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Abstract
We report a comparative study of three numerical

solvers for the direct numerical simulation of the flow
over a sphere at Re = 3700. A high-order spectral-
element code (Nek5000), a general purpose, unstruc-
tured finite-volume solver (OpenFOAM) and an in-
house Cartesian solver using the immersed-boundary
method (IBM) are employed for the analysis; results
are compared against previous numerical and exper-
imental data. Numerical results show that Nek5000
and the IBM code operate within a similar computa-
tional performance range, in terms of cost-vs-accuracy
analysis; on the other hand, OpenFOAM needed a sig-
nificantly higher number of degrees of freedom (and,
overall, a higher cost) to match some of the basic fea-
tures of the flow. Overall, our results suggest that high-
order methods and second-order, energy-conserving
approaches based on the IBM may be both viable op-
tions for high-fidelity scale-resolving simulations of
turbulent flows with separation.

1 Introduction
The computational fluid dynamics (CFD) commu-

nity is currently devoting major research efforts to-
wards enabling high-fidelity, eddy-resolving simula-
tions of complex flows within turnaround times that
are compatible with industrial design cycles, as out-
lined by, e.g. Slotnick et al (2014) and Lohner (2019).
The key to achieving this goal is arguably the adoption
of numerical discretization algorithms that are simul-
taneously accurate, robust, flexible and, at the same
time, efficient (i.e., with a high accuracy/cost ratio).
As a result, there is a growing interest in understanding
and comparing the accuracy and efficiency of various
approaches/solvers, particularly traditional low-order
methods and emerging higher-order approaches.

A systematic platform to comparatively assess the
cost-efficiency of several CFD approaches is provided
by The International Workshops on High-Order CFD
Methods, first introduced in 2012 and held alternately
between USA and EU [Wang et al (2013)]. Multiple
solvers utilizing formulations of varying order of ac-

curacy are compared for a series of flow problems of
increasing complexity. The comparison is done on the
basis of error vs cost. From the vast array of problems
considered, the ones with smooth solutions and sim-
pler geometries have demonstrated that higher-order
solvers performed better than standard second-order
methods; on the other hand, the results for non-smooth
solutions/geometries and turbulent flows are currently
inconclusive and require further research. Compara-
tive studies have been recently performed by, e.g., Ver-
meire et al (2017), Capuano et al (2019) and Saini et al
(2020), showing that higher-order methods can be gen-
erally more efficient compared to lower-order ones, es-
pecially when fine-grained quantities are examined.

In all of the above-mentioned studies, the CFD
methods were always based on a body-fitted approach.
On the other hand, the immersed boundary method
(IBM) has gained enormous popularity over the past
twenty years but has not been as often included in
cost/accuracy studies. In this study, it is hypothesized
that careful IBM implementations might be as efficient
as high-order accurate methodologies.

To test this hypothesis, we comparatively exam-
ined the cost-vs-accuracy behaviour of various meth-
ods for scale-resolving simulations of the flow around
a sphere. This is a prototypical case representative of
turbulent incompressible flows with separation, a fam-
ily of problems for which current studies on cost-vs-
accuracy indicate that further research is needed. The
Reynolds number was set to the sub-critical value of
Re = 3700 to allow for comparisons with previous
work. The choice of the Reynolds number also al-
lowed for moderately large grids and affordable com-
putations, while at the same time retaining several
challenging features, such as i) thin boundary layers
on the front part of the sphere; ii) flow separation
near the equator of the sphere, iii) shear layer detach-
ment and instability, with associated characteristic fre-
quency, and iv) transition to turbulence in the wake and
macro-scale vortex shedding.

The paper is organized as follows. Section 2 de-
scribes the set-up of the test case and the three nu-
merical approaches utilized in this work. Numerical



results are reported in Section 3, along with a criti-
cal discussion of the comparative performances of the
three codes. Concluding remarks are finally given in
Section 4.

