow up around t = 0:
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Theorem 2.5 (Theorem 30.1 from [Bil95]). Let X be a random variable whose moment

generating function E[etX ] has a positive radius of convergence around the point t = 0. Then,

the distribution of X is uniquely determined.

In our case, we have a random variable X with κn(X) = 0 for n ≥ 3 and κ1(X), κ2(X) <∞
(due to the fact that κ1(X) = E[X] and κ2(X) = E[X2] − E[X]2). Then, the moment

generating function is E[etX ] = eκ1(X)t+ 1
2
κ2(X)t2 , which is analytic at t = 0. Therefore, by the

previous theorem the distribution of X is uniquely determined (and so X follows a normal

distribution with mean κ1(X) and variance κ2(X)).

Remark. The backwards implication from Proposition 2.4 admits an strengthening due to Marcinkiewicz:

Theorem 2.6 (Theorem 2-bis from [Mar39]). Let X be a random variable. If there exists an r ∈ Z+

such that logE[etX ] = a1t+ · · ·+ art
r for some a1, . . . , ar ∈ R, then r ≤ 2.

This relaxes the condition from Proposition 2.4: we no longer need to prove that κn(X) = 0 for all

n ≥ 3, we have enough with proving it for all but a finite number of values of n.

Due to the particular form of Gibbs measures, we are able to obtain a lot of information about

the distribution from just the partition function. In particular, we can recover the expected value,

variance and higher-order cumulants of H by taking successive derivatives of logZ(β) with respect

to β:

Proposition 2.7. For k ≥ 1, we can recover the k-th order cumulant of H as

κk(H) = (−1)k d
k

dβk
logZ(β)

Proof. Notice that we can express the moment generating function of H as

E[etH] =
∑
σ

e−βH(σ)

Z(β)
etH(σ) =

Z(β − t)
Z(β)

Thus, the cumulant generating function is KH(t) = logZ(β − t) − logZ(β) and the k-th order

cumulant takes the value

κk(H) =
dk

dtk

(
logZ(β − t)− logZ(β)

)∣∣∣
t=0

= (−1)k(logZ)(k)(β)

provided that k ≥ 1.

This last proposition is very useful because in many models H is related to the size of a certain

structure in the graph (e.g. size of an independent set for the hard-core model or number of
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monochromatic edges for the Potts model), so knowing probabilistic information about H allows us

to prove structural graph theory results.

Even if we are only interested in the univariate partition function Z(β), it is often useful to define

a multivariate version:

Definition 2.6 (Multivariate partition function). Given a partition function Z(λ), we define the

corresponding multivariate partition function as

Z(λ, t) :=
∑
σ

e−βH(σ)
∏
v∈V

etvσv

Note that we can recover the original partition function by taking t = 0.

We say that the vector t corresponds to the external field, that favors positive or negative spins

(depending on its sign). If t = (t, . . . , t) for some t ∈ R, we say that the external field is uniform,

i.e. that it acts on the same way in each vertex.

Remark. In section 2.5 we will see that the partial derivatives of the multivariate partition function

with respect to the external fields give the correlation between the marginals of different vertices.

2.4 Temperature and energy/entropy trade-off

As we are dealing with spin models in an abstract way, we have not yet assigned any meaning to

the parameter β. From the physics perspective, β represents a constant inversely proportional to

the temperature of the system (β = 1/kT , where k is the Boltzmann constant). We will not define

formally what the temperature means, as this lies outside the scope of our work, but the analogy

of β with the inverse of the temperature can be used to give some intuition about the effect of β to

the properties of the Gibbs distribution.

Recall that the Gibbs measure of a configuration σ is proportional to e−βH(σ), where the Hamiltonian

H(σ) measures the energy of σ. Then, as β grows, configurations with lower energy are favored,

until at the limit β →∞ we have that µG,β is only supported on the configurations that minimize

the energy. We call these configurations the ground states (in contraposition to excited states, which

are states in which the energy of the system is bigger than the minimum possible energy).

In contrast, when β gets smaller, the energy of a configuration becomes less relevant, until at β = 0

we have that all states are equally probable, regardless of their energy.2 Then, the probability of

a certain macroscopic event only depends on the number of microscopic configurations that are

compatible with the macroscopic event (which is related to the entropy).

For a constant 0 < β < +∞, we have a trade-off between the energetic and the entropic effects.

2We will not consider the case where β < 0, as then the temperature would be negative and the analogy would be
broken.
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As an example, consider the hard-core model from example 2.2. There we associate configurations

with independent sets I ∈ I(G) and the energy of a configuration is given by H(I) := − |I|, so
µG,λ(I) ∝ λ|I|, where λ := eβ. Consider the macroscopic event “|I| = k”. For β →∞, we have that

the probability of this event only depends on whether k is the maximum size of an independent set

(i.e. the minimum energy):

Pr[ |I| = k ]
∣∣∣
λ=+∞

=

1, if k = α(G)

0, if k ̸= α(G)

On the other hand, if β = 0, the probability of the event “|I| = k” depends on the number of

independent sets with |I| = k (i.e. the entropy):

Pr[ |I| = k ]
∣∣∣
λ=1

=
ik(G)

|I(G)|

For β positive but finite, we have the aforementioned trade-off:

Pr[ |I| = k ] ∝ ik(G) · λk

where ik(G) is the contribution of the entropy and λk is the contribution of the energy.

From a combinatorics perspective, the case with β → ∞ corresponds to the extremal object (the

object that minimizes the energy), while the case with β = 0 corresponds to an object drawn

uniformly at random. For 0 < β < +∞ we interpolate between randomness and optimization.

2.5 Phase transitions

One of the fundamental themes of statistical physics is how the qualitative behaviour of the extreme

cases β = 0 and β = +∞ persists as long as β is small enough or large enough. In some models,

there are specific values of β for which the qualitative behaviour of the model changes drastically

(i.e. the model changes from behaving like the β = 0 case to behaving like the β = +∞ case). This

is what is known as phase transition.

2.5.1 Marginals and correlation

In order to formally define phase transitions, we have to introduce the notion of correlation between

vertices. We will define everything for the hard-core model but it can be easily extended to other

2-spin systems.3

Definition 2.7 (marginal probability). Given a vertex v ∈ G, we define the marginal probability

3If one wants to extend it to q-spin systems, for q > 2, then marginals can no longer be expressed as a scalar, but
as a probability distribution on the set of spins, so the definitions are more cumbersome.
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of v as µv := Pr[σv = 1] (that is, probability that vertex v is occupied). Similarly, for a subset of

vertices S ⊆ V , we define the joint marginal µS := Pr
[ ⋂
v∈S

(
σv = 1

)]
(also called k-point correlation

function, where k := |S|).

Definition 2.8 (truncated 2-point correlation function). For a pair of vertices u, v ∈ V , we define

their truncated 2-point correlation function as κ(u, v) := µu,v − µuµv (i.e. the usual covariance

between σu and σv, understood as indicator random variables).

Here truncated refers to the fact that we are substracting µuµv to it, so κ(u, v) = 0 if σu and σv

are uncorrelated.

To generalize the notion of correlation to more than 2 spins, we observe that we can characterize it

in terms of derivatives of the multivariate partition function with respect to the external field:

Proposition 2.8. For a given vertex v ∈ V ,

µv =
∂

∂tv
logZ(λ, t)

∣∣∣∣
t=0

and for a given pair of vertices u, v ∈ V ,

κ(u, v) =
∂2

∂tu∂tv
logZ(λ, t)

∣∣∣∣
t=0

Proof. The proof follows from direct computation. The first derivative is:

∂

∂tv
logZ(λ, t) =

1

Z(λ, t)

∂

∂tv

∑
I∈I(G)

λ|I|
∏
v∈V

etv =
1

Z(λ, t)

∑
I∈I(G)
I∋v

λ|I|
∏
v∈V

etv

so taking t = 0 we get

∂

∂tv
logZ(λ, t)

∣∣∣∣
t=0

=
1

Z(λ)

∑
I∈I(G)
I∋v

λ|I| = Pr[v ∈ I]

Deriving a second time (and using the previous result) we obtain

∂

∂tu

(
1

Z(λ, t)

∂

∂tv
Z(λ, t)

)∣∣∣∣
t=0

=
∂2

∂tu∂tv
Z(λ, t) · Z(λ, t)− ∂

∂tu
Z(λ, t) ∂

∂tv
Z(λ, t)

Z(λ, t)2

∣∣∣∣∣
t=0

=

=
( 1

Z(λ)

∑
I∈I(G)
u,v∈I

λ|I|
)
−
( 1

Z(λ)

∂

∂tu
Z(λ, t)

∣∣∣∣
t=0

· 1

Z(λ)

∂

∂tv
Z(λ, t)

∣∣∣∣
t=0

)
=

= Pr[u, v ∈ I]− Pr[u ∈ I] · Pr[v ∈ I] = κ(u, v)
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Inspired by this last proposition, we can generalize the notion of correlation to more than 2 vertices:

Definition 2.9 (truncated k-point correlation function). Given k vertices v1, . . . , vk, we define their

truncated k-point correlation function κ(v1, . . . , vk) as

κ(v1, . . . , vk) :=
∂

∂tv1 · · · ∂tvk
logZ(λ, t)

∣∣∣∣
t=0

Remark. The definition of truncated k-point correlation function is analogous to how one defines the

joint cumulants of a random vector by taking derivatives on the joint cumulant generating function

KX1,...,Xk
(t) := logE[et1X1+···+tkXk ].

2.5.2 Correlation decay

Informally speaking, we say that a model exhibits correlation decay if, for any vertex v, knowing

the spin of a vertex far from v does not give us much information about the spin of v. We can

define it more rigorously using the 2-point correlation function:

Definition 2.10 (exponential decay of 2-point correlations). Let G be an infinite family of graphs.

Let {µG}G∈G be a collection of Gibbs measures, one for each graph in G. We say that these exhibit

exponential decay of correlations if there exist constants A,B > 0 such that

|κ(u, v)| ≤ Ae−B·dist(u,v)

for all G ∈ G and for all u, v ∈ V (G).

Remark. Though we have stated it in more generality, we are usually dealing with a family of graphs

G = {Gn}n∈N, where each Gn has n vertices. Thus, if we choose a pair of vertices un, vn ∈ Gn such

that dist(un, vn)→∞ as n→∞, we have that the 2-point correlation κ(un, vn) decays exponentially

fast (with respect to dist(un, vn)) as n→∞.

Notice that for β = 0 the spin of each vertex is independent, so κ(u, v) = 0 for any u, v ∈ V .

Hence, correlation decay is trivial for β = 0. In most models, this behaviour still persists if we take

β small enough, as the dependence between vertices is still “small”. This is a common theme in

probabilistic combinatorics: a group of correlated variables still exhibit some of the properties of

independent variables as long as their dependence is quantifiably “small” (for example, if they only

depend on a small subset of other variables, in Local Lemma style).

For some models the correlation decay persists for all β ∈ R+:

Example 2.4. The hard-core model on the family of paths G = {Pn}n≥1 exhibits correlation decay

for all possible values of λ.

Example 2.5. The one-dimensional Ising model (i.e. the Ising model on the family of paths

G = {Pn}n≥1) exhibits correlation decay for all possible values of β.
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For other models, however, there exists a threshold on β beyond which correlation decay no longer

holds. This is what is known as a phase transition:

Definition 2.11 (phase transition). We say that a spin model on a certain family of graphs G
exhibits a phase transition if there exists a critical value βc such that the model exhibits correlation

decay for β < βc but it does not for β > βc.

In the next two sections we will see two alternative characterizations of phase transitions: the first

given by the analyticity of the limit of the free energy, and the second given by the uniqueness of

the Gibbs measure on the infinite lattice.

2.5.3 Analyticity of free energy

Definition 2.12 (infinite volume pressure / free energy). Let G = {Gn}n≥1 be a family of graphs,

where each Gn has n vertices. We define the free energy (per unit volume) or volume pressure as

the function of β given by the point-wise limit

f(β) := lim
n→∞

1

n
logZGn(β)

Remark. The free energy is only well-defined when the above limit exists.

The free energy gives us a different way to formalize the notion of phase transition:

Definition 2.13 (phase transition, order of the phase transition). We say that a model exhibits a

phase transition if there exists a critical value βc such that the free energy f(β) is not analytic at

βc.

We define the order of the phase transition as the lowest derivative that is not continuous. For

example, we say that the phase transition is of the first order if f ′ is discontinuous at βc, and we

say that the phase transition is of the second order if f ′ is continuous but f ′′ is not. In the case

that f ∈ C∞ but it is not analytic, we say that the phase transition is of infinite order.

Remark. This definition of phase transition is not always equivalent to the one based on correlation

decay (though there exist some conditions such that one implies the other).

Example 2.6 (Hard-core model on paths). Consider the hard-core model on the family of paths

G = {Pn}n≥1. We have previously stated that this model exhibits no phase transition. Let us show it

(we will use the free energy characterization, but in this model the correlation decay characterization

also holds):

Proposition 2.9. The infinite volume free density of the hard-core model on the family of paths

G = {Pn}n≥1 is

f(λ) =
1 +
√
1 + 4λ

2
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Remark. Note that for ZPn(1) is the number of independent sets on a path of n vertices, which is the

n-th Fibonacci number Fn (starting with F0 = F1 = 1). We know Fn = Θ(ϕn), for ϕ := (1+
√
5)/2,

so f(1) = logFn/n = ϕ, which is indeed the result we recover taking λ = 1 in the previous formula.

