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Abstract

The k-token graph Fk(G) of a graph G is the graph whose vertices are the k-subsets
of vertices from G, two of which being adjacent whenever their symmetric difference is
a pair of adjacent vertices in G. It is a known result that the algebraic connectivity (or
second Laplacian eigenvalue) of Fk(G) equals the algebraic connectivity of G. In this
paper, we first give results that relate the algebraic connectivities of a token graph and
the same graph after removing a vertex. Then, we prove the result on the algebraic
connectivity of 2-token graphs for two infinite families: the odd graphs Or for all r,
and the multipartite complete graphs Kn1,n2,...,nr

for all n1, n2, . . . , nr In the case of
cycles, we present a new method that allows us to compute the whole spectrum of
F2(Cn). This method also allows us to obtain closed formulas that give asymptotically
exact approximations for most of the eigenvalues of F2(Cn).

Keywords: Token graph, Laplacian spectrum, Algebraic connectivity, Binomial matrix,
Lift graph, Regular partition.
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1 Introduction

Let G = (V,E) be a simple graph with vertex set V = V (G) = {1, 2, . . . , n} and edge set
E = E(G). By convenience, we consider every edge e = {u, v} constituted by two opposite
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research of M. A. Fiol was also supported by a grant from the Universitat Politècnica de Catalunya with
references AGRUPS-2022 and AGRUPS-2023.
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arcs (u, v) and (v, u). Let N(u) denote the set of vertices adjacent to u ∈ V , so that the
minimum degree of G is δ(G) = minu∈V |N(u)|. For a given integer k such that 1 ≤ k ≤ n,
the k-token graph Fk(G) of G is the graph whose vertex set V (Fk(G)) consists of the

(
n
k

)
k-subsets of vertices of G, and two vertices A and B of Fk(G) are adjacent if and only if
their symmetric difference A△B is a pair {a, b} such that a ∈ A, b ∈ B, and (a, b) ∈ E(G).
Then, if G has n vertices and m edges, Fk(G) has

(
n
k

)
vertices and

(
n−2
k−1

)
m edges. (Indeed,

for each edge of G, there are
(
n−2
k−1

)
edges of Fk(G).) We also use the notation {a, b}, with

a, b ∈ V , for a vertex of a 2-token graph. Moreover, we use ab for the same vertex in the
figures. The naming ‘token graph’ comes from an observation in Fabila-Monroy, Flores-
Peñaloza, Huemer, Hurtado, Urrutia, and Wood [13], that vertices of Fk(G) correspond
to configurations of k indistinguishable tokens placed at distinct vertices of G, where two
configurations are adjacent whenever one configuration can be reached from the other
by moving one token along an edge from its current position to an unoccupied vertex.
The k-token graphs are also called symmetric k-th power of graphs in Audenaert, Godsil,
Royle, and Rudolph [2], and k-tuple vertex graphs in Alavi, Lick, and Liu [1]. In Figures
1, 2, and 3, we show the 2-token graphs of cycles C9, C10, and C8, respectively. Note that
if k = 1, then F1(G) ∼= G; and if G is the complete graph Kn, then Fk(Kn) ∼= J(n, k),
where J(n, k) denotes the Johnson graph [13], which is distance-transitive (and, hence,
distance-regular). Moreover, if G is bipartite, so it is Fk(G) for any k = 1, . . . , |V | − 1.

Token graphs have some applications in physics. For instance, a relationship between
token graphs and the exchange of Hamiltonian operators in quantum mechanics is given
in Audenaert, Godsil, Royle, and Rudolph [2]. Our interest in the study of token graphs
is motivated by some of their applications in mathematics and computer science: Analysis
of complex networks, coding theory, combinatorial designs (by means of Johnson graphs),
algebraic graph theory, enumerative combinatorics, the study of symmetric functions, etc.

Recently, it was conjectured by Dalfó, Duque, Fabila-Monroy, Fiol, Huemer, Trujillo-
Negrete, and Zaragoza Mart́ınez [6] that the algebraic connectivity of Fk(G) equals the
algebraic connectivity of G. After submitting the first version of this paper, the authors
learned (from Fabila-Monroy [12]) that this conjecture was already known as the Aldous’
spectral gap conjecture, and it was proved in 2010 by Caputo, Ligget, and Richthammer in
[4]. Moreover, Ouyang [21] and Lew [20] also mentioned that this conjecture was actually
solved. Moreover, Cesi [5] provided a simpler proof of the so-called ‘octopus inequality’,
which is one of the main ingredients to prove the Aldous’ conjecture. These results were
obtained in completely different contexts and using distinct techniques. More precisely,
they used the theory of continuous Markov chains of random walks and the so-called
‘interchange process’. In this paper, we present an algebraic approach to this problem
based on voltage graphs, and we give a new method that can be of interest giving an
alternative proof.

