
Treball de Fi de Grau

Grau en Enginyeria en Tecnologies Industrials

 Music feature extraction and analysis
through Python

REPORT

Author: Inés Sabaté Ferrer
Supervisor: Manuel Moreno Eguílaz
Call: September 2023

Escola Tècnica Superior
d’Enginyeria Industrial de Barcelona

Pag. 2 Report

Music feature extraction and analysis through Python Pag. 3

Resum

En l'era digital, plataformes com Spotify s'han convertit en els principals canals de consum

de música, ampliant les possibilitats per analitzar i entendre la música a través de les

dades. Aquest projecte es centra en un examen exhaustiu d'un conjunt de dades obtingut

de Spotify, utilitzant Python com a eina per a l'extracció i anàlisi de dades.

L'objectiu principal es centra en la creació d'aquest conjunt de dades, emfatitzant una

àmplia varietat de cançons de diversos subgèneres. La intenció és representar tant el

panorama musical més tendenciós i popular com els nínxols, alineant-se amb el concepte

de distribució de Cua Llarga, terme popularitzat com a "Long Tail" en anglès, que destaca

el potencial de mercat de productes de nínxols amb menor popularitat.

A través de l'anàlisi, es posen de manifest patrons en l'evolució de les característiques

musicals al llarg de les dècades passades. Canvis en característiques com l'energia, el

volum, la capacitat de ball, el positivisme que desprèn una cançó i la seva correlació amb

la popularitat sorgeixen del conjunt de dades.

Paral·lelament a aquesta anàlisi, es concep un sistema de recomanació musical basat en

el contingut del conjunt de dades creat. L'objectiu és connectar cançons, especialment les

menys conegudes, amb possibles oients.

Aquest projecte ofereix perspectives beneficioses per a entusiastes de la música, científics

de dades i professionals de la indústria. Les metodologies implementades i l'anàlisi realitzat

presenten un punt de convergència de la ciència de dades i la indústria de la música en el

context digital actual.

Pag. 4 Report

Resumen

En la era digital, plataformas como Spotify se han convertido en los principales canales de

consumo de música, ampliando las posibilidades para analizar y entender la música a

través de los datos. Este proyecto se centra en un examen exhaustivo de un conjunto de

datos obtenido de Spotify, utilizando Python como herramienta para la extracción y análisis

de datos.

El objetivo principal se centra en la creación de este conjunto de datos, enfatizando una

amplia variedad de canciones de diversos subgéneros. La intención es representar tanto

el panorama musical más tendencioso y popular como los nichos, alineándose con el

concepto de distribución de Cola Larga, término popularizado como Long Tail en inglés,

que destaca el potencial de mercado de productos de nichos con menor popularidad.

A través del análisis, se evidencian patrones en la evolución de las características

musicales a lo largo de las décadas pasadas. Cambios en características como la energía,

el volumen, la capacidad de baile, el positivismo que desprende una canción y su

correlación con la popularidad surgen del conjunto de datos.

Paralelamente a este análisis, se concibe un sistema de recomendación musical basado

en el contenido del conjunto de datos creado. El objetivo es conectar canciones,

especialmente las menos conocidas, con posibles oyentes.

Este proyecto ofrece perspectivas beneficiosas para entusiastas de la música, científicos

de datos y profesionales de la industria. Las metodologías implementadas y el análisis

realizado presentan un punto de convergencia de la ciencia de datos y la industria de la

música en el contexto digital actual.

Music feature extraction and analysis through Python Pag. 5

Abstract

In the digital era, platforms like Spotify have become the primary channels of music

consumption, broadening the possibilities for analyzing and understanding music through

data. This project focuses on a comprehensive examination of a dataset sourced from

Spotify, with Python as the tool for data extraction and analysis.

The primary objective centers around the creation of this dataset, emphasizing a diverse

range of songs from various subgenres. The intention is to represent both mainstream and

niche musical landscapes, aligning with the Long Tail distribution concept, which highlights

the market potential of less popular niche products.

Through analysis, patterns in the evolution of musical features over past decades become

evident. Shifts in features such as energy, loudness, danceability, and valence and their

correlation with popularity emerge from the dataset.

Parallel to this analysis is the conceptualization of a music recommendation system based

on the content of the data set. The aim is to connect tracks, especially lesser-known ones,

with potential listeners.

This project provides insights beneficial for music enthusiasts, data scientists, and industry

professionals. The methodologies and analyses present a convergence of data science

and the music industry in today's digital context.

Pag. 6 Report

Music feature extraction and analysis through Python Pag. 7

Contents

RESUM __ 3

RESUMEN ___ 4

ABSTRACT ___ 5

CONTENTS ___ 7

ABBREVIATIONS AND SYMBOLS _____________________________ 10

LIST OF FIGURES __ 11

LIST OF TABLES ___ 13

1. INTRODUCTION __ 16

1.1. Motivation ... 16

1.1.1. The Long Tail Economy .. 16

1.1.2. From hits to niches: why MRS matter.. 18

1.2. Scope ... 18

1.3. Prerequisites .. 19

1.4. Objectives .. 20

2. THEORETICAL BACKGROUND ___________________________ 21

2.1. CRISP-DM Methodology ... 21

2.2. Recommendation Systems Fundamentals .. 27

2.2.1. Knowledge Source and objects ... 27

2.2.2. Recommendation Techniques .. 27

2.2.2.1. Collaborative filtering .. 28

2.2.2.2. Content-based systems .. 29

2.2.2.3. Hybrid Systems .. 31

2.2.2.4. Example of the hybrid approach ... 31

2.3. Data Quality ... 31

2.3.1. Rules and dimensions ... 32

2.3.2. Data Profiles.. 33

2.3.3. Data Quality in Machine learning .. 33

2.4. State of the Art ... 34

2.4.1. Recommendations in the music domain ... 34

2.4.2. Artist Recommendation ... 35

2.4.3. Playlist Generation .. 36

2.4.4. The role of music feature extraction today... 37

2.4.5. Popular algorithms used in music recommendation engines. 38

Pag. 8 Report

2.4.6. Clustering: visualization and evaluation methods .. 39

2.4.6.1. Data projection ... 39

2.4.7. Spotify Web API .. 39

2.4.7.1. Concepts .. 39

2.4.7.2. Access Methods ... 41

3. METHODOLOGY AND EQUIPMENT (O EXPERIMENTAL) ______ 44

3.1. Tools, Libraries, and packages .. 44

3.1.1. Code Editor ... 44

3.1.2. Libraries and packages ... 44

3.2. Data Collection ... 45

3.2.1. Source of Data .. 46

3.2.2. Feature Extraction ... 48

3.2.2.1. Functions .. 48

3.2.2.2. Methodology ... 49

3.2.2.3. Features ... 51

3.3. Data Understanding ... 53

3.3.1. Description of the data .. 53

3.3.1.1. Dimensions and data types .. 53

3.3.1.2. Descriptive Statistics .. 55

3.3.1.3. Observations .. 60

3.3.2. Data Quality verification .. 61

3.3.3. Exploratory Data Analysis (EDA) .. 62

3.3.3.1. Correlation of features .. 62

3.3.3.2. Evolution over time ... 67

3.4. Data preparation .. 69

3.5. Modeling .. 69

3.5.1. Data Scaling .. 70

3.5.2. Data Projection .. 71

3.5.3. Clustering .. 71

3.5.3.1. DBSCAN .. 71

3.5.3.2. K-Means ... 73

3.5.3.3. Model Selection .. 76

3.5.4. Music Recommender .. 76

4. RESULTS AND DISCUSSION _____________________________ 79

Music feature extraction and analysis through Python Pag. 9

5. PLANNING __ 82

6. ECONOMIC ASSESSMENT _______________________________ 83

7. ENVIRONMENTAL ASSESSMENT _________________________ 85

8. SOCIAL AND GENDER EQUALITY ASSESSMENT ____________ 87

9. CONCLUSIONS __ 89

10. BIBLIOGRAPHY __ 90

References .. 90

Pag. 10 Report

Abbreviations and Symbols

API: Application Program Interface

CB: Content-Based

CF: Collaborative filtering

ML: Machine learning

MRS: Music Recommendation System

RS: Recommendation System

WCSS: Within-Cluster Sum of Squares

Music feature extraction and analysis through Python Pag. 11

List of Figures

Figure 1. The Long Tail Economy. [Source: own elaboration] 17

Figure 2. CRISP-DM model diagram [4]. 21

Figure 3. Illustrates the Matrix factorization technique [Source: own elaboration]. 28

Figure 4 Client Credentials Workflow [31]. 42

Figure 5. Authorization Code Workflow [31]. 42

Figure 6. Application created to request authorization to access data. 46

Figure 7. Credentials provided by the application. 47

Figure 8. Architecture of requests from the web app to the APIs. [Source: own elaboration]

 47

Figure 9. Connection to my Spotify account. 48

Figure 10. Boxplot of danceability, energy, acousticness, Instrumentalness, liveness, and

valence. 58

Figure 11. Boxplot of tempo. 59

Figure 12. Boxplot of loudness. 59

Figure 13. Boxplot of popularity. 60

Figure 14. Scatter plot and histograms of the features. 63

Figure 15. Scatter plot and histograms of the most popular songs. 64

Figure 16. Scatter plot and histograms of the least popular songs. 65

Figure 17. Evolution of audio features over time. 67

Figure 18. Average music duration over the years. 68

Figure 19. 2D Projection of the data. 71

Figure 20. Nearest Neighbors distances. 72

Figure 21. Clustering with DBSCAN. 73

Figure 22. K-Means scores. 74

Pag. 12 Report

Figure 23. Screenshot of the scores for the computed values. 75

Figure 24. Clustering with K-Means. 75

Figure 25. Window to introduce a seed song in Visual Studio Code. 77

Figure 26. Recommended songs given two seed songs. 78

Figure 27. Gantt Chart. 82

Music feature extraction and analysis through Python Pag. 13

List of Tables

Table 1. Comparison of CF and CB systems . 30

Table 2. Data Quality dimensions. 32

Table 3. Key concepts of the Spotify Web API [30]. 40

Table 4. Subgenres searched to create genre-specific datasets. 50

Table 5. Description of features [31]. 51

Table 6. Number of samples in each dataset. 53

Table 7. Data types in the raw datasets. 54

Table 8. Number of null values in each raw dataset. 55

Table 9. Descriptive statistics of the dataset. 56

Table 10. Top ten artists contributing to the dataset. 61

Table 11. Valid values for each feature. 61

Table 12. Clustering scores comparison. 76

Table 14. Overall costs of the project. 84

Pag. 14 Report

Music feature extraction and analysis through Python Pag. 15

Pag. 16 Report

1. Introduction

1.1. Motivation

In the recent past, the tracking of the best-selling products was a national obsession [1].

For decades, our culture has pursued – and competed for- achieving massive popularity.

In this context, the focus of our culture and economy was on a relatively small number of

mainstream products at the high end of the demand curve.

The music industry is a great example of thin scene. In the past decades, the vast majority

of music consumers were exposed to a few well-known artists, while smaller bands

struggled to gain visibility and reach audiences. The number of records promoted through

radio stations was limited, and music production executives strived to identify and promote

the next big hit. The market was shaped around a "hit-driven" business model.

The rise of digital technologies and the internet has led to a significant shift in the way we

consume and distribute goods and services, leading to the emergence of what is known as

the “Long Tail of Retail”. This term was introduced by Chris Anderson, the editor-in-chief of

Wired Magazine [2].

In his book [1], Chris Anderson argues that the Long Tail is the new paradigm of the digital

economy. This chapter aims to provide an overview of the Long Tail Economy and how it

has affected the music industry, specifically in the context of music streaming services such

as Spotify and Apple Music.

1.1.1. The Long Tail Economy

The Long Tail is a term used to describe the shift from a traditional model of selling a few

blockbuster products to selling many niche products. The Long Tail is made up of the many

small and unique niches that make up the bulk of the market, as opposed to the popular

and well-known products that make up the head of the market.

Music feature extraction and analysis through Python Pag. 17

Figure 1. The Long Tail Economy. [Source: own elaboration]

One of the key drivers of the Long Tail is the low cost of distribution made possible by digital

technologies. With the rise of the internet, it has become much easier and cheaper to

distribute digital goods such as music, movies, and books. This has led to an explosion in

the number of available products, and it has allowed consumers to discover and access a

much wider range of products than ever before.

How are niche Markets different from conventional Markets?

One of the most frequent mistakes when addressing the lower end of the Long Tail, is

assuming– it is full of low-quality products; bad songs in the context of music. The truth is

that not all masterpieces sell well, numerous sophisticated and finely crafted songs can be

found in the Long Tail too.

First all, let us acknowledge reality: the lower end of the Long Tail is indeed full of

substandard products. Nevertheless, it also contains multiple undistinguished,

sophisticated, and well-crafted works.

According to The Sturgeon Law1, “at least 90% of almost anything you can think of, is crud.

This can be said about books, movies, and songs. The reason why we do not realize this

is that most products we see are likely to have been filtered or selected by retail distributors

[…]” [1].

Traditionally, the products we consumed were distributed by retail stores, where the

proportion of good and bad is important. In traditional stores, the space is limited and the

space occupied by an article eliminates the space of another. In other words, the visibility

of a particular CD hides the others.

On the internet however, with an unlimited exposure space, the situation is different. There

are billions of bad pages, but they do not represent the same kind of problem that billions

1 “A humorous aphorism that holds that ninety percent of any realm of endeavor-or more

generally-of everything is worthless […].”

Pag. 18 Report

of bad CD’s could cause on the selves of a local CDs and records Store. On the web,

inventory is “non-competitive”, actually this is not a problem, just better filters are needed.

The Long Tail has significant implications for businesses and consumers.

For businesses, the Long Tail means that they can tap into new and previously untapped

markets, and they can generate revenue from multiple niche products that would have been

too expensive to sell using traditional methods. For consumers, the Long Tail means that

they have access to a much wider range of products and they can find products that cater

to their specific tastes and interests.

1.1.2. From hits to niches: why MRS matter.

The music industry has been significantly impacted by the Long Tail, specifically in the

context of music streaming services such as Spotify and Apple Music. These services have

disrupted the traditional model of music distribution by providing consumers with access to

a vast library of music at a low cost. This has allowed consumers to discover and access a

much wider range of music than ever before, including niche genres and artists that would

have been difficult to find using traditional methods.

Music streaming services have also had a significant impact on the business side of the

music industry. In the past, the traditional model of music distribution was dominated by a

few large record labels who controlled most of the market. However, the rise of music

streaming services has given independent artists and labels the opportunity to reach a wider

audience and generate revenue from multiple niche products.

All things considered, simply offering more variety does not shift consumer’s behavior by

itself. Consumers must be given ways to find the niches – music genres for example- that

suit their particular interest. Recommender systems are effective at doing this, driving

demand down the Tail.

1.2. Scope

Stemming the motivation of this project (Read chapter 1.1) to cater music niches and the

value of music features in MRS (hence, in the music industry), this project is primarily

focused around the extraction, analysis, and utilization of musical features from data

retrieved from Spotify using Python. This entails the construction of a dataset, an exhaustive

examination of musical evolution across different time frames, and the development of a

Music feature extraction and analysis through Python Pag. 19

content-based recommendation system. The implementation of the latter activities is

restricted to certain aspects, which are as follows:

• Data is exclusively obtained from the Spotify API, performing searches based on

music genres and subgenres. For this reason, the data set may not encompass

entirely music trends or the global music scene.

• The data set is solely based on the content of the songs.

• The usage of Python programming language and the utilized libraries is based on

existing methodologies, techniques, and tools.

• The sociological aspects behind the evolution of musical tastes and popularity are

beyond this study.

• The creation of new algorithms or techniques is beyond the scope of this project.

• The recommendation engine is based on the content of seed songs, without

extending to other forms of music recommendation such as the activity of users.

It is important to note that the data utilized in the project is limited to the veracity of the

information retrieved from Spotify. This research is performed under the assumption that

the metrics and features assigned by Spotify to each song are reliable.

1.3. Prerequisites

To conduct this project, certain prerequisites should be met. These requirements

encompass software, hardware, and knowledge-based skills. This section provides a

comprehensive breakdown of the essential prerequisites.

Hardware and Software requirements:

• Internet connection: a stable internet connection is mandatory for data retrieval from

Spotify’s API. Data retrieval can take hours, and an interruption of the internet

connection interrupts the retrieval.

