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We put forward and demonstrate experimentally a quantum-inspired protocol that allows us to quantify the degree
of similarity between two spatial shapes embedded in two optical beams without the need to measure the amplitude
and phase across each beam. Instead the sought-after information can be retrieved by measuring the degree of
polarization of the combined optical beam, a measurement that is much easier to implement experimentally. The
protocol makes use of non-separable optical beams, whose main trait is that different degrees of freedom (polari-
zation and spatial shape here) cannot be described independently. One important characteristic of the method
described is that it allows us to compare two unknown spatial shapes. © 2022 Optica Publishing Group under the terms

of the Optica Open Access Publishing Agreement

https://doi.org/10.1364/JOSAA.473213

1. INTRODUCTION

Entanglement is a genuine quantum feature that describes the
quantum correlations that exist between physically separated
systems whose origin cannot be explained with classical physics
concepts. Schrodinger [1] defined entanglement as “the char-
acteristic trait of quantum mechanics, the one that enforces its
entire departure from classical lines of thought.” For the sake
of simplicity, let us consider a pure state |9〉 composed of two
subsystems, A and B , with finite dimensions d . Entanglement
between subsystems A and B is related to the idea of sepa-
rability. One can always write the quantum state as a Schmidt
decomposition [2],

|9〉AB =

d∑
i=1

√
λi |ui 〉A|vi 〉B , (1)

where |ui 〉A and |vi 〉B constitute orthonormal basis in the
Hilbert spaces of subsystems A and B , and λi represents real
and positive coefficients normalized so that

∑
i λi = 1. If the

Schmidt decomposition contains a single term, i.e., λ1 = 1 and
λi = 0 for i 6= 1, the state is said to be separable, or not entan-
gled. Otherwise, the quantum state is entangled. A maximally
entangled state corresponds to the caseλi = 1/d for i = 1 . . . d .

The idea of separability also plays an important role in clas-
sical optics [3], although now we consider different degrees
of freedom of an individual system. One can generate optical
beams where the different degrees of freedom that describe
the beam cannot be considered separately [4–7]. For instance,
considering the polarization and spatial shape degrees of free-
dom, one can generate [4,8–11] an optical beam with electric

field E (r),

EE (r)=
[√

IH9H(r)Ĥ +
√

IV9V (r)V̂
]

exp(ikz), (2)

where r= (x , y ) is the transverse position, z is the direction of
propagation, k is the wavenumber, and Ĥ and V̂ refer to hori-
zontal and perpendicular polarizations. IH,V are the intensities
of the two orthogonal polarizations, and 9H(r) and 9V (r) are
the normalized spatial shapes of each polarization component.

The analysis of the similarities and differences between
Eqs. (1) and (2), and its implications and interpretations, has
driven intense research in the last two decades [12–18]. Some
researchers refer to the non-separability of Eq. (2) as nonquan-
tum or classical entanglement [19,20], although others claim
that the use of the word entanglement in a non-quantum con-
text might be misleading [21]. Non-separable optical beams
have been tested using Bell’s inequality experimental scenarios,
obtaining similar results to its quantum counterpart [8,17,22–
26]. However, the interpretation of these results is different
when using single-photon detections and field intensity mea-
surements [27], leaving no place for the idea of violation of
Bell’s inequality in the classical case. How far one can go in the
analogy between the quantum and classical scenarios is a matter
of discussion and controversy in the scientific community.

The analogies and differences between classical and quan-
tum separability allow one to bring questions and solutions
from the quantum domain into the classical one [28–33]. For
instance, by inspecting how quantum principal component
analysis achieves exponential speedup, Tang [34] describes
an analog classical protocol that is only polynomially slower
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than its quantum counterpart. Leaving out the implications
for interpretations and determining what is uniquely quantum
mechanical, quantum ideas can serve as a source of inspiration
for new classical solutions, the so-called quantum-inspired
protocols [35–40]. These classical protocols based on non-
separable optical beams have been used to encode information
in optical communications [41,42], to characterize quantum
channels [43], to perform state transfer [44], to do stimulated
emission depletion (STED) microscopy [45], and for sensing
and metrology [46,47].