This paper is structured as follows. In Section 2, we give the preliminaries and back-
ground together with the known results. Moreover, there are the concepts of quotient
graph (or digraph) and lift graph (or digraph). In Section 3, we give results on the alge-
braic connectivity of a k-token graph when we remove one of its vertices. Besides, given
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that the algebraic connectivities of a k-token graph and its original graph are the same, we
provide an algebraic proof of this result when k = 2 for two infinite families of graphs: the
odd graphs and the multipartite complete graphs. Section 4 deals with the 2-token graph
of a cycle Cn and gives an efficient method to compute the whole spectrum of F2(Cn) for
any n by using the theory of lift graphs and a new method called over-lifts. Finally, in the
last section, we give some closed formulas that provide asymptotic approximations of the
eigenvalues of F2(Cn).

2 Preliminaries and background

2.1 Some notation and basic facts

The notation of this paper is as follows: A = A(G) is the adjacency matrix of the
graph G, L = L(G) the Laplacian matrix of the graph G, P a permutation matrix,
π = V1 ∪ V2 ∪ · · · ∪ Vr a (regular or not) partition of the vertex set, G/π a quotient graph
over π, A(G/π) and L(G/π) the adjacency and Laplacian matrices of G/π, and S the
characteristic matrix of the partition π.

The transpose of a matrix M is denoted by M⊤, the identity matrix by I, the all-1
vector (1, . . . , 1)⊤ by 1, the all-1 (universal) matrix by J , and the all-0 vector and all-0

matrix by 0 and O, respectively. Let [n] := {1, . . . , n} and
([n]
k

)
denote the set of k-subsets

of [n], which is the set of vertices of the k-token graph.

For our purpose, it is convenient to denote by Wn the set of all column vectors v with
n entries such that v⊤1 = 0. Recall that any square matrix M with all zero row sums
has an eigenvalue 0 with corresponding eigenvector 1. Then, given a graph G = (V,E) of
order n, we say that a vector v ∈ Rn is an embedding of G if v ∈ Wn. Note that if v is a
λ-eigenvector of G, with λ > 0, then it is an embedding of G.

When M = L(G), the Laplacian matrix of a graph G, the matrix is positive semidef-
inite, with eigenvalues (0 =)λ1 ≤ λ2 ≤ · · · ≤ λn. Its second smallest eigenvalue λ2 is
known as the algebraic connectivity of G (see Fiedler [14]), and we denote it by α(G).
The spectral radius λmax(G) = λn satisfies several lower and upper bounds (see Patra and
Sahoo [22] for a survey).

For a graph G with Laplacian matrix L(G) and an embedding v of G, let

λG(v) :=
v⊤L(G)v

v⊤v
=

∑
(i,j)∈E

[v(i)− v(j)]2∑
i∈V

v2(i)
,

where v(i) denotes the entry of v corresponding to the vertex i ∈ V (G). The λG(v) value
is known as the Rayleigh quotient. If v is an eigenvector of G, then its corresponding
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eigenvalue is λ(v). Moreover, for an embedding v of G, we have

α(G) ≤ λG(v), (1)

and we have equality when v is an α(G)-eigenvector of G.

In this paper, we first give some results about the algebraic connectivity of a token
graph. Besides, we provide results about the spectrum of a token graph of a cycle graph
when we deal with 2 tokens. This study was initiated by Dalfó, Duque, Fabila-Monroy,
Fiol, Huemer, Trujillo-Negrete, and Zaragoza Mart́ınez in [6]. One of their results is the
following.

Given some integers n and k (with k ∈ [n]), we define the (n; k)-binomial matrix B.
This is a

(
n
k

)
× n matrix whose rows are the characteristic vectors of the k-subsets of [n]

in a given order. Thus, if the i-th k-subset is A, then

(B)ij =

{
1 if j ∈ A,
0 otherwise.

Lemma 2.1 ([6]). Let G be a graph on n vertices. For some integers h, k such that
1 ≤ h < k ≤ n

2 , let Fh = Fh(G) and Fk = Fk(G) be its h- and k-token graphs with
respective Laplacian matrices Lh and Lk. Then, the following holds:

(i) If v is a λ-eigenvector of Lh, then Bv is a λ-eigenvector of Lk. Thus, the Laplacian
spectrum (eigenvalues and their multiplicities) of Lh is contained in the Laplacian
spectrum of Lk.

(ii) If u is a λ-eigenvector of Lk such that B⊤u ̸= 0, then B⊤u is a λ-eigenvector of
Lh.