• Computer system: a reliable computer system with sufficient memory and

processing capacity to process and store large csv files is crucial.

• Python Environment: having Python 3 installed is the primary software prerequisite,

given the project's dependency on Python for data extraction, analysis, and model

development.

• Spotify Developer Account: a developer account that provides access to Spotify's

Web API is essential to enable data retrieval.

• Python libraries: installing and utilizing specific libraries within the Python

environment is crucial throughout the project.

Knowledge and skills:

Pag. 20 Report

• Python Programming: the entire data pipeline, from extraction to analysis and

recommendation engine development, is grounded in Python.

• Data Analysis: an understanding of data analysis techniques and statistical

methods is key for drawing insights from the dataset.

• Music Understanding: a basic knowledge of musical features (for instance,

acousticness, key, mode) will help in contextualizing and interpreting the data.

• Machine Learning: familiarity with basic machine learning concepts and algorithms,

especially those related to recommendation systems.

1.4. Objectives

Essentially, the objective of this project is the development and analysis of a data set

obtained from Spotify utilizing Python. The purpose of retrieving data and building a dataset

is to examine its features and use the gathered data to construct a music recommendation

system.

Once the main objective is stablished, it can be subdivided into different secondary, and

more specific, objectives thar focus more on the procedure and methodology of the project.

The detailed objectives are as follows:

• Creation of a dataset from scratch: Develop a dataset through information extraction

from Spotify. This dataset will serve as the foundation for subsequent analyses, and

is intended to encompass songs from as many subgenres as possible,

acknowledging niches and the “Long Tail” distribution of the market. (Read chapter

1.1.1)

• Analysis of music features: Utilize Python libraries for the examination of musical

evolution over past decades. Investigate trends and significant shifts over periods.

• Correlation between features and popularity: Investigate the correlation between

specific features and popularity to discern if this relationship has shifted over

periods. Identify characteristics, if present, that have influenced popularity through

time.

• Construction of a music recommendation system: Utilize the data from the

established dataset to develop a recommendation engine based on content. Upon

input of certain seed songs, provide song suggestions of similar nature.

Music feature extraction and analysis through Python Pag. 21

2. Theoretical background

2.1. CRISP-DM Methodology

CRISP-DM stands for "Cross Industry Standard Process for Data Mining". The CRISP-DM

methodology can be viewed as “the canonical approach from which most of the subsequent

proposals have evolved (both for data mining and data science process models).

The goal methodology is to transform specific situations (case-specific scenarios) and

broad patterns or tendencies (general behaviors) into a more universal and applicable

approach that can be used across different domains or industries.

As a process model, CRISP-DM provides an overview of the data mining life cycle [3]. The

life cycle model consists of six phases with arrows indicating the most important and

frequent dependencies between phases. The sequence of the phases is not strict. In fact,

most projects move back and forth between phases as necessary. The six steps that

comprise the model are shown in Figure 2..

Figure 2. CRISP-DM model diagram [4].

Pag. 22 Report

Step 1. Business Understanding: the first step involves fully understanding the business

context and data mining goals. Taking time to explore what is expected to be gained from

data mining is crucial. The objective of this step is to get to know the reasons for investing

effort in data mining. To do so, the IBM Documentation [3] suggests the following

considerations:

I. Determine objectives: gain as much insight as possible into de business goal

for data mining.

a. Gather background information.

b. Document specific objectives.

II. Success criteria: each objective listed in Step I should have a correlative

criterion for success.

III. Assessing the situation: evaluate the current situation and resources.

a. Determine the data sources.

b. Identify the biggest risk factors.

c. Make a contingency plan for each risk.

Step 2. Data Understanding: the second step entails exploring the available data to better

understand its characteristics and composition. Looking closely at the available data is

critical to avoid unexpected problems during data preparation. This step is comprised of

the following sections:

I. Collecting data: this section not only includes gathering information from

different resources, but also considering which attributes of the database seem

more promising, or which appear to be irrelevant and could be excluded.

a. Existing Data: existing data can include transactional data, survey data,

web logs, and more. One should always assess whether this data is

enough to meet the project’s requirements, and if there is enough data

to draw generalized conclusions.

b. If the existing data is not enough, consider supplementary data such as

purchasing demographics from an organization.

c. If neither of the latter sources provide sufficient information, conduct

surveys, or track additional data.

II. Describing data: there are various methods to depict data. Most of them focus

on what is the amount of data available, and the condition of the data 2. Some

key characteristics to address when describing data are:

2 “Data quality assesses your data against standard technical performance measures such as

completeness, accuracy, timeliness, validity, and uniqueness. These measures can be applied to

any dataset at any company regardless of industry. Data condition includes an assessment of how

Music feature extraction and analysis through Python Pag. 23

a. Amount of data: it is important to bear in mind that large datasets can

improve the accuracy, but can also lengthen processing times. If the

dataset is too large, it might be more effective to work with smaller

subsets of data. When addressing the amount of data, one should

consider both the number of records as well as fields (attributes).

b. Data types: Data types: Paying attention to value types can cut off

problems during later phases of the project. Data can take multiple

formats; in Python, the main data types are numerical (int or float),

categorical (strings), Boolean (True/False), and date types.

c. Coding Schemes3: note if the data contains any conflicting schemes.

III. Exploring the data: exploring the data involves using charts, tables, and plots to gain

a better understanding of the data [3]. This analysis can help address the goal

constructed in Step I, and formulate new hypothesis. In addition, exploration can

suggest data transformation tasks that need to be done during data preparation.

IV. Verifying Data Quality: verifying data quality is critical, especially when the data is

meant to be merged, or obtained from external data sources. Quality assurance is

often discipline-specific, and expectations and standards may vary [4], “there are

two main axes for evaluating data quality: (1) the integrity of data itself, and (2) the

fit or appropriateness of the data with respect to a particular question or problem.”

[5] (see Section 2.3).

Step 3. Data Preparation: this is one of the most time-consuming phases of a data mining

project. It is estimated that data preparation can take up to 70% of a project’s time and

effort. Data preparation typically includes choosing subsets of data, sorting the data for

modeling, deriving new attributes, and dealing with missing data [4].

I. Selecting data: It involves selecting items (rows) to include or exclude from the

dataset, as well as selecting attributes or characteristics (columns). This includes

making decisions about which features to include in the subsequent analysis. It is

important to document the rationale for including or excluding data.

the data is used, the value it brings to the business, and the systems that support its collection,

maintenance, and usage.” [3].

3 In the context of data analysis, a coding scheme refers to a structured set of categories or codes

that are used systematically to classify and organize qualitative data. It is employed as a means to

analyze categorical data, facilitating the process of identifying patterns, or relevant information

within the data. Each code within the scheme represents a specific concept or range of values, and

data analysts assign these codes to relevant segments of the data during the coding process. This

approach is ideal for working with large datasets.

Pag. 24 Report

II. Cleaning data: data at an entry point is not likely to be clean [5]. Raw data usually

contains omissions, error messages, extreme values, and incompatible formats.

With the right approach to data cleaning, the latter issues can be mitigated. Some

of the common ways data needs to be cleaned are the following:

a. Identifying and removing outliers (see Section 2.3).

b. Missing data: In many cases missing fields do not pose a problem.

However, there are instances when all fields must have a corresponding

value. In such cases, missing values can be approximated using

techniques such as interpolation, extrapolation, or labeling similar data

with categories. Alternatively, the incomplete records or features can be

removed from the dataset.

c. Time zone conversion: “Comparing timestamps to one another is

possible only with some standard of truth. Often, this is Coordinated

Universal Time (UTC). UTC is not a time zone, but a time standard

(countries using Greenwich Mean Time [GMT] happen to always agree

with UTC, but they do not use UTC)” [7].

d. Date format consistency: “any date and time format string that contains

more than one character, including white space, is interpreted as a

custom date and time format string” [8]. In order to convert dates into

datetime objects4, dates should be formatted to standard formats.

e. Coding inconsistencies: in case there were coding schemes detected in

the point II.c, it is crucial to verify their consistency across the entire

dataset and fix any inconsistencies [3].

III. Integrating Data: frequently, data is segregated into multiple datasets, or data

sources. To integrate all the information using Python, the Pandas library offers

multiple tools for combining datasets using set5 logic for indexes and relational

algebra for join/merge-type operations.

IV. Formatting data: before building a model, it is important to check if certain

techniques require specific data formatting or ordering [3].

4 “The datetime module in Python provides classes for manipulating dates and times” [9]. The name

datetime refers to both the datetime library and to one of the Python datatypes.

5 In Python, a set is a collection of unique data. That is, elements of a set cannot be duplicate nor

mutable [10].

Music feature extraction and analysis through Python Pag. 25

Step 4. Modeling 6: At this stage, the effort dedicated in the latter phases begins to pay off.

Modeling usually involves conducting multiple iterations. It is rare to find a solution to the

problem posed in step 1 with a single model and running a single execution. Typically, the

first executions will reveal new parameter adjustments, or requirements that will imply

reverting back to the data preparation phase.

I. Selecting modeling techniques: there are multiple algorithms existing to solve

different problem tasks, but one cannot expect to achieve good performance

without pondering on the different existing machine learning algorithms. “Each

classification algorithm has its own biases, and no single algorithm enjoys

superiority among others if we do not make any assumptions about the task” 0.

In practice, the selection is typically made based on the following

considerations:

a. The number of features or samples in the dataset.

b. The amount of noise in the dataset.

c. Whether the classes are linearly separable7 or not.

d. Model requirements such as specific data types.

e. Whether the model requires splitting the data into training and testing

subsets or not.

f. The level of data quality required by the model, the granularity of the

dataset, and expected accuracy of the results 8.

II. Testing design: Testing design involves exploring the available techniques for

evaluating the model’s performance, and defining a success criterion.

Step 5. Evaluation: evaluation involves assessing the outcomes to confirm and justify the

appropriateness of the model, as well as identifying potential issues that may hinder the

functionality of the model. This phase can be broken into three main tasks [11]:

6 Building mathematical models to help understand data. These models are given parameters that

can be fitted to observed data. Once the model is fit to the observed data, it can be used to predict

aspects of newly observed data.

7 A class is separable if there is a classifier whose decision boundary separates the positive objects

from the negative ones. If such a decision boundary is a linear function (straight line through the

plane containing two variables) of the features, the classes are linearly separable. In this scenario,

the points on the same side of the boundary line fall in the same group.

8 Selecting the model based on the granularity of the data is crucial. The level of detail of a model

must match the granularity of the data. The same applies to the expected accuracy of the outcome.

If the quality of the data is not the best, using a les granular model will provide more reliable results.

Pag. 26 Report

I. Evaluating results: assessing the degree to which the results meet the objectives of

the project.

II. Reviewing the process: reviewing each of the previous phases in order to disclose

important factors that may have been overlooked, or identify data quality issues.

This task includes summarizing the process ad highlight activities that have been

missed or could be improved.

III. Determining next steps: this task involves creating a list of possible next steps to

move forward with the project. Each step should be accompanied by a description

an explanation of the pros and cons.

Step 6. Deployment: deployment refers to the process of taking the solutions generated in

the modeling phase and putting them into action. Generally, the deployment phase involves

three types of activities: (1) planning and monitoring the deployment of results, (2) planning

and monitoring maintenance, and (3) completing wrap-up tasks such as producing a final

report and conducting a project review.

I. Planning and monitoring the deployment of results: to plan a comprehensive deploy

of results, one should summarize the results of the project, and determine which

findings should be presented. Additionally, create a step-by-step guide for

deployment and integration of each of the deployable models.

II. Planning monitoring and maintenance: this involves ensuring that the solutions are

functioning correctly, fixing any issues that arise, and making any necessary

updates to the solutions.

III. Producing a final report: the report should include most of the following points [3]:

a. Description of the original problem.

b. Description of the process and conducted tasks.

c. Costs of the project.

d. Deviations from the original plan.

e. A summary of the results.

f. An overview of the proposed plan for development.

g. Recommendations for further tasks, including interesting leads

discovered during exploration and modelling.

Music feature extraction and analysis through Python Pag. 27

2.2. Recommendation Systems Fundamentals

2.2.1. Knowledge Source and objects

There are different approaches to build a recommendation system (RS). Therefore, the

data used by these systems can be very diverse. Some of these techniques use very simple

data such as user ratings for items, known as knowledge poor techniques. Other techniques

rely on ontological descriptions of the data, or relations and interactions between users,

these are known as knowledge-dependent techniques [13].

Regardless of the type of involved knowledge source, there are three kinds of objects [14]:

• Items: items are the objects that the system recommends. Generally, a

recommender system focuses on only one item (e. g. songs).

• Users: users interact with the system, providing information about their

preferences and needs. This information is used to generate personalized

recommendations that match the user's interests and improve their overall

experience with the system. Music recommendation systems (MRS) exploit a

range of information about the users, such as ratings, demographics, and past

behavior, may be used depending on the recommendation technique employed

by the system.

• Transactions: in recommender systems, transactions are recorded interactions

between a user and the system that store important information used by the

MRS algorithm. These interactions can include the item selected by the user,

the context of the recommendation, and any explicit feedback provided by the

user, such as ratings. The most common form of transaction data is ratings,

which can be collected either explicitly or implicitly.

2.2.2. Recommendation Techniques

Among the approaches commonly used by recommender systems, six main ones can be

mentioned [15]:

I. Content-Based Systems, which recommends items that are similar to the ones that

one user liked in the past, based on the features associated with the compared

item.

II. Collaborative Filtering, based on ratings made by a population and making a

consensus of them.

Pag. 28 Report

III. Demographic Filtering, based on user characteristics such as gender, country,

language, or age.

IV. Community-Based, used in social networks, relying on user's friends' ratings to

make recommendations.

V. Knowledge-Based, systems that use information provided by the user to give a

ranking.

VI. Hybrid Filtering, which combines two or more of the above-mentioned types of

recommender systems.

In the context of music RSs, there are three primary methods for generating personalized

recommendations for users: collaborative filtering, content-based, and the hybrid approach.

2.2.2.1. Collaborative filtering

Collaborative filtering (CF) systems are built on the basis of user's overlapping preferences

and ratings of songs. In this case, the system provides reasonable predictions of a user’s

preferences for an item that the user has not yet rated. The fundamental assumption is that

users that act similarly have the same preferences. Netflix’s “Movies You Might Like” list,

and the “Weekly Discovery” section in Spotify, are successful examples of CF systems [16].

There are two important approaches when implementing CF systems:

The first family of methods is the matrix factorization technique, which involves storing all

data in a Users-Songs matrix. Through implicit or explicit feedback, values are assigned in

the Users/Songs matrix. For example, if a user listens to a song, the value is 1, otherwise,

it is 0. If the user rates a song, the value is the given number of stars. This results in a large

matrix that can be reduced by Spotify using matrix factorization to approximate the matrix

by an inner product of two smaller matrices. This approach results in two types of vectors

for each listener - a user vector 𝑋 and a song-vector 𝑌.

Figure 3. Illustrates the Matrix factorization technique equation [Source: own elaboration].

Once vectors 𝑋, and 𝑌 are calculated, the system will find similarities by comparing either:

Music feature extraction and analysis through Python Pag. 29

• User-User similarity: Finding users with similar tastes by comparing their

vectors.

• Item-item similarity: comparing the songs vectors with others and finding similar

𝑌 compared to the actual record of songs of a particular user.

There is a second approach called model-based: the goal is to predict the user’s rating for

missing items using machine learning models [16].

The key advantages of collaborative filtering are that it does not require extracting features

from the items, so there is no need for studying the metadata of the files, nor for having in-

depth knowledge of music and audio signaling. Moreover, this model brings serendipity9 to

the system, which is a desirable property in RSs as it can increase user engagement and

satisfaction.

Collaborative filtering has three major drawbacks. A common problem in CF is cold start.

Cold start refers to the situation where the recommendation system faces a new user or a

new item for which there is not enough data available to make accurate recommendations.

There are two types of cold start problems: new user and new item.

The new user problem occurs when a new user joins the system. Until the system collects

enough data about the user’s behavior, it cannot make personalized recommendations.

The same happens when a new item is introduced in the system. If there is not enough

data about the item, the system cannot rely on user data to make recommendations, and it

may use content-based features or other external data sources to make recommendations.