This connection is not surprising, since the partition function of the hard-core model on a path

follows the same recurrence as Fibonacci’s sequence for λ = 1.

Proof. The key is that the partition function follows the recurrence

ZPn(λ) = ZPn−1(λ) + λZPn−2(λ)

That’s because every independent set on Pn can either contain vertex n (in which case it can be

though of as an independent set of Pn−2 which the extra weight of λ given by vertex n), or it can

not contain vertex n (so we are left with an independent set of Pn−1).

Once we have this linear recurrence, we find the roots of the characteristic polynomial x2 − x− λ,
which are

α1,2 =
1±
√
1 + 4λ

2

and then we know that we can express the general term as ZPn(λ) = Aαn
1 +Bα

n
2 , for some constants

A,B > 0. The hard-core model is restricted to λ ≥ 0, so we know that both roots are well-defined

and that |α1| > |α2|, so in the limit the dominant term will be the one with α1:

f(λ) = lim
n→∞

1

n
logZPn(λ) = lim

n→∞

1

n
log(Aαn

1 +Bαn
2 ) = α1

Corollary 2.9.1. The hard-core model on G = {Pn}n≥1 has no phase transition (in the sense of

definition 2.13).

Proof. From the expression found above, we know f(λ) is analytic for any λ ≥ 0, so the model does

not have any phase transition.

2.5.4 Infinite volume measures

Phase transitions only occur when we are dealing with infinite graphs, but we have only defined the

notion of spin model for a finite graph. Thus, we want to find a good notion of limit for a sequence

of spin models on growing subgraphs of an infinite graph. In particular, we fix a dimension d, and

let Λn ⊂ Zd be a box with sides of length n in the infinite d-dimensional lattice. We want to define

a notion of “infinite spin model” in Zd such that the properties of the spin models on Λn tend to

the properties of the infinite spin model. Concretely, we would like that any local function (i.e. a
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function that only depends on the spin of a finite number of vertices) has a well-defined limit when

n→∞.

For a fixed n, the vertices on the boundary of Λn have neighbors in Zd that are not in Λn. If we just

consider the spin model on Λn on itself, forgetting about the fact that it is a subgraph of Zd, then

that is equivalent to fixing the spin of the vertices from Zd \ Λn to not affect Λn (for example, fix

them to be unoccupied for the hard-core model). However, this decision is in some sense arbitrary,

so we will consider more general boundary conditions, in which the vertices outside of Λn that have

some neighbor in Λn are assigned some fixed spin from Ω (not necessarily the same for all of them).

For a finite n, the choice of boundary conditions will affect the marginals of the vertices inside Λn.

However, one might hope that this effect fades as n grows, so that any local function converges to

a limit that does not depend on the boundary conditions.

This turns out to not be true in general, which leads us to our last characterization of phase

transition:

Definition 2.14 (phase transition). We say that a spin model defined on G = {Λn}n≥1 (where

Λn ⊂ Zd is a cube with sides of length n inside the d-dimensional infinite lattice) exhibits a phase

transition if there exists a critical βc such that for β < βc there is a unique Gibbs measure on Zd

compatible with the measures on {Λn}n≥1, while for β > βc there exist more than one (stemming

from the choice of different boundary conditions in {Λn}n≥1).

Remark. This definition can be extended to more general sequences of graphs G = {Gn}n≥1 as long

as they satisfy that

• they are increasing: Gn ⊆ Gn+1

• they cover the whole lattice:
⋃

n≥1Gn = Zd

• the number of vertices on the boundary is a vanishing fraction of the total: |∂Gn| / |Gn| → 0

Remark. We have not explained how to define Gibbs measures on infinite graphs such as Zd, or

what does it mean for one such measure to be compatible with the Gibbs measures on {Λn}n≥1.

For a more complete explanation one can consult chapter 6 of [FV17], which approaches the subject

from an extremely rigorous viewpoint, introducing a framework by Dobrushin, Lanford and Ruelle

that is necessary to define infinite volume measures formally.

Example 2.7 (Ising model). We have already mentioned that the Ising model in 1 dimension

exhibits no phase transition. That means that, for finite β, imposing a certain spin on the ends of

a path does not affect the marginals of the vertices from the middle of the path, in the limit as the

length of the path tends to infinity.

On the other hand, the Ising model in 2 dimensions does have a phase transition. In particular, one

can prove that the boundary conditions with all boundary spins +1 or all boundary spins -1 induce
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two different infinite volume measures on Z2, for β > βc :=
1
2 log(1+

√
2). This can be proven either

with the explicit solution of the model given by Onsager, or without any explicit computation of

the pressure as described in chapter 3 of [FV17].



Chapter 3

Approximate sampling and counting

3.1 Sampling and counting on spin models

Given a set of combinatorial objects S, two very natural problems are counting (i.e. computing

the size of S) and uniform sampling (i.e. giving an algorithm that outputs a X ∼ Unif(S)). When

the elements of S are equipped with a weight w : S −→ R≥0, one can define the weighted version

of these two problems: weighted counting becomes computing the sum of weights
∑

x∈S w(x), and

weighted sampling is defined as giving an algorithm that outputs a X ∼ µS , where µS(x) :=

w(x)/
∑

y∈S w(y)
1.

In the case of a spin model in a graph G, with a fixed inverse temperature β, the problem of weighted

counting is akin to computing the partition function ZG(β), while the problem of weighted sampling

consists on giving an algorithm that outputs a X ∼ µG,β.

Unless we restrict ourselves to very specific spin models (or very specific classes of graphs), both

exact counting and sampling seem computationally intractable. Indeed, computing exactly ZG(β)

is already #P-hard for the Ising model (unless the values of β and the external field satisfy a certain

algebraic relation), as a consequence of Theorem 1.1 from [BG05], and this was generalized for spin

models with arbitrary complex parameters by [CCL13]. For the case of the hard-core model, we

know that the problem of counting independent sets of a general graph G is #P-complete, which is

equivalent to computing ZG(1).

Remark. The #P complexity class is defined as the problems that consist on counting the solutions

to an NP problem (more formally, computing the number of accepting paths of a non-deterministic

polynomial-time Turing machine). However, #P is believed to be much more powerful than its

decisional counterpart, because Toda’s Theorem states that one can solve any problem from the

polynomial hierarchy with only polynomially-many queries to a #P oracle, and the polynomial

hierarchy is believed to contain strictly NP.

1The problem of weighted sampling is only well-defined if at least one of the weights is non-zero.

29
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Even if exact counting and sampling is hard in general, one hopes that we can still find approximate

solutions to both problems. In general, the two notions of approximate counting algorithms that

we use are the following:

Definition 3.1 (FPTAS). A FPTAS (or fully polynomial-time approximation scheme) is an algo-

rithm that takes as an input an instance of a counting problem together with an ε > 0 and outputs

an ε-relative approximation of the solution in time polynomial in n (the size of the input) and 1/ε.

Definition 3.2 (FPRAS). A FPRAS (or fully polynomial-time randomized approximation scheme)

is a randomized algorithm that takes as an input an instance of a counting problem together with

an ε > 0 and outputs with probability 2/3 an ε-relative approximation of the solution in time

polynomial in n and 1/ε.

Remark. The term fully-polynomial refers to the fact that the algorithm must be not just polynomial

in the size of the input n, but also in the inverse error 1/ε. Other sources define FPTAS and FPRAS

so that the time dependence on the error is restricted to poly(log(1/ε)) instead of poly(1/ε).

The constant 2/3 in the definition of FPRAS is arbitrary, as the probability of success can be boosted

to 1− δ by repeating the algorithm O(log(1/δ)) times and taking the median of the outputs:

Lemma 3.1. Given a δ > 0 and a FPRAS that fails with probability at most 1/2 − c, for some

0 < c < 1/2, one can construct a randomized algorithm that calls the FPRAS O(log(1/δ)) times

and has probability of failure lower than δ.

Proof. Let c1, . . . , ct be the outputs obtained by calling the FPRAS t times, for some odd t to be

determined. Without loss of generality, suppose c1 ≤ · · · ≤ ct. Let Xi be the indicator variable

that ci constitutes a valid approximation to the correct answer ĉ. Note that the Xi that take value

1 are consecutive, so the median of the {ci}ti=1 will be guaranteed to be a valid approximation as

long as
∑
Xi > t/2. By definition, each Xi dominates a Ber(1/2 + c), and the Xi are mutually

independent, so
∑
Xi dominates a X ∼ Bin(t, 1/2 + c). Hence,

Pr
[∑

Xi ≤ t/2
]
≤ Pr

[
X ≤ t/2

]
≤ Pr

[
X ≤ E[X](1− c)

]
< e−2c2 E[X]2/t < e−2c2(1/2)2t = e−c2t/2

where we have used Hoeffding’s inequality to bound the tail probability. We want the failure

probability to be smaller than δ, so we just have to choose t such that

e−c2t/2 ≤ δ ⇐⇒ t ≥ 2

c2
log

(
1

δ

)

For sampling, we define the notion of approximate as being close in terms of total variation distance:

Definition 3.3 (Fully polynomial-time approximate sampling scheme). Given a ground set Ω and

a desired probability distribution µ : Ω −→ [0, 1], we define a fully polynomial-time approximate
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sampling scheme as an algorithm that takes as input an ε > 0 and outputs a sample X ∼ ν for a

certain distribution ν : Ω −→ [0, 1] such that ||µ− ν ||TV < ε. The algorithm is required to run in

time polynomial in n (not the size of Ω, but the size of the elements ω ∈ Ω) and the inverse error

1/ε.

Remark. For spin models, we take as a ground set the set of spin configurations on a certain graph

G and as a desired distribution the Gibbs measure µG,β, for some fixed inverse temperature β. The

sampling algorithm must be polynomial in n := |V (G)| and 1/ε.

3.2 Self-reducibility

One might wonder why do we consider the problems of approximate counting and sampling at the

same time. The reason is that there exists a self-reducibility condition due to Jerrum and Sinclair

under which the two problems are equivalent. That means that for combinatorial structures that

follow this self-reducibility condition, one can reduce approximate counting to approximate sampling

and vice versa.

3.2.1 Unweighted problems

Let Σ be a finite alphabet and let Σ∗ :=
⋃

n≥0Σ
n be the corresponding set of all possible finite

strings. We will define the notion of self-reducibility for a very general framework in which in-

stances of a combinatorial problem are encoded as strings x ∈ Σ∗, and solutions are represented

by polynomial-length certificates y ∈ Σ∗. We define a binary relation R ⊆ Σ∗ × Σ∗ that contains

the pairs (x, y) such that y constitutes a valid solution of instance x. We restrict ourselves to NP

problems, that is, to relations R that satisfy:

• There exists a polynomial p such that for all (x, y) ∈ R, |y| ≤ p(|x|).

• Given an arbitrary pair (x, y) ∈ Σ∗ × Σ∗, we can test whether (x, y) ∈ R in polynomial time

on |x|+ |y|.

Given an instance x ∈ Σ∗, we denote the set of associated solutions as R(x) := {y : (x, y) ∈ R}.
Note that we can assume (by adding padding) that all solutions of an instance x ∈ Σ∗ have the same

size, which will be given by a length function ℓ : Σ∗ −→ N that is polynomially bounded (i.e. there

exists some polynomial p such that ℓ(x) ≤ p(|x|) for any x ∈ Σ∗). Then, y ∈ R(x) =⇒ |y| = ℓ(x).

Remark. For the instances x ∈ Σ∗ with no solution (i.e. R(x) = ∅), it does not matter how we define

ℓ(x). That includes the x ∈ Σ∗ that do not define a valid instance (which are formally equivalent

to instances with no solution).

Definition 3.4 (self-reducible [Sin93]). We say that a relation R satisfying the previous constraints

is self-reducible if
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(i) Given an x ∈ Σ∗, we can compute ℓ(x) in polynomial time.

(ii) There exist polynomial time computable functions ψ : Σ∗ ×Σ∗ −→ Σ∗ and σ : Σ∗ −→ N such

that

(a) σ(x) = O(log |x|)

(b) σ(x) = 0 =⇒ ℓ(x) = 0, ∀x ∈ Σ∗

(c) |ψ(x,w)| ≤ |x| , ∀x,w ∈ Σ∗

(d) ℓ(ψ(x,w)) = max{ℓ(x)− |w| , 0}, ∀x,w ∈ Σ∗

and such that the set of solutions of x can be expressed as

R(x) =
⋃

w∈Σ∗

|w|=σ(x)

{
wỹ : ỹ ∈ R(ψ(x,w))

}

Remark. The way to interpret self-reducibility intuitively is that, given an instance x ∈ Σ∗ and a

prefix w, we have a procedure ψ that generates another instance of the problem ψ(x,w) such that

all solutions of x that start with w will have the form wỹ, where ỹ ∈ R(ψ(x,w)). In that case, σ(x)

represents the size of the prefix w.

Under this interpretation, condition (a) bounds the size of the prefix, so we have to consider at

most O(|x|) different prefixes at each step; conditions (b) and (d) guarantee that each reduction

decreases the size of the solution, so we can iterate until ℓ(x) = 0, at which point we only have to

check if the empty string is a valid solution (this can be done in polynomial time because we are

assuming the problem is in NP); finally, condition (c) guarantees that the size of the instance does

not increase after the reduction.