2 Set-up of numerical simulations
We examine the performance of three representa-

tive numerical techniques: i) second-order unstruc-
tured finite-volume method; ii) second-order Cartesian
method with IBM; and iii) spectral-element method.
We selected two well-known, open-source implemen-
tations for methods i) and iii), i.e. OpenFOAM and
Nek5000 respectively. Although there are open-source
implementations for IBM, their userbase is not as ex-
tensive as the other two solvers and the adoption of
one over another will be fairly arbitrary. For this rea-
son we selected our in-house code as a characteristic
example of a Cartesian IB solver, which has been ex-
tensively validated in a variety of complex turbulent
flow problems [Yang and Balaras (2006)].

The dynamics of the flow problem under consider-
ation is governed by the incompressible Navier-Stokes
equations. A cylindrical domain was used in all simu-
lations, with the sphere located at r = 0, x = 0. The
inlet, outlet and freestream boundaries are located at
5D, 20D and 7D from the center respectively. Three
sets of meshes of increasing resolution are constructed
for this study and tested for each solver, referred to as
a coarse mesh, a medium mesh, and a fine mesh.

The computational grids for all different methods
were carefully designed to meet the following crite-
ria: i) place a minimum number of points in the lam-
inar boundary layer along the upstream portion of the
sphere, which is nonetheless sufficient to correctly
capture the onset of separation; ii) resolve the ener-
getic turbulent structures in the near wake, x/D ≤
5. The thickness of the boundary layer was deter-
mined by a dedicated study, in which the axisymmetric
boundary layer equations were solved. Fig. 1 shows
the evolution of the boundary layer thickness, δ(θ), on
the front part of the sphere for three different Reynolds
numbers, Re = 370, Re = 3700 and Re = 37000;
θ denotes the polar angle from the front stagnation
point. For all Reynolds numbers the boundary layer
thickness grows in a similar way and scales by the es-
tablished Re−0.5 law. The δ(θ)/D above was used
to guide the design of the computational grid near the
surface of the sphere; care was taken to ensure that the
grid resolution at the wall is comparable for the three
solvers. In the next subsections we provide informa-
tion on the setup for each solver.

Spectral-element method: Nek5000
The open-source spectral-element code Nek5000

is employed in this work as a representative exam-
ple of high-order methods. Nek5000 is a scalable
solver that has been widely used for computations of
fluid flows, heat transfer and magnetohydrodynamics,
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Figure 1: Boundary layer thickness on a surface of a sphere
at various Reynolds numbers. Green: Re = 370;
Red: Re = 3700; Blue: Re = 37000.

among others. The incompressible version is used
for this work. With a spectral-element formulation,
the computational domain is divided into Ne non-
overlapping elements, which are related to the refer-
ence elements in the computational domain [−1, 1]dim

by an appropriate transformation, where dim = 3
for the three-dimensional cases. In the version of
Nek5000 used in the current study, velocity and pres-
sure are approximated with a PN/PN−2 formula-
tion. In the current cases the polynomial order is cho-
sen as N = 5. A semi-implicit time advancement
scheme is used, where convection terms are marched
explicitly with the second-order extrapolation in time
and diffusion terms are integrated implicitly with the
second-order backward difference scheme. The code
is fully dealiased using an over-integration technique,
the velocity is solved using the preconditioned conju-
gate gradient (PCG) method, and the pressure solver
uses the iterative generalized mean residual (GMRES)
method in the Krylov subspace. The tolerance was set
to 10−6. Further details of the current spectral-element
methodology can be found in Zhang and Peet (2022).