Here we demonstrate a quantum-inspired protocol that aims
at measuring the degree of similarity between two spatial shapes
without measuring the beam profiles. The direct measurement
of the profile of a light beam is always a cumbersome measure-
ment since it implies measuring amplitudes and phases across
the whole beam. Instead we obtain the sought-after information
by measuring only the degree of polarization of an optical beam,
a measurement easily done with the help of half-wave plates and
polarizing beam splitters (PBSs). The protocol considered is
inspired by the analysis of the first-order coherence of subsys-
tems of a bipartite quantum entangled state. We will see that
the protocol proposed here is an example where classical physics
seems to mimic certain aspects of a truly quantum effect such as
entanglement.

The method proposed described below can be used for
pattern recognition, where an input image (spatial shape) is
compared with a set of images (spatial shapes) contained in a
database. The key enabling factor would be to embed the input
image, and each of the images in the database, with orthogonal
polarizations, measuring the global polarization state afterward
as will be described below. It is well-known that alternative
techniques, such as the use of matched filters [48], can also do
pattern recognition. Both techniques share a technical hurdle
for its practical implementation: large databases would require
the implementation of correspondingly large databases of spatial
shapes.

However, the method proposed here shows a fundamental,
and important, advantage that alternative methods do not
have. It allows us to determine the degree of similarity of two
unknown spatial shapes. This is a characteristic that the classical
and quantum scenarios share. In the quantum scenario, we
retrieve information about two unknown polarization states
of photon B by measuring the polarization state of photon
A. In the classical scenario, we retrieve information about
two unknown spatial shapes, measuring the global state of
polarization of the combined optical beam.

2. DESCRIPTION OF THE PROTOCOL FOR
MEASURING THE DEGREE OF SIMILARITY
BETWEEN TWO SPATIAL SHAPES BY
MEASURING THE DEGREE OF POLARIZATION

The protocol we put forward here originates from the following
observation. When detecting the intensity of the entire non-
uniform optical beam, its state of polarization can be described
by the coherence matrix [16,49],

J =

(
IH

√
IH IVγ

√
IH IVγ

∗ IV

)
, (3)

where γ =
∫

dr9H(r)9∗V (r) is the overlap between the spa-
tial shapes 9H(r) and 9V (r) of the horizontal and vertical
components. The condition for a completely polarized wave
is [49] det J = IH IV (1− |γ |2)= 0, which implies that the
two spatial shapes should be equal. In general, the degree of
polarization P of the beam is

P =
[

1−
4det J

(Tr J )2

]1/2

=

[
1−

4IH IV (1− |γ |2)

(IH + IV )
2

]1/2

. (4)

If we can measure the degree of polarization and determine the
overlap γ , we can determine the degree of similarity between
two spatial shapes without measuring the amplitude and phase
at each location of the two spatial shapes. When IH = IV , the
degree of polarization is equal to the overlap, i.e., P = |γ |.

This analysis is reminiscent of what happens with a two-
photon quantum entangled state in polarization of the following
form:

|9〉AB = α|w1〉A|H〉B + β|w2〉A|V 〉B , (5)

where |w1〉 and |w2〉 designate two polarization states of photon
A, in general non-orthogonal, and the coefficients α and β
are the weights of the two components of the state |9〉AB with
|α|2 + |β|2 = 1. The quantum state of photon B is

ρB =

(
|α|2 α∗β〈w1|w2〉

αβ∗〈w2|w1〉 |β|2

)
. (6)

Notice the remarkable similarity between Eqs. (3) and (6). The
equivalent expression of the degree of polarization given in
Eq. (4) is the purity p of the following state:

p = 1− |α|2||β|2(1− |0|2), (7)

where we have defined 0 = 〈w1|w2〉. Notice that the parame-
ters γ (classical scenario) and0 (quantum scenario) play similar
roles. For arbitrary single-photon states, the purity of the quan-
tum state is a measure of the degree of first-order coherence of
the state [50].