Example 3.1. An example of a self-reducible counting problem is computing the number of in-

dependent sets of a graph G. Considering alphabet Σ = {0, 1}, we can encode the input as the

flattened adjacency matrix of G, a binary string of length n2, where n is the number of vertices

of the graph. The solution certificates can be encoded as a string of length n, where position i

has a 1 if vertex i belongs to the independent set. It is trivial to see that this is a valid certifi-

cate, as |y| =
√
|x| = poly(|x|), and given a pair (x, y) we can check whether y constitutes a valid

independent set of the graph encoded in x in time O(|x|).

Then, the size of the solution is easily computable (ℓ(x) :=
√
|x|, except if |x| is not a perfect power,

in which case the instance is not valid). To perform the reduction, we iterate over the prefixes of

length σ(x) = 1. If w = 0, that means that we are not adding vertex v1 to the independent set,

so the reduced instance ψ(x,w) is simply the graph G \ {v1}. If w = 1, we are adding vertex v1

to the independent set, so we must delete all neighbors. The problem is that we can not simply

take ψ(x,w) = G \ N [v1], as then the concatenation of the solutions would have the wrong size.

However, there are many easy fixes, such as taking ψ(x,w) = G \ {v1} and using the diagonal of
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the adjacency matrix to store which vertices have been “eliminated” (for those we only consider the

case w = 0 when we delete them).

The motivation for self-reducibility is that approximate sampling and counting are equivalent for

self-reducible problems:

Theorem 3.2 (Theorems 1.10 and 1.14 of [Sin93]). Let R be a self-reducible relation on alphabet

Σ. Then the following are equivalent:

(i) There exists a FPRAS that counts the size of R(x) for a given x ∈ Σ∗.

(ii) There exists a fully polynomial-time approximate sampling scheme that outputs a y ∼ Unif(R(x)),

for a given x ∈ Σ∗.

3.2.2 Weighted problems

The concept of self-reducibility and the equivalence result of Theorem 3.2 can be easily extended

to weighted counting and non-uniform sampling. For weighted problems, we consider that we have

a polynomial time computable function W : Σ∗ × Σ∗ −→ R that assigns a weight to each pair

(x, y) with y ∈ R(x). In this case the goal is not to compute the size of R(x) but to compute

the sum of weights: ZR,W (x) :=
∑

y∈R(x)W (x, y). The non-uniform sampling problem is defined

analogously by requiring that the output follows a probability distribution µx : R(x) −→ [0, 1] with

µx(y) :=W (x, y)/ZR,W (x).

Definition 3.5 (weighted relation, partition function). A weighted relation is a pair of a relation R
and a weight function W : Σ∗×Σ∗ −→ R. We define the partition function of the weighted relation

as the function that gives the sum of weights of the solutions corresponding to each instance:

ZR,W : Σ∗ −→ R

x 7−→
∑

y∈R(x)

W (x, y)

Definition 3.6 (self-reducible [Sin93]). We say that a weighted relation (R,W ) is self-reducible if

the relation R is self-reducible and there exists a polynomial time computable function g : Σ∗ ×
Σ∗ × R −→ R such that

ZR,W (x) =
∑
w∈Σ∗

|w|=σ(x)

g(x,w, ZR,W (ψ(x,w))

for all x ∈ Σ∗, where ψ and σ are the functions given by the definition of self-reducibility of R.

Remark. Intuitively, the condition tells us that, given a prefix w, the sum of weights of the solutions

of instance x that start with w only depends on the sum of weights of the solutions of the reduced

instance ψ(x,w).
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Example 3.2. In the previous subsection we showed that counting independent sets on graphs

is a self-reducible relation. Here we will show that computing the partition function of the hard-

core model (i.e. the weighted version of counting independent sets) is self-reducible as a weighted

relation.

Suppose that we have an instance x ∈ Σ∗ representing a graph G, with V (G) ̸= ∅, and let λ ∈ R
be the fugacity of the hard-core model. We want to compute the partition function ZG(λ). We can

reduce the computation to smaller graphs by using that

ZG(λ) =
∑

I∈I(G)

λ|I| = ZG\{v1}(λ) + λ · ZG\N [v1](λ)

where the first term corresponds to the independent sets that do not contain v1, while the second

term corresponds to the independent sets that contain v1. Using the same encoding and functions

ψ, σ as in example 3.1 (including the trick of encoding eliminated vertices in the diagonal of the

adjacency matrix of ψ(G, 1)) we can then define

g : Σ∗ × Σ∗ × R −→ R

(G, 0, z) 7−→ z

(G, 1, z) 7−→ λz

so that the self-reducibility condition is satisfied.

We have an analogue to Theorem 3.2 for the weighted case:

Theorem 3.3 (Corollary 3.16 from [Sin93]). Let (R,W ) be a self-reducible weighted relation on

alphabet Σ. Then the following are equivalent:

(i) There exists a FPRAS that computes ZR,W (x) for a given x ∈ Σ∗.

(ii) There exists a fully polynomial-time approximate sampling scheme that, given a x ∈ Σ∗,

outputs a y ∼ µx, where µx : R(x) −→ [0, 1] is the probability distribution given by µx(y) :=

W (x, y)/ZR,W (x).

3.3 Decay of correlation (Weitz’s method)

In this section we describe how correlation decay can be used to construct an FPTAS for the

partition function. We illustrate the method using the hard-core model, but the same results can

be extended to more general 2-spin models, as described in [SS19].

In particular, we show how to prove the following result by Weitz:
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Theorem 3.4 (Theorem 2.7 from [Wei06]). For a fixed ∆ ≥ 1 and for any λ < λc(∆) := (∆ −
1)∆−1/(∆ − 2)∆, there exists an FPTAS for computing ZG(λ), for any graph G with maximum

degree ∆.

3.3.1 Recursive approach

The first key idea is that we can reduce the problem of estimating the partition function ZG(λ)

to the problem of estimating the marginals µG,v := PrG[v ∈ I]. That’s because, we can pick an

arbitrary vertex v ∈ V (G) and express ZG(λ) in terms of the marginal of v and the partition

function of a smaller graph:

µG,v =
1

ZG(λ)

∑
I∈I(G)
I∋v

λ|I| =
1

ZG(λ)
λ · ZG\N [v](λ)

We can repeat the procedure, picking a v′ ∈ V (G \ N [v]), until at the end we will have expressed

ZG(λ) in terms of the reciprocals of at most n marginal probabilities. Using this formula, we need a

relative error smaller than ε/n in the marginals to estimate ZG(λ) up to a relative error of ε. This

increases the runtime by a factor of n, which still fits the requirements of an FPTAS.

The next key idea is that we can reduce the problem from a general graph G to a certain tree

TSAW, that we construct from G. This is particularly useful because the marginals of a tree can be

calculated very easily in a recursive manner, by iterating over the subtrees rooted at the children.

We can express this recursion in terms of ratios of marginals:

Definition 3.7 (ratio of marginals). Let G be a graph and let v be a certain vertex. We define the

ratio of marginals at v as

RG,v :=
Pr[v ∈ I]
Pr[v /∈ I]

=
µG,v

1− µG,v

If µG,v = 1, we take RG,v = +∞. Observe that µG,v = RG,v/(1 + RG,v), so we do not lose any

information by working with the ratios.

The recursive relationship is the following:

Proposition 3.5. Let T be a tree. Let v be a vertex of T , with neighbors u1, . . . , ud. For i ∈ [d],

let Ti be the subtree rooted at ui. Then,

RT,v = λ
d∏

i=1

1

1 +RTi,ui

Proof. For a fixed vertex v in a graph G, let Z+
G,v(λ) be the partition function restricted to the

independent sets I with v ∈ I, and let Z−
G,v(λ) be the partition function restricted to the independent
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sets I with v /∈ I. Note that ZG(λ) = Z+
G,v(λ) + Z−

G,v(λ) and that RG,v = Z+
G,v(λ)/Z

−
G,v(λ). Then,

RG,v =
Z+
G,v(λ)

Z−
G,v(λ)

=
λ
∏d

i=1 Z
−
Ti,ui

(λ)∏d
i=1 ZTi,ui(λ)

= λ
d∏

i=1

Z−
Ti,ui

(λ)

Z+
Ti,ui

(λ) + Z−
Ti,ui

(λ)
= λ

d∏
i=1

1

1 +RTi,ui

Remark. Note that if we fix the spin of a certain subset of vertices Λ, then the ratio of marginals

still follows the same recursive relation. We will denote by RσΛ
G,v the ratio of marginals given the

fixed spins σΛ : Λ −→ Ω.

3.3.2 Self-avoiding walk tree

The tree that we will construct will be based on unfolding all the possible self-avoiding walks starting

at a certain vertex v, and pruning the branch every time we close a cycle. The pruning will be done

by fixing a certain spin on the vertex that closes the cycle.

Definition 3.8 (self-avoiding walk tree). Given a graph G, with ordered edges e1 < · · · < em, and

given a specific vertex v ∈ V (G), we define the self-avoiding walk tree rooted at v, as the tree TSAW

formed by all the simple paths (i.e. not repeating an edge) starting at v, in which the paths are

truncated once a vertex is repeated. Besides, when we truncate a path we assign a fixed spin to

the leaf (1 if the edge that started the cycle is smaller than the edge that finished the cycle, and 0

otherwise).

Example 3.3. One can see an example of the construction of TSAW in figure 3.1. Here we are

choosing the vertex a as the root and considering the order on edges induced by the lexicographic

order on vertices a < · · · < f . Notice that, we only ever have to compare incident edges (i.e. that

share a vertex), so the order on vertices induces a well-defined order on incident edges (i.e. an edge

is smaller if its non-repeated vertex is smaller).

As an example, on branch a− c− d− a, we are assigning the leaf to be occupied, as the edge that

started the cycle (a−c) is smaller than the edge that ended it (d−a). The same cycle is transversed

on branch a−d− c−a, but here we are assigning the lead to be unoccupied, as the edge that starts

the cycle (a− d) is bigger than the edge that ends it (c− a).

Remark. In the definition of TSAW we have given (and in figure 3.1) we are restricting ourselves to

paths that do not repeat edges. For example, we do not consider the branch a − b − a. However,

it does not actually matter. In the construction of TSAW we can assign the leaf to be unoccupied if

the edge that starts the cycle is the same as the edge that ends the cycle, so branches like a− b− a
are effectively truncated at a− b.

Remark. Note that each vertex from TSAW corresponds to some vertex from the original graph G.

If the original graph G has some subset of vertices Λ with fixed spins σΛ, we can construct the



3.3. DECAY OF CORRELATION (WEITZ’S METHOD) 37

Figure 3.1: SAW tree construction (figure from [SS19])

self-avoiding walk tree as usual and then fix the spins of all the copies of vertices from Λ. With a

slight abuse of notation, we will still denote these fixed spins as σΛ.

Remark. Suppose we have a vertex u ∈ V (G) that has a fixed spin σu. By the remark above, we

fix the spin of all copies of u in TSAW to be σu too. But what if one of these was a leaf that has its

spin already fixed to the opposite value? Notice that such cases do not affect the marginal of the

root of the tree, since if there is a copy of u with fixed spin on TSAW, that means that there is an

earlier copy of u in the same branch (as u is the beginning and end of the cycle). This copy will

also have its spin fixed by σΛ, so the leaf copy of u will be separated from the root by a vertex with

fixed spin. Applying the Markov spatial property, that means that the choice of spin for the leaf

does not affect the marginal of the root.

As we have already mentioned, the important property of TSAW is that the marginal of the root is

equal to the marginal in the original graph G:

Theorem 3.6 (Theorem 3.1 from [Wei06]). Let G be a graph, and let v ∈ V (G). Pick an arbitrary

order of the edges and let TSAW be the self-avoiding walk tree rooted at v. Then, for any activity λ

and for any set of vertices Λ ⊆ V (G) with fixed spins σΛ, we have that µσΛ
G,v = µσΛ

TSAW,v.

Proof. Let u1, . . . , ud be the neighbors of v in TSAW (they correspond one to one to the neighbors

of v in G). Suppose without loss of generality that the indices are chosen so v u1 < · · · < v ud in the

ordering of the edges of G. Let σΛi be the restriction of the set of fixed spins σΛ to Ti, the subtree

of TSAW rooted at ui. Then, using Proposition 3.5, the marginal on TSAW satisfies the recursion

RσΛ
TSAW,v = λ

d∏
i=1

1

1 +R
σΛi
Ti,ui

(3.1)

The idea of the proof is to define a recursive procedure on G that allows us to calculate RσΛ
G,v, and to

show that this recursive procedure is equivalent to the one on TSAW that uses the recursion above,
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so RσΛ
G,v = RσΛ

TSAW,v.

The procedure is the following: we delete vertex v from the graph and add d copies v1, . . . , vd, such

that each vi is only connected to ui. This creates another graph G′. For 0 ≤ i ≤ d + 1, let τi

denote the boundary conditions obtained by fixing vertices vj with j < i to be occupied, and fixing

vertices vj with j > i to be unoccupied. Note that we don’t fix the spin of vj . Let σΛτi denote the

concatenation of both boundary conditions.

Note that fixing v to be occupied in G is the same as fixing v1, . . . , vd to be occupied in G′ (and

setting the activities of these vertices as d
√
λ). The same is true for fixing v to be unoccupied.