An O-grid approach is utilized to produce the
meshes, with a local refinement within the bound-
ary layer around the sphere, with a minimum element
height ∆rmin = 0.015D in a fine case. The mesh
is entirely hexahedral and is generated in Ansys Icem.
The total number of degrees of freedom (DOFs) for the
coarse, medium and fine cases are approximately 2.8
millions, 6.5 millions and 9.8 millions, respectively.
A view of the mesh around the sphere for the coarse
grid is shown in Figure 2a. The no-slip wall boundary
condition is employed for the surface of the sphere. A
uniform Dirichlet boundary condition is used for the
inflow boundary, while all the other boundaries of the
cylindrical computational domain are set to stabilized
outflow boundary condition. The time step was set to
2 × 10−3D/U for all the cases. This resulted in the



Figure 2: Comparison of the coarsest mesh used for each code. Left: Nek5000; Middle: OpenFOAM; Right: IBM.

CFL numbers being 0.65, 0.77 and 0.88 for the coarse,
medium and fine grids, respectively.

Unstructured finite-volume method: OpenFOAM
OpenFOAM is a general purpose open-source plat-

form with a wide range of possible applications. The
native incompressible flow solver pimpleFoam from
Version 7.0 of the software is used in this work. The
discretization is based on a finite-volume approach
with collocated arrangement, with both convective and
diffusive terms approximated by second-order cen-
tered schemes. Time integration is achieved by a
second-order Crank-Nicolson method. The overall so-
lution methodology is based on the PIMPLE algo-
rithm, which is a slightly modified version of the orig-
inal PISO formulation. The reader is referred to Jasak
(1996) for a detailed description of the spatial dis-
cretization methods employed by OpenFOAM. Here
we highlight that the standard velocity interpolation
procedure utilized in pimpleFoam, which is based on a
cell center distance weighted average, is not discretely
kinetic-energy preserving.In this work, the linear sys-
tem arising from the pressure equation is solved by
a generalized geometric-algebraic multi-grid (GAMG)
method with a tolerance of 10−7.

Three O-grid meshes, each with a successive 50%
refinement, were created using the built-in Open-
FOAM tool blockMesh. A cylindrical outer domain
was used in all cases. The grid is qualitatively sim-
ilar to the one used in the Nek5000 simulations (see
Fig. 2a-b). The grid around the sphere was stretched in
the radial direction to resolve the boundary layer while
uniform elements were employed in the other two di-
rections around the sphere. For the finest grid the min-
imum element height at the surface of the sphere is
∆rmin = 0.0036D and 0.0078D in the other two di-
rections. The grid was kept uniform in a region in the
near wake up to x = 3.8D with an axial resolution
∆x = 0.009D and a resolution of 0.016D in the other
two directions. The total number of elements for the
coarse, medium and fine cases are approximately 3.7,
13.5 and 30 million nodes respectively.

No-slip wall boundary condition was specified at

the sphere, while symmetry was used at the outer
cylindrical boundaries and an outlet boundary condi-
tion at the outflow. The time step for the finest grid
was set to ∆t = 2.5×10−3D/U ensuring the Courant
number was slightly below 1.0. The simulation was
integrated in time for 200D/U to get rid of transient
effects and time-averaged statistics were sampled for
another 300D/U .

Immersed-boundary method
The Navier-Stokes equations for viscous incom-

pressible flow are solved on a structured grid in
cylindrical coordinates. The governing equations are
advanced in time using a semi-implicit projection
method, treating the explicit part with a 3rd order
Runge-Kutta scheme, and the implicit part with a 2nd

order Crank-Nicholson scheme. All spatial deriva-
tives are approximated using second-order central-
differences on a staggered grid; this method is dis-
cretely kinetic-energy-preserving (KEP) in the invis-
cid limit.The pressure Poisson equation is solved us-
ing a direct solver. The eptadiagonal matrix is initially
reduced to a series of pentadiagonal problems via Fast
Fourier Transforms (FFTs) along the azimuthal direc-
tion, which are then solved with a divide-and-concur
strategy. The geometry of the sphere is represented by
a Lagrangian grid consisting of triangular elements,
and the no-slip boundary condition is imposed using
an immersed-boundary formulation which is overall
second-order accurate; details are provided in Yang
and Balaras (2006) and a validation for a similar prob-
lem in, e.g. Pal et al (2017).