Another issue is scalability, as a vast number of users and items require significant

computing resources. The last limitation of CF is data sparsity and high dimensionality.

When the number of users is relatively large, the main problem is the low coverage of the

user’s ratings among the items. It is common to have a sparse user-item matrix of 1% (or

even less) coverage.

2.2.2.2. Content-based systems

Content-based (CB) systems rely on the similarity between particular items, such as songs.

A user of a streaming music service might provide feedback on songs they like or dislike

and create playlists. The system can analyze features extracted from the song and

compares them with other songs to suggest similar items. These systems assume that if a

user likes a particular song, they are likely to enjoy other songs that share similar

9 The property of a recommendation that is novel, surprising, and valuable [7].

Pag. 30 Report

characteristics. The CB method does not require any feedback from the listener, as

predictions are only based on sound similarity, deduced from the features extracted from

previously listened songs.

To determine similarities, features that best describe the music are extracted, and Machine

Learning algorithms recommend items that are closest to what the user already likes. To

create item profiles, it is necessary to extract features from each item. Additionally, user

profiles that include both their preferences and history on the platform are required. These

profiles consist of a list of weights, where each weight corresponds to a selected feature's

importance.

CB methods have its roots in the information retrieval field, where feature extraction is

performed.

A positive aspect of content-based recommendations is that new and unknown music can

be recommended just as easily as popular or timeless music. This helps new artists with a

limited number of views to be discovered, and users find songs at the bottom of the Long

Tail (see chapter 2.4.2).

The issue of the cold start regarding new items can be avoided because new items can be

recommended immediately, unlike collaborative filtering methods that require integration

time.

A negative aspect of this method is that it tends to over-specialize, limiting diversity of the

recommendations. Additionally, new users cannot receive immediate recommendations,

and they must listen and evaluate a certain number of songs before receiving

recommendations, this issue is called new user cold start.

Table 1. Comparison of CF and CB systems .

 Collaborative filtering Content-based

Advantages • No need for extraction and

analysis of audio features.

• Serendipity

• More likely to recommend

unknown tracks.

• New Item cold start is avoided.

Negative

points

• New user cold start

• New item cold start

• Scalability

• Sparsity

• New user cold start: new users

must evaluate a certain number

of songs before receiving

relevant recommendations.

Music feature extraction and analysis through Python Pag. 31

• Limits diversity: CB models

tend to over-specialize.

2.2.2.3. Hybrid Systems

A hybrid recommendation system can be created by combining the previous stand-alone

methods. This approach aims to mitigate the issues of cold start and sparsity.

There are several ways to implement a hybrid system such as combining all

recommendation systems into one, keeping multiple systems separate and assigning

weights to them, or allowing the ability to switch between systems. Additionally, results from

one system can be extracted and used as input for the next.

2.2.2.4. Example of the hybrid approach

Imagine a team is designing a music recommendation system for a streaming service, using

both collaborative filtering and content-based filtering to make recommendations to users.

To start, they collect data on the music listened by each user, as well as data on the

characteristics of each song (genre, tempo, instrumentation, ...). By using collaborative

filtering, the system can recommend songs to users based on the listening history of other

users who have similar preferences.

However, since collaborative filtering can suffer from cold start problems for new users, they

also incorporate content-based filtering. Adding this method allows the system to

recommend songs based on the characteristics of the songs that the user has previously

listened to and liked.

This is the scenario of a hybrid approach, where they assign weights to each of the two

methods based on how well they perform for each individual user. For example, if a user

has a lot of data available in their listening history, the system will give more weight to

collaborative filtering. On the other hand, if a user has a smaller listening history, the system

may give more weight to content-based filtering.

This hybrid approach allows the system to take advantage of the strengths of both

collaborative and content-based filtering, while also addressing their respective

weaknesses. By combining the two methods, the system can provide more personalized

and accurate recommendations to users.

2.3. Data Quality

Data quality is often defined as a measurement of the degree to which data is fit for purpose.

However, it is a multifaceted concept that encompasses various aspects [17]. There are

Pag. 32 Report

over 60 dimensions identified in the data management literature [18]. According to [19],

there are six essential dimensions that determine the quality of a dataset: accuracy,

completeness, consistency, reliability, and relevance.

2.3.1. Rules and dimensions

A data quality rule serves as a standardized criterion that assesses the accuracy, integrity,

and compliance of data with defined business requirements. These rules act as quality

checkpoints, evaluating data to ensure it aligns with predetermined expectations. Data

quality rules can operate at two levels: dataset and feature.

Feature level rules focus on validating individual features and characteristics within a

dataset. These rules are generally applied to validate the data type, format, range, or

distribution of a particular feature. For example, a rule may specify that a certain field should

contain only integer values between a given range of numbers, or require dates to appear

in a day/month/year format.

Dataset level rules address the overall quality of the data set. They are used to check for

accuracy, completeness, and consistency among features in the dataset. These rules can

also be used to identify missing values or duplication of records that can lead to incorrect

analysis.

Table 2 provides a brief description of the six dimensions of data quality and how rules

address each of them at dataset, and feature levels.

Table 2. Data Quality dimensions.

Dimension Dataset Level Feature Level

Completeness Refers to the extent to which all

expected data records are

present in the dataset.

Focuses on whether specific

attributes or fields within a record

have non-null, valid values [20].

Timeliness Represents the degree to which

data is made available within a

specified timeframe.

Examines whether individual

attributes are populated or

updated within defined

timeframes.

Validity Measures the extent to which

data conforms to predefined

standards or rules.

Focuses on ensuring specific

attribute values adhere to

predefined business rules or

constraints.

Music feature extraction and analysis through Python Pag. 33

Consistency Addresses the agreement

between different sources of data

or within datasets over time.

Ensures consistency of data

values across related attributes or

tables to avoid contradictions or

conflicts.

Accuracy Reflects how closely data values

align with the actual attributes or

events they represent.

Focuses on verifying attribute

values against external, trusted

sources to validate their

correctness.

Uniqueness Addresses the presence of

duplicate records or values within

a dataset, ensuring

distinctiveness.

Ensures unique values for specific

attributes to avoid redundancies

and data ambiguities.

2.3.2. Data Profiles

“Data profiling is the activity of running statistics on a data set to better understand the data

and field dependencies” [21]. Examining the profile of a dataset is often performed at the

earliest stage of a project. It involves examining the data to gain insights into its properties,

patterns, and potential issues. Understanding the profile of a dataset is essential to find

anomalies, identify data quality issues, and write useful quality rules.

Profiling a dataset or a column includes measuring the percentage of populated records,

the number of null values, identifying valid values, data types, and formats [22].

2.3.3. Data Quality in Machine learning

“The quality of the data and the amount of useful information that it contains are key factors

that determine how well a machine learning algorithm can learn” [23]. Therefore, it is critical

to examine and preprocess a dataset before feeding the learning algorithm.

The main aspects to focus when addressing the quality of a dataset for a machine learning

algorithm are (1) removing or imputing10 missing values, (2) getting categorical data into

shape for machine learning algorithms, and (3) selecting relevant features for the model

construction [23].

10 Interpolation technique to estimate the missing value by the mean value of the entire feature

column.

Pag. 34 Report

2.4. State of the Art

2.4.1. Recommendations in the music domain

This section approaches recommendation systems in the music domain exclusively.

The main task of music recommendation systems (MRS) is to suggest interesting music,

which usually consists of a mix of known and unknown artists or tracks. Given a user profile,

most of the work related MRS focuses on:

I. Artist Recommendation: Presenting a curated list of recommended artists or bands

based on a user's listening history or preferences.

This type of recommendation is based on the similarity between the user's listening

history and the characteristics of the recommended artists or bands.

Examples of Artist Recommendation tools:

• Spotify's "Discover Weekly" feature, which uses collaborative filtering to

recommend new artists and songs based on a user listening history and

preferences.

• Tidal's "My Mix" feature, which uses a combination of collaborative

filtering and content-based filtering to recommend new artists and songs

based on a user's listening history, preferred genres, and favorite artists.

I. Generating personalized playlists, either for individual users or for a group of users

with similar tastes.

This type of recommendation is more specific than the first scenario, as it involves

selecting specific songs that the user may like and arranging them in a playlist

format. The system may use information about the user's listening history,

preferences, and contextual factors to generate the playlist, such as time of day or

activity being performed while listening to the playlist. Technologies used in this

scenario:

• Apple Music's "New Music Mix" feature, which generates a personalized

playlist for individual users based on their listening history and

preferences, as well as the latest music releases.

Music feature extraction and analysis through Python Pag. 35

• JQBX.fm, which allows users to create virtual rooms where they can

listen to music together and generate personalized playlists based on

the collective listening history and preferences of the group.

There are other interesting scenarios. The following list includes a brief description and the

example of a technology used in each use case.

I. Providing recommendations for new songs or albums to users based on their

listening history or preferences. Spotify's "Discover Weekly" feature uses

collaborative filtering to recommend new songs or albums to users based on their

listening history and preferences.

II. Facilitating music discovery by suggesting songs or artists that are similar to those

that a user has already enjoyed. Pandora's "Music Genome Project" uses music

analysis to suggest songs or artists that are similar to those that a user has already

enjoyed.

III. Creating custom radio stations based on a user's favorite songs, artists, or genres.

Pandora's "Thumbprint Radio" creates a custom radio station based on a user's

"thumbs up" on various songs, artists, or genres.

IV. Powering intelligent group music recommendation, where a system recommends

music to a group of users based on their collective listening history or other

contextual factors. Flytrap is an example of an intelligent group music recommender

that recommends music to a group of users based on their collective listening

history and contextual factors such as location, time, and weather.

V. Supporting music search and discovery by enabling users to browse for new music

using a variety of search criteria, such as genre, era, mood, or tempo. MusicMap is

a music discovery platform that allows users to discover new music by browsing

through a map of genres and artists. The platform also allows users to search for

music based on mood, era, tempo, and other search criteria.

2.4.2. Artist Recommendation

Artist recommendation follows the user-item matching11. By matching users and items,

these engines only provide the user with a list of interesting items. However, some systems

are enriching their recommendations with the use of Really Simple Syndication12 (RRS).

11 In user-item marching, items are recommended to users based on their profiles.

12 According to [8], an RSS feed is a set of instructions residing on the computer server of a website,

which is given upon request to a subscriber’s RSS reader, or aggregator. The feed tells the reader

Pag. 36 Report

Really Simple Syndication (RSS) is a web feed format used to publish frequently updated

content, such as blog entries, news headlines, and podcasts. It allows users to subscribe

to a feed and receive new content automatically in their feed Reader [23].

RSS could be used in artist recommendation to deliver updates and new content related to

a user's favorite artists. For example, a user could subscribe to an RSS feed for an artist

they like and receive updates on new album releases, tour dates, and interviews. This could

help the user stay up-to-date on their favorite artists and discover new music

recommendations based on the related artists that are often featured in these updates.

For instance, iTunes Music Store provides an RSS feed generator, updated weekly, so

users can stay up to date with new music releases, podcasts, concert listings, and unknown

- long tail - artists.

2.4.3. Playlist Generation

In music, the terms mix and playlist refer to a collection of songs that are grouped together.

However, it is important to acknowledge their differences.

A mix is a type of playlist that is created for a specific occasion, mood, or atmosphere, and

is usually composed of songs that are mixed together seamlessly to create a continuous

flow of music. In contrast, a playlist is a collection of songs that are grouped together based

on a theme, genre, or personal preference, but the songs are played in their entirety without

being mixed.

This distinction is also acknowledgeable in the Oxford English Dictionary [24], which defines

a mix as "a sequence of recordings, typically of popular music, selected and combined by

a disc jockey or music enthusiast to create a particular mood or atmosphere," while a playlist

is defined as "a list of recordings to be played, especially as background music, in a

particular order or for a particular purpose."

With the advent of more sophisticated algorithms and the availability of vast amounts of

data, playlist generation has evolved significantly in the recent years. There are several

ways to automatically generate playlists:

Shuffle/random playlists: Shuffling is still a common way to generate playlists, but studies

have shown that it has limitations in terms of providing personalized recommendations.

While it can create serendipitous moments and unexpected rediscoveries, it does not take

into account the user preferences or listening habits. The shuffling method does not involve

content-based or collaborative filtering approaches as

when new material—such as a news article, a blog posting, or an audio or a video clip—has been

published on the website.

Music feature extraction and analysis through Python Pag. 37

Seed-based generation: This method involves creating a playlist based on a given seed

song or artist, where the system analyzes the characteristics of that song/artist and

generates a playlist with similar songs. This method provides a more personalized

approach than shuffling, as it considers the user musical preferences and can result in more

focused playlists. Seed-based generation recommendations are content-based, as they

analyze the features of the seed song or user profile, respectively.

Neighborhood recommendation: This method aims to find like-minded users and

recommend music based on their listening habits. The system matches users based on

their profiles and creates communities or clusters of users with similar interests. This

approach can result in more diverse and varied playlists, as users can discover new music

through their neighbors. Neighborhood recommendation is a collaborative filtering

approach, as it recommends music based on the preferences of similar users in the

neighborhood.

Rather than shuffling, music recommendation engines today rely on more advanced

algorithms that use music feature extraction, content-based and collaborative filtering

approaches, and seed-based generation. However, shuffling can still be used as a

complementary feature to these methods, providing variety and randomness to the

playlists.

2.4.4. The role of music feature extraction today

The role of music feature extraction in MRS is crucial, as it helps to identify and analyze the

underlying patterns and characteristics of a song. Due to the rise of machine learning (ML)

and deep learning algorithms, music recommendation engines have seen significant

advancements, making it possible to extract more complex features and generate more

accurate recommendations. Nowadays, Python is widely known as the go-to language for

developing music recommendation engines due to its versatility and powerful libraries.

Music feature extraction involves analyzing different aspects of a song, including its tempo,

melody, rhythm, pitch, and timbre. Traditionally, feature extraction was carried out using

hand-crafted features, where experts manually identify and extract relevant features from

the audio signal. This approach is time-consuming and may not capture all relevant

features.

ML and deep learning algorithms have changed the paradigm of feature extraction, allowing

to automatically extract a wide range of features using neural networks. The use of ML is

not essential in MRS, but they it can analyze and identify complex patterns in audio signals

that would be difficult or impossible for a human expert to detect.

Pag. 38 Report

2.4.5. Popular algorithms used in music recommendation engines.

This section provides an overview of machine learning (ML) basics in music

recommendation engines and how they are applied to feature extraction.

Clustering algorithms: “Clustering is an exploratory data analysis technique that allows us

to organize information into meaningful subgroups (clusters) without having any prior

knowledge of their group memberships. Each cluster that may arise during analysis defines

a group of objects that share a certain degree of similarity” [22]. In the context of music,

clustering algorithms can be used to group songs based on their similarity in terms of

features such as tempo, rhythm, and timbre.

▪ K-means: “clustering algorithm that aims to partition data into K clusters” [22]. The k-

means algorithm belongs to the category of prototype-based clustering. Prototype-

based clustering means that each cluster is represented by a prototype. In the context

of continuous data, the prototype is termed centroid, which is the average of all data

points in the cluster. In the context of categorical features, the prototype is known as

medoid, and is the most representative or most frequently occurring point in the cluster.

The algorithm works by iteratively assigning data points to the nearest centroid and

updating the centroid of each cluster based on the mean of the data points assigned to

it. K-means is a simple and efficient algorithm that can be used for clustering large

datasets. In music feature extraction, k-means can be used to cluster songs based on

their features, allowing for the creation of playlists or personalized recommendations

based on a user's preferred cluster [25].

▪ DBSCAN (Density-Based Spatial Clustering of Applications with Noise): commonly

used clustering algorithm in music feature extraction. DBSCAN works by grouping

together data points that are closely packed together, while also identifying points that

are outliers and do not belong to any cluster. DBSCAN is particularly useful in music

feature extraction because it can identify clusters of varying shapes and sizes, and it

does not require the user to specify the number of clusters beforehand. This makes it a

useful tool for discovering new and previously unknown patterns in music data.

Classification algorithms: such as support vector machines (SVMs) and decision trees, they

are also used in music feature extraction to identify patterns in the audio signal and classify

songs into different genres or moods based on their feature vectors.

k-Nearest Neighbors (k-NN): compares a new data point to its k closest neighbors in a

training set and assigns it to the most common class among those neighbors. In MRS, k-

NN can be used to predict the genre of a new song based on its features.