Therefore,

RσΛ
G,v =

PrσΛ
G [v ∈ I]

PrσΛ
G [v /∈ I]

=
PrσΛ

G′ [v1, . . . , vd ∈ I]
PrσΛ

G′ [v1, . . . , vd /∈ I]

By telescoping, we can express this quotient as product of ratios of marginals:

PrσΛ
G′ [v1, . . . , vd ∈ I]

PrσΛ
G′ [v1, . . . , vd /∈ I]

=
d∏

i=1

PrσΛ
G′ [v1, . . . , vi ∈ I, vi+1, . . . , vd /∈ I]

PrσΛ
G′ [v1, . . . , vi−1 ∈ I, vi, . . . , vd /∈ I]

=

=
d∏

i=1

λ(i−1)/d · PrσΛτi
G′ [vi ∈ I]

λ(i−1)/d · PrσΛτi
G′ [vi /∈ I]

=
d∏

i=1

RσΛτi
G′,vi

Then, as vi only has one neighbor in G′, the recursion formula for trees holds as well:

RσΛτi
G′,vi

=
d
√
λ · 1

1 +RσΛτi
G′\{vi},ui

so putting all together we obtain

RσΛ
G,v = λ

d∏
i=1

1

1 +RσΛτi
G′\{vi},ui

(3.2)

Note that G′ \ {vi} has d − 1 more vertices than G (as we have turned vertex v into the d copies

v1, . . . , vd). The key is that the spin of all those has been fixed by τi, so the number of vertices

without fixed spin has actually decreased by one. Hence, after iterating this recursion at most n

times, we will get to the base case in which all spins are fixed.

Inspecting equations 3.2 and 3.1 one can see that the recursive formula is the same. It remains to

prove that the further steps of the recursion will also coincide. In order to do so, notice that the

recursion on G′ \ {vi} will proceed in the same way as in Ti until we repeat one of the vertices.

Assume the repeated vertex is v (otherwise we change the names of the variables so v is the repeated

vertex, u1, . . . , ud are its neighbours and so on). Let v → ui → · · · → uj → v be the path on TSAW.

We know that in TSAW the path will end with the last copy of vertex v having fixed spin. In

particular, it will be occupied if edge v ui is smaller than v uj and unoccupied if v ui is bigger than
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v uj . But we have named u1, . . . ud so that v ui < v uj ⇐⇒ i < j, so the copy of v will be occupied

if i < j and unoccupied if i > j. That’s exactly the condition that we imposed on G′ by τi, so the

recursion will stop in the same place and with the same boundary condition.

Hence, RσΛ
G,v = RσΛ

TSAW,v, and therefore the marginals must also be the same.

To recapitulate, we have reduced the problem of finding an FPTAS for ZG(λ) to finding an FPTAS

for the marginals of the form µG,v. We have then proved that there exists a tree TSAW such that

µG,v = µTSAW,v, and shown a recursive procedure to calculate µTSAW,v.

Remark. Technically, the reduction from computing ZG(λ) to computing the marginals requires

that we are able to compute the marginals not just on G but on any subgraph of G. Thus, we

require that the class of graphs that we are working with is closed under taking subgraphs. That is

true for graphs of maximum degree at most ∆, which is the class covered by Theorem 3.4.

3.3.3 Spatial mixing

The problem is that TSAW can have by construction up to an exponential number of vertices, so

we can’t apply the recursive formula directly. Here is where we use correlation decay. Correlation

decay tells us that the effect on the marginal of the root of vertices that are far away is exponentially

decreasing on the distance. That means we can truncate the process after logarithmic depth to get

a polynomially small error on the marginal. The number of vertex visited will then be ∆O(logn) =

nO(log∆), where ∆ is the maximum degree of TSAW. Notice that, by definition, TSAW has at most

the same degree as the original graph G, so this gives an FPTAS for graphs G of constant maximum

degree.

First we need to extend the notion of correlation decay to subsets of vertices of arbitrary size:

Definition 3.9 (weak spatial mixing). We say that a spin model on a graph family G exhibits weak

spatial mixing with exponential decay (or WSM) if there exist constants A and B such that∣∣∣µσΛ
G,v − µ

τΛ
G,v

∣∣∣ ≤ Ae−B dist(v,Λ)

for any G ∈ G, for any v ∈ V (G), and for any pair of spin assignments σΛ, τΛ on a subset of vertices

Λ ⊂ V (G).

Remark. Note that weak spatial mixing can be thought of as extending definition 2.10 to multiple

vertices. That’s because

|κ(u, v)| =
∣∣Pr[u ∈ I, v ∈ I]− Pr[u ∈ I] · Pr[v ∈ I]

∣∣ =
=
∣∣Pr[u ∈ I | v ∈ I]− Pr[u ∈ I]

∣∣ · Pr[v ∈ I] ≤
≤
∣∣Pr[u ∈ I | v ∈ I]− Pr[u ∈ I | v /∈ I]

∣∣
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so weak spatial mixing (for Λ consisting of 1 vertex) implies exponential decay of correlations (as

stated in definition 2.10).

In fact, for the hard-core model, weak spatial mixing for Λ of size 1 also implies weak spatial mixing

for general Λ, as long as the neighborhoods of G grow subexponentially with distance. That’s a

corollary of the monotonicity argument in section 4 of [Wei06].

We need in fact a slightly stronger condition:

Definition 3.10 (strong spatial mixing). We say that a spin model on a graph family G exhibits

strong spatial mixing with exponential decay (or SSM) if there exist constants A and B such that∣∣∣µσΛ
G,v − µ

τΛ
G,v

∣∣∣ ≤ Ae−B dist(v,Λ̃)

for any G ∈ G, for any v ∈ V (G), and for any pair of spin assignments σΛ, τΛ on a subset of vertices

Λ ⊂ V (G), which disagree on Λ̃ ⊆ Λ.

Remark. Intuitively, SSM says that it does not matter if we fix the spin of a vertex very close to v,

as long as this spin is fixed to the same value by both σΛ and τΛ. This is not true in general, even

if WSM holds. That’s because fixing close spins can modify the distribution of the marginal of v so

that it is more highly correlated with distant spins.

If our graph G satisfies SSM, then we can obtain the FPTAS of Theorem 3.4:

Lemma 3.7. Let λ be such that the hard-core model on G exhibits strong spatial mixing with an

exponential decay rate. Then, there exists an FPTAS to approximate ZG(λ).

Proof. As explained in section 3.3.1, we can reduce the problem of finding an FPTAS for ZG(λ)

to finding an FPTAS for µG,v. In turn, the marginal can be computed from the ratio of marginals

RG,v:

RG,v =
µG,v

1− µG,v
=⇒ µG,v =

1

1 + 1/RG,v

Note that from this formula we can deduce that the relative error in µG,v is at most the relative error

in RG,v (because 0 ≤ RG,v ≤ +∞ so the relative error decreases2 when summing 1). Therefore,

we can reduce the problem to finding an FPTAS for RG,v, or equivalently RTSAW,v (using Theorem

3.6).

Suppose that, for some ℓ ∈ N, we truncate the calculation of RTSAW,v at the ℓ-th level of recursion.

Note that, in the recursion formula from equation 3.1, the ratios at two consecutive depths are

inversely related (when the ratio at one level increases, the ratio at the next level decreases, and

vice versa). Thus, we can obtain a lower and upper bound of RTSAW,v by setting the ratios at level

ℓ all to 0 and all to +∞. Let R+
ℓ and R−

ℓ be these bounds, such that R−
ℓ ≤ RTSAW,v ≤ R+

ℓ .

2Technically that’s except in the case RG,v = +∞, in which it stays the same.
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Note too that µG,v is an increasing function in RG,v, so the marginals corresponding to the bounds

on R bound the exact value of the marginal:

µ−ℓ ≤ µTSAW,v ≤ µ+ℓ

By the SSM condition, the difference in the marginals from fixing the spins at level ℓ is at most

Ae−Bℓ for some constants A and B. Then, for ℓ such that Ae−Bℓ ≤ ε, any of µ−ℓ or µ+ℓ will constitute

a valid ε-approximation of µG,v
3. The optimal value of ℓ is

ℓ =
1

B
log

A

ε

The number of vertices visited from the TSAW is bounded by ∆ℓ, so the runtime will be polynomial

in 1/ε, as desired.

Note that the optimal value of ℓ depends on the values of A and B from the SSM condition. In case

these values are unknown, we can still apply the same algorithm, trying out all values from ℓ = 1

upwards, until finding one such that the difference between
∣∣µ+ℓ − µ−ℓ ∣∣ is low enough. This does not

change the runtime, since ∆ + · · ·+∆ℓ = O(∆ℓ) still (for fixed ∆).

Remark. Note that the runtime of the algorithm does not depend on the size of the graph G.

That’s because we have hidden a factor of n2 in the reduction between the FPTAS for ZG(λ) and

the FPTAS for µG,v. To guarantee an ε-approximation of ZG(λ) we need to approximate each of

the at most n marginals to ε/n-relative error, so we get an extra n2 factor.

3.3.4 Uniqueness threshold for the ∆-regular tree

In virtue of Lemma 3.7, in order to prove Theorem 3.4 it’s enough to prove that the hard-core

model on G exhibits strong spatial mixing. The final key idea from Weitz’s method is that we can

get SSM in a G of maximum degree ∆ if we know there’s WSM in T∆, the ∆-regular infinite tree.

Lemma 3.8. Suppose that, for a certain ∆ and λ, the hard-core model on the ∆-regular infinite tree

T∆ exhibits strong spatial mixing with exponential decay. Then, the hard-core model also exhibits

strong spatial mixing with exponential decay in any G of maximum degree ∆.

Lemma 3.9. Suppose that, for a certain ∆ and λ, the hard-core model on the ∆-regular infinite

tree T∆ exhibits weak spatial mixing with exponential decay. Then, it also exhibits strong spatial

mixing with exponential decay.

Remark. One can consider a more general definition of WSM and SSM where there is no requirement

of exponential decay, and instead we ask that
∣∣∣µσΛ

G,v − µ
τΛ
G,v

∣∣∣ ≤ f(dist(v,Λ)) for some function f :

N −→ R+ that tends to 0 as the distance increases. In that case, Lemma 3.8 still holds (SSM with

3If we want to minimize the error, we can choose the mean, while if we want to give one-sided error we can choose
either the lower or the upper bound.
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rate f in T∆ implies SSM with rate f in G), but Lemma 3.9 no longer does (WSM with rate f in

T∆ implies SSM with a higher rate C(λ,∆) · f). What happens behind the scenes in Lemma 3.9

is that the constant factor C(λ,∆) is getting absorbed into the constant A from the definition of

SSM with exponential decay.

Proof. (Lemma 3.8) Let G be a graph of maximum degree ∆, and let v be a vertex from G. We

construct the self-avoiding walk tree TSAW rooted at v. Note that this tree has maximum degree ∆,

so it is a subgraph of T∆. Furthermore, we can embed TSAW in T∆ with the additional constraint

that the roots coincide. Under one such embedding, let ω be the boundary conditions that fix the

spin of each vertex in V (T∆) \ V (TSAW) to be unoccupied. Then, for any set of fixed spins σΛ,

µσΛ
G,v = µσΛ

TSAW,v = µσΛ◦ω
T∆,v

where σΛ ◦ ω denotes the composition of both boundary conditions (they are vertex-disjoint so we

do not have to worry about one vertex being assigned two different spins). Thus, SSM in T∆ with

a certain decay rate implies SSM in G with the same decay rate.

Proof. (Lemma 3.9) Suppose we have two different spin assignments σΛ and τΛ, for Λ ⊂ V (T∆).

Let Λ̃ = {u ∈ Λ : σu ̸= τu} be the set of vertices in which they disagree. In order to prove SSM from

WSM, we need to show that fixing the spins of vertices from Λ \ Λ̃ does not augment significantly

the sensitivity of µT∆,v to setting the spins on Λ̃.

Note that we can suppose that all vertices with fixed spins are set to be unoccupied, as setting

σu = 1 for some vertex u is equivalent to setting σw = 0 for all w ∈ N(u) (in terms of the effect on

µT∆,v). At the same time, setting a vertex u to be unocuppied is the same as setting the activity

parameter λu = 0 (for the multivariate extension of the hard-core model, where every vertex has

its own activity).

Through some involved computations, Weitz goes on to prove that, in fact, the influence on the

marginal decreases for any decrease in the activity of the vertices 4. For more details one can consult

section 4 of [Wei06].

The values of λ for which T∆ exhibits weak spatial mixing were actually well-known prior to Weitz’s

article (for an early source, see [Kel85]):

Proposition 3.10. Let T∆ be the infinite ∆-regular tree. Let λc(∆) = (∆−1)∆−1/(∆−2)∆. Then,

the hard-core model on Td with fugacity λ

• exhibits weak spatial mixing with exponential decay if λ < λc, while

• it does not exhibit weak spatial mixing at any rate of decay for λ > λc.

4That’s provided that in the beginning the activities were all the same. Otherwise one can find counterexamples.
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In particular, one can prove that for λ > λc the boundary conditions “all vertices at depth r occupied”

and “all vertices at depth r unoccupied” induce two different infinite volume measures, in the limit

as r →∞.

Proof. See [Kel85] for a proof and [Per22] for a discussion of the connection with the notion of

uniqueness of the infinite volume measure.

This was the last ingredient needed for the construction of the FPTAS. To sum up, the proof goes

as following:

Proof. (Theorem 3.4) Let λ < λc(∆), for some fixed ∆. By Proposition 3.10, the hard-core model

on T∆ exhibits weak spatial mixing with exponential decay so, by Lemma 3.9, it also exhibits strong

spatial mixing with exponential decay. Then, Lemma 3.8 implies that any G with maximum degree

∆ also exhibits SSM with exponential decay. That means that we can apply Lemma 3.7 to find an

FPTAS for ZG(λ).

