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BIG RAMSEY DEGREES OF 3-UNIFORM HYPERGRAPHS

M. BALKO, D. CHODOUNSKÝ, J. HUBIČKA, M. KONEČNÝ and L. VENA

Abstract. Given a countably infinite hypergraph R and a finite hypergraph A,

the big Ramsey degree of A in R is the least number L such that, for every finite

k and every k-colouring of the embeddings of A to R, there exists an embedding f
from R to R such that all the embeddings of A to the image f(R) have at most L

different colours.

We describe the big Ramsey degrees of the random countably infinite 3-uniform
hypergraph, thereby solving a question of Sauer. We also give a new presentation of

the results of Devlin and Sauer on, respectively, big Ramsey degrees of the order of

the rationals and the countably infinite random graph. Our techniques generalise (in
a natural way) to relational structures and give new examples of Ramsey structures

(a concept recently introduced by Zucker with applications to topological dynamics).

1. Introduction

We consider graphs, hypergraphs and orders as special cases of (relational) struc-

tures defined more formally below. Given structures A and B, we denote by
(
B
A

)
the set of all embeddings from A to B. We write C → (B)Ak,l to denote the

following statement: for every colouring χ of
(
C
A

)
with k colours, there exists an

embedding f : B → C such that χ does not take more than l values on
(
f(B)
A

)
.

Given a class K of structures, the (small) Ramsey degree of A in K is the least
l ∈ N ∪ {∞} such that for every B ∈ K and k ∈ N there exists C ∈ K such that
C → (B)Ak,l. For a countably infinite structure B and its finite substructure A,

the big Ramsey degree of A in B is the least number L ∈ N ∪ {∞} such that
B→ (B)Ak,L for every k ∈ N.

The class K is said to be a Ramsey class if the Ramsey degree of every A ∈ K is
1. Ramsey classes are the main topic of interest of the structural Ramsey theory.
To this date, there are many Ramsey classes known. Examples relevant for our
presentation include the class of all finite linear orders, the class of all finite graphs
equipped with a linear order on their vertices, and the class of all finite 3-uniform
hypergraphs with a linear order on the vertices. The first example is a consequence
of Ramsey’s theorem. Other two examples are consequences of the Nešetřil–Rödl
theorem; see [5].
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Contrary to the study of Ramsey classes, which has been a very active area
recently, big Ramsey degrees are much less understood and very few non-trivial
examples are known. One of the difficulties is the fact that Ramsey degrees are
often determined by the number of non-isomorphic orderings (thus being 1 for
classes of structures with ordering on vertices), while big Ramsey degrees are
surprisingly rich (as discussed later). The interest in the area was recently renewed
by the work of Zucker [8], which gives a good equivalent of Ramsey expansion for
big Ramsey degrees, and by deep results of Dobrinen [3, 4] about big Ramsey
degrees of Henson graphs (see [4]).

We give a new presentation of two classical results in the area—the big Ramsey
degrees of the (natural) order of the rationals by Devlin [1] and of the Rado graph
by Sauer [6]. Solving a question of Sauer1, we generalise this to the description of
big Ramsey degrees of the random 3-uniform hypergraph. This is a contribution
to the ongoing efforts to give a more systematic treatment to this, so far, very
mysterious area.

2. Preliminaries

We use the standard model-theoretic notion of relational structures. Let L be a
language with relational symbols R ∈ L each having its arity. An L-structure A
on A is a structure with vertex set A, relations RA ⊆ Ar for every symbol R ∈ L
of arity r. If the set A is finite we call A a finite structure. We consider only
structures with finitely many or countably infinitely many vertices.

We discuss several special cases of relational structures, in particular:

1. graphs (where the language L consists of one binary relation E, the adja-
cency relation),

2. orders (where L consists of one binary relation denoted by ≤, � or v),
3. 3-uniform hypergraphs (where L consists of one ternary relation E),
4. and combination of these (where one vertex set is equipped with, say, a

graph and an order).