From the inclusion property of the successive spectra in (i), we have:

α(G) ≥ α(F2(G)) ≥ α(F3(G)) ≥ · · · ≥ α(F⌊n/2⌋(G)). (2)

Recall that Caputo, Liggett, and Richthammer [4] proved that all these inequalities actu-
ally are equalities.

In our context of token graphs, it was shown in [6] and by Dalfó and Fiol in [7] that
the conjecture (now, a result) holds for the following infinite families of graphs.

Theorem 2.2 ([6, 7]). For each of the following classes of graphs, the algebraic connec-
tivity of a token graph Fk(G) equals the algebraic connectivity of G.

(i) Let G = Kn be the complete graph on n vertices. Then, α(Fk(G)) = α(G) = n for
every n and k = 1, . . . , n− 1.

(ii) Let G = Kn1,n2 be the complete bipartite graph on n = n1+n2 vertices, with n1 ≤ n2.
Then, α(Fk(G)) = α(G) = n1 for every n1, n2 and k = 1, . . . , n− 1.
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(iii) Let Tn be a tree on n vertices. Then, α(Fk(Tn)) = α(Tn) for every n and k =
1, . . . , n− 1.

(iv) Let G be a graph such that α(Fk(G)) = α(G). Let TG be a graph obtained from
G by attaching a (possibly empty) u-rooted tree T (u) to each vertex u of G. Then,
α(Fk(TG)) = α(TG).

All these results were obtained by induction on n, and using that for some vertex i,
α(G \ i) ≥ α(G). See Table 1, where we show two particular cases of (iii). Namely,
the star graph Sn and the path graph Pn, both on n vertices. These two cases, together
with the complete bipartite graph Kn1,n2 were proved in [6, Th. 7.2]. The fact that, for
any tree Tn, we have α(Tn \ i) ≥ α(Tn) can be proved by using interlacing (see Bunch,
Nielsen, and Sorensen [3]). An alternative proof using Fiedler vectors (eigenvectors with
their eigenvalue equal to the algebraic connectivity) was given in Dalfó and Fiol [7].

Graph G α(G) Vertex i α(G \ i)
Pn 2(1− cos(πn)) a leaf 2(1− cos( π

n−1))

Sn 1 a leaf 1
Kn1,n2 (n1 < n2) n1 i ∈ V2, n2 = |V2| n1

Tn (see [7]) a leaf (see [7])

Table 1: Some graphs with a vertex i such that α(G) ≤ α(G \ i).

2.2 Regular partitions and their spectra

Let G = (V,E) be a graph with vertex set V = V (G) and Laplacian matrix L. A partition
π = (V1, . . . , Vr) of V is called regular (or equitable) whenever, for any i, j = 1, . . . , r, the
intersection numbers bij(u) = |N(u) ∩ Vj |, where u ∈ Vi, do not depend on the vertex
u but only on the subsets (usually called classes or cells) Vi and Vj . In this case, such
numbers are simply written as bij , and the r × r matrix QL = L(G/π) with entries

(QL)ij =


−bij if i ̸= j,

bii −
r∑

h=1

bih if i = j,

is referred to as the quotient Laplacian matrix of G with respect to π. This is also
represented by the quotient (weighted) directed graph G/π (associated with the partition
π), with vertices representing the r cells, and there is an arc with weight bij from vertex Vi

to vertex Vj if and only if bij ̸= 0. Of course, if bii > 0, for some i = 1, . . . , r, the quotient
graph (or digraph) G/π has loops. Given a partition π of V with r cells (or partition sets),
let S be the characteristic matrix of π, that is, the n × r matrix whose columns are the
characteristic vectors of the cells of π. Then, as in the case of the adjacency matrix (see,
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for instance, Godsil and Royle [15]), π is a regular partition if and only if LS = SQL. In
the case of the Laplacian matrix, it follows that

QL = (S⊤S)−1S⊤LS,

and the characteristic polynomial of QL divides the characteristic polynomial of L. Thus,
a part of the spectrum of L can be determined by the spectrum of the (usually much
smaller) matrix QL. Moreover, if the graph G is bipartite, the maximum eigenvalue of
its Laplacian quotient matrix QL equals the spectral radius of L. The reason is that, in
bipartite graphs, the Laplacian matrix’s characteristic polynomial is equal to the signless
Laplacian L+ (see, for instance, Grone, Merris, and Sunder [17]). Then, the same holds for
the quotient Laplacian QL and quotient signless Laplacian Q+

L matrices. Thus, since each
eigenvector of Q+

L gives rise to an eigenvector of L+, the spectral radius of L corresponds
to the eigenvalue of the Perron vector of Q+

L or maximum eigenvalue of QL. For more
information about quotient (Laplacian) matrices, see Dalfó, Fiol, Pavĺıková, and Širán
[10].