Note that, apart from the positive result for λ < λc, Proposition 3.10, also tells us that WSM does

not hold when λ > λc. This rules out extending Weitz’s method to this regime. However, this

does not automatically disprove the existence of an FPTAS for this values of λ, as there could be

other methods to construct the algorithm not based on correlation decay. Nonetheless, Sly and Sun

proved in 2014 that the threshold of Weitz is almost optimal:

Theorem 3.11 (Theorem 2 from [SS14]). Unless RP = NP, there is no FPRAS for computing

ZG(λ) in the hard-core model with activity λ > λc(∆).

Remark. Note that Theorem 3.11 not only rules out the existence of an FPTAS but also of an

FPRAS. That does not happen in general: there are problems for which there exists randomized

algorithms that can not be derandomized efficiently. In this problem, however, randomized and

deterministic algorithms are equally powerful.

Together, theorems 3.4 and 3.11 give a complete picture of the complexity of approximating ZG(λ)

for the hard-core model on graphs with constant maximum degree, except at the critical point

λ = λc, for which there is no definitive result yet.

3.4 Power series approximation (Barvinok’s method)

In this section we explain another method for constructing an FPTAS for the partition function

ZG(λ), based on truncating the Taylor expansion of its logarithm. This method has been pionereed

by Barvinok, who also wrote a recent monograph on the topic (see [Bar19]). In contrast with Weitz’s

method, here we do not make use of any information about the spin model, so it could be used too
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to approximate a general complex polynomial P (z), provided that it satisfies the assumptions from

Lemma 3.12.

Suppose we have a polynomial P (z) =
n∑

k=0

akz
k, with coefficients ak ∈ C. For a fixed value of z, we

want to approximate this polynomial up to ε-relative error, for a certain ε > 0. If the coefficients

are easy to compute, the problem is trivial, but we suppose that the k-th coefficient takes time

Θ(nk) to compute (as it is the case for the hard-core model, in which we can count the number of

independent sets of size k by iterating naively over all possible subsets of size k).

The main idea of Barvinok’s method is to approximate instead logP (z). The Taylor expansion of

logP around 0 gives us a power series

logP (z) =
∑
j≥0

bjz
j

for some coefficients bj ∈ C. Let Tk(z) :=
∑k

j=0 bjz
j be the k-th order truncation of the Taylor

expansion. One can prove that {Tk}k≥0 converges to logP (z) with error exponentially decreasing

in k, as long as P (z) has a zero-free disk around 0:

Lemma 3.12 ([Bar19]). Let P (z) : C −→ C be a polynomial of degree n with independent term

p0 ∈ R+. Suppose there exist R > 0 and δ > 0 such that P (z) ̸= 0 for all z ∈ B(0, (1 + δ)R). For

a z ∈ B(0, R), consider the Taylor series of logP at z expanded around 0, and let Tk(z) be its k-th

order truncation. Then, {Tk(z)}k≥1 converges exponentially to logP (z), i.e. there exist constants

A(δ) and B(δ) independent of z and n such that

|logP (z)− Tk(z)| ≤ Ane−Bk

for all k ∈ Z+.

Remark. When working in the complex plane one has to be careful about how the logarithms are

defined. Luckily, the zero-free condition of P (z) allows us to define logP (z) analytically in B(0, R)

by taking

logP (z) := Log p0 +
n∑

j=1

Log

(
1− z

ξj

)
(3.3)

where ξj are the zeros of P (z). We can take the principal branch of the logarithm in each of the

terms since p0 ∈ R+ and |z/ξj | ≤ 1/(1 + δ) < 1, so ℜ (1− z/ξj) > 0.

Notice that, if we interpret the logarithm as a formal power series, by defining

log(x) :=
∑
k≥1

(−1)k+1x
k

k
,
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then both the LHS and the RHS of 3.3 correspond to the same formal power series on z 5. Therefore,

the Taylor series of logP (z), understood as a formal power series, will have the same coefficients as

the Taylor series of the RHS of 3.3. Hence, we can work with one or the other indistinctly.

Proof. As explained in the previous remark, the Taylor series of logP (z) will be given by

logP (z) = Log p0 +

n∑
j=1

∑
ℓ≥1

−1

ℓ

(
z

ξj

)ℓ

Therefore, the residue after substracting the terms of order at most k will be

|logP (z)− Tk(z)| ≤
n∑

j=1

∑
ℓ≥k+1

1

ℓ

∣∣∣∣ zξj
∣∣∣∣ℓ

Since P has no zeros in B(0, (1 + δ)R) and z ∈ B(0, R), we have that |z/ξj | ≤ 1/(1 + δ), so

|logP (z)− Tk(z)| ≤
n∑

j=1

∑
ℓ≥k+1

1

ℓ

(
1

1 + δ

)ℓ

≤ n
∑

ℓ≥k+1

(
1

1 + δ

)ℓ

= n

(
1

1 + δ

)k 1/(1 + δ)

1− 1/(1 + δ)
=
n

δ
e− log(1+δ)k

Therefore, we can take A(δ) := 1/δ and B(δ) := log(1 + δ).

The general procedure for designing an FPTAS with this lemma is:

1. Compute coefficients a0, . . . , ak of polynomial P (z) (for some k = Θ(log(n/ε)) that will be

given a precise value later).

2. From these, compute b0, . . . , bk, the coefficients of the Taylor series of logP (z) around z = 0.

3. Evaluate the truncated Taylor series Tk(z) and output eTk(z) as the approximation of P (z).

With this general procedure we can proof a slightly weaker form of Theorem 3.4, but without

using any of the correlation decay tools from the original proof of Weitz. We will use the following

zero-freeness result from Shearer:

Lemma 3.13 ([She85] 6). Let ZG(λ) be the partition function of the hard-core model on a graph G

of maximum degree ∆. Then, ZG(λ) ̸= 0 for any λ ∈ C with |λ| ≤ λ̃c := (∆− 1)∆−1/∆∆.

5Because P (z) = p0
∏

j(1− z/ξj) and the logarithm as a formal power series also satisfies the typical property of
log(z1z2) = log(z1) + log(z2).

6The original result in Shearer’s paper [She85] is stated in terms of sufficient conditions for the LLL to hold.
One can check [SS05] or [Per22] for an explanation of the relation between the Local Lemma and the zeros of the
independence polynomial of a graph of bounded maximum degree.
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Theorem 3.14 (weaker form of Theorem 3.4). For a fixed ∆ ≥ 1 and a fixed η > 0, there exists

an FPTAS for computing the partition function of the hard-core model ZG(λ) for any graph G with

maximum degree ∆ and any λ ≤ (1− η)λ̃c(∆), where λ̃c(∆) := (∆− 1)∆−1/∆∆.

Proof. We will start from the end. We want eTk(λ) to be an ε-relative approximation of ZG(λ). We

may assume ε < 1, in which case it can be shown with basic calculus that eε/2 ≤ 1 + ε. Thus, it is

enough to choose k such that

|Tk(λ)− log(ZG(λ))| ≤ ε/2

as this ensures that

e|Tk(λ)−logZG(λ)| ≤ eε/2 ≤ 1 + ε

We obtain Equation 3.4 from Lemma 3.12, using for the zero-freeness Lemma 3.13. That tells us

that we need k such that

|Tk(λ)− logZG(λ)| ≤ Ane−Bk ≤ ε/2 ⇐⇒ k ≥ 1

B
log

2An

ε

As mentioned before, the naive algorithm for computing the j-th coefficient of ZG(λ), has runtime

O(nj). Thus, computing the first k coefficients would give an algorithm with runtime nO(log(n/ε))

which is not polynomial on n/ε. Luckily, we can use a result by Patel and Regts [PR17] that proved

that one can compute the first k coefficients in time poly(n/ε) 7.

Once we have computed the first coefficients of ZG(λ), we can use those to find the coefficients of

the Taylor series of logZG(λ), by solving a linear system. Let ZG(λ) =
∑
ajλ

j , and let logZG(λ) =∑
bjλ

j . Then,

∑
jbjλ

j−1 =
d

dλ
logZG(λ) =

Z ′
G(λ)

ZG(λ)
=

∑
jajλ

j−1∑
ajλj

=⇒

=⇒
∑
j≥1

jajλ
j−1 =

∑
j≥1

∑
i≥0

aiλ
ibjjλ

j−1 =
∑
i≥0

∑
j≥0

aibj+1(j + 1)λi+j

Equating the terms with the same power of λ on each side, we obtain a system of k equations with

variables b1, . . . , bk and coefficients that can be computed from a0, . . . , ak. The first coefficient b0

does not appear on the system, but can be obtained simply by b0 = logZG(0) = log a0.

Remark. In comparison with Weitz’s result, the result proven with Barvinok’s method is slightly

weaker, but it is a much more general procedure, that does not require much insight about the

nature of the spin model (aside from proving the zero-freeness of the partition function).

7In fact, they prove it for a larger class of polynomials called bounded induced graph counting polynomials, of which
the independence polynomial is a particular case.



Chapter 4

Existence guarantees for colorings

4.1 Colorings with fixed color sizes

In the next chapter we study the problem of sampling proper colorings with color classes of fixed

size. Before that, it is pertinent to consider under which conditions do such colorings exist.

Definition 4.1 (n-colorable). Fix q ∈ Z+ and let n = (n1, . . . , nq) ∈ Zq, with ni ≥ 1 for all

i ∈ [q]. We say a graph G is n-colorable if there exists a proper coloring χ : V (G) −→ [q] such that

|{v ∈ V (G) : χ(v) = i}| = ni for all i ∈ [q]. That is, there exists a coloring in which there are n1

vertices of color 1, n2 vertices of color 2, and so on.

If we want to find a general result on the existence of n-colorings, we must first impose some

restrictions on the graph G, since for example Kn does not accept any n-coloring except for the

trivial one n = (1, . . . , 1). A natural restriction is to impose that the maximum degree of the graph

is smaller than a certain ∆ := ∆(n). Thus, in the remaining of this chapter we will assume that G

is a graph of maximum degree ∆(G) ≤ ∆.

Since every color class must be an independent set, all ni will be upper-bounded by the independence

number α(G). In particular, if we want to derive a general result for all graphs of maximum degree

∆, we need that ni ≤ ⌈n/(∆ + 1)⌉, as the union of cliques G = K∆+1 ⊔ · · · ⊔ K∆+1 ⊔ Kr (where

r := n mod (∆ + 1)) has α(G) = ⌈n/(∆ + 1)⌉.

This bound is tight in the sense that there exists no other G of maximum degree ≤ ∆ with smaller

independence number, because we can always find an independent set of size ⌈n/(∆ + 1)⌉ by the

naive greedy algorithm (repeatedly adding an arbitrary vertex to the independent set and deleting

its neighbours from the graph).

However, this does not guarantee that for any n with ni ≤ ⌈n/(∆ + 1)⌉ there exists an n-coloring,

since after finding an independent set I1 of size n1 for color 1, we are left with ñ := n−n1 vertices,

while the new maximum degree ∆̃ := ∆(G[V \ I1]) might not have decreased at all. Thus, the

47
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condition n2 ≤ ⌈ñ/(∆̃ + 1)⌉ might not hold.

Nevertheless, we conjecture that it’s always possible to find a coloring if all ni ≤ ⌊n/(∆ + 1)⌋:

Conjecture 4.1. Let G be a graph with n vertices and maximum degree at most ∆. Let n =

(n1, . . . , nq) ∈ Zq be the desired color class sizes, with
∑
ni = n and 1 ≤ ni ≤ ⌊n/(∆ + 1)⌋ for all

i ∈ [q]. Then G is n-colorable.

Remark. Though it is not explicitly required in the statement, notice that the two conditions

ni ≤ ⌊n/(∆ + 1)⌋ and n =
∑
ni imply that the number of colors q has to be at least ∆ + 1.

Notice too that the conjecture can not be extended to ni ≤ ⌈n/(∆ + 1)⌉, as the union of cliques

G = K∆+1 ⊔ · · · ⊔K∆+1 ⊔Kr (for any 1 ≤ r < ∆+ 1) would be a counterexample. That’s because

every color class of size ⌈n/(∆ + 1)⌉ must contain a vertex from the r-clique, so at most there are

r of them.

However, we conjecture that this is the most limiting counterexample, in the sense that if we have

n = s(∆+1)+r, we can always n-color the graph if at most r of the ni’s have size ⌈n/(∆+1)⌉ = s+1

(and the rest have size at most ⌊n/(∆ + 1)⌋ = s):

Conjecture 4.2. Let G be a graph with n vertices and maximum degree at most ∆. Let s and r be

the unique integers such that n = s(∆+1)+r and 0 ≤ r < ∆+1. Then, G is n-colorable for any n =

(n1, . . . , nq) ∈ Zq such that
∑

i ni = n, 1 ≤ ni ≤ s+1 for all i ∈ [q], and |{i ∈ [q] : ni = s+ 1}| ≤ r.

Remark. The last condition is saying that there can be at most r color classes with size s+1, where

r is the residue of dividing n by ∆+ 1 and s is the quotient rounded down. As commented before,

this is tight for the union of cliques G = K∆+1 ⊔ · · · ⊔K∆+1︸ ︷︷ ︸
s

⊔Kr which does not have any colouring

with more than r color classes of size s+ 1.