Since we work with structures on multiple languages, we will list the vertex set
along with the relations of the structure, i.e., (P,≤) for partial orders, G = (V,E)
for graphs and H = (V, E) for hypergraphs, (V,E,≤) for a graph with order on
the vertices, etc.

Given two L-structures A and B, a function f : A→B is an embedding f : A→B
if it is injective and for every R ∈ L of arity r,

(v1, v2, . . . , vr) ∈ RA ⇐⇒ (f(v1), f(v2), . . . , f(vr)) ∈ RB.

As usual in the structural Ramsey theory, given an embedding f : A→ B we will
call the image of A in B a copy of A in B. We say that A and B are isomorphic
if there is an embedding f : A→ B that is onto.

A (rooted set-theoretic) tree is a partially ordered set T = (V,v) with a minimal
element, called root, such that for every a ∈ V the down-set {b : b v a} is well-
ordered by v. In all the trees discussed here, for every pair of vertices a, b ∈ V ,
there is a unique vertex a ∧ b called their meet (or nearest common ancestor).

1Personal communication, 2014
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Given S ⊆ V , the subtree of T generated by S is T ′ = (S′,v�S′), where S′ is the
minimal subset of V closed under the meet operation such that S ⊆ S′. By v�S′

we denote the partial order v restricted to S′. If S = S′ we simply say that S
is a subtree of T . Note that this differs from the graph-theoretic subtree, as some
vertices in T between two comparable elements in S′ might not belong to S′.

Given a linear order (V,≤) and a well-preorder (V,�) (think of a well-order
first), we denote by T (V,≤,�) a tree (V,v) defined by putting a v b if and only if
a � b and there is no c with a < c < b and c � a, b. If (V,v) is not a tree, then we
leave T (V,≤,�) undefined. In computer science, this corresponds to the binary
search tree for (V,≤) when items are inserted in the order given by �. It is easy
to see that if (V,≤) is a linear order and (V,�) is a well-order, then T (V,≤,�) is
always defined.

We denote [n] = {1, 2, . . . , n}.

3. Big Ramsey degrees of the order of rationals

The result of Devlin [1] on the big Ramsey degrees of the order of rationals is shown
using an application of the Milliken tree theorem which is an infinitary Ramsey
statement about infinite finitely branching trees (see e.g. [2]). The vertices of this
tree are described by finite {0, 1}-sequences which corresponds to the rationals in
the interval [0, 2) in the natural way. Big Ramsey degrees are then given by sets
of such {0, 1}-sequences satisfying additional axioms. This approach was later
generalised to graphs [6]. Generalising this approach further however leads to
numerous technical difficulties. For this reason we do not describe details of this
approach and rather discuss an alternative interpretation of these results which is
related to the approach used earlier by Sauer [7] to describe edge partitions in the
triangle-free graph.

It may come as a surprise that the big Ramsey degree of n tuples in the or-
der (Q,≤) ir more than one for every n > 1, while the small Ramsey degrees
of linear orders is one (as a direct consequence of Ramsey theorem). This can
however be shown by the following procedure which colours n-tuples in (Q,≤) in
a way that every copy of (Q,≤) in (Q,≤) contains n-tuples with many different
colours (and, in fact, maximising the number of colours as shown by Theorem 3.2).
This construction is in a way an essential element in understanding the nature of
big Ramsey degrees and, as we show later, it can be generalised to graphs and
hypergraphs, too.

Fix an enumeration x0, x1, . . .. This gives a well-order (Q,�) by letting xi � xj
whenever i ≤ j. We then use T�Q to denote the tree T (Q,≤,�). It follows from

the density of (Q,≤) that T�Q is an infinite binary tree (regardless of the choice of

the enumeration).

Given S = {s1, . . . , sn} ⊂ Q with s1 < · · · < sn, consider the subtree TS of T�Q
generated by S. Since T�Q is a binary tree, it follows that TS = (S′,v) has at most
n−1 additional vertices in the meet closure of S and is thus finite. A shape of S is
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the isomorphism type of the structure (S′,≤�S′ ,��S′) (see Figure 1 for examples
of shapes of subtrees generated by 3-tuples).