2.3 Lift graphs and their spectra

Let G be a group. An (ordinary) voltage assignment on the (di)graph (that is, graph or
digraph) G = (V,E) is a mapping β : E → G with the property that β(a−) = (β(a+))−1

for every arc a ∈ E. Thus, a voltage assigns an element g ∈ G to each arc of the (di)graph
so that a pair of mutually reverse arcs a+ and a−, forming an undirected edge, receive
mutually inverse elements g and g−1. The (di)graph G and the voltage assignment β
determine a new (di)graph Gβ, called the lift of G, which is defined as follows. The vertex
and arc sets of the lift are simply the Cartesian products V β = V × G and Eβ = E × G,
respectively. Moreover, for every arc a ∈ E from a vertex u to a vertex v for u, v ∈ V
(possibly, u = v) in G, and for every element g ∈ G, there is an arc (a, g) ∈ Eβ from the
vertex (u, g) ∈ V β to the vertex (v, gβ(a)) ∈ V β.

Let G = (V,E) be a connected graph on n vertices (with loops and multiple edges
allowed) and with Laplacian matrix L. Let β be a voltage assignment on the arc set E
in a group G with identity element e. Now we show that the spectrum of the Laplacian
matrix of the lift Gβ may be computed. To this end, the key idea is to define the so-called
Laplacian base matrix properly as follows.

Definition 2.3. To the pair (G, β), we assign the n × n Laplacian base matrix B(L)
defined by

B(L) = −B(A) +B(D),

where the matrices B(A) and B(D) have entries as follows:

• B(A)uv = β(a1) + · · · + β(aj) if a1, . . . , aj is the set of all the arcs of G from u to
v, not excluding the case u = v, and B(A)uv = 0 if (u, v) ̸∈ E.
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• B(D)uu = deg(u) · e, and B(D)uv = 0 if u ̸= v.

Let ρ ∈ Irep(G) be a unitary irreducible representation of G of dimension dρ = dim(ρ).
Given a graph G on n vertices, the assignment β in G, and the Laplacian base matrix
B = B(L), let ρ(B) be the dρn×dρn matrix obtained from B by replacing every nonzero
entry (B)u,v ∈ C[G] as above by the dρ × dρ matrix ρ(Bu,v). That is, each element g of
the group is replaced by ρ(g), and the zero entries of B are changed to all-zero dρ × dρ
matrices. We refer to ρ(B) as the ρ-image of the Laplacian base matrix B. For every
ρ ∈ Irep(G), we consider the ρ-image ρ(B) of the Laplacian base matrix B, and we let
sp(ρ(B)) denote the spectrum of ρ(B), that is, the multiset of all the dρn eigenvalues
of the matrix ρ(B). Finally, the notation dρ · sp(ρ(B)) denotes the multiset obtained by
taking each of the dρn entries of the spectrum sp(ρ(B)) exactly dρ times. In particular, if
(dρ) = 0, we take dρ · sp(ρ(B)) = ∅.

With all these notations, we can state the following result from Dalfó, Fiol, Pavĺıková,
and Širáň [10], in which, to our knowledge, the theory of lift graphs was applied to the
study of the spectrum of token graphs for the first time. This result allows us to compute
the spectrum of a (regular) lifted (di)graph from its associated matrix and the irreducible
representations of its corresponding group.

Theorem 2.4 ([11]). Let G = (V,E) be a base (di)graph on n vertices, with a voltage
assignment β in a group G. For every irreducible representation ρ ∈ Irep(G), let ρ(B) be
the complex matrix whose entries are given by ρ(Bu,v). Then,

spGβ =
⋃

ρ∈Irep(G)

dρ · sp(ρ(B)).

In Section 4, we use this result in the case when the group G is cyclic. Then, if g is
a generator of G, with order n, the faithful representation ρ such that ρ(gr) = ζr, with

ζ = ei
2π
n , has dimension 1. Then, we consider the Laplacian base matrix with each entry

being a polynomial in z with integer coefficients and represent such a ‘polynomial matrix’
by B(z). Thus, Theorem 2.4 gives

spGβ =
⋃

z∈R(n)

sp(B(z)),

where R(n) is the set of all n-th roots of unity. A simple property of the polynomial
matrix is that B(1) is the quotient matrix of a regular partition of the lift graph Gβ. For
more information on lift graphs, see Dalfó, Fiol, Miller, Ryan, and Širáň [9].