There are two pieces of evidence in favor of these conjectures:

1. Conjecture 4.1 is a weaker corollary of Seymour’s Conjecture on powers of Hamiltonian cycles,

which was proved for sufficiently large n by Komlós, Sárközy and Szemerédi in [KSS98].

2. One would expect that the hardest case to prove is when we have q = ∆ + 1 colors and all

the ni are either ⌈n/(∆ + 1)⌉ or ⌊n/(∆ + 1)⌋. However, this is equivalent to a conjecture of

Erdös which was proved by Hajnal and Szemerédi in 1970 [HS70] and has been known since

as the Hajnal-Szemerédi Theorem on equitable colorings.

In the next two sections we will explore these two pieces of evidence. In particular, we will explain in

detail a simpler proof of the Hajnal-Szemerédi Theorem found by Kierstead and Kostochka [KK08]

and we will discuss the difficulties of adapting this proof for Conjecture 4.1.
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4.2 Seymour’s Conjecture

Definition 4.2 (Power of a graph). Let G be a graph. We define the k-th power of G as the graph

formed by adding edges in between every pair of vertices u, v with dG(u, v) ≤ k. In particular, the

second power of a graph is called its square.

Seymour’s Conjecture states that if the minimum degree of the graph is large enough, then the

graph must contain a power of a Hamiltonian cycle. Historically, it was first formulated in the case

k = 2 by Pósa:

Conjecture 4.3 (Pósa). Let n be the number of vertices of G. If δ(G) ≥ 2n/3, then G must contain

the square of a Hamiltonian cycle.

This conjecture in itself can be seen as a generalization of Dirac’s Theorem, which states that any

graph with δ(G) ≥ n/2 must have a Hamiltonian cycle.

In 1974, Seymour conjectured that Pósa’s Conjecture could be extended to higher powers:

Conjecture 4.4 (Seymour [Sey74]). Let G be a graph with n vertices, and let k ∈ Z+. If δ(G) ≥
k

k+1n, then G must contain the k-th power of a Hamiltonian cycle.

In particular, note that the case k = 1 is Dirac’s Theorem, while the case k = 2 is Pósa’s Conjecture.

Pósa’s Conjecture, while not proven in its entirety, has been proven for graphs with δ(G) =(
2
3 + ε

)
n + C(ε) [FK95]. It has also been proven for the case where we only require the square of

a Hamiltonian path, not a Hamiltonian cycle [FK96]. In 1998, Seymour’s Conjecture was proven

for large enough n by Komlós, Sárközy and Szemerédi [KSS98] (extending a previous result on

Pósa’s Conjecture from two years prior [KSS96]), using the regularity method of the latter author.

However, the general case remains open despite the conjecture being almost 50 years old.

We can relate Seymour’s Conjecture to our coloring problem, by applying Seymour’s Conjecture on

the complement of the graph:

Proposition 4.5. Seymour’s Conjecture (Conjecture 4.4) implies Conjecture 4.1.

Proof. Let G be a graph with n vertices and maximum degree at most ∆. Let n = s(∆ + 1) + r,

with 0 ≤ r < ∆ + 1. In that case, Conjecture 4.1 states that for any n ∈ Zq, with coordinates

1 ≤ ni ≤ s and summing to n, we can get an n-coloring of the graph. The idea is to apply Seymour’s

Conjecture to guarantee that G has the (s− 1)th-power of a Hamiltonian cycle. That would mean

that there exists an ordering of the vertices of G such that each vertex is not adjacent to any of the

next s − 1 or the previous s − 1 vertices. Thus, we can find a proper coloring by taking the color

classes to be contiguous subsets of vertices according to this ordering.
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To apply Seymour’s Theorem with k = s − 1, we need δ(G) ≥ k

k + 1
n =

s− 1

s
n. Using that

δ(G) = n− 1−∆(G) and that ∆(G) ≤ ∆, we have that

δ(G) ≥ n− (∆ + 1) = n−
⌊n
s

⌋
≥ n

(
s− 1

s

)
as desired.

Remark. It is not obvious whether Seymour’s Conjecture implies the second form of the conjecture

(Conjecture 4.2), which is stronger. Applying Seymour’s Conjecture directly we only get the (s−1)-
th power of a Hamiltonian cycle, so we can’t guarantee that we can find any color class of size s+1.

The usual trick to solve this problem would be to apply Seymour’s Conjecture to the graph G̃ :=

G ⊔ K∆+1−r, which gives us the s-th power of a Hamiltonian cycle, and then discard the extra

vertices of the clique we added. This way we can find an equitable (∆ + 1)-coloring (see the next

section for the definition). Indeed, if we divide the Hamiltonian cycle into chunks of size s+1, we’ll

find that ∆+1− r of those have an extra vertex in them (which we discard, obtaining a color class

of size s), while r of them do not have an extra vertex (so we can take them to be the color classes

of size s+ 1). Notice there can not be two extra vertices at distance less than s in the cycle, since

they are adjacent in G.

However, if we want to find a coloring where there are some color classes of size s + 1 and some

others of size strictly less than s (as required by Conjecture 4.2), it might happen that we are not

able to pack the small color classes in the space between classes of size s+1, rendering the previous

approach invalid.

4.3 Equitable colorings

A special case of Conjecture 4.2 which appears frequently in real-life applications1 is the existence

of equitable colorings.

Definition 4.3 (Equitable coloring). A k-coloring of a graph is called equitable if the sizes of the

color classes differ at most by one. Equivalently, an equitable k-coloring is a coloring in which each

color class has size either ⌊n/k⌋ or ⌈n/k⌉.

It is interesting to note that, in contrast to normal colorings, the existence of an equitable k-coloring

for a fixed graph G is not a monotone property in k. That is, there exists graphs such that there

exists an equitable k1-coloring but no equitable k2-coloring, for some k1 < k2. An easy example is

the complete bipartite graph with odd number of vertices on each side: K2m+1, 2m+1. This graph is

1That’s because it models the problem of distributing n equally-time-consuming duties as evenly as possible among
k people (or threads, or servers, ...), where some pairs of duties are restricted and can’t be performed by the same
person.
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equitably 2-colorable, since we can paint the two sides of the partition with opposite colors, but it

has no equitable (2m+ 1)-coloring, since its complement does not have a perfect matching.

This particular case also provides an example of a graph that has no equitable ∆(G)-coloring.

However, in 1964, Paul Erdös conjectured that any graph G has an equitable (∆(G) + 1)-coloring.

Remark. Note that if all graphs G have an equitable (∆(G)+1)-coloring, that automatically implies

that all graphs with ∆(G) ≤ ∆ have an equitable (∆+ 1)-coloring. Thus, we do not have to worry

about the non-monotonicity issues mentioned earlier. That follows easily by induction on ∆−∆(G):

if we have a graph with ∆(G)+1 < n, we can add an edge to a vertex of maximum degree and apply

the induction hypothesis to get a coloring, because the coloring will still be proper after removing

the edge. If ∆(G) + 1 = n (so we can’t add any edge to the vertex of maximum degree), the color

classes have size at most 1, so any assignment is a proper coloring.

This conjecture was proven by Hajnal and Szemerédi in 1970, becoming known as the Hajnal-

Szemerédi Theorem:

Theorem 4.6 (Hajnal-Szemerédi [HS70]). Let G be a graph of maximum degree at most ∆. Then,

G has an equitable (∆ + 1)-coloring.

The original proof of the theorem is quite complicated, but there exists a much shorter proof

published by Kierstead and Kostochka in 2008 [KK08]. In the rest of the section we will explain in

detail the strategy that they follow, as we hope it will be useful for elucidating the difficulties that

one finds when trying to extend their argument to prove Conjectures 4.1 and 4.2.

Lemma 4.7. Let n be the number of vertices of G. It suffices to prove the theorem for the case

when ∆+ 1 divides n.

Proof. Suppose we have proven the theorem for the case when n is divisible by ∆ + 1. We’ll show

that then the theorem also holds for a general n. Let G be a graph of maximum degree at most ∆

with n = s(∆+ 1) + r vertices, where 0 < r < ∆+1. Define a new graph G̃ = G⊔K∆+1−r formed

by adding a clique to G. This new graph has n+ (∆+ 1− r) = (s+ 1)(∆ + 1) vertices and degree

at most ∆, so by the hypothesis it must have an equitable (∆ + 1)-coloring χ̃.

Let χ := χ̃|G be the restriction of that coloring to the original graph G. Since all the vertices in

G̃−G are pairwise adjacent, they must belong each to a different color class of χ̃. Thus, the color

classes of χ will have either the same number of vertices as in χ̃, or one vertex less. Since all color

classes of χ̃ have s+ 1 vertices, the color classes of χ will have either s or s+ 1 vertices. Thus, χ is

an equitable coloring of G.

Thanks to this lemma, from now on we will assume that G has n = s(∆ + 1) vertices, for some

s ∈ Z+. Thus, we want to find a (∆ + 1)-coloring in which every color class has size s. The idea

of the proof will be that, by induction on the number of edges, we can assume we have a coloring

that is almost equitable (in the sense that all color classes have size s except two of them, which are
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off by 1). By studying the structural properties of this type of colorings, we will prove that there

exists some local change that allows us to transform it into an equitable coloring of G.

Definition 4.4 (nearly-equitable coloring). We say that χ : V (G) −→ [∆ + 1] is a nearly-equitable

coloring if there exist i+, i− ∈ [∆ + 1] such that

∣∣χ−1(i)
∣∣ =


s, if i ̸= i+, i−

s+ 1, if i = i+

s− 1, if i = i−

for all i ∈ [∆+ 1]. We will use Vi to refer to the set of vertices with color i, and V+, V− for the sets

of vertices with color i+ and i−, respectively.

Definition 4.5 (movable vertex, accessible color). Given a nearly-equitable coloring χ of G, we

say that a vertex v is movable to color i if v is not adjacent to any vertex of color i. That is, v is

movable to i if setting χ(v)← i does not create any conflict.

Let HG,χ be the digraph with a vertex for each color (i.e. V (H) := [∆ + 1]) and with an arc i→ j

if there exists some vertex with color i that is movable to color j. We say that a color i is accessible

if there exists a directed path in H that goes from i to i−. Note that, by definition, i− is always

accessible.

Intuitively, if i is an accessible color, that means that we can transfer a vertex from i to i−. Indeed,

let i = i1 → · · · → ik = i− be a simple path from i to i− in H. For every j ∈ [k − 1], let vj be a

vertex with color ij that is movable to color ij+1. Then, we can set χ(vj)← ij+1 for all j ∈ [k− 1],

obtaining a coloring in which color class i has one vertex less and color class i− has one vertex

more. Thus, if i+ were accessible, we would be able to transform the nearly-equitable coloring into

the equitable coloring that we desire.

Given a general nearly-equitable coloring χ, there is no guarantee of i+ being accessible. However,

we will be able to prove that there is some kind of local change that either reduces the number

of non-accessible colors by 1, or allows us to construct directly an equitable coloring. Thus, after

performing this local change a finite number of times, we will be able to get an equitable coloring

of G.

Let A and B be the set of accessible and non-accessible colors. Let q := |B| and m := |A| − 1. By

definition, q +m + 1 = ∆ + 1, so q +m = ∆. Let A :=
⋃

i∈A Vi and B :=
⋃

i∈B Vi be the sets of

the vertices that are painted with colors from A and B, respectively. Since we are assuming that

i+ ∈ B, we have that |A| = (m+ 1)s− 1 and |B| = qs+ 1.

Lemma 4.8. There exists at least one other accessible color apart from i− (that is, m ≥ 1).

Proof. If i− was the only accessible color, then |B| = ∆s + 1. But every y ∈ B must be adjacent
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to some vertex in V− (otherwise y would be movable to color i−), so |B| ≤ |E(V−, B)| ≤ ∆ |V−| =
∆(s− 1), reaching a contradiction.

In a later step of the proof, we will find a certain vertex z ∈ Vj for some color j ∈ A, and change

its color. We would like to chose j so that when we change the color of any z ∈ Vj all other colors

from A keep being accessible. This motivates us to define terminal colors, the colors from which we

can safely remove vertices without affecting the accessibility of any other color:

Definition 4.6 (terminal color). Given a color j ∈ A, let

A′
j :=

{
i ∈ A \ {j} : ∄ path from i to i− in H[A \ {j}]

}
.

We say that a color j ∈ A is terminal if A′
j = ∅.

Remark. There always exists at least one terminal color. To prove it, notice that we can construct

a directed graph H̃ where the vertices are the colors from A and there is an edge i→ j if all paths

from i to i− in H go through j. This vertex has no cycles, since otherwise we would have that there

exist i ̸= j such that all paths from i to i− in H go through j and all paths from j to i− go through

i. Any directed acyclic graph has a vertex with no incoming edges (the first one in a topological

order), and this vertex will be a terminal color.

Definition 4.7. Let j∗ := argmin
non-terminal j∈A

∣∣∣A′
j

∣∣∣ be the non-terminal color that minimizes the number

of disconnected colors. Let A′ := A′
j∗ and let t := |A′|. Also, let A′ :=

⋃
j∈A′ Vj be the vertices

with color from A′.

Remark. Note that there is always some non-terminal color, because |A′
i−
| = m ≥ 1.

We have defined A′ this way because then any j ∈ A′ is terminal (otherwise
∣∣∣A′

j

∣∣∣ < ∣∣∣A′
j∗

∣∣∣, contra-
dicting the minimality condition). However, we do not use at any other point the minimality, so

any other j such that A′
j only has terminal colors would also have sufficed.