Let us describe now the theoretical basis of the protocol we
put forward here. We consider that we need to determine if
an input spatial shape has an equal counterpart in a database
that contains a myriad of spatial shapes (see Fig. 1). The input
spatial shape has to be compared with each one of the spatial
shapes contained in the database. The input spatial shape,
given by 9H(r), is embedded in an optical beam with hori-
zontal polarization. A spatial shape of the database, given by
9V (r), is embedded in an optical beam with vertical polari-
zation. The two light beams enter a polarizing beam splitter
that projects into diagonal D̂= 1

√
2
(Ĥ + V̂ ) and antidiagonal

Â= 1
√

2
(Ĥ − V̂ ) polarizations. The total intensity detected by

a bucket detector is

I (φ)=
1

2
(IH + IV + 2

√
IH IV |γ | cos(φ + θ)), (8)

where γ = |γ | exp(iθ) and the parameter φ is a controllable
phase introduced between the two optical beams with orthogo-
nal polarizations. As the phase φ is varied, the intensity I (φ)
varies accordingly, reaching maxima Imax and minima Imin of
intensity. The visibility is
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Fig. 1. Sketch of the protocol. We want to determine if an input
spatial shape has an equal counterpart in a database that contains many
spatial shapes for comparison. In a more general scenario, we want
to quantify the degree of similarity of the input shape with all of the
spatial shapes contained in the database.

V=
Imax − Imin

Imax + Imin
=

2
√

IH IV

IH + IV
|γ |. (9)

When IH = IV the visibility gives the overlap, i.e., V = |γ |, that
is the degree of polarization. When the intensities of the beams
with orthogonal polarizations are different, we can make use of
the concept of distinguishability [11],

D=
|IH − IV |

IH + IV
. (10)

The distinguishability is zero when the two beams have the same
intensity, and it reaches a value of 1 when IH� IV or IV � IH .

Using Eq. (9) for the visibility and Eq. (10) for the distinguisha-
bility, we can write that the modulus of the overlap (|γ |) is

|γ | =
V

√
1− D2

. (11)

By measuring the distinguishability D and the visibility V , we
obtain the overlap |γ | that quantifies the degree of similarity
between the input spatial shape and the spatial shapes contained
in the database. Notice that we also determine the degree of
polarization of the optical beam, which is

P = [1− (1− D2)(1− |γ |2)]1/2. (12)

The visibility and distinguishability can be easily measured.

3. EXPERIMENTAL DEMONSTRATION OF THE
PROTOCOL

A. Experimental Setup

Figure 2 shows the experimental setup used to quantify, by
measuring the degree of polarization, the degree of similarity
between two spatial shapes. We use a Gaussian beam generated
with a He–Ne laser (λ= 633 nm). The beam is given a diago-
nal polarization with the help of a polarizer and a half-wave
plate (HWP1). It is expanded and collimated using a telescope
(lenses L1 and L2). With the help of a polarization beam splitter
(PBS1), a mirror, and HWP2, the beam is split into two paral-
lel propagating beams with vertical polarization. Each beam
impinges on half of the screen of a spatial light modulator (SLM,
Hamamatsu X10768-01, 792× 600 pixels with a pixel pitch
of 20 µm) prearranged with a hologram. The two modulated
beams reflected from the SLM are recombined with the help
of PBS2 and two HWPs (HWP3 and HWP4). The angles of
HWP3 and HWP4 tune the values of the intensities between the

Fig. 2. Experimental setup. PBS, polarization beam splitter; M, mirrors; HWP, half-wave plates; PZ, piezoelectric; L, lenses; Pol, polarizer; PD,
photodetector; BB, beam blocker.
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two orthogonally polarized beams. The resulting beam contains
in one polarization the input spatial shape and in the orthogonal
polarization one spatial shape of the database. The beam leaves
PBS2 through one output port, and the other output port is
blocked and neglected. The beam is sent through a telescope (L3

and L4) for collimation.
In the detection stage, the beams traverse a polarization-

sensitive Mach–Zehnder interferometer (MZI), where beams
with orthogonal polarizations acquire a phase difference by
varying the length of one arm of the interferometer with a linear
translation stage with piezoelectronics. HWP5 and HWP6 flip
the polarization to its orthogonal. The output beam of the MZI
passes through HWP7 set at 22.5◦ and PBS7 to project into
diagonal polarization. Light transmitted by PBS5 is focused into
a photodiode, while light coming from the reflecting output of
the PBS5 is neglected.

The data acquired from the photodiode is processed by a
lock-in amplifier system which has as reference the signal of an
optical chopper (600 Hz) placed before PBS1. The integration
time of the lock-in amplifier is set at 30 ms. A data acquisition
system (DAQ6008) logs 1000 samples of the output signal from
the lock-in amplifier while the piezo is moving.