The design of the grid for this solver is not trivial
since the grid does not conform to the surface. To con-
trol the distribution of the points inside the boundary
layer the orientation of the outward normal with re-
spect to the radial and axial directions was taken into
account. In particular at θ ∼ 84◦, the normal pointing
away from the sphere is almost aligned with the radial
direction. The radial grid needs to be fine there while
the axial grid can be relaxed. Since δ ∼ 0.03D at
θ ∼ 84◦ the radial resolution dr is 0.0045D resulting
in approximately 7 points within the boundary layer.



Run / Reference CD ∆CD St ∆St L/D ∆L θs ∆θ
N1 0.381 1.06% 0.23 4.54% 2.5 -5.4% 90.2◦ 0.33%
N2 0.376 -0.27% 0.22 0.00% 2.65 -0.6% 89.9◦ 0.00%
N3 0.377 – 0.22 – 2.67 – 89.9◦ –
OF1 0.402 6.63% 0.21 -4.54% 2.22 -14.2% 88.5◦ -1.6%
OF2 0.386 2.39% 0.21 -4.54% 2.48 -5.9% 89.2◦ -0.7%
OF3 0.384 1.86% 0.21 -4.54% 2.36 -9.8% 89.8◦ -0.1%
IBM1 0.356 -5.62% 0.24 9.09% 1.88 -24.9% 103.0◦ 14.5%
IBM2 0.370 -1.87% 0.23 2.22% 2.28 -12.3% 95.1◦ 5.8%
IBM3 0.371 -1.60% 0.22 0.00% 2.64 -0.9% 91.6◦ 1.9%
Rodriguez et al (2011) 0.394 0.215 2.28 89.4◦

Yun et al (2006) 0.355 0.21 2.62 90◦

Sakamoto et al (1990) – 0.204 – –
Kim and Durbin (1998) – 0.225 – –

Table 1: Main flow parameters provided by: i) the simulations carried out in this work (top part of the table) and ii) previous
references (bottom part of the table). CD is the drag coefficient, St the Strouhal number, L/D the non-dimensional
length of the recirculation bubble, and θs the angle at which boundary layer separation occurs on the sphere. The
percentage errors in the simulations are with respect to case N3.

At θ = 45◦ (r/D ∼ 0.35, z/D ∼ 0.35) the outward
normal is not aligned with either axis. To maintain the
same resolution normal to the surface of the sphere the
grid resolution is increased to ∆r = ∆z = 0.003D,
resulting in approximately 6 points inside the bound-
ary layer. At the stagnation point, where the nor-
mal is aligned with the axial direction, the axial grid
is refined while the radial grid is coarsened. There
dz = 0.003D, which puts 5-6 points inside the bound-
ary layer. Finally at the back of the sphere the axial
grid resolution is slightly relaxed since the flow is sep-
arated. Three different grids each with 50% refinement
were employed; a coarse with 275 × 84 × 150 points,
an intermediate with 375×118×225 points and a fine
with 550×161×300 points in the axial, radial and az-
imuthal directions respectively. The CFL number for
all simulations was set to CFL = 1.2.

3 Results and discussion
This section reports a selection of results. In

all cases, flow statistics were collected for at least
200D/U units after a transient of 200D/U .

The main flow parameters for each simulation are
listed in Table 1, along with those provided by pre-
vious computational and experimental studies. Listed
in the table are the predicted drag coefficient, CD =
2FD/ρU