Next we prove a series of lemmas that will guarantee that we can find a z ∈ A′ that allows us to do

the local change.

Lemma 4.9. For all z ∈ A′, dB(z) ≤ q + t.

Proof. By definition of A′, z must be adjacent to vertices from all colors in A\ (A′ ∪{j∗}), because
otherwise z would be movable to some color in A\ (A′ ∪{j∗}), and from there it would be movable

to color i− without passing through color j∗. Thus, dA(z) ≥ m+ 1− (t+ 1) = m− t, so

dB(z) = ∆− dA(z) ≤ (∆−m) + t = q + t
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Definition 4.8 (solo edges, solo vertices, solo neighbours). Let z ∈ Vj for some color j ∈ A′, and

let y ∈ B. We say that the edge zy is a solo edge if NVj (y) = {z} (i.e. z is only neighbour of y with

color j, so we will be able to set χ(y)← j if we recolor first z with some other color). We refer to

vertices that are the endpoints of some solo edge as solo vertices, and we say that two solo vertices

that share a solo edge are solo neighbours of each other. We denote the set of solo neighbours of

z ∈ A′ and y ∈ B as Sz and Sy, respectively.

Remark. We say that y is a solo neighbor of z if the edge zy is a solo edge, but note that there

might be neighbors of z that are solo vertices but that are not solo neighbors of z (because the edge

zy is not a solo edge).

Lemma 4.10. For any y ∈ B, |Sy| ≥ t− q + dB(y) + 1.

Proof. Let j ∈ A′. If j /∈ Sy, then y has at least two neighbors in Vj . Thus,

|Sy| ≥ t−
∣∣{j ∈ A : dVj (y) ≥ 2}

∣∣
Since the total degree of y is at most ∆,

∆ ≥ dB(y) + |A|+
∣∣{j ∈ A : dVj (y) ≥ 2}

∣∣ =⇒
∣∣{j ∈ A : dVj (y) ≥ 2}

∣∣ ≤ q − 1− dB(y)

Plugging this into the previous expression yields the desired bound.

Lemma 4.11. If there exists a color j ∈ A′ such that no solo vertex z ∈ Vj is movable to a color

from A \ {j}, then all y ∈ B must be solo vertices, and we have that t > q.

Proof. The fact that all y ∈ B are solo vertices follows from plugging t > q into the previous lemma

(we even get the stronger result |Sy| > dB(y) + 1 > 0). To see that t > q, we count the edges in

between Vj and B in two ways.

Let S be the set of solo vertices from Vj . Let D := Vj \ S. By definition of B, no y ∈ B is movable

to color j, so every y has a neighbor in Vj . Those that have exactly one neighbor must be from

NB(S), since their neighbor in Vj must be solo (however, note that some solo z ∈ Vj can have a

non-solo neighbor in B). Therefore,

|E(Vj , B)| ≥ |B|+ (|B| − |NB(S)|) = 2(qs+ 1)− |NB(S)|

The condition that no z ∈ Vj is movable to A \ {j} implies that it must be adjacent to at least one

vertex from each of the m other colors in A. Thus, dA(z) ≥ m and dB(z) ≤ ∆−m = q. Using this,

we get that NB(S) ≤ q |S|, so

|E(Vj , B)| ≥ 2(qs+ 1)− q |S| = qs+ q |D|+ 2 > qs+ q |D|
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where we have used that s = |Vj | = |S|+ |D|. On the other hand,

|E(Vj , B)| = |E(S,B)|+ |E(D,B)| ≤ q |S|+ (q + t) |D| = qs+ t |D|

where we have used that the maximum degree of z ∈ Vj is at most q if z is solo (by the previous

argument), and at most q+ t in general (by Lemma 4.9). Putting the two inequalities together, we

get that

qs+ q |D| < |E(Vj , B)| ≤ qs+ t |D| =⇒ q < t

Lemma 4.12. Under the same hypothesis as Lemma 4.11, there must be a color j ∈ A′ and a solo

vertex z ∈ Vj such that z has two solo neighbours y1, y2 ∈ B that are not adjacent.

Proof. Suppose not. As in Lemma 4.11, the proof will be based on double counting the edges

between A′ and B, but this time we will weight each edge depending on how many solo neighbors

does the endpoint on A′ have. Let µ : A′ ×B −→ R≥0 be the weight function defined by

µ(z, y) :=

q/ |Sz| , if zy is a solo edge

0, otherwise

First, since every z ∈ A′ has |Sz| solo neighbors,

µ(A′, B) :=
∑
z∈A′

∑
y∈B

µ(z, y) =
∑
z∈A′

|Sz|
q

|Sz|
≤ q

∣∣A′∣∣ = qst

On the other hand, if we let cy := maxz |Sz| among all solo neighbors z of a fixed y ∈ B, we get

that

µ(A′, B) =
∑
y∈B

µ(A′, y) ≥
∑
y∈B
|Sy| q

cy

By hypothesis, all solo neighbors of a fixed z form a clique, so cy = maxz |Sz| ≤ dB(y) + 1. Hence,

using Lemma 4.10,

|Sy| ≥ t− q + dB(y) + 1 ≥ t− q + cy

so

µ(A′, B) ≥
∑
y∈B

(t− q + cy)
q

cy
≥
∑
y∈B

(t− q) q
cy

+ q ≥
∑
y∈B

t− q + q ≥ t |B| = t(qs+ 1)

where we have used that t − q ≥ 0 (by Lemma 4.11) and that q/cy ≥ 1. This follows from the
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fact that any y ∈ B must be adjacent to a vertex from every color class in A′ (in order to not be

movable), so

dA(y) ≥ m+ 1 =⇒ dB(y) ≤ q − 1 =⇒ q − 1 ≥ dB(y) ≥ cy − 1 =⇒ q ≥ cy

We have seen that t(qs + 1) ≤ µ(A′, B) ≤ tqs, which (since t > 0 by definition) constitutes a

contradiction. Therefore, the assumption that all the solo neighbors from every z form a clique

must be incorrect.

We end this section by proving Theorem 4.6, since this last lemma gives us a sufficient condition

for the inductive argument that we sketched before to work:

Proof. (Theorem 4.6). By Lemma 4.7, we may assume that the graph has n = s(∆ + 1) vertices,

where s ∈ Z+. The proof proceeds by induction on the number of edges of the graph. For |E(G)| = 0,

all colorings are proper so there is nothing to prove. Now, for the inductive step, take an arbitrary

edge e = xy ∈ E(G) and find an equitable coloring χ′ of G−e. If χ′(x) ̸= χ′(y), this also constitutes

a proper coloring of G, so we are finished. Otherwise, find a color c /∈ χ′(N(x)) and set χ′(x) ← c

(the existence of such a color is guaranteed by the fact that we have ∆ + 1 possible colors, while

|N(x)| ≤ ∆(G) ≤ ∆). With this change, χ′ will be a nearly-equitable coloring, in which all color

classes will have s vertices with the exception of colors i+ and i−, that will have s + 1 and s − 1

colors, respectively.

We build the accessibility digraph H, and we let q := |B| be the number of non-accessible colors.

As explained before, if i+ is accessible we are done, since we can exchange colors among a simple

path between i+ and i−, getting an equitable coloring.

Otherwise, by Lemma 4.12, there either exists a color j ∈ A′ and a solo vertex z ∈ Vj such that z

is movable to A \ {j}, or there exists a color j ∈ A′ and a solo vertex z ∈ Vj such that z has two

non-adjacent solo neighbors y1 and y2.

In the first case, let y be one of the solo neighbors of z. By hypothesis we can move z to a color

from A \ {z}, and then transfer a vertex from this color to i− (having moved z does not affect the

accessibility of any other color, since j ∈ A′, so it is terminal). Once we have moved z out of Vj ,

we can recolor vertex y with color j without creating any conflict, since zy was a solo edge. Hence,

all color classes of A are now of size s. We can recolor the rest of the graph with the inductive

hypothesis. Recall that all vertices in B \ {y} have to be adjacent to some vertex from every one of

them+1 color classes in A, since otherwise we would be able to move them to that color. Therefore,

for any ỹ ∈ B \ {y}, dA(ỹ) ≥ m+ 1 so

dB\{y}(ỹ) ≤ dB(ỹ) ≤ ∆− (m+ 1) = q − 1

Hence, B \ {y} induces a graph with (qs+ 1)− 1 = qs vertices and maximum degree ≤ q − 1. By
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the inductive hypothesis2, this graph is equitably q-colorable, which together with the coloring on

A ∪ {y} gives us an equitable (∆ + 1)-coloring of the whole graph G.

In the second case, we also move y1 to color j. This creates a conflict with z that we can not

solve as in the previous case, because z is not movable to any color in A \ {j}. However, this also

implies that dA(z) ≥ m, so dB\{y}(z) ≤ q − 1. Hence, there exists some color in B to which we

can now move z. After this change, the coloring in B might not even be nearly-equitable, but by

the same argument of the previous case, we can recolor it using the induction hypothesis to obtain

a nearly-equitable q-coloring where all colors have s vertices except one that has s + 1. Thus, the

coloring of the whole graph is still nearly-equitable after the change. The difference is that now z

is no longer colored with color j, so y2 (that was a solo neighbor of z) is now movable to color j.

Then, the nearly-equitable coloring that we have obtained has one non-accessible color less than

the nearly-equitable coloring we started with.

Therefore, in the first case we obtain directly the equitable coloring we are looking for, while in

the second case we decrease the number of non-accessible colors by 1. Thus, after repeating this

procedure at most q times, i+ becomes accessible and we are able to obtain an equitable coloring.

The main difficulty in adapting Kierstead and Kostochka’s proof to Conjecture 4.1 is that we do not

have any lower bound on the size of the color classes, so the arguments based on double counting

edges do not work.

Intuitively, it seems that having color classes of smaller size would only give us more leeway to

find a proper coloring, but we have not been able to find an alternative argument for proving the

analogous results to Lemmas 4.11 and 4.12.

2We can apply the induction hypothesis because G[B \{y}] has less edges than G. For example, it does not contain
the edge zy.



Chapter 5

Sampling objects of fixed size

In chapter 3 we have discussed the problem of approximating the partition function ZG(β) (or,

equivalently, sampling a configuration σ ∼ µG,β). Note that, for spin models in finite graphs, we

can always express the partition function as a polynomial ZG(λ), by defining the fugacity in terms

of β appropiately and re-scaling if necessary the Hamiltonian.

Then, as a natural extension to the problem of approximating ZG(λ), we can ask whether we can

compute approximately the k-th coefficient of ZG(λ), for some specific λ and k. In sampling terms,

this corresponds to asking for a sampling algorithm that gives us a configuration σ distributed

uniformly among all the ones with H(σ) = k, for a certain k.

For the case of independent sets, we will describe the advances that have happened in the last 2

years, that have led to an almost complete solution of the problem. For the case of colorings, very

little is known yet, but we sketch a future plan of research, using the same general ideas that are

behind the new results on independent sets.

5.1 Independent sets

In the hard-core model, the partition function is ZG(λ) =
∑n

k=0 ik(G)λ
k, so the problem of ap-

proximating the k-th coefficient [λk]ZG(λ) is the same as approximately counting the number of

independent sets of size k.

Instead of working with the size of the independent set, we will work with the density with respect

to the total number of vertices: α := k/n. It turns out that there exists a critical value of density

beyond which the problem becomes intractable:

Theorem 5.1 (Theorem 1 from [DP23]). For fixed ∆, there exists a critical density αc(∆) :=

λc(∆)/
(
1 + (∆ + 1)λc(∆)

)
such that

• for α < αc, there exists an FPRAS for computing i⌊αn⌋(G) for the class of graphs of maximum

58
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degree ∆.

• for α > αc, unless NP = RP , there exists no FPRAS for computing i⌊αn⌋(G) for the class of

graphs of maximum degree ∆.

Remark. The critical density αc(∆) is expressed in function of the critical fugacity λc(∆) := (∆−
1)∆−1/(∆− 2)∆, which we have seen in chapter 3 that constitutes the threshold for approximating

ZG(λ) for graphs of maximum degree ∆. Furthermore, one might notice that λ/
(
1 + (∆ + 1)λ

)
is

the expected density of an independent set drawn according to the hard-core model in K∆+1. It can

be proven that the graph K∆+1 is the one that minimizes this quantity over all graphs of maximum

degree ∆ (though not explicitly mentioned, it can be derived from [CR13], c.f. Exercise 13 from

[Per22]). Thus, a qualitative interpretation of Theorem 5.1 is that we can only sample independent

sets that would be of “below-average size” at the maximum “tractable fugacity” (i.e. the maximum

fugacity at which we can approximate ZG(λ) efficiently).

In their original paper, Davies and Perkins left the question of finding an FPTAS as an open problem,

but it was resolved shortly after by the second author together with Jain, Sah and Sawhney:

Theorem 5.2 (Theorem 1.2 from [JPSS21]). For a fixed maximum degree ∆ and a fixed δ > 0,

there exists an FPTAS that computes i⌊αn⌋(G) for any α ≤ (1 − δ)αc(∆) and any G of maximum

degree ∆.

The proof used in this second paper is the main inspiration behind the research plan that we describe

in the next section to construct an approximate randomized sampler of colorings with fixed color

sizes.