3 The algebraic connectivity of Fk(G)

In this section, we give some results on the algebraic connectivity of token graphs. We
begin with a known lemma and continue with a new result, from which some of the
algebraic connectivity results are derived.
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Let G be a graph with k-token graph Fk(G). For a vertex a ∈ V (G), let Sa :=
{A ∈ V (Fk(G)) : a ∈ A} and S′

a := {B ∈ V (Fk(G)) : a ̸∈ B}. Let Ha and H ′
a be the

subgraphs of Fk(G) induced by Sa and S′
a, respectively. Note that Ha

∼= Fk−1(G \ {a})
and H ′

a
∼= Fk(G \ {a}).

Lemma 3.1 ([6]). Given a vertex a ∈ G and an eigenvector v of Fk(G) such that B⊤v =
0, let

wa := v|Sa
and w′

a := v|S′
a
.

Then, wa and w′
a are embeddings of Ha and H ′

a, respectively.

Lemma 3.2. Let G = (V,E) be a graph with token graph Fk = Fk(G) for some integer
k ≥ 2. Let ξ(G−) = mini∈V α(Fk−1(G \ i)). If α(Fk(G)) < α(G), then the following
statements hold.

(i) α(Fk(G)) ≥ k
k−1ξ(G

−),

(ii) α(Fk(G)) ≥ α(Fk(G \ i)) for i ∈ V .

Proof. If α(Fk(G)) < α(G), we know that the eigenvector v of α(Fk(G)) must satisfy
B⊤v = 0. Let ∥v∥ = 1. Given a vertex i ∈ V , let Si := {A ∈ V (Fk) : i ∈ A} and
S′
i := {B ∈ V (Fk) : i ̸∈ B}. Let Hi

∼= Fk−1(G \ i) and H ′
i
∼= Fk(G \ i) be the subgraphs of

Fk(G) induced by Si and S′
i, respectively. Let wi = v|Si and w′

i = v|S′
i
. From B⊤v = 0,

from Lemma 3.1, wi and w′
i are embeddings of Hi and H ′

i, respectively. Then, by (1), we
have that their Rayleigh quotients satisfy

λ(wi) =

∑
(A,B)∈E(Hi)

[wi(A)−wi(B)]2∑
A∈V (Hi)

wi(A)2
≥ α(Fk−1(G \ i)) ≥ α(Fk(G \ i)), (3)

λ(w′
i) =

∑
(A,B)∈E(H′

i)

[w′
i(A)−w′

i(B)]2∑
A∈V (H′

i)

w′
i(A)2

≥ α(Fk(G \ i)), (4)

where, in the last inequality of (3), we applied (2) with G \ i. In order to prove (i), we
use (3):

α(Fk) = λ(v) =
∑

(A,B)∈E(Fk)

[v(A)− v(B)]2 =
1

k − 1

n∑
i=1

∑
(A,B)∈E(Hi)

[wi(A)−wi(B)]2

≥ 1

k − 1
ξ(G−)

n∑
i=1

∑
A∈V (Hi)

v(A)2 =
k

k − 1
ξ(G−),

since, in the double summatory, each edge (A,B) of Fk is considered k− 1 times, whereas
for the last equality, each vertex A of Fk is considered k times. Now, we prove (ii) by
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using (3) and (4). Since V (Hi) ∪ V (H ′
i) = V (Fk), and ∥v∥ = 1, we have:

α(Fk) = λ(v) =
∑

(A,B)∈E(Fk)

[v(A)− v(B)]2

≥
∑

(A,B)∈E(Hi)

[wi(A)−wi(B)]2 +
∑

(A,B)∈E(H′
i)

[w′
i(A)−w′

i(B)]2

≥ α(Fk(G \ i))

 ∑
A∈V (Hi)

wi(A)2 +
∑

B∈V (H′
i)

w′
i(B)2


≥ α(Fk(G \ i))

 ∑
A∈V (Hi)

v(A)2 +
∑

B∈V (H′
i)

v(B)2

 = α(Fk(G \ i)).

This completes the proof.

Theorem 3.3. Let G be a graph with a vertex i such that α(G) ≥ α(G \ i). Then,
α(Fk(G)) ≥ α(Fk(G \ i)).

Proof. If α(Fk(G)) < α(G), Lemma 3.2(ii) gives α(Fk(G)) ≥ α(Fk(G \ i)). Then, if
α(Fk(G)) < α(Fk(G \ i)), we must have, using (2),

α(Fk(G)) ≥ α(G) ⇒ α(Fk(G)) = α(G) ⇒ α(G) < α(Fk(G \ i)) ≤ α(G \ i).

Thus, the result corresponds to the contrapositive statement.