B. Results and Discussion

As the first experiment, to show a first proof of the feasibility of
the protocol proposed, we generate, using the two halves of the
SLM, two optical beams:

EE1(ρ, ϕ)=U(ρ) exp(iϕ)Ĥ, (13)

EE2(ρ, ϕ)=U(ρ)[cos(θ/2) exp(iϕ)+ sin(θ/2) exp−iϕ]V̂ ,
(14)

where (ρ, ϕ) are cylindrical coordinates. U(ρ) exp(iϕ) cor-
responds to an optical beam with orbital angular momentum
(OAM) per photon of ~ω. U(ρ) is the resulting radial pro-
file when the phase imprinted in the SLM is of the form
Mod(2π/1+ tan−1(y/x ), π) [51], where 1 is the period of
the grating that allows us to separate the diffraction orders. We
consider only the first diffraction order. The parameter θ is an
angle to control the amplitude of the two modes with OAM per
photon of+~ω and−~ω embedded with vertical polarization.
It can be easily shown that the overlap is |γ | = | cos(θ/2)|.

Figure 3 shows the overlap |γ | as a function of the parameter
θ . The solid line is the theoretical prediction, and the dots cor-
respond to the experimental results. For each point, the overlap
is obtained by measuring the visibility and the distinguisha-
bility. The visibility is obtained by measuring the interference
pattern when the phase difference varies. The distinguishability
is obtained by measuring the intensity of each arm of the inter-
ferometer. The circle (orange), square (green), and diamond
(purple) points are the experimental outcomes when the degree
of distinguishability takes values of D≈ 0, D≈ 0.23, and
D≈ 0.54, respectively. When θ = 0, the two spatial profiles
are equal, so the overlap gets its maximum value of 1. When θ
increases, the overlap decreases until reaching a value of 0 for
θ = π . These results show that the protocol to determine |γ | is
insensitive to differences in intensity between the two optical
beams embedded with different spatial beam profiles.

Fig. 3. Overlap for three different values of the distinguishability
for the spatial shapes shown in Eqs. (13) and (14). The solid line is
the theoretical prediction, and the dots are experimental results. The
error bars indicate the uncertainty due to propagation of errors in the
measurement.

For the demonstration of the protocol described above, we
perform a second set of experiments. We consider the objects
shown in Fig. 4(a) that are similar, although not identical, to the
objects used by Xie et al . [52] to demonstrate parameter sensing
making use of the complex OAM spectrum of light beams. The
objects are emulated with the help of a SLM, which is divided
into two halves to allow for the presence of two different spatial
shapes. The input spatial shape is generated by a disk with an
opening angle δ oriented an angle ϕ measured from the axis
y = 0. The spatial shapes included in the database are generated
with disks with opening angle β oriented at angle α. In the area
of the SLM that corresponds to the opening angle, the pixels
of the SLM introduce a zero phase. Everywhere else the phase

Fig. 4. (a) Input spatial shape and an example of a spatial shape
contained in the database. (b) As example, the input spatial shape is
a disk with opening angle β = 3π

8 oriented a certain angle as shown
in the first row. The second row corresponds to a spatial shape of the
database. The opening angle is β = π/8 and is rotated in steps of
1α = π

8 in the interval {0, 2π}. The third row shows with different
colors the areas where both spatial shapes coincide (the same value+1
or −1) and where they do not coincide. The last row shows the value
calculated of the overlap.
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introduced by the pixels of the SLM is π , so we can assume
that the result of illumination of the object is to multiply the
incoming illumination beam by +1 or −1 depending if the
corresponding position of the pixel is inside the opening angle or
not. Therefore, that overlap is

|γ | =

∣∣∣∣ A+ − A−
A+ + A−

∣∣∣∣ , (15)

where A+ is the area where both beams have the same phase and
A− is the area where they have different phases. Since the total
area is AT = A+ + A−, we have

|γ | =

∣∣∣∣1− 2
A−
AT

∣∣∣∣ . (16)

Figure 4(b) shows an example of the procedure used to deter-
mine the overlap. The first row shows the input spatial shape
that is a disk with opening angle 3π/8. The second row shows
a spatial shape of the database with opening angle π/8 that is
rotated in steps of 1α = π/8. The areas with the same or dif-
ferent value are shown in the third row. In the example, A−/AT