Fix n ∈ N and consider the finite colouring of n-tuples in (Q,≤) according to
their shape (thus every shape has a unique colour assigned). What is the least
number of colours a copy of (Q,≤) in (Q,≤) can have? One can observe that
certain shapes can be avoided in the copy. For example subsets S of Q for which
there exist a 6= b ∈ S such that a @ b. However for n > 1 every copy of (Q,≤) in
(Q,≤) contains n-tuples of multiple colours (or shapes). This can be easily verified
for n = 2. Because ≤ is dense and � is well-order it is not difficult to show that for
2-tuples there are 2 different shapes: every copy of (Q,≤) in (Q,≤) will include
pairs of vertices a < b where a ∧ b � a � b and where a ∧ b � b � a. Observe also
that this argument uses the fact that Q is infinite and this is why small Ramsey
degrees behave differently.

One strategy to reduce the number of different shapes let us consider a copy
(Q′,≤) of (Q,≤) in (Q,≤) with the property that there are no a @ b ∈ Q′, i.e.,

it is an antichain in T�Q (such a copy is not hard to construct). Consider S ⊆ Q′

with |S| = n and the subtree TS = (S′,v�S′) of T�Q generated by S. Clearly,
all vertices of S are leafs of TS and there are n − 1 additional meet vertices. On
the other hand, and using a similar argument as the one used to show that there
are two different shapes of 2-tuples, one can convince oneself that any embedding
of (Q,≤) to itself (thus preserving the ordering) contains at least one instance of
each shape (S′,≤�S′ ,��S′), such that |S′| = 2n − 1 (so the n elements of S are

leafs in the subtree TS of T�Q ), and hence the big Ramsey degree is at least the
number of such shapes.

The importance of this interaction between the linear order ≤ with the well-
order � motivates the following definition.

Definition 3.1. We say that (X,≤) and (X,�) is a compatible pair of orders
of X if and only if ≤ is a linear order, � is a preorder, the tree T (X,≤,�) is
defined, and every vertex a ∈ X is either a leaf or has 2 sons.

We note that � will always be a linear well-order in this section. We will,
however, need preorders later. With the preceding argument regarding big Ramsey
degrees, and equipped with the definition of compatible orders, Devlin’s result can
be reformulated as follows.

Theorem 3.2 (Devlin 1979 [1]). The big Ramsey degree of a suborder of (Q,≤)
with n vertices is precisely the number of non-isomorphic structures ([2n−1],≤,≺)
such that (≤,�) is a compatible pair of linear orders of [2n− 1].

Additionally, Devlin showed that the number of big Ramsey expansions of n-
tuples is tan(2n−1)(0), the (2n− 1)st derivative of the tangent evaluated at 0. The
big Ramsey degrees of n-tuples are thus 1, 2, 16, 272, 7936, 353792, 22368256 for
n = 1, . . . , 7, respectively. Eight out of the 16 types of linear orders with 3 vertices
are depicted in Figure 1, the other 8 can be obtained by flipping the figure along
the y axis. We will always draw ≤ form left to right and � from bottom to top.
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Figure 1. An example of structures determining big Ramsey degrees of a linear order in (Q,≤).

4. Big Ramsey degrees of the Rado graph

The Rado graph (or the countable random graph) is the, up to isomorphism, unique
countable graph R with the extension property: for any two finite disjoint sets U
and V of vertices of R there exists a vertex connected to all a ∈ U and to no
b ∈ V ; see, for example, [6].

To understand the big Ramsey degrees of finite graphs in R we can again give
a colouring of R which maximises the number of colours each copy must have. We
start by enumerating its vertices and defining a well-order �. Given a finite set of
vertices S = {s1, . . . , sn} and a vertex a not in S, the S-type of a is the set of all
vertices b /∈ S of R such that for every 1 ≤ i ≤ n vertex a is connected to si if and
only if b is connected to si. For every choice of S there are 2n different S-types of
vertices of R not in S (given by their adjacency to vertices in S).