• Support Vector Machine (SVM): finds a hyperplane that separates data points

into different classes based on their features. SVMs are able to identify the

instrument used in a given audio signal based on its frequency spectrum or

timbral features.

Music feature extraction and analysis through Python Pag. 39

Advanced Classification Algorithms:

• Deep Neural Networks (DNNs): are capable of learning hierarchical

representations of audio signals to capture more complex relationships between

features and classes. DNNs can be trained to classify music based on its

emotional content using a dataset of labeled audio files

2.4.6. Clustering: visualization and evaluation methods

2.4.6.1. Data projection

T-distributed Stochastic Neighbor Embedding: T-distributed Stochastic Neighbor

Embedding (t-SNE) is a technique for visualizing high-dimensional datasets in lower

dimensional graphs through dimensionality reduction [26]. The main purpose of projecting

data into a 2D is to facilitate human comprehension, given our innate capacity to interpret

two or three-dimensional data [27].

T-SNE operates by converting high-dimensional Euclidean distances13 between data points

into conditional probabilities, capturing intricate polynomial relationships in the data. The

method functions by representing similarities in the original space using Gaussian joint

probabilities and mapping them to a lower-dimensional space using Student's t-distributions

[28]. A noteworthy strength of t-SNE is its “adeptness at preserving local structures, making

it particularly effective in maintaining natural clusters or groups in the 2D representation”

[29].

2.4.7. Spotify Web API

The Spotify Web API is a set of web-based endpoints and functionalities provided by Spotify

for developers. It enables developers to interact with Spotify's streaming service

programmatically, accessing features such as retrieving track information, searching for

music, managing playlists, and controlling playback. It provides a way for developers to

integrate Spotify's music streaming capabilities into their own applications or services [30].

2.4.7.1. Concepts

This chapter aims to provide a clear understanding of the key elements involved in utilizing

the Spotify API effectively. The fundamental concepts associated with the Spotify Web API

are presented in Table 3 .

13 The Euclidean distance, in Euclidean space, is “the length of a straight line segment that would

connect two points. In such a space, the distance formulas for points in rectangular coordinates are

based on the Pythagorean theorem.” [31]. In the context of projecting large datasets, this distance

is calculated between vectors, where each vector represents a row.

Pag. 40 Report

Table 3. Key concepts of the Spotify Web API [30].14

Concept Description

Access Token The Access Token is a security credential that allows your

application to access the Spotify Web API. It acts as a digital key

that grants permission to make requests and retrieve data from the

API.

API Calls API Calls refer to the requests made to the Spotify Web API to

perform various operations, such as retrieving metadata, creating

playlists, or getting recommendations. These calls are made using

specific endpoints provided by the API.

Apps Apps refer to the applications or services that developers create to

interact with the Spotify Web API. These apps can range from music

recommendation systems to playlist management tools, offering

users new and personalized experiences.

Authorization Authorization is the process of obtaining permission from users to

access their Spotify accounts and retrieve their data. This process

ensures that user privacy and data security are maintained. The

Spotify Web API supports different authorization flows, such as the

Authorization Code Flow and the Client Credentials Flow,

depending on the level of access required (see Section 2.4.7.2).

Playlists Playlists are a fundamental aspect of Spotify's music streaming

service, and they are also an integral part of the Spotify Web API.

With the API, developers can create, retrieve, modify, and manage

playlists programmatically. This allows for dynamic playlist

generation, collaborative playlists, and playlist-based

recommendations.

Quota Modes The quota mode refers to the mode in which an app can be:

development mode or extended quota mode. These modes specify

the maximum number of API calls allowed within a given time

period, preventing abuse or excessive usage.

14 For detailed information and examples on each concept, please refer to the official Spotify Web

API documentation [30].

Music feature extraction and analysis through Python Pag. 41

Quota Modes define the rate limits and access restrictions imposed

on API calls.

Rate Limits Rate Limits are the restrictions imposed on the number of API calls

that can be made within a specific timeframe. They are in place to

manage server resources and maintain system stability. Developers

must be mindful of rate limits to avoid hitting usage restrictions.

Spotify's API rate limit is calculated based on the number of calls

that your app makes to Spotify in a rolling 30 second window.

Scopes Scopes determine the level of access and permissions granted to

an application when a user authorizes it. By defining scopes,

developers can request specific permissions to perform actions

such as reading user data, modifying playlists, or playing music.

Scopes provide granular control 15over the data and functionality

accessible through the API.

Spotify URIs and

IDs

Spotify URIs (Uniform Resource Identifiers) and IDs are unique

identifiers used to reference specific entities within Spotify's

ecosystem. Spotify URI is a string that identifies a track, album,

artist, or playlist, while an ID is a shorter alphanumeric code

representing the same entity.

These identifiers are essential for performing targeted operations

and retrieving specific content.

Track Relinking Track Relinking is a feature of the Spotify Web API that handles the

availability of music content across different regions. Due to

licensing restrictions, certain tracks may not be available in all

countries. The API provides mechanisms to automatically substitute

unavailable tracks with equivalent alternatives, ensuring a

consistent listening experience for users worldwide.

2.4.7.2. Access Methods

The Spotify API provides developers with two primary methods of accessing its services:

the Client Credentials Flow and the Authorization Code Flow.

15 “Granular access control is a concept in computer science that refers to the practice of granting

differing levels of access to a particular resource to particular users. Access determines what a user

is authorized to do in a system.” [31].

Pag. 42 Report

Client Credentials Flow: aims to access general resources provided by Spotify. This method

is suitable when an application does not require access to user-specific content. the

application itself is authenticated rather than an individual user.

Figure 4 Client Credentials Workflow [31].

The process, illustrated in Figure 4 Client Credentials Workflow involves registering the

application, obtaining client credentials (client ID and client secret) from the Spotify

Developer Dashboard, requesting an access token using the client credentials, and utilizing

the access token to make authenticated requests to the Spotify API.

Authorization Code Flow: this method is employed when an application needs to access

user-specific data, such as a user's playlists or recently played tracks.

Figure 5. Authorization Code Workflow [31].

As shown in Figure 5, it involves a multi-step process:

Music feature extraction and analysis through Python Pag. 43

1. Application registration: The developer registers the application on the Spotify

Developer Dashboard to obtain the necessary credentials, including a client ID and

client secret.

2. User authorization: When a user wants to grant the application access to their

Spotify data, they are redirected to the Spotify Accounts service authorization

endpoint. At this endpoint, the user logs in and authorizes the application to access

their data by specifying the required scopes (permissions). Once the user grants

consent, they are redirected back to the application with an authorization code.

3. Token exchange: The application exchanges the authorization code received from

the user for an access token. This is done by making a POST request to the Spotify

Accounts service token endpoint, providing the client credentials, authorization

code, and redirect URI.

4. Access token and refresh token: Upon a successful token exchange, the application

receives an access token and a refresh token. The access token is used to

authenticate requests to the Spotify API on behalf of the user. The refresh token

allows the application to obtain new access tokens when the current one expires.

5. Accessing the Spotify API: With the access token, the application can make

authenticated requests to the Spotify API, accessing the user's specific data based

on the granted scopes. The access token is included in the authorization header of

each request.

6. Refreshing access tokens: To ensure uninterrupted access to the user's data, the

application can use the refresh token to obtain new access tokens without requiring

the user's authorization again. This enables seamless and continuous interaction

with the Spotify API.

This flow provides a comprehensive approach for applications to interact with the Spotify

API on behalf of users, allowing access to playlists, tracks, and personalized information.

In contrast, the Client Credentials Flow offers a simpler method for accessing general

resources provided by Spotify without user-specific authorization.

Implementation of the Authorization Code Flow [32]: the SpotifyOAuth class provides an

implementation of the Authorization Code Flow. The class SpotifyOAuth is a part of the

Spotipy library, which is a Python client for the Spotify Web API. It simplifies the process of

obtaining authorization codes, exchanging them for access tokens, and refreshing tokens

when needed.

Pag. 44 Report

3. Methodology and equipment (o experimental)

3.1. Tools, Libraries, and packages

3.1.1. Code Editor

The process of accessing Spotify's Web API, retrieving songs data, and creating a

comprehensive output was done entirely through Visual Studio Code. This package

provides an environment for writing and executing Python code. Most of the work of this

project has been developed in Notebooks, an integrated tool of Visual Studio Code that

allows executing code in blocks. Notebooks also support interactive visualization of data;

this helps to explore the data quickly.

3.1.2. Libraries and packages

Libraries are collections of reusable code written by developers, which can be used in

multiple projects.

This section lists the libraries and packages imported in each of the notebooks that make

up the project.

Python Libraries:

• Spotipy: The Spotipy library is imported to access the Spotify API and perform

operations such as retrieving playlists, tracks, and audio features.

• Pandas: The Pandas library is imported as pd to work with data in tabular form,

allowing data manipulation and analysis.

• Requests: The Requests library is a Python library used for making HTTP

requests to web servers, allowing easy interaction with web APIs and retrieve

data from remote servers. In this project, it is used for sending GET, POST, and

other types of requests, as well as handling responses.

• Base64: This library is useful for encoding and decoding data in various

applications, such as encoding images for use in data URLs or handling

authentication credentials. In this project, the encoding module is used to

encode the credentials used when authenticating to the Spotify API.

• Numpy: The Numpy library, imported as np, is fundamental for numerical

operations in Python. It offers support for arrays (including mathematical

operations on them) and is particularly useful for linear algebra, statistical

operations, and mathematical simulations.

Music feature extraction and analysis through Python Pag. 45

• Seaborn: Seaborn, imported as sns, is a data visualization library that works on top

of Matplotlib. It provides a higher-level interface and aesthetically pleasing graphics

for statistical plotting.

• Scikit-learn: Various modules from Scikit-learn are used in this project. They include:

o TSNE: For visualizing high-dimensional data by reducing it to two or

three dimensions.

o DBSCAN & KMeans: For clustering the data into groups based on

similarity.

o NearestNeighbors: To find the nearest data points in a dataset.

o StandardScaler: To normalize and scale the dataset.

o Silhouette_score & davies_bouldin_score: For evaluating the clustering

quality.

• Matplotlib: The Matplotlib library is used for creating visualizations and plots. It is a

comprehensive library that offers various plotting styles and utilities.

• Scipy: Specifically, the cdist function from the scipy.spatial.distance module is

imported to compute distance between two sets of points.

Python modules:

• Os: The Os module is imported to interact with the operating system and retrieve

environment variables.

• Dotenv: The load_dotenv function from the dotenv module is imported to load

environment variables from a .env file.

• Spotipy.oauth2: The SpotifyOAuth class from the spotipy.oauth2 module is

imported to authenticate the script with Spotify using OAuth 2.0.

• Random: The Random module is imported to generate random numbers, which are

used to introduce a random delay before making API requests.

• Time: The Time module is imported to include time-related functionality in the script.

In this case, it is used with time.sleep() to introduce delays and avoid the API rate

limit.

3.2. Data Collection

This project has three main objectives: (1) analyzing the evolution of music features

throughout the past decades (2) determine if the relation between features and popularity

over the years has changed, and (3) building a content-based recommendation engine (see

Section 1.4). All the objectives can be achieved with the same dataset, since the evolution

of music throughout the last decades requires obtaining the necessary features for building

a content-based recommendation engine.

Pag. 46 Report

To meet these objectives, the project requires the following:

• Large amount of data.

• Wide variety of genres, artists, popularity, and years.

• Music from the past 100 years, evenly distributed.

• In addition to audio features, the release date of each track is required.

There are various datasets existing in the internet. However, none of them meets the

characteristics needed in this project. For this reason, by making requests to the Spotify

API, a dataset was created exclusively for this project.

3.2.1. Source of Data

Spotify has APIs that provide access to user, artist, and playlist data for external developers.

For authentication and authorization, the Spotify Authorization Code Flow (see Section

2.4.7.2) was implemented.

The process started by registering a “Spotify Developer” account, where I created a web

application16 in the developer dashboard, shown in below in Figure 6.

Figure 6. Application created to request authorization to access data.

The app provided the credentials needed to implement the Authorization Code Flow:

• Client ID: the unique identifier of my app.

• Client Secret: the key used to authorize Web API calls.

For security purposes, these credentials were stored in a .txt file and defined as

environmental variable, accessed within the code as shown in Figure 9.

16 “A web application is a computer program that utilizes web browsers and web technology to

perform tasks over the Internet.”

Music feature extraction and analysis through Python Pag. 47

Figure 7. Credentials provided by the application.

Once authenticated, I had access to the Spotify API and began retrieving songs data

through individual endpoints17 of the Spotify API. As Figure 8 suggests, accessing the

Spotify’s Web API and retrieving song's data was done through Visual Studio Code.

Figure 8. Architecture of requests from the web app to the APIs. [Source: own

elaboration]

To interact with the Spotify Developer API, I used a Python Script that imported the Spotipy

library. This library made it easy to search through my Spotify account's browser and

retrieve playlists based on my specific search criteria (the search criteria is described in

chapter 3.2.2.2).

The code snippet shown in Figure 9Figure 9 is used for authentication and authorization

with the Spotify Developer API.

17 Endpoints are specific URLs that provide access to several types of data. As mentioned

in [33], “endpoints specify where APIs can access resources and help guarantee the proper

functioning of the incorporated software.”

Pag. 48 Report

Figure 9. Connection to my Spotify account.

It begins by loading the credentials provided by the application (defined as environment

variables for safety) using the load_dotenv() function. Then, it retrieves the values of specific

environment variables using the os.getenv() function and assigns them to variables

client_id, client_secret, username, and redirect_uri. Finally, it creates an instance of the

SpotifyOAuth class (see Section 2.4.7.2) from the spotipy library, passing in the retrieved

environment variable values as arguments.

3.2.2. Feature Extraction

The purpose of this section was to create a dataset containing music from a variety of

genres released between 1900 and 2023.

3.2.2.1. Functions

The Python functions described below were developed to search playlists, obtain track

features, and store data in comma-separated files.

Get_playlists_by_genre(genre, limit):

Retrieves playlists from the Spotify API based on a given genre and limit.

I. Parameters:

a. genre (str): The genre of the playlists to search for.

b. limit (int): The maximum number of playlists to retrieve.

II. Returns:

a. A tuple containing two lists - id_list and username.

b. id_list (list): A list of playlist IDs.

c. username (list): A list of usernames associated with the playlists.

Get_tracks(id, user):

Music feature extraction and analysis through Python Pag. 49

Retrieves tracks from playlists associated with a given playlist ID and user.

I. Parameters:

a. id (str): The playlist ID.

b. user (list): A list of usernames associated with the playlists.

II. Returns:

a. pandas.DataFrame: A DataFrame containing the combined tracks from

all playlists.

New_funct(df_tot, df):

Concatenates two DataFrames using the pd.concat() function.

I. Parameters:

a. df_tot (pandas.DataFrame): The DataFrame to which the other

DataFrame will be concatenated.

b. df (pandas.DataFrame): The DataFrame to be concatenated.

II. Returns:

a. pandas.DataFrame: The concatenated DataFrame containing features

from all the songs in the given playlists.

Get_playlist_tracks(username, playlist_id_list):

Retrieves tracks and their audio features from playlists associated with a given username

and playlist ID list.

I. Parameters:

a. username (str): The username associated with the playlists.

b. playlist_id_list (list): A list of playlist IDs.

II. Returns:

a. pandas.DataFrame: A DataFrame containing tracks and their audio

features from the playlists.

3.2.2.2. Methodology

The functions described in Section 3.2.2.1 were used to search for a specific word (in my

case, music genres and subgenres) in the Spotify browser and get data from the first n

playlists that match the search. The function get_playlists_by_genre returns a list with

playlist ID and username for each search word. Then, function get_tracks takes those

values and retrieves the features for all the songs in the playlists specified in the list of IDs

and saves them into comma-separated files.

Pag. 50 Report

Searching different subgenres of genres, allowed me to create twelve genre-specific

datasets. The subgenres and words parsed into the function get_playlists_by_genre to build

each dataset are listed in Table 4.

Table 4. Subgenres searched to create genre-specific datasets.