Fig. 5. Overlap as function of the angle α. (a) Input spatial shape
with δ = π

8 and ϕ = 25π
16 . (b) Input spatial shape with δ = 3π

8 and
ϕ = 7π

8 . (c) Input spatial shape with δ = 9π
8 and ϕ = π

4 . The spatial
shape coming from the database has an opening angle of β = π

8 in all
cases. We vary the angleα in steps of1α = π

16 in the interval {0, 2π}.

oscillates between a maximum value of A−/AT = 0.5 and a
minimum value of A−/AT = 0.25. The fourth row shows the
value of the overlap for each step of the scan.

Figure 5 shows the experimental results obtained for three
different input spatial shapes. The solid line is the theoretical
prediction using Eq. (16), and the dots are the data obtained
experimentally. The error bars indicate the uncertainty of the
measurement. Figure 5(a) shows the case when δ = π

8 and
φ = 25π

16 . Figure 5(b) shows the case when δ = 3π
8 and φ = 7π

8 .
Finally, Fig. 5(c) shows the case when δ = 9π

8 andφ = π
4 .

It can be seen that the overlap is |γ | = 1 when the two spatial
shapes are equal and have the same orientation, as shown in
Fig. 5(a). Otherwise, the overlap never reaches the maximum
value of 1. In all cases one observes a similar pattern as function
of α. There is a rising and falling edge varying the angle α. It can
be shown that the distance between the midpoints of the rising
and falling edges is the value of δ (this is shown for the sake of
clarity in Fig. 5). The experimental and theoretical values of δ
agree well for the cases represented in Figs. 5(a) and 5(c). For
the case represented in Fig. 5(b), there is a slight discrepancy.
We obtain an experimental estimation of δ of 5π/16, when the
theoretical value is 3π/8. This might be due to the fact that we
are varying the angle α in steps of π/16, which is precisely the
discrepancy we observe in this case.

4. CONCLUSION

We have put forward and demonstrated experimentally a pro-
tocol to quantify the degree of similarity between two spatial
shapes embedded into two orthogonally polarized optical
beams. The protocol avoids measuring the amplitude and phase
at each point of both beams, a measurement that is generally
cumbersome to do. Instead it measures the degree of polari-
zation of the combined optical beam, a measurement that is
generally much easier to do. The measurement of the degree
of polarization only requires measuring the power imbalance
between two arms of a MZI and the visibility of intensity fringes
as a function of the path difference. The measurement is insen-
sitive to a global phase difference between the spatial shapes and
to intensity differences between them.

The key enabling tool of the protocol is the use of non-
separable beams, where different degrees of freedom cannot
be considered independently. In our case, the two degrees of
freedom considered are polarization and spatial shape. The
non-separability is also an important feature of quantum entan-
glement, where the quantum state of entangled separate entities
cannot be separated in quantum states corresponding to each
entity.

The practical implementation of the method considered for
pattern recognition in large databases should require the con-
sideration of technical hurdles such as the need to implement
accurately and fast enough a large number of spatial shapes,
given the current limitations of the switching speed of spatial
light modulators. Another important issue might be how the
presence of speckle can influence the accuracy of the estimation
of the degree of similarity between two spatial shapes.

The protocol presented here is, thus, another example of a
quantum-inspired technology. The inspiration comes from the
observation that measuring the purity (first-order coherence)
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of a single photon of a bipartite two-photon state is a quantifier
of the overlap between the two states of the companion photon
with whom the single photon measured can be correlated. This
specific feature of quantum entangled states can be mimicked
classically making use of non-separable optical beams. This is
a first step toward the implementation of a new kind of image
comparator, an image comparison analysis tool where images are
compared without the need to measure and analyze the shapes.
This is an interesting practical consequence of the theory of
coherence of non-separable and non-uniform optical beams.

The implementation of quantum-inspired classical proto-
cols can provide algorithms with similar performance to the
corresponding quantum protocols, but that might be much
easier to implement. One example is Grover’s search algorithm,
a quantum-mechanical technique for searching N possibil-
ities in only

√
N steps. Grover and Sengupta [30] found that

a similar algorithm applies in a purely classical setting and that
it still shows advantageous performance when compared with
alternative methods.
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