2
∞A (where FD is the drag force on the

sphere, ρ is the fluid density, and A is the projected
frontal area), the Strouhal number, St = fD/U∞
(where f is the shedding frequency), the recirculation
bubble length, L/D, and the location where the lami-
nar boundary layer separates indicated by the separa-
tion angle, θs. For the nine computations considered
in this work the error for each variable with respect
to the one predicted by finest grid in the Nek5000
simulation (N3) is also indicated. Available results
from experiments and computations in the literature

have also been added. For the case of Nek5000 all
the above quantities converge and the difference be-
tween the two finest grids, N2 and N3, is less than
1%. The same applies to the IBM solver where all
quantities converge as the grid is refined and the er-
ror on the finest grid (IBM3) is within 2% of N3. For
the case of OpenFOAM the drag coefficient, CD, also
converges as the grid is refined and is within 2% of
N3. The same applies to the separation angle, θs. The
error on the recirculation bubble, however, does not
converge monotonically and is relatively large when
compared to N3 (> 5%). In the process of designing
the OpenFOAM grids we found that L/D is very sen-
sitive to the adopted grid types and particularly to the
way the mesh transitions from the boundary layer to
the wake. The selected configuration was the one min-
imizing such errors. Note that St number predicted by
OpenFOAM is not affected by the grid resolution and
is 4.5% lower than N3. At the bottom part of Table 1
we also include the results from past experiments and
eddy resolving simulations at the same Reynolds num-
ber range. Although not all the parameters listed above
are provided, overall the present computations are in
agreement within 5%. One notable difference is the re-
circulation length L/D in the DNS by Rodriguez et al
(2011), which is underpredicted by 12% with respect
to N3 and IBM3. We should note that given the lack
of a comprehensive set of reference results we will use
the grid-converged, spectral-element results for case
N3 as the reference to compute all related errors in-
volved in the assessment of cost-vs-accuracy below.

To shed light on the dynamics of the recirculation
bubble, Figure 3 shows contours of the streamwise
turbulent intensities u′xu

′
x and cross Reynolds stress

u′xu
′
r for the three solvers at the highest grid resolu-

tions. All solvers predict a similar evolution of the near
wake velocity fluctuations. However, close examina-
tion of the streamwise component, u′xu

′
x, reveals that
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Figure 3: Contours of the streamwise turbulent intensity u′xu′x (left) and turbulent Reynolds stresses u′xu′r (right) (a) u′xu′x,
OpenFOAM; (b) u′xu′r , OpenFOAM; (c) u′xu′x, Nek5000; (d) u′xu′r , Nek5000; (e) u′xu′x, IBM; (f) u′xu′r , IBM.

Run #dof/core t∗ ×Np
t∗ ×Np

#dof
W

N1 20.6 1.0 0.36 0.14
N2 23.9 2.6 0.40 0.36
N3 24.0 3.9 0.40 0.54
OF1 92.5 5.96 1.61 0.33
OF2 167.5 56.4 4.21 4.47
OF3 148.5 117.9 3.97 13.10
IBM1 145 0.4 0.11 0.01
IBM2 410 1.2 0.11 0.06
IBM3 544 3.6 0.13 0.24

Table 2: Computational performances parameters. See text
for details. Note: #dof/core to be multiplied by 103;
t∗×Np

#dof by 10−6.

the detached shear layer in OpenFOAM becomes un-
stable closer to the sphere, while the magnitude of both
u′xu

′
x and u′xu

′
r is generally higher. The peak in both

quantities is over-predicted by OpenFOAM, while the
maximum discrepancy is seen at around x = 2.5D,
where the peaks are roughly double in magnitude.
This behaviour is probably due an early breakdown of
the shear layer, leading to a shorter recirculation bub-
ble. The finite-difference IBM solver slightly under-
predicts u′xu

′
x compared to Nek5000.