Genre Subgenres

Rock

Alternative Rock College Rock Indie

Grunge Experimental Rock Progressive Rock

New Wave Hardcore Punk

Anime Anime

Blues

Acoustic Blues Contemporary Blues Blues Origins

Chicago Blues Delta Blues Electric Blues

Classic Blues

Classical

Classical Crossover Classical Essentials Impressionist

Early Music Modern Composition Medieval

Opera

Dance
Music

Electronic Dubstep Techno

Trance Minimal Techno Breakbit Classics

House Dance music 2023

Rap/Hip
Hop

Alternative Rap Hip Hop Classics East Coast Rap

Bounce Hardcore Rap West Coast Rap

Dirty South Hip Hop

Electronic
Ambient Electronica Downtempo

Crunk Industrial Electro Disco

Country

Alternative Country Urban Country
Traditional
Bluegrass

Americana Country Gospel Honky Tonk

Bluegrass Outlaw Country Urban cowboy

Western swing Nashville sound

Pop

Art pop Art pop Sad pop

Brill Building Brill Building Schlager

Bubblegum Bubblegum Sophisti-pop

Cringe pop Cringe pop Teen pop

K pop Wonky pop

Jazz

Smooth Jazz Bebop Jazz Traditional Jazz

Fusion Jazz Cool Jazz Swing Jazz

Latin Jazz Free Jazz Vocal Jazz

Gypsy Jazz

Latin

Reggaeton Latin Pop Latin Ballads

Bachata Ranchera Latin Urban

Salsa Flamenco Latin Rock

Cumbia Tango
Reggae en
Español

Merengue Banda Latin Jazz

Music feature extraction and analysis through Python Pag. 51

R&B / Soul

Contemporary R&B Motown Doo Wop

Neo-Soul Quiet Storm Hip-Hop Soul

Funk Funk/Soul Revival Disco

Soul New Jack Swing Trap&B

Alternative R&B Gospel R&B

To build a dataset containing music from as many genres as possible, I used the function

get_playlists_by_genre(genre, limit). I obtained relatively small datasets changing the genre

argument to the values in the column Subgenres of Table 4. This method allowed me to

create a data frame for each genre.

Genre: the Spotify API does not provide any genre with the songs, since music genres are

associated to albums and artists, not specific songs. In order to associate each track to a

musical genre, the artist id or album id of the track must be retrieved. In this project, the

data regarding artists and albums was not addressed.

Additional data: during the data understanding phase (see section 3.3.1), I noticed the size

of the datasets after removing duplicate samples was significantly reduced. This highlighted

the necessity to gather more data, which was accomplished by directly using the

'get_playlist_tracks(username, playlist_id_list)' function. For this purpose, five playlists for

each genre, all created by the user 'spotify', were retrieved.

The reason why the data was not gathered using the function 'get_playlist_tracks' in the

first place was that it requires providing a username. As I intended to gather data in the

most random way possible, I preferred searching for random users through the function

'get_playlists_by_genre('genre', limit)'.

3.2.2.3. Features

The features extracted by the function get_playlist_tracks(username, playlist_id_list) are

described in Table 5.

Table 5. Description of features [31].

Feature Description

Id The Spotify ID of the track.

Title The title of the track.

All artists A list of all the artists who performed the track.

Pag. 52 Report

Popularity The popularity of the track on Spotify, ranging from 0 to 100.

Release date The release date of the track.

Danceability Represents the suitability of the track for dancing based on a

combination of musical elements, including tempo, rhythm

stability, beat strength, and overall regularity. Ranges from 0.0

(not danceable) to 1.0 (highly danceable).

Energy Represents a perceptual measure of intensity and activity in the
track. Higher energy values typically indicate fast, loud, and
noisy tracks. Ranges from 0.0 to 1.0.

Key Represents the key of the track. The values correspond to the

pitch classes (0 = C, 1 = C♯/D♭, 2 = D, and so on).

Loudness Represents the overall loudness of the track in decibels (dB).
Negative values indicate quieter tracks, and positive values
indicate louder tracks.

Mode Represents the modality of the track (major = 1, minor = 0).

Acousticness Represents the acoustic quality of the track. A value of 1.0
indicates a high probability that the track is acoustic, while a
value of 0.0 indicates a low probability.

Instrumentalness Represents the likelihood that a track is instrumental. A value
close to 1.0 indicates a high probability of the track being
instrumental, while a value close to 0.0 suggests vocals are
present.

Liveness Represents the probability of the track being performed live. A
value close to 1.0 indicates a high probability of the track being
performed live, while a value close to 0.0 suggests a studio
recording.

Valence Represents the musical positiveness conveyed by a track.
Higher valence values represent more positive and cheerful
tracks, while lower values represent more negative and sad
tracks. Ranges from 0.0 to 1.0.

Tempo Represents the overall estimated tempo of the track in beats
per minute (BPM).

Duration [ms] The duration of the track in milliseconds.

Music feature extraction and analysis through Python Pag. 53

Time signature Represents the estimated number of beats per bar (measure) in
a track. “The time signature ranges from 3 to 7 indicating time
signatures of "3/4", to "7/4" ” [33].

The latter actions were performed in a single notebook. The notebook is structured into four

sections: import of libraries and modules (see section 3.1.2), connection to Spotify (Read

Section 2.4.7.2), definition of functions (see section 3.2.2.1), and creation of datasets for

each genre (see section 3.2.2.2).

3.3. Data Understanding

This section aims to provide a comprehensive description of the available data.

3.3.1. Description of the data

3.3.1.1. Dimensions and data types

Quantity of data: the dataset is comprised of twelve genre-specific datasets. Each of them

contains 17 columns18, while the number of samples (tracks) in each dataset varies. The

latter – before and after removing duplicate rows – is shown in Table 6.

Table 6. Number of samples in each dataset.

Dataset Before removing
duplicates

After removing
duplicates

df_anime.csv 139 139

df_blues.csv 399 374

df_classic.csv 9715 4897

df_dance_music.csv 7885 2686

df_electronic.csv 12203 3615

df_jazz.csv 8573 4014

df_latino.csv 9339 4384

df_pop.csv 4957 4847

df_rap.csv 9805 3265

df_RB_soul.csv 8309 3716

df_country 9951 3023

df_additionl_data 31023 27861

The datasets shown in Table 6 were combined into a unified dataset. As a result of this

operation, the dataset contains 71785 unique records, and 17 columns.

18 All datasets contain the columns: id, title, all_artists, popularity, release_date, danceability, energy,

key, loudness, mode, acousticness, instrumentalness, liveness, valence, tempo, duration_ms, and

time_signature.

Pag. 54 Report

Data types: all datasets share identical features, which include: id, title, all_artists,

popularity, release_date, danceability, energy, key, loudness, mode, acousticness,

instrumentalness, liveness, valence, tempo, duration_ms, and time_signature. The data

types of the features, shown in Table 6 were consistent in all raw datasets.

Table 7. Data types in the raw datasets.

Feature Data Type

id object

title object

all_artists object

popularity float64

release_date object

danceability float64

energy float64

key float64

loudness float64

mode float64

acousticness float64

instrumentalness float64

liveness float64

valence float64

tempo float64

duration_ms float64

time_signature float64

release_year int3219

The format of the values in the 'release_date' column, which is present in all the datasets,

exhibited inconsistency. Some of the values in the 'release_date' column included complete

dates, comprising the day, month, and year, while others contained only the year. The

complete dates utilized characters '/' and '-' as separators. For example, a song released

on November 1, 1964, could appear as '1964-11-01', '1964/11/01', or simply as '1964'.

This was an issue and was corrected at this phase of the project, as it impeded including

release dates in the exploratory analysis.

To address this problem, a new column was introduced in all datasets, specifically for the

release year (release_year) of the songs (its data type is presented in Table 7).

Consequently, the column release_date was disregarded, as its information became

irrelevant after the inclusion of the new release year column.

Null Values: the number of null values in each of the columns of the datasets is shown in

Table 8.

19 The ‘release_year’ column was converted to integer type to facilitate analysis in chapter 3.3.3.

Music feature extraction and analysis through Python Pag. 55

Table 8. Number of null values in each raw dataset.

DataFrame Column Count

df_classic.csv all_artists 74

df_classic.csv popularity 148

df_classic.csv danceability 148

df_classic.csv energy 148

df_classic.csv key 148

df_classic.csv loudness 148

df_classic.csv mode 148

df_classic.csv acousticness 148

df_classic.csv instrumentalness 148

df_classic.csv liveness 148

df_classic.csv valence 148

df_classic.csv tempo 148

df_classic.csv duration_ms 148

df_classic.csv time_signature 148

df_latino.csv title 9

df_latino.csv all_artists 9

df_rap.csv title 3

df_rap.csv all_artists 3

df_RB_soul.csv title 1

df_RB_soul.csv all_artists 1

The dataset containing classical music features had, by far, the highest number of missing

values. Null values were present in 14 out of 17 columns in this dataset.

Although the number of empty rows (148) is relatively low compared to the total number of

rows in the classical dataset (9715 tracks), these rows with null values span across almost

all columns (148 rows with empty values in 14 columns). This information led to decide to

drop the rows containing the missing values during the data preparation stage of the project

(see section 3.3.3.1).

On the other hand, the remaining datasets in Table 8 contain fewer empty values, which

are only present in the 'title' and 'all_artists' columns. As these columns might not be

relevant for further analysis, this suggested to ignore them instead of dropping the entire

rows. However, dropping the rows was not a problem either, given the substantial amount

of data available in the datasets, shown in Table 6.

3.3.1.2. Descriptive Statistics

Descriptives statistics of all the numerical features in the dataset 20 are shown in Table 9.

20 Duplicate records and rows containing null values have been removed prior to calculating

descriptive statistics.

Pag. 56 Report

Table 9. Descriptive statistics of the dataset.

Feature count mean std min 25% 50% 75% max

Popularity 71785 33.495 25.950 0 3 36 55 100

Danceability 71785 0.5624 0.1772 0 0.442 0.57 0.696 0.988

Energy 71785 0.6191 0.2682 0 0.446 0.673 0.841 1

Key 71785 52.989 35.524 0 2 5 8 11

Loudness 71785 -9.285 60.503 -60 -11.27 -7.468 -5.262 4.14

Mode 71785 0.6416 0.4795 0 0 1 1 1

Acousticness 71785 0.3108 0.3418 0 0.0155 0.15 0.581 0.996

Instrumentalness 71785 0.1738 0.3193 0 0 0.00026 0.123 0.999

Liveness 71785 0.1911 0.1606 0 0.0939 0.125 0.243 1

Valence 71785 0.5107 0.2555 0 0.307 0.515 0.718 0.993

Tempo 71785 120.52 28.822 0 98.031 120.011 137.932 247.986

Duration [ms] 71785 236538 106382 4067 180173 219267 267373 4628227

Time Signature 71785 39.048 0.4037 0 4 4 4 5

Release Year 71785 2005.9 15.288 1820 1999 2010 2018 2023

A thorough descriptive analysis was conducted on each of the musical features:

• Popularity: The popularity metric for tracks in our dataset mostly hovers around

a moderate level. The mean of 33,5, slightly lower than the median, reveals a

presence of songs with considerably lower popularity scores. Such low scores

tug the mean downwards, indicating a skew in the distribution of popularity. If

most tracks were equally popular, the mean and median would converge. The

difference between them emphasizes the diversity in song popularity within the

dataset.

• Danceability: The average danceability score across the tracks is 0,56,

suggesting a slightly leaning tendency towards tracks that are more suitable for

dancing. However, with values ranging from 0 to 0,988, the dataset

encompasses a vast array of tracks, from those completely non-danceable to

those that strongly encourage dancing.

• Energy: The energy metric has an average score of 0,62. This indicates that a

considerable number of tracks in the dataset possess a more energetic and

intense sound. This metric can reflect genres that are more upbeat, such as

dance, pop, or rock.

• Key: With an average value around 5,3, it showcases that various musical keys

are represented in this dataset, ensuring diversity in terms of tonal

characteristics.

• Loudness: The average loudness of the tracks sits at -9,29 dB. Tracks are

spread between the quietest at -60 dB and the loudest at 4,14 dB. The presence

of tracks with positive loudness values might seem unconventional but could be

attributed to the way loudness is normalized or processed within the platform.

• Mode: A mean of 0,64 indicates a slight preference towards tracks in a major

key, which is often associated with a happier and brighter sound.

Music feature extraction and analysis through Python Pag. 57

• Acousticness: The mean score of 0,31 suggests that while a significant portion

of tracks has an acoustic element to them, the dataset also comprises

electronically produced or non-acoustic tracks.

• Instrumentalness: An average score of 0,17 shows that most of tracks likely

contain vocals, as they lean away from being purely instrumental.

• Liveness: The mean value of 0,19 suggests that most tracks are studio

recordings, with a smaller percentage being live recordings or having audience

noise.

• Valence: A mean valence score of 0,51 reveals that the dataset has a balanced

mix of tracks, with both positive (happy) and negative (sad) vibes.

• Tempo: The average tempo stands at 120,52 BPM, placing it in a mid-tempo

range which is common across many genres. The range, however, extends to

a fast 247.986 BPM, showcasing the presence of faster-paced genres or tracks.

• Time Signature: An average of 3,90 indicates a dominance of tracks with a 4/4

time signature, which is the most common time signature in contemporary

music.

• Release Year: The average release year is approximately 2005,9, which

reveals that the dataset leans towards more contemporary tracks. The presence

of songs from as early as 1820, however, ensures historical representation.

• Duration: The average track length is approximately 236,5 seconds (or close to

4 minutes), which is typical for popular music tracks. The dataset, however,

contains tracks as short as 4 seconds and as long as 4628 seconds (or 77

minutes), indicating the presence of both brief clips and longer compositions or

mixes.

Boxplots: the following figures provide a visual representation of some descriptive metrics.

There are three boxplots, since the range of the features tempo, loudness, and popularity

is substantially different from the rest, their distribution is represented in different figures

(Figure 11, Figure 12, and Figure 13 respectively).

Pag. 58 Report

Figure 10. Boxplot of danceability, energy, acousticness, Instrumentalness,

liveness, and valence.

The boxplot provided in Figure 10 consolidates several of the latter findings:

• The median danceability score, closely aligned with the mean of 0.56,

underscores the dataset's general inclination towards tracks suitable for

dancing.

• Energy’s higher median value reiterates our assessment of the dataset having

a predominantly upbeat character.

• Acousticness, with a median considerably lower than its maximum, underlines

the blend of both acoustic and electronic elements in our tracks.

• The median for instrumentalness is notably low. This fact reaffirms that a

majority of the tracks are not purely instrumental.

• Liveness scores lie below 0.2, confirming the collection's bias towards studio-

recorded tracks over live performances.

• Valence's median (positioned around the 0.51 mark), validates our

understanding of the dataset's balanced emotional spectrum, containing both

uplifting and melancholic tracks.

• The length of the whiskers is consistent with the values of STD shown in Table

9. For instance, danceability, which has the smallest standard deviation of

0.1772, is distinctly represented in the boxplot with the most compact whiskers,

underscoring its limited variability.

Music feature extraction and analysis through Python Pag. 59

Figure 11. Boxplot of tempo.

The tempo boxplot (see Figure 11) confirms the prior observations. The central

tendency of the distribution, hovering around the mean of 120.52 BPM, reflects the

popular mid-tempo range present in numerous genres (given the fact that the

dataset contains various genres). The spread of the data, however, highlights the

varied tempo of tracks within the various genres of the dataset.

Figure 12. Boxplot of loudness.

Pag. 60 Report

The loudness visualization (see Figure 12) reveals a comprehensive representation

of volume levels in our tracks. The central location of the median closer to the -9.29

dB mean endorses the previous findings. It also provides a graphical affirmation of

the extensive range of loudness values in the dataset, from particularly soft tracks

to exceptionally loud ones.

Figure 13. Boxplot of popularity.

The boxplot dedicated to popularity (see Figure 13) offers a visual corroboration of the latter

observations. The slight discrepancy between the median (36.0) and the mean (33.5)

reinforces the skewed nature of track popularity. This graphical representation underscores

the diversity of the dataset, where there are many tracks with lower popularity scores, as

seen in Table 9.

3.3.1.3. Observations

The fact that most of features have a considerable standard deviation suggests the dataset

presents a comprehensive overview of various musical attributes from tracks of diverse

genres, release years, and characteristics. The slight skews in certain attributes like

popularity offer insights into the nature of the dataset and the potential biases or preferences

in the data collection or the platform (Spotify) itself.

Because this dataset was manually constructed based on genres, it is important that it

contains a wide variety of artists.