Now we consider the case of 2 tokens and vertex-transitive graphs. In the following
result, given a vertex i, we use the parameter κ(i) = α(G\i)

α(G) introduced by Kirkland in [19].

When G is vertex-transitive, we denote κ(G) = κ(i) for all i, so that ξ(G−) = α(G \ i) =
κ(G)α(G).

Theorem 3.4. Let G = (V,E) be a graph on n > 3 vertices.

(i) If min
i∈V

κ(i) ≥ 1
2 , then α(F2(G)) = α(G).

(ii) If G is vertex-transitive and κ(G) ≥ 1
2 , then α(F2(G)) = α(G).

Proof. Let v be an eigenvector of F2 = F2(G) with eigenvalue α(F2) and norm ∥v∥ = 1.
If B⊤v ̸= 0, by Lemma 2.1(ii), α(F2) = α(G), and the results hold. Thus, we can assume
that B⊤v = 0 (this could only occur if F2 ̸= G). To prove (i), we use Lemma 3.2(i) with
k = 2 that yields

α(F2) ≥ 2 ·min
i∈V

α(G \ i) = 2α(G) ·min
i∈V

κ(i).

Thus, if mini∈V κ(i) ≥ 1
2 , we have α(F2) ≥ α(G) and the claimed equality is obtained.

Now, (ii) is a consequence of (i) since, when G is vertex-transitive, α(G \ i) = α(G \ j)
for every i, j ∈ V and, then, mini∈V κ(i) = κ(G).
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In Table 2, there are some examples of graphs that satisfy Theorem 3.4(ii).

Graph G α(G) α(G \ i)
Kn n n− 1

Petersen 2 ≈ 1.26

Heawood 3−
√
2 ≈ 1.58 1

Tetrahedron 4 3
Octahedron 4 3
Hexahedron 2 2(1− cos(2π5 )) ≈ 1.38

Dodecahedron 3−
√
5 ≈ 0.76 ≈ 0.59

Icosahedron 5−
√
5 ≈ 2.76 422009π

605811 ≈ 2.18
Truncated tetrahedron 1 ≈ 0.53

Prism Graph GP (n, 1) (n = 3, 4) 2 ≈ 1.38
Prism Graph GP (n, 1) (n > 4) 2

(
1− cos

(
2π
n

))
−

Hypercube Qn 2 ≥ 1

Table 2: Some vertex-transitive graphs, with α(G) ≤ 2α(G \ i), where i is a vertex.

Note that, in most cases of Table 2, α(G) ≥ 2. In fact, this condition is sufficient
because Fiedler [14] proved that, for any graph, α(G\ i) ≥ α(G)−1 or, equivalently, when
G is vertex-transitive, κ(G) ≥ 1 − 1

α(G) . From this, if α(G) ≥ 2, the condition κ(G) ≥ 1
2

holds, as required to have α(F2(G)) = α(G). An alternative, much more involved, proof
of this case is given in Dalfó, Fiol, and Messegué [8].

Besides the hypercube Qn cited in Table 2, the following graphs constitute another
infinite family of vertex-transitive graphs with algebraic connectivity 2. The odd graph Or

has vertices labeled with the (r−1)-subsets of a (2r−1)-set, and two vertices are adjacent
if their corresponding subsets have void intersection. Thus, Or has

(
2r−1
r−1

)
vertices, and it

is regular of degree r. For instance, O2 = K3, and O3 is the Petersen graph.

Corollary 3.5. Let Or be the odd graph of degree r. Then, α(F2(Or)) = α(Or).

Proof. As the second largest (adjacency matrix) eigenvalue of Or is r − 2 for r ≥ 3, its
algebraic connectivity is α(Or) = r−(r−2) = 2, as claimed. Then, according to the above
consequences of Theorem 3.4, the algebraic connectivities of F2(Or) and Or coincide.

Another infinite family satisfying Theorem 3.4(i) is the following.

Corollary 3.6. Let G = Kn1,n2,...,nr ̸= Kr be the multipartite complete graph on n =∑r
i=1 ni vertices with n1 ≤ n2 ≤ · · · ≤ nr, and r ≥ 3. Then, α(F2(G)) = α(G).

Proof. Notice thatG = Kn1∪· · ·∪Knr . Then, the maximum eigenvalue ofG coincides with
the maximum eigenvalue of Knr , which is λmax(Knr) = nr. Thus, α(G) = n− λmax(G) =
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n − nr (see Fiedler [14]). Thus, by taking any vertex i ̸∈ Vr (with |Vr| = nr), we have
ξ(G−) = α(G \ i) = n− nr − 1. Thus, mini∈V κ(i) = n−nr−1

n−nr
≥ 1

2 , since r ≥ 3 and n ≥ 4
(recall that G ̸= Kr). Then, Theorem 3.4(i) gives the result.