Now we can construct the tree of types T�R of R where

1. the vertices of T�R are all the S-types for every choice of S being a finite
initial segment of �,

2. for two types U, V we put U @ V ⇐⇒ V ⊂ U .

This is an infinite binary branching tree rooted in the ∅-type where every vertex u
of R is associated with a unique vertex U of T�R (U is the inclusion minimal type

in T�R containing u). Notice however that not every vertex of T�R has a vertex of
R associated this way.

By fixing an arbitrary order of the immediate successors of every vertex of the
tree this in turn leads to of a dense order ≤ of vertices of R and thus it may not
be a complete surprise that the big Ramsey degrees of substructures of R are, in
fact, refinements of those of (Q,≤). Nevertheless, it took 27 years to prove this
fact.

We can refine results explained in Section 3 as follows.

Definition 4.1. Let (≤,�) be a pair of compatible orders of a set V ′, let V be
the set of leaf vertices of T (V ′,≤,�), and let G = (V,E) be a graph. We say that
G is compatible with T (V ′,≤,�) if, for every triple a, b, c ∈ V of distinct vertices
satisfying c � (a ∧ b), we have {a, c} ∈ E if and only if {b, c} ∈ E.

We thus annotate the tree introduced in Definition 3.1 by a graph on its leaves
in a way that it represents a subtree of T�R . See Figure 2. Sauer’s result can now
be stated in an analogy to Theorem 3.2.

Theorem 4.2 (Sauer 2006 [6]). The big Ramsey degree of a graph G = ([n], E)
in R is determined by the number of non-isomorphic structures ([2n− 1], E,≤,�)
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where (≤,�) is a pair of compatible linear orders of [2n− 1] and G is compatible
with T ([2n− 1],≤,�).

c

b
a

a ∧ b

Figure 2. Examples of structures determining the big Ramsey degrees of a graph path (left)

and a non-example (right): a � (b ∧ c) but {a, c} /∈ E, {b, c} ∈ E.

5. Big Ramsey degrees of the 3-uniform hypergraph

Similarly to the Rado graph, the random countable 3-uniform hypergraph R is de-
fined as the up to isomorphism unique 3-uniform hypergraph with the (hypergraph)
extension property: for every pair of finite disjoint sets U and V of two-element
subsets ofR, there is vertex a such that {a, b, c} is a hyper-edge for every {b, c} ∈ U
and for no {b, c} ∈ V .

We adapt the approach developed in Section 4. Enumerate the vertices ofR and
obtain a well-order �. Given a finite set of vertices S = {s1, s2, . . . , sn} the S-type
of a vertex a is the set of all vertices b /∈ S of R such that for every 1 ≤ i < j ≤ n
either both {a, si, sj} and {b, si, sj} are hyperedges of R or none of them is. This

let us to construct the tree of types T�R in a complete analogy as we obtained the
tree of types of the Rado graph.

This time, however, the branching degree of types increases with �: there is
one ∅-type, one {s1}-type (both consisting of all vertices of R), two {s1, s2}-types
and each of them refines to four {s1, s2, s3}-types each of which are further refined
to eight {s1, s2, s3, s4}-types and so on.

This is not the only difference. For each vertex a of R one can consider a
neighbourhood graph Ra defined on vertices of R without a such that {b, c} forms
an edge of Ra if and only if {a, b, c} is a hyper-edge of R. Ra is isomorphic to
the Rado graph and, since big Ramsey structures preserved by fixing a vertex, the
big Ramsey degrees in R must account for those of Ra for each choice of a. The
graph Ra has its own tree of types T�Ra

constructed by the method described in
Section 4 and introduces additional structure which we need to account for while
determining the big Ramsey degrees of R.