Music feature extraction and analysis through Python Pag. 61

Given that the dataset was curated manually based on genres, it is crucial that it contains

a wide variety of artists. Artists are typically consistent in their style and genres, and a limited

roster might introduce bias, potentially complicating the cluster formation process.

The dataset is comprised by 24793 unique artists and 68899 unique tracks. A search for

prominent artists names based on popularity, revealed names such as Adele, Bad Bunny

and Coldplay, which makes sense given their current relevance in the music industry. In

Table 10, the top ten artists contributing the most songs to the dataset are displayed.

Notably, none of these artists shown in the table account for more than 0.5% of the total

dataset, which guarantees that the dataset contains a wide variety of genres.

Table 10. Top ten artists contributing to the dataset.

Artist
Number
of Tracks

María Luisa Piraquive 402

Paul O'Dette 258

Megadeth 220

Ramones 191

Hespèrion XXI 178

Metallica 171

Julian Bream 168

Red Hot Chili Peppers 161

Aerosmith 155

Nirvana 154

3.3.2. Data Quality verification

The performance of a machine learning algorithm heavily relies on two crucial factors: the

quality of the data and the abundance of relevant information within it. (To gain insights on

data quality, refer to Chapter 2.3)

Table 11. Valid values for each feature.

Feature Valid Valeus

Id String of 22 characters

Title String

All artists String

Popularity Numerical value. Ranges from 0 to 100.

Danceability Numerical value. Ranges from 0.0 to 1.0

Energy Numerical value. Ranges from 0.0 to 1.0

Key Numerical value. Ranges from 0 to 11.

Pag. 62 Report

Loudness Numerical value.

Mode Numerical value. Valid values are 0 and 1.

Acousticness Numerical value. Ranges from 0.0 to 1.0

Instrumentalness Numerical value. Ranges from 0.0 to 1.0

Liveness Numerical value. Ranges from 0.0 to 1.0

Valence Numerical value. Ranges from 0.0 to 1.0

Tempo Numerical value (positive)

Duration (in ms) Numerical value (positive)

Time Signature Numerical value (positive)

Release Year Numerical integer. Ranges from 0 to 2023.

According to the minimum and maximum values displayed in Table 11, all features are in

the permitted ranges.

As specified in section 3.3.1, the dataset does not contain duplicate rows or null values,

since these were removed previously.

3.3.3. Exploratory Data Analysis (EDA)

3.3.3.1. Correlation of features

The relationships among features is examined in order to identify potential associations or

interdependencies. This is especially relevant within machine learning projects as it aids in

the process of feature selection. Highly correlated features might encompass redundant

information, and excluding them can lead to simpler (and more precise) models.

The diagrams presented below consist of a series of scatterplots and histograms formulated

based on the subsequent considerations:

• A random selection of 1000 songs from the dataset was utilized to enhance

visual clarity (n = 1000).

• Features containing the track's identifier, title, and artist were excluded from the

correlation analysis of variables, given their lack of relevance.

Music feature extraction and analysis through Python Pag. 63

• In the pair plots, a specific parameter21 was configured to correspond to the

variable 'popularity'. This allowed a visual distinction within the plots, allowing

for the differentiation of data points base don their respective popularity levels.

Figure 14. Scatter plot and histograms of the features.

The plot in Figure 14 allowed to identify linear and non-linear relations between pairs of

features (in the scatter plots), and the distribution of each feature (in the histogram).

Regarding the distribution of variables, the histograms indicated that most features in the

dataset were unevenly distributed. However, 'valence' and 'energy' had a more balanced

21 The library used to visualize the grids is Seaborn, which allows the configuration of parameters to

customize its graphics. More information about the seaborn library and its attributes is available at:

https://seaborn.pydata.org/generated/seaborn.pairplot.html

Pag. 64 Report

distribution. The rest of observations regarding the distribution of features confirm the

observations commented in section 3.3.1.2 Descriptive Statistics.

The most significant correlation exists between the features energy and loudness, whose

nature is positive and exponential. Danceability seems to have a slight positive correlation

with valence, which is positively correlated with energy and loudness as well. This is

consistent with the idea that songs with higher 'valence' values, indicating happiness, tend

to be more energetic, louder, and suitable for dancing.

For the 'popularity' layer, two supplementary plots (Figure 15, and Figure 16) were created

to enhance visualization. The first graph showcases songs that fall within the top 25% in

terms of popularity (third quartile). In contrast, the second graph displays a selection of

songs from the bottom 25% (first quartile). Both graphs consist of a sample of 1,000 songs.

To simplify visualization, the features 'mode' and 'release year' were omitted.

Figure 15. Scatter plot and histograms of the most popular songs.

Music feature extraction and analysis through Python Pag. 65

Figure 16. Scatter plot and histograms of the least popular songs.

Distribution: the histograms of the features in the above figures show similar distributions in

almost all features except for the feature Instrumentalness, which appears to be almost null

in the most popular songs of the dataset.

Sparsity observations: in examining the scatterplots, the relationships between features are

similar, but there is a notable sparsity observed for the least popular tracks (see Figure 16)

in comparison to the more popular ones (see Figure 15). Several factors could contribute

to this observation:

• Nature of Popularity Distribution: song popularity (or any item’s popularity) does

not always exhibit a uniform distribution. Distributions usually show a

pronounced skew, with a large pool of tracks having low popularity scores, and

Pag. 66 Report

a select few achieving high popularity. Such skewed distribution can lead to a

sparsity when visualized (see section 1.1.1).

• Variability in Features: The least popular songs might exhibit greater variability

in their features in comparison to the top songs in popularity. This can result

from the former not necessarily adhering to the typical characteristics seen in

mainstream hits, leading to a wider spread in their feature values when plotted.

• Heterogeneity of Less Popular Songs: The least popular category might

encompass a vast range of tracks, such as experimental or niche genres. Such

diversity is manifested as increased sparsity in visual representations. The fact

that least popular songs show sparser scatter plot makes sense, as unpopular

tracks inherently deviate significantly from mainstream musical trends.

• Sampling Bias: the lack of true randomness in the sampling process can lead

to sparse patterns in visual depictions. However, the sample of 1000 songs from

the least popular songs has been obtained randomly through a Python method

that generates random samples given the desired sample size 22. In addiction

the dataset employed in this project was constructed by assembling tracks from

diverse random playlists and exploring an extensive array of genres and

subgenres. This approach enhances the randomness of the dataset, minimizing

the potential for bias and exaggerated sparsity in visual representations.

22 More information about the pandas.DataFrame.sample(n) method can be found at:

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sample.html

Music feature extraction and analysis through Python Pag. 67

3.3.3.2. Evolution over time

Figure 17. Evolution of audio features over time.

The line plot in Figure 17 illustrates a significant drop in acousticness levels during the

1960s. This could be attributed to the emergence of genres like rock and electronic music

that favored electric and synthetic sounds over acoustic elements. Consequently, the

acousticness levels experienced a notable decrease during this period.

Conversely, the energy levels demonstrated an upward trend throughout the 1960s. This

increase could potentially be linked to the rise of dance-oriented genres and experimental

music [34], which often featured higher energy arrangements and instrumentation.

Furthermore, the metric of valence reached its peak values in the 1980s. This rise might be

associated with the prevalence of upbeat and positive-sounding genres like pop and new

wave during this decade [34]. These genres often conveyed a sense of optimism and

exuberance, contributing to the heightened valence scores observed in the music of that

era.

Pag. 68 Report

Figure 18. Average music duration over the years.

Figure 18 illustrates the evolution of duration over the years. There is a consistent trend

where the mean duration of songs has hovered between approximately 3 and 5 minutes

over the last 70 years. Nonetheless, songs released during the 1970s exhibit a notable

elongation in duration, while more recent years showcase a gradual reduction in song

durations.

The decline in song durations in recent decades could potentially be attributed to shifting

music consumption habits. As technology has evolved, platforms like streaming services

and social media have become prevalent, encouraging the creation of shorter songs that

are better suited for quick and repetitive listening.

In contrast, the higher song durations during the 1970s might be linked to the era's

preference for instrumental solos and experimental compositions. Genres like progressive

rock, which was popular in the 1970s, often incorporated extended instrumental breaks and

elaborate sequences, contributing to the overall longer durations of songs released during

that time.

Lastly, it is crucial to consider the potential discrepancy between the dataset and the reality

of music trends. For instance, for periods characterized by shorter song durations, the

dataset could predominantly contain specific genres known for their briefer compositions.

However, due to the absence of labels in the data, this hypothesis remains unverified and

cannot be further explored.

Music feature extraction and analysis through Python Pag. 69

3.4. Data preparation

Fortunately, the metadata obtained from the Spotify API was largely prepared for analysis.

The following steps were implemented for data cleaning and feature engineering:

• Identified missing values.

• Deleted rows containing missing values.

• Detected and removed duplicate tracks from the dataset.

• Introduced the 'release_year' column, extracting only the year from each entry

in the 'release_date' column.

• Eliminated the 'release_date' column.

• Formulated a 'duration' column, converting song durations from milliseconds to

seconds.

• Deleted the 'duration_ms' column.

3.5. Modeling

Given that the dataset is not explicitly labeled, an unsupervised learning approach is

suitable. In this strategy, data is initially clustered (see Section 2.4.5). Following this, the

recommendation engine is provided a list of two songs, and the system predicts their

respective cluster to which the given songs belong. This identified cluster subsequently

guides song recommendations, ensuring that the suggestions align with the characteristics

of the given songs.

For the clustering process, two distinct types of algorithms were selected. In broad strokes,

these can be into two categories based on their clustering methodologies: algorithms that

do not require a specific number of clusters as an input (density-based models), and

algorithms necessitate the specification of an anticipated number of clusters (centroid

based models) (see Section 2.4.5).

Density-based models: these algorithms identify dense regions within the data space

characterized by a high concentration of data points, distinct from sparser regions. A

notable advantage of these models is their capability to identify complex cluster shapes,

coupled with an inherent robustness against noise and outliers.

An example of density-based algorithms is DBSCAN (Density-Based Spatial Clustering of

Applications with Noise). DBSCAN identifies clusters based on the proximity of data points,

while marking isolated points in low-density regions as outliers.

Centroid-based models: These algorithms necessitate the specification of an anticipated

number of clusters, commonly referred to as 'k'. The data is partitioned into 'k' clusters,

Pag. 70 Report

which are typified by a central point or 'centroid'. A representative algorithm of this type is

K-Means. K-Means, functions by iteratively optimizing the positions of centroids to ascertain

the most appropriate cluster assignments.

Through the utilization of both clustering approaches, the goal is to determine the most

coherent groupings within the data, thereby enhancing the accuracy and relevance of song

recommendations.

The resulting clusters were scored using two distinct metrics: the Silhouette coefficient and

the Davies-Bouldin index.

Silhouette Coefficient: The Silhouette Coefficient ranges from -1 to +1. Values close to 1

indicate that the object is well matched to its own cluster and poorly matched to neighboring

clusters. Conversely, values close to 0 indicate clusters may be overlapping. A negative

value indicates that samples might have been assigned to the wrong clusters.

Davies-Bouldin Index: this index “measures the average similarity between clusters, where

similarity compares the size of clusters against the between-cluster distance. A lower score

means that the cluster is relatively small compared to the distance to another cluster, hence

well-defined” [35]. Similarity is gauged by the ratio of distances within a cluster to distances

between clusters. In this context, scores are on a scale where the minimum is zero; lower

values signify superior clustering. Essentially, when the average similarity is minimal,

clusters are more distinct, indicating a better clustering outcome.

Inertia: metric that “can be recognized as a measure of how internally coherent clusters are”

[36]. It is calculated as the sum of square distances between a data point and its centroid

within a cluster. For this reason, it is commonly referred as “within-cluster sum of squares”

(WCSS) value.

3.5.1. Data Scaling

As a consistent practice, data scaling is implemented prior to clustering, ensuring that

variables are adjusted to a common scale. The method applied to scale the data was

Standard Sailing, also known as Z-score normalization through StandardScaler23, a module

from the python library scikit-learn (see Section 3.1.2). The reason for scaling the data is to

23 StandardScaler is a preprocessing module in scikit-learn that is used to scale features to zero

mean and unit variance. This means that the transformed data will have a mean of 0 and a standard

deviation of 1. More information is available at: https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

Music feature extraction and analysis through Python Pag. 71

standardize the range of independent variables, ensuring that none of the features

dominates others when the machine learning algorithms are applied.

The dataset before scaling contains 71785 rows and 18 columns. The scaled dataset

contains the same number of records, but 14 columns, since columns containing non-

numerical values were omitted.

3.5.2. Data Projection

TSNE (T-distributed Stochastic Neighbor Embedding) is used to project the data in a 2D

space. This algorithm takes the original high dimensional dataset and reduces it into a lower

dimensional graph, preserving the clusters of the original dataset.

The graph in Figure 19 is the result of applying the t-SNE algorithm to the high dimensional

dataset, where some clusters are visible.

Figure 19. 2D Projection of the data.

3.5.3. Clustering

3.5.3.1. DBSCAN

DBSCAN is a density-based clustering algorithm that forms clusters of dense regions of

data points ignoring the low-density areas (considering them as noise).

• Advantages:

o Good performance with noisy datasets.

o Identifies outliers.

Pag. 72 Report

o Clusters can take any irregular shape unlike K-Means, where clusters

are spherical.

• Disadvantages:

o Does not work very well for sparse datasets or datasets with varying

density.

o Sensitive to the epsilon parameter.

o Not partitionable for multiprocessor systems.

Setting parameter epsilon:

The behavior of the model is dictated by several parameters, one of them being epsilon,

known as “eps” [37]. “Eps” is a parameter that deals with the radius of the clusters being

sought. A suitable value for “eps” was identified through a process that involved the

calculation of distances to the nearest n points for each data point. These distances were

subsequently plotted. An examination was conducted to identify the point of most

pronounced change. The value corresponding to this point was then chosen as the selected

epsilon parameter.

Figure 20. Nearest Neighbors distances.

Figure 20 is the result of the latter process, from which is it observed that 2 is the optimal

value for the epsilon parameter.

In order to determine epsilon with more accuracy, the Silhouette coefficient and the Davies-

Bouldin index were calculated for different values of epsilon varying from 1.8 to 2.9. Both

scores offer a concise measure of the effectiveness of the clustering process. The clustering

Music feature extraction and analysis through Python Pag. 73

process is most effective when the samples of each cluster are cohesive (unified) and the

clusters are well separated from one another.

The highest values for both scores resulted for an epsilon value of 2.2, which was chosen

as its optimal value.

Clustering with DBSCAN:

The clustering of the data using the DBSCAN algorithm with an epsilon value of 2.2 and

visualization of the resulting clusters in the two-dimensional space (transformed through t-

SNE), resulted in the graph showed in Figure 21, which portraits the different clusters,

distinguished by color and style. From this graph, it was estimated that the optimal number

of clusters for this dataset is 7.

Figure 21. Clustering with DBSCAN.

3.5.3.2. K-Means

The K-Means clustering is one of the most renowned techniques in unsupervised machine

learning. This method is a centroid-based model, which implies that it requires a

determination of the number of centroids (clusters) before running the model. At the

beginning of the clustering procedure, the given clusters are placed randomly.

• Advantages:

o The technique boasts a straightforward conceptual understanding and

ease of implementation.

o It exhibits robust performance when handling extensive datasets.

Pag. 74 Report

• Disadvantages:

o Its efficacy is contingent upon the accurate selection of the number of

clusters or centroids.

o The algorithm's performance is compromised in the presence of outliers.

o The computational efficiency diminishes as the dimensionality of data

escalates.

Determining the number of clusters: to determine the number of clusters (value of

parameter ‘k’), the performance of the K-Means clustering was evaluated for different

values, ranging from 2 to 29. For each cluster, three metrics were calculated and plotted:

silhouette score, Davies-Bouldin score, and inertia (also referred as WCSS).

The selection of the value ‘k’ for clustering the dataset was made based on the Elbow

method. This method consists in plotting ‘k’ versus their resulting WCSS value, and

observing the value of ‘k’ where the graph starts to exhibit a linear appearance.

Figure 22. K-Means scores.

Referring to the third line plot in Figure 22, the elbow-point becomes evident at the

point when k=10. To validate this estimation, attention is directed towards the other

two evaluation metrics. The priority of this clustering process is to discern well-

defined clusters that encapsulate akin songs. This is made effective through lower

values of the Davies-Bouldin index, which serves as the discerning criterion for

establishing the optimal number of clusters (value of ‘k’).