4 The spectrum of F2(Cn)

In this section, we provide some results about the Laplacian spectrum (and, in particular,
the algebraic connectivity) of the k-token Fk(Cn) of the cycle Cn on n vertices 0, 1, . . . , n−
1, where i is adjacent to i + 1 (modn). By Lemma 2.1(i), we already know that Fk(Cn)
contains all the eigenvalues of Cn. Namely,

θj = 2

(
1− cos

(
j2π

n

))
= 4 sin2

(
jπ

n

)
, j = 0, 1, . . . , n− 1. (5)

Next, we begin with a general lower bound for α(Fk(Cn)), which is given in terms of the
algebraic connectivity of the path Pn−1 on n− 1 vertices.

Theorem 4.1. Let Cn be the cycle graph on n > 3 vertices. Then,

α(Fk(Cn)) ≥
k

k − 1
α(Pn−1) =

2k

k − 1

(
1− cos

(
π

n− 1

))
(6)

for every n and k = 2, . . . , ⌊n/2⌋.

Proof. As before, let v be an eigenvector of Fk = Fk(Cn) with eigenvalue α(Fk) and norm
∥v∥ = 1. If B⊤v ̸= 0, by Lemma 2.1(ii), α(Fk(Cn)) = α(Cn), and the result holds since
α(Cn) > 2α(Pn−1). Thus, since n ̸= 3, we can assume that B⊤v = 0 and apply again
Lemma 3.2(i) to get

α(Cn) ≥
k

k − 1
ξ(C−

n ) =
k

k − 1
α(Fk−1(Cn \ i)) = k

k − 1
α(Fk(Pn−1)) (7)

=
k

k − 1
α(Pn−1), (8)

where the last equality follows from Theorem 2.2(iii).

In particular, for k = 2, (6) gives that α(F2(Cn)) ≥ 2α(Pn−1), and equality holds for
n = 4 since α(F2(C4)) = 2α(P3) = 2.

Proposition 4.2. (i) If n = 2ν is even, then the 2-token graph F2(Cn) has the eigen-
values

λr = 8 sin2
(

rπ

n− 1

)
, r = 0, 1, . . . , ν − 1, (9)

with λ0 = 0, and λν−1 = 8 sin2
(
n−2
n−1

π
2

)
being the spectral radius of F2(Cn).
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(ii) If n = 2ν + 1 is odd, then the 2-token graph F2(Cn) has the eigenvalues

λr = 8 cos2
(

rπ

n− 1

)
, r = 1, 2, . . . , ν, (10)

with λν = 0, and λ1 = 8 cos2
(

π
n−1

)
being a lower bound for the spectral radius of

F2(Cn).

Proof. Let us see that F2 = F2(Cn) has a regular ‘path-shaped’ partition π with r = ⌊n/2⌋
classes V1, V2, . . . , Vr, where Vi consists of the vertices {u, v} such that dist(u, v) = i in
Cn.

• Each vertex {u, v} in V1 is adjacent to 2 vertices {u+ 1, v} and {u, v + 1} in V2 (all
arithmetic is modulo n).

• Each vertex {u, v} in Vi, for i = 2, . . . , r− 1, is adjacent to 2 vertices {u− 1, v} and
{u, v − 1} in Vi−1, and 2 vertices {u+ 1, v} and {u, v + 1} in Vi+1.

• Every vertex {u, v} in Vr is adjacent to 4 vertices {u ± 1, v} and {u, v ± 1}. If n is
even, all these vertices are in Vr−1. If n is odd, two of them are in Vr−1 and the
other two in Vr.

For instance, the quotient graphs of the path-shaped regular partitions of F2(C9), F2(C10),
and F2(C8) are shown in Figures 1(c), 2(c), and 3(c), respectively. Then, the quotient
matrix QA = A(F2/π) and quotient Laplacian matrix QL = L(F2/π) are tridiagonal
matrices of the form

QA =


0 2
2 0 2

. . .
. . .

. . .

2 0 2
a b

 , and QL =


2 −2
−2 4 −2

. . .
. . .

. . .

−2 4 −2
−c c

 , (11)

where (a, b, c) = (4, 0, 4) if n even, and (a, b, c) = (2, 2, 2) if n is odd. Then, (9) and (10)
correspond to the eigenvalues of the matrixQL for the even and odd cases of n, respectively
(see Yueh [23, Th.4]). Moreover, in the case of even n, the maximum eigenvalue in (9) is
obtained when r = ν − 1. Then, from the last comments of Subsection 2.2, λν−1 is the
spectral radius of F2(Cn).