Finally, we examine the efficiency of the three
codes in terms of cost-vs-accuracy behavior. All
Nek5000 simulations were conducted on the KNL
nodes of the Stampede-2 supercomputer at the Texas
Advanced Computing Center located at The Univer-
sity of Texas at Austin. They utilize Intel Xeon Phi
7250 CPUs with a clock rate of 1.4GHz and 96GB
DDR4 plus 16GB high-speed MCDRAM for RAM.
For the IBM and OpenFOAM computations we used
the PEGASUS HPC cluster at the George Washington
University consisting of Dual 20-Core 3.70GHz Intel
Xeon Gold 6148 processors with 96GB of 2666MHz
DDR4 ECC Register DRAM. Given that the HPC ar-
chitectures utilized in the computations in the present

work are similar, we will use the elapsed CPU time
normalized against the open-source tool TauBench1 to
obtain comparable cost estimates. The results are re-
ported in Table 2. The normalized elapsed CPU time
per time step is indicated as t∗ = t/τ , where τ is the
TauBench execution time. Note that t was obtained
by averaging the elapsed CPU time (i.e., the actual
wall time) over the number of time-steps of each sim-
ulation. The selection of degrees-of-freedom per core
(#dof /core ) was based on published results and prior
experience with the solvers; it can be assumed that all
solvers were used within a very similar (linear) par-
allel efficiency range. The total cost can be defined
as t∗ × Np, where Np is the number of processors
used for each run. A metric that is directly linked to
the efficiency of each solver is the normalized cost per
timestep per dof (t∗×Np/dof ), which is also listed in
Table 2. Based on this metric OpenFOAM was slower
by a factor ≈ 30 with respect to the IBM code and
≈ 10× slower with respect to Nek5000. The IBM
code was the fastest one: roughly 3 times faster than
Nek5000, on average. This can be attributed to a su-
perior efficiency of the Poisson solver implemented in
the IBM code. It is worth noting that the time step size
is not involved in this comparison, which can be mis-
leading as all three solvers use different time steps. To
account for such differences we define the cost of each
simulation as the CPU hours required to compute one
flow-through time (D/U∞). The resulting Work Unit
(W) is thus defined as:

W =
t∗ ×Np

3600
× D/U∞

∆t
, (1)

where ∆t is the time step size. Even though the codes
employ different time integration schemes, the time
step was not drastically different for the various runs,
∆t ≈ O(10−3). The work unit W is shown in Fig-
ure 4 for all nine computations versus the error on the
integral parameters listed in Table 1. Nek5000 rapidly

1https://github.com/slitvinov/taubench



Figure 4: Cost (W) vs accuracy (% error) comparison for all
cases. Symbols indicate errors on: ◦ CD; � St;
♦ L/D; 4 θs. Green: Nek5000; Blue: Open-
FOAM; Red: IBM.

converges towards negligible errors at the medium grid
resolution for all quantities. For the IBM solver the
errors are significant for the coarsest grid but also con-
verge rapidly as the grid is refined. For OpenFOAM,
grid convergence is not as rapid and some quantities
such as the Strouhal number, St and the length of the
recirculation bubble, L/D, still have errors of the or-
der of 5% even on the finest grid. We did not attempt
further grid refinement for OpenFOAM given that the
unit-cost, W , for the finest grid is 13.1, which is al-
ready an order of magnitude higher than the other two
solvers, which are clearly more efficient. The power
metrics for Nek5000 could be further improved by uti-
lizing larger time steps. However, the sensitivity of
results to a temporal refinement was not performed in
the current study. Overall, if one sets the threshold of
the error to be ≤ 2%, the IBM solver delivers it at the
lowest cost (W = 0.24).

4 Conclusions
This comparative study analyzed the efficiency of

three radically different numerical methodologies for
scale-resolving simulations of a prototype case of a
turbulent separated flow. The results showed that
Nek5000 and the IBM code operate in a similar com-
putational performance range for the problem consid-
ered, while OpenFOAM (based on one of its stan-
dard incompressible solvers) turned out to be signif-
icantly less efficient. While caution should be taken
in terms of generalizing the reported findings, our
results suggest that high-order methods and second-
order, kinetic-energy-preserving approaches based on
the IBM may be both viable and efficient options for
high-fidelity scale-resolving simulations of turbulent
separated flows. It should be noted that grid genera-
tion costs, which can be an important factor, were not
included in the current cost-vs-accuracy estimates, and
can further tip the balance towards IBM approaches.
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