Music feature extraction and analysis through Python Pag. 75

Figure 23. Screenshot of the scores for the computed values.

The Davies-Bouldin index was calculated for values of k ranging from 3 to 15 to confirm the

latter estimation of the optimal value of ‘k’ being 10. Scores were not computed for values

of ‘k’ exceeding 15, since the second line plot in Figure 22 illustrates how the values of the

index commence to raise for values above 15 approximately.

Based on the results shown in Figure 23, the optimal value of ‘k’ for the K-Means algorithm

was set to 15.

The clustering was performed with ‘k’ = 15, and plotted in the 2D graph obtained through

the t-SNE algorithm (see Section 3.5.2). The results are presented in Figure 24.

Figure 24. Clustering with K-Means.

Pag. 76 Report

3.5.3.3. Model Selection

For selecting a clustering model, the priority was to achieve high cohesion within individual

clusters and considerable separation between different clusters. Hence, the guiding

principle for selecting a model was to achieve a low Davies-Bouldin index.

The results for the Davies-Bouldin index obtained in sections 3.5.3.1 and 3.5.3.2 are

presented in Table 12.

Table 12. Clustering scores comparison.

Clustering algorithm Silhouette Coefficient Davies – Bouldin Index

DBSCAN 0.13585 2.14288

K-Means 0.09243 1.91898

Prioritizing the cohesion within individual clusters, K-Means appeared to be the best model

to create meaningful clusters (its score for the Davies-Bouldin index is lower).

3.5.4. Music Recommender

Based on the dataset created in chapter 3.2, and the selected model in section 3.5.3, a

music recommendation was created based on clustering. The fact that each cluster

encompasses akin songs is a key aspect of this recommender system, since each cluster

served as a boundary. By having a boundary, the risk of recommending unrelated songs is

limited.

The music recommender works as it follows: the user inputs two songs (and artists) as seed

songs for a playlist of similar songs. The seed songs are searched in the Spotify API, and

its features are retrieved.

The previously fit model creates a target vector calculating the feature means of the seed

songs, and predicts which cluster the user’s preferences fall in. Subsequently, ten songs

from that cluster are returned as a recommendation.

This process is performed through the following functions:

find_song (list):

Takes a list of song titles and artists as input and searches for each song on Spotify using

the Spotipy library. It retrieves the track information and audio features for each song and

stores them in a DataFrame.

I. Parameters: list of two tuples containing a song and its artist.

Music feature extraction and analysis through Python Pag. 77

II. Returns: DataFrame containing the features of the given songs.

recommend_songs (feats_df, track_data, y, n):

This function assigns songs to clusters based on their audio features and determines the

cluster label for the input songs ‘y’. Utilizing this label, the function selects the songs that

share the same cluster as the input songs. Subsequently, the function computes the cosine

similarity between the isolated songs and the input, returning the titles and artists of the n

most similar songs from track_data.

I. Parameters:

a. feats_df: a DataFrame containing the audio features of songs.
b. track_data: a DataFrame containing information about the songs.
c. y: the input song's audio features.
d. n: the number of recommended songs to return.

II. Returns: the name and artist of ‘n’ recommended songs.

The images below provide an illustration of the process. Figure 25 captures a screenshot

of the user interface, where the user inserts the name and author of two songs (as input

parameters for the function find_song). Figure 26 showcases an example of the output

returned by the functions described above. In this example, the specific seed songs were

“Wish you Were Here” by Pink Floyd, and “Pictures of You” by The Cure.

Figure 25. Window to introduce a seed song in Visual Studio Code.

Pag. 78 Report

Figure 26. Recommended songs given two seed songs.

Music feature extraction and analysis through Python Pag. 79

4. Results and Discussion

This section aims to summarize and discuss the results presented in section 3, where the

examination of features is performed, and the recommendation engine is built.

Correlation of features and popularity:

The correlation observations (see section 3.3.3.1), especially those relating to the features

energy, loudness, danceability, and valence, provide valuable insights into what musical

features might be intrinsic to the popularity of songs. The absence of Instrumentalness in

popular tracks (illustrated in Figure 15) suggests that the presence of lyrics and vocal

components hold significant influence in the popularity of songs.

On the other hand, the sparsity observed in less popular songs (illustrated in Figure 16) and

their divergence from the popular characteristics bring insight into the vast musical

landscape beyond the mainstream trends. This variance is very likely due to the presence

of experimental genres, niche musical tastes, or tracks that have not yet found their

audience within the dataset. Referring to Instrumentalness, which is almost null in the 25%

most popular songs of the dataset, tracks within the 25% least popular scores, present

varying degrees of the feature. The latter tracks appear to cater to an audience that seeks

instrumental music, classical tunes, or other genres where vocals play a secondary role.

These observations underscore the need for recommendation systems in today's digital

age. Such systems can potentially narrow the gap between tracks outside the mainstream

(those represented in Figure 16) and their respective audience, resonating with the concept

of the long tail economy.

Temporal Evolution of Audio Features:

The study of the temporary evolution of audio features derives from the data displayed in

Figure 17. The key findings on this topic are summarized and discussed below:

• Acousticness: Experienced a significant drop in the 1960s due to the emergence of

rock and electronic music which leaned towards electric and synthetic sounds over

traditional acoustic elements.

• Energy: Saw an upward trend during the 1960s, attributed to the rise of dance-

oriented and experimental music genres such as dance-music [38].

• Valence: Reached peak levels in the 1980s, reflecting the popularity of upbeat

genres like pop and new wave that conveyed a sense of optimism and exuberance.

However, this metric appears to be consistent over the years. One of the central

roles of music across cultures and eras is to evoke emotion and often to bring joy

Pag. 80 Report

or solace. While genres might change, this basic function of music remains, leading

to a consistent valence.

• Danceability: Remained consistent over the years, suggesting a continuous

preference for rhythms and beats conducive to dance across various musical

genres and eras.

• Liveness: Maintained a stable presence across the decades, indicating that the

representation of live music versus studio recordings in popular tracks did not

undergo drastic shifts over time.

The stability of the features danceability and valence, prove that positive feelings 24are

universally relatable and timeless aspects of the human experience. Regardless of trends

or technological shifts, audiences have always been drawn to music that moves them, both

emotionally and physically.

Temporal Evolution of Duration:

Regarding the evolution of songs durations illustrated in Figure 18, from which three main

aspects stand out:

• Consistency Over the Years: Song durations have largely remained stable, primarily

ranging between 3 to 5 minutes over seven decades, suggesting a standard in

music production that aligns with optimal listener engagement.

• 1970s Elongation: There was a notable increase in song lengths during the 1970s.

This is likely attributed to the era's musical preferences, particularly the rise of

genres like progressive rock, which were characterized by extended instrumental

solos and complex compositions.

• Recent Decline: The last decades showcase a decline in song durations. This

reflects the evolving music consumption habits, due to the prevalence of music

streaming services, and the brevity-favoring nature of social media users.

Delving deeper into de recent decline in songs durations, it appears that the modern music

landscape is shaped by technological advances, which are shifting consumer preferences

towards more brief and concise content. Another possible explanation is the fact that

platforms such as Spotify and Apple Music, which reign the music industry nowadays,

reward artists based on their number of streams [39]. Since shorter songs can achieve more

24 Valence represents the musical positiveness conveyed by a track. Higher valence values represent

more positive and cheerful tracks, while lower values represent more negative and sad tracks.

Music feature extraction and analysis through Python Pag. 81

streams in a given period, releasing shorter tracks can potentially maximize revenue for

artists.

Furthermore, the rise of short-video platforms, such as TikTok and Instagram, amplify the

appeal of brief, and catchy snippets of songs that can quickly capture attention [40], and

potentially go viral, achieving more streams, thus maximizing revenue. This push for

immediacy, reinforces the trend of reducing song lengths.

Music Recommender:

In the pursuit of building a recommendation engine based on the features of the data set,

two clustering methods were evaluated. The method with better perform

Prior to implementing the recommendation engine, the data in the dataset was clustered,

for which two methods, DBSCAN and K-Means, were compared. The succeeding summary

presents the results derived from sections 3.5.3 and 3.5.4:

• DBSCAN vs K-Means Analysis: The optimal value for DBSCAN's epsilon was 2.2,

resulting in seven clusters. However, K-Means, after thorough evaluation, was

determined to be more effective with 15 clusters. Visualization further confirmed K-

Means’ better cluster separation compared to DBSCAN.

• Model Efficacy: Based on the results and the Davies-Bouldin scores, K-Means

outperformed as the best model for clustering. Its low Davies-Bouldin score

indicates well-defined and cohesive clusters, although having a Silhouette score

indicates that the clusters are potentially overlapping, DBSCAN was chosen for

scoring better than DBSCAN.

• Music Recommender Functionality: The recommender system, built on the K-

Means clusters, offers song suggestions derived from two seed songs provided by

the user. These songs are matched to a cluster, ensuring that the recommendations

are musically akin.

Post-development reflections include acknowledging the complexity inherent to

recommendation systems. While this system is functional and offers relevant

recommendations, achieving a recommender system on par with platforms like Spotify

demands vast amounts of user data and insights. In order to mimic the recommendations

these platforms provide, the implemented engine should utilize a hybrid model, capable of

merging collaborative and content-based filtering.

Pag. 82 Report

5. Planning

For any project to be executed, it's essential to devise a plan estabilishing how and when

the various activities required by the project will be executed. In this case, at the beginning

of the project, a plan was designed, which, due to various circumstances that arose, was

not implemented. For this reason, a more realistic plan was formulated subsequently, as

illustrated below. This planning was constructed with the aid of a Gantt chart.

It is necessary to compile a list of the tasks to be executed [41]:

1. Research.

2. Drafting of theoretical background and state of the art.

3. Connection to the Spotify API.

4. Testing retrieval of data from Spotipy API.

5. Data Collection.

6. Description of the data.

7. Data Quality verification.

8. Exploratory data analysis.

9. Data preparation for modeling.

10. Clustering.

11. Creation of recommendation engine.

12. Preparation of the budget, environmental impact, and equality assessment.

13. Drafting the final report.

Upon completion of the project, the duration of each task has been updated to provide a

true temporal representation of the time taken for each activity. The Gantt chart that

illustrates the aforementioned details is displayed in Figure 27.

Figure 27. Gantt Chart.

Music feature extraction and analysis through Python Pag. 83

6. Economic Assessment

This section aims to provide a comprehensive overview of the investments involved in the

undertaking of this project. Given the digital nature of the project, its financial assessment

primarily revolves around the human capital invested in terms of hours worked and the

experimental costs incurred during its execution.

The tasks performed in this project are akin to those of a junior data scientist. According to

recent figures, the average hourly wage for a junior data scientist in Spain is approximately

17.95 €/h [42]. However, in this assessment, a rate of 15 €/h is considered, which aligns

with the expected compensation. Based on the latter information, the valuation of human

capital is calculated as follows:

• Dedicated hours: 410 hours.

• Hourly wage: 15 €/h.

Based on the latter information, the valuation of human capital calculated as follows:

 410 ℎ ∙ 15
€

h
= 6,150 € (Eq. 7.1)

Two resources were used to facilitate the assist in research and report drafting;

Academia.edu and Microsoft Office 365 Personal. The latter was used during the entire

development of the project for the drafting of this report. While the subscription to

Academia.edu provided access to valuable books and reports. Both resources were subject

to monthly charges, with their respective costs displayed below.

• Microsoft Office 365 Personal: 7 €/month.

• Academia.edu Subscription: 9 €/month.

The effective cost of software and subscriptions is calculated in Equation 7.2.

 (7 + 9)
€

month
∙ 6 𝑚𝑜𝑛𝑡ℎ𝑠 = 96 € (Eq. 7.2)

Regarding the cost of hardware tools, the entire project was developed in a single Personal

Computer (PC). Considering the PC was purchased in 2019, and the principle of linear

amortization over a span of 5 years, by 2023 the computer has reached its full amortization

period.

All in all, the overall cost of the project amounts to a total of 6.246 €. To enhance visual

clarity, all the aspects are grouped together in Table 13.

Pag. 84 Report

Table 13. Overall costs of the project.

Concept Wage / Cost Duration Total

Human Capital 15 € / hour 410 hours 6,150 €

Microsoft Office 365 7 € / month 6 months 42 €

Academia Subscription 9 € / month 6 months 54 €

Total Cost 6,246 €

Music feature extraction and analysis through Python Pag. 85

7. Environmental Assessment

This chapter endeavors to conduct an evaluation of the environmental impact associated

with the project.

The following indicators have been chosen to provide insights into the environmental

aspects of the project:

Carbon footprint: The project was executed remotely without any physical construction.

However, electricity consumption for computer usage, internet connectivity, and data

processing might have contributed to carbon emissions. Using available data on energy

consumption and specific emission factors, an estimation of kg CO2 associated with the

energy is calculated, taking into account the following considerations:

• The computer's energy consumption was high due to working on numerous

documents and applications simultaneously. The laptop’s specifications

determine that the computer’s consumption at high performance mode is 65 W

[43].

• The router used for this project has an average consumption of 12.4 W [44].

To determine the total energy consumption, the number of hours worked must be

considered. As already mentioned in the economic study, the project took a total of 410

hours. It is noteworthy that the Final Degree Project is worth 12 ECTS, which is

approximately equivalent to about 360 work hours. However, due to the complexity of the

work, especially in the Data Collection phase, the hours spent exceeded the initial

expectations.

Given the two points, the power consumption during the development of the project is

calculated in Eq. 8.1.

 410 ℎ𝑜𝑢𝑟𝑠 ∙ (65 𝑊 + 12.4 𝑊) = 31.734 𝑘𝑊ℎ (Eq. 8.1)

The emission factors report from the “Ministerio para la Transición Ecológica y el Reto

Demográfico” [45] was consulted to obtain the CO2 emission rate per kWh consumed by

electrical emission factors. This allows for the calculation of the carbon footprint associated

with the project’s energy consumption. The emission rate for electrical emission factors from

the energy provider “ENDESA ENERGÍA S.A.U” is 0.272 kg CO2 / kWh.

 0.272 𝑘𝑔
𝐶𝑂2

𝑘𝑊ℎ
∙ (31.734 𝑘𝑊ℎ) = 8.63 𝑘𝑔 𝐶𝑂2 (Eq. 8.2)

As calculated in Equation 8.2, the generated carbon footprint amounts to 8.632 kg of CO2.

Pag. 86 Report

Resource Consumption and waste generation: The resources utilized in the project were

digital, including software tools, data sources, and online platforms. No physical resources

were depleted, or consumed during the project's execution, and no waste materials were

generated.

Water Usage: As the project was digital in nature and did not involve any industrial

processes or physical products, water consumption is negligible and can be considered

minimal.

In conclusion, this environmental assessment demonstrates the project's alignment with

sustainable practices. By conducting the project remotely, leveraging digital resources, and

minimizing waste production, the project exhibits a responsible approach towards

environmental considerations.

Music feature extraction and analysis through Python Pag. 87

8. Social and Gender Equality Assessment

This chapter aims to examine the inclusive approach undertaken in the development of this

project, and underscore the equitable accessibility of resources and results. To do so, some

aspects including access to technology, information, and gender balance, among others,

have been addressed.

Technology: This project is primarily based in Python, and its libraries, which are all open-

source. The code editor (Visual Studio Code), and the version control repositories on

GitHub were free of costs as well. These tools are available to individuals with access to a

computer and an internet connection, making them inclusive in today’s context.

Access to information: Most of the resources accessed are available for free in the internet.

However, some of the consulted books were exclusively available at Academia25, a

subscription-based platform for sharing academic research. Also, some resources were

attained through Bibliotecnia26, UPC’s digital library.

Gender balance within contributors: The team engaged in this project consists of the

director, and the author, myself. From a gender perspective, the project is balanced, since

the author (myself) is a woman.

Gender balance within cited authors: There are a total of 50 authors within the references

cited in chapter 11. Among the 50 authors, only 8 are female, 29 of them are written by

male authors, and the other 7 have ambiguous names that lack genre clarity. These

numbers reveal the disparity of voices within the field of data science and Machine learning.

Acknowledging and rectifying such disparity in the authorship of the consulted resources

could foster a more comprehensive and inclusive landscape.