5.2 Colorings

5.2.1 Description of the model

We will now turn our attention to the problem of sampling colorings with given color class sizes.

Recall from the previous chapter that, for a given n = (n1, . . . , nq) ∈ (Z+)q and a graph G with

n :=
∑
ni vertices, we defined an n-coloring of G as a proper coloring of the vertices of G such that

for each i ∈ [q] there are exactly ni vertices painted with color i.

Using this notation, we would like to find an algorithm that, given a graph G and a vector n as

inputs, together with a tolerance value ε > 0, returns an n-coloring of G chosen approximately

uniformly at random (i.e. within total variation distance ε of the uniform distribution on the set

of all possible n-colorings). By the self-reducibility property from chapter 3, that’s equivalent to

finding an FPTAS that computes the number of n-colorings within a given relative error ε > 0.

In fact, even just obtaining a randomized sampler (or equivalently, an FPRAS) would already

constitute an important advance compared with the current state of the art.
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In the previous chapter we explored what conditions do we need to impose on the ni so that we

can guarantee the existence of an n-coloring for any graph G with a given maximum degree. From

now on, we will assume that the given n and G always allow us to find at least one such coloring,

so the expected outcome of the algorithm is always well-defined.

This problem can be seen as a natural generalization of the problem of sampling an independent set

of a given size, since sampling a q-coloring is akin to sampling q disjoint independent sets. Indeed,

we will follow a very similar framework to the one from the previous section, where instead of

studying the random variable X = |I|, the size of an independent set I chosen according to the

the hard-core model, we will study the random vector X = (X1, . . . , Xq)
T , the color sizes from a

q-coloring chosen according to the Potts model (with hard constraints). However, the interaction

between the different colors presents some difficulties that do not appear in the univariate case.

Definition 5.1 (Potts model with hard constraints). Given a graph G and a positive integer q, let

σ : V (G) −→ [q] be an assignment of one of q different spins (that we will refer to as colors) to each

vertex of G, and let Σ be the set of all possible assignments. Given q parameters λ1, . . . , λq ∈ R+,

we define a probability distribution on Σ where each σ ∈ Σ is chosen with probability

µG,λ(σ) ∝


∏
v∈V

λσv , if σ is a proper coloring

0, otherwise

This measure corresponds to the Potts model with an external field that interacts differently with

each of the q spins (spins with greater λi are favored) and with a hard constraint on the edges (so

configurations with monochromatic edges have infinite energy, and their Gibbs measure vanishes).

Sometimes we will refer to the activity parameters together as λ := (λ1, . . . , λq)
T , and denote the

partition function of the model as Z(λ) or Z(λ1, . . . , λq) indistinctly. For a fixed λ, we will denote

by X = (X1, . . . , Xq)
T the random vector of color class sizes according to this model. That is, X is

a random variable with the following distribution:

Pr[X = (x1, . . . , xq)
T ] :=

∑
σ∈Σ:∀i
|σ−1(i)|=xi

µG,λ(σ) =
cx1,...,xqλ

x1
1 · · ·λ

xq
q

Z(λ)

where cx1,...,xq is the number of colorings (i.e. spin assignments) that have xi vertices with color i

for each i ∈ [q].

Note that the Xi are not independent, and in fact have negative correlation (due to the fact that

X1+ · · ·+Xq = n). Besides, the colors are not indistinguishable, since the λi might be different for

each one. However, for the case were all the activities are equal, we can actually characterize their

correlation matrix:
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Proposition 5.3. Suppose λ = (λ, . . . , λ) for some λ ∈ R+. Let σ2 := VarX1. Then,

CovX = σ2 ·



1 −1
q−1 . . . . . . −1

q−1

−1
q−1 1

. . .
...

...
. . .

. . .
. . .

...
...

. . . 1 −1
q−1

−1
q−1 . . . . . . −1

q−1 1


=

σ2

q − 1

(
q · Iq − 1 · 1T

)

Proof. In the case where λ is a constant vector, µG,λ is symmetric with respect to the Xi, so

it is clear that VarX1 = · · · = VarXq = σ2. Besides, even if we condition on the value of a

certain Xi, all the Xj with j ̸= i still are indistinguishable and have the same distribution, so

Cov[Xi, Xj ] = Cov[Xi, Xk] for all j, k ̸= i. Therefore, as CovX is symmetric, the values outside of

the diagonal are all equal to each other. Let c ∈ R be the value that they take.

Using that X1 + · · ·+Xq = n, we have

VarXi = Cov
[
Xi, n−

∑
j ̸=i

Xj

]
= E

[
Xi

(
n−

∑
j ̸=i

Xj

)]
− E[Xi]E

[
n−

∑
j ̸=i

Xj

]
=

= −
∑
j ̸=i

(
E[XiXj ]− E[Xi]E[Xj ]

)
= −(q − 1)c

Thus, c = − σ2

q − 1
, and the covariance matrix takes the claimed form.

5.2.2 Future directions

Our plan to construct a sampler for colorings with given color sizes is the following:

1. Find a zero-free region for ZG(λ) around 1. It does not need to be strictly a disk, as we can

apply a transformation to the domain before applying Barvinok’s argument, as they do in

[SS19].

2. Use the zero-free region to prove a multivariate Central Limit Theorem for an X ∼ µG,λ, for

λ in a (maybe smaller) disk around 1.

3. From the Central Limit Theorem, derive a Local Central Limit Theorem, by combining bounds

on the characteristic function with the Fourier inversion arguments from the proof of Theorem

20 from [JPP22].

4. Use the Local Central Limit Theorem together with an FPRAS of the partition function to

find an FPRAS for the number of colorings of a given size, as it is done in [JPSS21] for the

hard-core model.
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For step 1, current zero-free regions in the Potts model are for the case where there is no hard-

constraint and instead each monochromatic edge is penalized by a factor of ω, for some ω ∈ C. In

that case, there are zero-free results for ZG(ω) (under a model with fixed homogeneous fugacity

λ = (1, . . . , 1)), but it is not clear how to translate them into zero-free results on ZG(λ), where we

take the fugacity of each vertex to be different and we set ω = 0.

We believe to have solved step 2, using an argument inspired by the techniques from [GLP16].

However, we are still unsure about some of the technical details, so we will refrain from claiming

the result yet.

For step 4, we need an FPRAS for the partition function. At first we thought that we could use

the same method as in 3.14, as Lemma 3.12 can be extended to the multivariate case, by defining

an appropriate auxiliary univariate polynomial that is zero-free in a disk around 0:

Lemma 5.4. Let P (z) : Cq −→ C be a multivariate polynomial with degree N (we are defining the

degree of a monomial as the sum of the degrees of each variable) and independent term p0 ∈ R+.

Suppose there exist R > 0, ε > 0 and z0 ∈ Cq such that P (z) ̸= 0 for all z ∈ B(z0, (1+ ε)R). For a

z ∈ B(z0, R), consider the Taylor series of logP at z expanded around z0, and let Tk(z) be its k-th

order truncation. Then, {Tk(z)}k≥1 converges exponentially to logP (z), i.e. there exist constants

A(ε) and B(ε) independent of z and N such that

|logP (z)− Tk(z)| ≤ ANe−Bk

Proof. Fix a certain z ∈ B(z0, R). We define an auxiliary univariate polynomial P̃z(t) : C −→ C
such that P̃z(t) := P ((1− t)z0+ tz). Then, we have that P̃z(0) = P (z0) and P̃z(1) = P (z). Besides,

we know that P̃z(t) ̸= 0 for all t ∈ B(0, 1 + ε), since P is zero-free in B(z0, (1 + ε)R) and

||((1− t)z0 + tz)− z0|| = |t| · ||z− z0|| ≤ |t|R < (1 + ε)R

Therefore, using Lemma 3.12, there exist A(ε) and B(ε) such that∣∣∣log P̃z(t)− T̃k,z(t)
∣∣∣ ≤ ANe−Bk

for any t ∈ B(0, 1), where k ∈ Z+ and T̃k,z is the k-th order truncation of the Taylor series of

log P̃z. In particular, for t = 1, log P̃z(1) = logP (z) and T̃k,z(1) = Tk(z), so we obtain the desired

result.

Remark. In the previous proof we claimed that T̃k,z(1) = Tk(z). This follows from a simple (but

tedious) computation. On the one hand, the multivariate Taylor series of logP is

Tk(z) =

k∑
m≥0

1

m!

q∑
i1,...,im=1

∂m logP

∂zi1 · · · ∂zim
(z) ·

m∏
j=1

(zij − z0,ij )
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On the other hand, the univariate Taylor series of log P̃z is

T̃k,z(t0) =

k∑
m≥0

tm0
m!

dm

dtm

(
logP (z0 + t(z− z0))

)
(t0)

Therefore, in order to prove that Tk(z) = T̃k,z(1), it is enough to show that

dm

dtm

(
logP (z0 + t(z− z0))

)
=

q∑
i1,...,im=1

∂m logP

∂zi1 · · · ∂zim
(z0 + t(z− z0))

m∏
j=1

(zij − z0,ij )

We can prove it by induction on m. For the base case m = 0, both sides reduce to logP (z0 + t(z−
z0)). Now, suppose that the claim is true for a certain m ≥ 0. Then,

dm+1

dtm+1

(
logP (z0 + t(z− z0))

)
=

d

dt

( q∑
i1,...,im=1

∂m logP

∂zi1 · · · ∂zim
(z0 + t(z− z0))

m∏
j=1

(zij − z0,ij )
)
=

=

q∑
i1,...,im=1

m∏
j=1

(zij − z0,ij )
q∑

im+1=1

(zim+1 − z0,im+1)
∂

∂zim+1

∂m logP

∂zi1 · · · ∂zim
(z0 + t(z− z0)) =

=

q∑
i1,...im+1=1

m+1∏
j=1

(zij − z0,ij )
∂m+1 logP

∂zi1 · · · ∂zim+1

(z0 + t(z− z0))

so the claim also holds for m+ 1.

However, we find several difficulties when adapting the argument to the multivariate case. The

foremost one is that the partition function from the Potts model does not satisfy the BIGCP

condition from [PR17], so we can not use their result to compute the first Θ(log(n/ε)) coefficients

in time poly(n/ε).

An alternative approach, that might provide better results, is to use the Monte Carlo Markov Chain

method, which is based on constructing a Markov Chain on the space of spin configurations that has

the desired distribution as its equilibrium distribution, and then proving that the mixing time of the

Markov Chain is logarithmic in the size of the state space, so the chain mixes after poly(n/ε)-many

steps. This approach gives us a very simple implementation of an FPRAS, but it is usually very

hard to prove that the chain mixes fast.

In fact, for general q-colorings it is believed that the Glauber dynamics Markov Chain should be

rapidly mixing as long as q ≥ ∆+ 2, but the currently best-known bound is q ≥ (11/6 − δ)∆, for

some constant δ > 0 [CDM+18].

The Glauber dynamics does not work for coloring with fixed color sizes, as the sizes of the colors

change arbitrarily during the execution of the algorithm. However, results for objects with fixed

sizes are not unheard of with this approach. As an example, a very recent (10th of May!) preprint

claims to have proved that a certain Markov Chain for the hard-core model that preserves the size
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of the independent set mixes rapidly for any size k ≤ (1− δ)nαc(∆) [JMPV23], matching the result

of Theorem 5.2, and resolving a conjecture from [DP23].



Bibliography

[Bar19] Alexander Barvinok. Combinatorics and complexity of partition functions. Springer,

2019.

[BG05] Andrei Bulatov and Martin Grohe. The complexity of partition functions. Theoretical

Computer Science, 348(2):148–186, 2005. Automata, Languages and Programming:

Algorithms and Complexity (ICALP-A 2004).

[Bil95] Patrick Billingsley. Probability and measure: Third edition. Wiley Series in Probability

and Statistics. 1995.

[CCL13] Jin-Yi Cai, Xi Chen, and Pinyan Lu. Graph homomorphisms with complex values: A

dichotomy theorem. SIAM Journal on Computing, 42(3):924–1029, 2013.

[CDM+18] Sitan Chen, Michelle Delcourt, Ankur Moitra, Guillem Perarnau, and Luke Postle.

Improved bounds for randomly sampling colorings via linear programming, 2018.

[CR13] Jonathan Cutler and A. J. Radcliffe. The maximum number of complete subgraphs in

a graph with given maximum degree, 2013.

[CT05] Thomas Cover and Joy Thomas. Elements of Information Theory. John Wiley Sons,

Ltd, 2005.

[DP23] Ewan Davies and Will Perkins. Approximately counting independent sets of a given

size in bounded-degree graphs, 2023.

[FK95] G.H. Fan and H.A. Kierstead. The square of paths and cycles. Journal of Combinatorial

Theory, Series B, 63(1):55–64, 1995.

[FK96] Genghua Fan and H.A Kierstead. Hamiltonian square-paths. Journal of Combinatorial

Theory, Series B, 67(2):167–182, 1996.

[FV17] Sacha Friedli and Yvan Velenik. Statistical Mechanics of Lattice Systems: A Concrete

Mathematical Introduction. Cambridge University Press, 2017.

[Gal14] David Galvin. Three tutorial lectures on entropy and counting, 2014.

65



66 BIBLIOGRAPHY

[Gil22] Justin Gilmer. A constant lower bound for the union-closed sets conjecture, 2022.

[GLP16] Subhroshekhar Ghosh, Thomas M. Liggett, and Robin Pemantle. Multivariate clt follows

from strong rayleigh property, 2016.
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