Clearly, every n-tuple of vertices of R has a shape in tree T�R as well as shapes

in trees T�Rb
for every vertex b in the n-tuple. All those shapes together determine

a very rich (but finite) colouring. We describe the big Ramsey degree in terms of
isomorphism types of structures which combine those trees into a unified object
consisting of two trees: first tree is a subtree of T�R and the second combines

subtrees of all relevant trees T�Ra
, see also Figure 3. Since all the trees are defined by

the well-order � we arrive to a perhaps surprising situation where several vertices
might be assigned to each vertex a of R and thus � turns to a well-preorder.
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a

b
c

d

(a, e)
e

(b, c)

(c, d)

(b, d)

(a, d)

Figure 3. Examples of structures determining the big Ramsey degree of a hypergraph on 4

vertices. The tree T (V 0,≤0,��V 0 ) is on the left and T (V 1,≤1,��V 1 ) with G1 on the right, see

Definition 5.2.

We are now ready to describe the structures giving the big Ramsey degrees of
the 3-uniform hypergraph. First we describe the tree originating from T�R .

Definition 5.1. Let (≤,�) be a pair of compatible orders of a set V ′, let
V be the set of leaf vertices of T (V ′,≤,�), and let G = (V, E) be a 3-uniform
hypergraph. We say that G is compatible with T (V ′,≤,�) if for every 4-tuple
a, b, c, d of distinct vertices of V satisfying d � c � (a ∧ b) we have {a, c, d} ∈ E if
and only if {b, c, d} ∈ E .

Next we introduce a way to synchronize this tree with the union of trees origi-
nating from the Rado graphs Ra.

Given a tree T (V 0,≤,�) and a compatible 3-uniform hypergraph G = (V, E),
we define the neighbourhood graph of G with respect to T (V 0,≤,�) as the graph
G1 = (V ′′, E1) constructed as follows:

1. V ′′ consists of all pairs (a, b) such that a ∈ V (by compatibility V ⊆ V 0)
and b ∈ V 0, a ≺ b and there is no c ∈ V 0, c @ b such that a ≺ c ≺ b.

2. {(a, b), (c, d)} ∈ E1 for a � c iff there exists e w d such that {a, c, e} ∈ E .
(This is well defined because of the compatibility of T (V 0,≤,�) and G.)

For (a, b) ∈ V ′, we define its projection π : V × V 0 → V by putting π((a, b)) = a.
To simplify the notation, we also define π(a) = a for every a ∈ V .

Definition 5.2. The tuple (V 0, V 1,�,≤0,≤1) is compatible with the 3-uniform
hypergraph G = (V, E) iff:

1. V 0 ∩ V 1 = ∅,
2. (≤0,��V 0) is a compatible pair of orders of V 0 and T (V 0,≤0,��V 0) is

compatible with G,
3. (≤1,��V 1) is a compatible pair of orders of V 1 and T (V 1,≤1,��V 1) is

compatible with the neighbourhood graph G1 = (V 1, E1) of G with respect
to T (V 0,≤0,��V 0),

4. � is a well pre-order which satisfies a 6= b, a � b, b � a ⇒ π(a) = π(b),
and both projections are defined. Moreover, whenever π(a) and π(b) are
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defined, π(a) � π(b) ⇒ a � b. Finally, for (a, b), (c, d) ∈ V 1, we have
((a, b) ∧ (c, d)) ≺ (b ∧ d).

Theorem 5.3. The big Ramsey degree of a 3-uniform hypergraph G = ([n], E) in
R is the number of non-isomorphic structures ([2n− 1]∪V 1,�,≤0,≤1, E ,P) such
that ([2n−1], V 1,�,≤0,≤1) is compatible with E, ��[2n−1] is a linear order and P
consists of all triples {a, b, (a, b)} such that (a, b) is a vertex of the neighbourhood
graph G1.

Proofs of Theorems 3.2 and 4.2 use the Milliken tree theorem for infinite binary
branching trees. The proof of Theorem 5.3 is also based on an application of the
Milliken tree theorem for product of trees. To our best knowledge, this is the
first time this product form with two trees is used. It also seems to be the first
combinatorial application of the Milliken tree theorem for trees with unbounded
branching which appears naturally in the tree of types of 3-uniform hypergraphs
(cf [2]).
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