Use of Images and Language: This report is written in an impersonal language, without

gender distinctions. All images within the report have been created by the author, the

majority of which are graphics presenting data. The images are not stratified by gender, as

the gender of each author of the dataset was not retrievable information.

Future contributions: The project’s code will be publicly accessible on GitHub, enabling

individuals from all over the world, without charges, to employ the code in their own projects,

enhancing its functionality, or utilizing it as the base for their own personal endeavors.

Sustainable Development Goals (SDGs): Considering the latter observations, the project

contributes to the following objectives: (5) “Gender Equality” for the gender balance within

25 Available at: https://www.academia.edu/

26 Available at: https://bibliotecnica.upc.edu/

Pag. 88 Report

contributors, (10) “Reduced inequalities” for being publicly accessible, and (12)

“Responsible consumption and production” for not having generated any physical waste,

nor purchasing paper-based books.

All things considered, this project is not potentially discriminatory, nor influenced by gender

or social status. The exploratory analysis and recommendation engine are based on a data

set constructed by performing random searches from artists of many genres and

subgenres. The fact that the searches utilized in the construction of the data set did not

regard the popularity of songs, or address specific trends, is a guarantee that artists from

all social statuses are included in the data set. In terms of genre, the genre of each artist

was not available, so the analysis does not regard this aspect, although it could be

interesting.

Lastly, it is important to highlight that while the references predominantly feature male

authors, this project remains non-discriminatory and actively contributes to social and

gender equality, as well as championing minimal environmental impact.

Music feature extraction and analysis through Python Pag. 89

9. CONCLUSIONS

Based on the project's initial objectives, the following conclusions are reached regarding

their fulfillment:

• A comprehensive dataset was successfully curated from Spotify, encompassing a

diverse range of songs, inclusive of both mainstream and niche subgenres. This

dataset embraces the Long Tail distribution principle (see Section 1.1),

underscoring the relevance and importance of varied musical representation.

• The temporal evolution of various musical features was effectively analyzed.

Changes in features like acousticness, energy, and valence over the decades were

discerned, shedding light on the evolution of musical trends.

• The relationship between certain musical features and song popularity was

explored. Correlations were identified, emphasizing the dynamic nature of popular

music attributes and how they change over time.

• A recommendation engine was developed using the curated dataset. The system's

capability to offer song suggestions based on user inputs ensures its functionality

and alignment with the project's objective.

In summary, all the set objectives for this project have been addressed and achieved,

providing a comprehensive understanding of musical trends, their correlation with

popularity, and the construction of a recommendation system.

Pag. 90 Report

10. Bibliography

[1] M. Schedl, H. Zamani, C.-W. Chen, Y. Deldjoo, and M. Elahi, “Current

challenges and visions in music recommender systems research,” International

Journal of Multimedia Information Retrieval, vol. 7, no. 2, pp. 95–116, Apr. 2018,

doi: 10.1007/s13735-018-0154-2.

[2] F. Ricci, L. Rokach, and B. Shapira, Recommender Systems Handbook.

Springer, 2015.

References

[1] ANDERSON, Chris, 2010. The Long Tail: How Endless Choice is Creating
Unlimited Demand. . Random House. ISBN 9781446409282.

[2] STEVENSON, Angus, 2010. Oxford Dictionary of English. . Oxford

University Press, USA. ISBN 9780199571123.

[3] IBM Documentation, 2021. Online. [Accessed 12 June 2023]. Available
from: https://www.ibm.com/docs/en/spss-modeler/saas?topic=dm-crisp-
help-overview

[4] MARTINEZ-PLUMED, Fernando, CONTRERAS-OCHANDO, Lidia, FERRI,
Cesar, HERNANDEZ-ORALLO, Jose, KULL, Meelis, LACHICHE, Nicolas,
RAMIREZ-QUINTANA, Maria Jose and FLACH, Peter, 2021. CRISP-DM
Twenty Years Later: From Data Mining Processes to Data Science
Trajectories. IEEE Transactions on Knowledge and Data Engineering. 1
August 2021. Vol. 33, no. 8, p. 3048–3061.
DOI 10.1109/tkde.2019.2962680.

[5] ESTY, Barbara. Yale University Library Research Guides: Research Data

Management: Validate Data. Yale University Library Research Guides at

Yale University. Online. 21 October . [Accessed 21 June 2023]. Available

from: https://guides.library.yale.edu/datamanagement/validate

[6] MCGREGOR, Susan E., 2021. Practical Python Data Wrangling and Data
Quality. . “O’Reilly Media, Inc.” ISBN 9781098112011.

[7] ANMUT, 2021. Data Quality vs Data Condition: The Power of Context.
Anmut. Online. 12 July 2021. [Accessed 19 June 2023]. Available from:
https://www.anmut.co.uk/data-quality-vs-data-condition-the-power-of-
context/

[8] MOSES, Barr, GAVISH, Lior and VORWERCK, Molly, 2022. Data Quality

Fundamentals. . “O’Reilly Media, Inc.” ISBN 9781098112011.

[9] ADEGEO, 2023. Standard date and time format strings. Microsoft Learn.
Online. 5 February 2023. [Accessed 24 July 2023]. Available from:

https://www.ibm.com/docs/en/spss-modeler/saas?topic=dm-crisp-help-overview
https://www.ibm.com/docs/en/spss-modeler/saas?topic=dm-crisp-help-overview

Music feature extraction and analysis through Python Pag. 91

https://learn.microsoft.com/en-us/dotnet/standard/base-types/standard-date-
and-time-format-strings

[10] PYTHON SOFTWARE FOUNDATION, 2023. datetime — Basic date
and time types. Python documentation. Online. 24 July 2023.
[Accessed 24 July 2023]. Available from:
https://docs.python.org/3/library/datetime.html

[11] SCHEDL, Markus, ZAMANI, Hamed, CHEN, Ching-Wei, DELDJOO,
Yashar and ELAHI, Mehdi, 2018. Current challenges and visions in music
recommender systems research. International Journal of Multimedia
Information Retrieval. 5 April 2018. Vol. 7, no. 2, p. 95–116.
DOI 10.1007/s13735-018-0154-2.

[12] LUNA, Zipporah, 2021. CRISP-DM Phase 5: Evaluation Phase -
Analytics Vidhya - Medium. Analytics Vidhya. Online. 10 November 2021.
[Accessed 25 July 2023]. Available from: https://medium.com/analytics-
vidhya/crisp-dm-phase-5-evaluation-phase-d7bb3c75220a

[13] MAXAMADJONOVNA, Hamidova Muqiymaxon, 2022. TARIX FANINI
O’QITISHNDA ZAMONAVIY YONDASHUVLAR. Zenodo. Online. 1 May
2022. Available from: https://zenodo.org/record/6516440

[14] RICCI, Francesco, ROKACH, Lior and SHAPIRA, Bracha, 2015.
Recommender Systems Handbook. . Springer. ISBN 9781489976376.

[15] SCHEDL, Markus, ZAMANI, Hamed, CHEN, Ching-Wei, DELDJOO,
Yashar and ELAHI, Mehdi, 2018. Current challenges and visions in music
recommender systems research. International Journal of Multimedia
Information Retrieval. 5 April 2018. Vol. 7, no. 2, p. 95–116.
DOI 10.1007/s13735-018-0154-2.

[16] SEN, J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad, 2017.
LNCS 4321 - Collaborative Filtering Recommender Systems Online.
[Accessed 2 May 2023]. Available from:
https://objects.scraper.bibcitation.com/user-pdfs/2023-05-02/baa92c28-
9da2-4307-b5ae-8ba1deca6d3e.pdf

[17] FARNWORTH, Richard, 2020. The Six Dimensions of Data Quality —
and how to deal with them. Towards Data Science. Online. 30 June 2020.
[Accessed 8 August 2023]. Available from:
https://towardsdatascience.com/the-six-dimensions-of-data-quality-and-
how-to-deal-with-them-bdcf9a3dba71

[18] Black A. and van Nederpelt P.. 2020. Dimensions of Data Quality (DDQ)
Research Paper. Retrieved June 10, 2021 from http://www.dama-nl.org/wp-
content/uploads/2020/09/DDQ-Dimensions-of-Data-Quality-Research-
Paper-version-1.2-d.d.-3-Sept-2020.pdf.

[19] PRIESTLEY, Maria, O’DONNELL, Fionntán and SIMPERL, Elena, 2023.
A Survey of Data Quality Requirements That Matter in ML Development
Pipelines. Journal of Data and Information Quality. 22 June 2023. Vol. 15,
no. 2, p. 1–39. DOI 10.1145/3592616.

https://docs.python.org/3/library/datetime.html
http://www.dama-nl.org/wp-content/uploads/2020/09/DDQ-Dimensions-of-Data-Quality-Research-Paper-version-1.2-d.d.-3-Sept-2020.pdf
http://www.dama-nl.org/wp-content/uploads/2020/09/DDQ-Dimensions-of-Data-Quality-Research-Paper-version-1.2-d.d.-3-Sept-2020.pdf
http://www.dama-nl.org/wp-content/uploads/2020/09/DDQ-Dimensions-of-Data-Quality-Research-Paper-version-1.2-d.d.-3-Sept-2020.pdf

Pag. 92 Report

[20] BATINI, Carlo and SCANNAPIECO, Monica, 2006. Data Quality:
Concepts, Methodologies and Techniques. Springer Science; Business
Media. ISBN 9783540331735.

[21] MOSES, Barr, GAVISH, Lior and VORWERCK, Molly, 2022b. Data

Quality Fundamentals. “O’Reilly Media, Inc.” ISBN 9781098112011.

[22] RASCHKA, Sebastian, 2015. Python Machine Learning. . Packt
Publishing Ltd. ISBN 9781783555147.

[23] CELMA, Òscar, 2010. Music Recommendation and Discovery: The Long

Tail, Long Fail, and Long Play in the Digital Music Space. . Springer Science

& Business Media. ISBN 9783642132872.

[24] STEVENSON, Angus, 2010. Oxford Dictionary of English. . Oxford

University Press, USA. ISBN 9780199571123.

[25] BANOULA, Mayank, 2020. K-means Clustering Algorithm: Applications,
Types, & How Does It Work? Simplilearn. Online. 22 April 2020.
[Accessed 23 August 2023]. Available from:
https://www.simplilearn.com/tutorials/machine-learning-tutorial/k-means-
clustering-algorithm

[26] VAN DER MAATEN, L. and HINTON, G. Visualizing Data using t-SNE.
Journal of Machine Learning Research. 2008, vol. 9, p. 2579-2605.

[27] HEALEY, C. G. and ENNS, J. T. Attention and visual memory in
visualization and computer graphics. IEEE Transactions on Visualization
and Computer Graphics. 2012, vol. 18, no. 7, p. 1170-1188.

[28] WATTENBERG, M., VIÉGAS, F. and JOHNSON, I. How to Use t-SNE
Effectively. Distill. 2016.

[29] KOBAK, D. and BERENS, P. The art of using t-SNE for single-cell
transcriptomics. Nature Communications. 2019, vol. 10, no. 1.

[30] Getting started with Web API, [no date]. Spotify for Developers. Online.
[Accessed 16 May 2023]. Available from:
https://developer.spotify.com/documentation/web-api/tutorials/getting-
started

[31] ROBERTS, David, 2021. What is a Web Application? StackPath. Online.

24 May 2021. [Accessed 6 July 2023]. Available from:

https://www.stackpath.com/edge-academy/what-is-a-web-application/

[32] Welcome to Spotipy! — spotipy 2.0 documentation, [no date]. Spotipy.

Online. [Accessed 17 May 2023]. Available from:

https://spotipy.readthedocs.io/en/2.16.1/#authorization-code-flow

https://www.simplilearn.com/tutorials/machine-learning-tutorial/k-means-clustering-algorithm
https://www.simplilearn.com/tutorials/machine-learning-tutorial/k-means-clustering-algorithm

Music feature extraction and analysis through Python Pag. 93

[33] ROBERTS, David, 2021. What is a Web Application? StackPath. Online.

24 May 2021. [Accessed 6 July 2023]. Available from:

https://www.stackpath.com/edge-academy/what-is-a-web-application/

[34] CRAUWELS, Kwinten , 2022. Musicmap. The Genealogy and History of

Popular Music Genres. Online. May 2022. [Accessed 21 August 2023].

Available from: https://musicmap.info/

[35] WONG, Kay Jan, 2022. 7 Evaluation Metrics for Clustering Algorithms.

Towards Data Science. Online. 9 December 2022. [Accessed 28 August

2023]. Available from: https://towardsdatascience.com/7-evaluation-metrics-

for-clustering-algorithms-bdc537ff54d2

[36] HUBERT, Lawrence and ARABIE, Phipps, 1985. Comparing partitions.

Journal of Classification. December 1985. Vol. 2, no. 1, p. 193–218. DOI

10.1007/bf01908075.

[37] MAKLIN, Cory, 2022. DBSCAN Python Example: The Optimal Value For

Epsilon (EPS). Towards Data Science. Online. 9 May 2022. [Accessed 19

August 2023]. Available from: https://towardsdatascience.com/machine-

learning-clustering-dbscan-determine-the-optimal-value-for-epsilon-eps-

python-example-3100091cfbc

[38] BERNSTEIN, Bill, 2021. The History of Dance Music. Armada Music.

Online. 14 January 2021. [Accessed 5 September 2023]. Available from:

https://www.armadamusic.com/news/the-history-of-dance-music

[39] DALY, Rhian, 2021. Apple Music tells artists it now pays double than
Spotify per stream. NME. Online. 16 April 2021.
[Accessed 5 September 2023]. Available from:
https://www.nme.com/news/music/apple-music-tells-artists-now-pays-
double-spotify-per-stream-2922446

[40] LEWIS, Wendy, 2021. THE TIKTOK PHENOMENON AND THE RISE
OF SHORT FORM VIDEO. PRIME Journal. Online. April 2021.
[Accessed 5 September 2023]. Available from: https://www.prime-
journal.com/the-tiktok-phenomenon-and-the-rise-of-short-form-video/

[41] STSEPANETS, Anastasia, 2022. La guía completa para los diagramas
de Gantt: qué es un diagrama de Gantt, cómo se hace y cuándo se usa.
Gantt Chart GanttPRO Blog. Online. 12 December 2022.
[Accessed 1 September 2023]. Available from:
https://blog.ganttpro.com/es/guia-completa-para-los-diagramas-de-
gantt/#elementos-de-la-grafica-de-gantt

[42] LORETO, Alejandro Manzanares, 2023. Cuánto gana un Data Scientist
en España en 2022. HACK A BOSS. Online. 29 June 2023.
[Accessed 4 September 2023]. Available from:
https://www.hackaboss.com/blog/cuanto-gana-un-data-scientist-en-espana-
en-2022

[43] JCAYCHOR, 2016. Consulta, sobre consumo de energía HP240.
hp.es/comunidad. Online. 22 June 2016. [Accessed 31 August 2023].

https://www.armadamusic.com/news/the-history-of-dance-music
https://www.prime-journal.com/the-tiktok-phenomenon-and-the-rise-of-short-form-video/
https://www.prime-journal.com/the-tiktok-phenomenon-and-the-rise-of-short-form-video/
https://blog.ganttpro.com/es/guia-completa-para-los-diagramas-de-gantt/#elementos-de-la-grafica-de-gantt
https://blog.ganttpro.com/es/guia-completa-para-los-diagramas-de-gantt/#elementos-de-la-grafica-de-gantt

Pag. 94 Report

Available from: https://h30467.www3.hp.com/t5/Otros-Productos-Archive-
Solo-lectura/Consulta-sobre-consumo-de-energ%C3%ADa-HP240/td-
p/712057

[44] LLORACH, Joshua, 2023. El nuevo router de Movistar consume un 64%
más electricidad que su predecesor el HGU. BandaAncha.eu. Online. 6
January 2023. [Accessed 1 September 2023]. Available from:
https://bandaancha.eu/articulos/nuevo-router-movistar-consume-64-mas-
10444

[45] MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA Y EL RETO
DEMOGRÁFICO, 2022. Factores de emisión. Miteco. Online. 2022.
[Accessed 31 August 2023]. Available from:
https://www.miteco.gob.es/content/dam/miteco/es/cambio-
climatico/temas/mitigacion-politicas-y-medidas/factoresemision_tcm30-
479095.pdf