Next, we show that, depending on the parity of n, much more can be stated about the
Fk(Cn) spectrum. Let us consider first the case when n is odd.
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Figure 1: (a) The 2-token graph F2(C9) of the cycle graph C9. The thick edges correspond
to each of the copies of the base graph or the quotient graph. (b) Its base graph with
voltages on Z9. (c) The quotient graph of its path-shaped regular partition. In boldface,
there is the numbering of the vertex classes. In class c ∈ {1, 2, 3, 4}, there are the vertices
ij that satisfy i− j = c (mod 9).

4.1 The case of odd n

As commented in Section 2, the case of odd n was studied in Dalfó, Fiol, Pavĺıková, and
Širán [10], giving the following result.

Theorem 4.3 ([10]). The 2-token graph F2(Cn) of the cycle with an odd number n = 2ν+1
of vertices is the lift Gβ(P+

ν ) of the base graph the path P+
ν with vertex set {u1, u2, . . . , uν},

a loop at uν , and arcs ai = uiui+1 and a−i = ui+1ui, for i = 1, 2, . . . , k − 1. The voltages
on the group Zn are as follows:

β(uiui+1) = −1 for i = 1, . . . , ν − 1,

β(ui+1ui) = +1 for i = 1, . . . , ν − 1,

β(uνuν) = ±ν.

For example, in the case of n = 9, the 2-token graph F2(C9) and its base graph are
shown in Figure 1. Then, the whole spectrum of F2(Cn) can be obtained from its Laplacian

base ν × ν matrix B(z) (see again [10]), with z = eir
2π
n , or its similar tridiagonal matrix
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B∗(r), for r = 0, 1, . . . , n− 1.

B(z) =



2 −1− z−1 0 0 . . . 0
−1− z 4 −1− z−1 0 . . . 0

0 −1− z 4 −1− z−1 . . . 0

0 0 −1− z
. . .

. . . 0
...

...
. . .

. . . 4 −1− z−1

0 0 . . . 0 −1− z 4− zν − z−ν


∼=

B∗(r) =



2 2 cos( rπn ) 0 0 . . . 0
2 cos( rπn ) 4 2 cos( rπn ) 0 . . . 0

0 2 cos( rπn ) 4 2 cos( rπn )
. . . 0

0 0 2 cos( rπn )
. . .

. . . 0
...

...
. . .

. . . 4 2 cos( rπn )

0 0 . . . 0 2 cos( rπn ) 4 + 2(−1)r+1 cos( rπn )


.

(12)

The key idea is that, as shown in the following proposition, each eigenvector of B(z), with
eigenvalue λ, gives rise to an eigenvector of L, the Laplacian matrix of F2(Cn), with the
same eigenvalue λ. Although this follows from results by Dalfó, Fiol, and Širáň [11], and
Dalfó, Fiol, Pavĺıková, and Širán [10], we give here a direct new proof for completeness. To
this end, we label the

(
n
2

)
vertices of F2(Cn), with n = 2ν+1, with the pairs (i, j) = (j+h, j)

where j = 0, 1, . . . , n− 1 and h = 1, . . . , ν, with arithmetic modulo n. With this notation,
notice that h = i − j is the distance from i to j in the cycle Cn. Besides, every vertex
(i, j), with i = j + h, of F2(Cn) corresponds to the vertex (uh, j), for j ∈ Zn, of the lift
Gβ(P+

ν ). See Figure 1(a)-(b) for the case of F2(C9) with the simplified notation ij = (i, j).

In what follows, and with a slight abuse of notation, we use ζ with two meanings.
First, ζ refers to a generic n-th root of unity (as in the following proposition). Second, ζr

refers to the power r of the n-th root of unity so that, in this case, ζ = ei
2π
n stands for the

first n-th root of unity different from 1 (as in Subsection 2.3).

Proposition 4.4. Every eigenvalue λ of F2(Cn) ∼= Gβ(P+
ν ), with n = 2ν + 1, has an

eigenvector y ∈ R(
n
2) with components

y(i,j) = fi−jζ
j = fhζ

j j = 0, . . . , n− 1, h = 1, . . . , ν, (13)

where ζ is a given n-th root of unity, and f = (f1, . . . , fν) is a λ-eigenvector of the matrix
B(ζ).

Proof. Let L be the Laplacian matrix of F2(Cn). Let x be an eigenvector of L with
eigenvalue λ. We show that x implies the existence of a vector whose entries can be
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written as claimed. Note first that, since n is odd, all the classes V1, . . . , Vν of the regular
partition of F2(Cn) have the same number n of vertices. Then, from x, we construct the
vectors x0(= x),x1, . . . ,xn−1 by shifting in the same way the entries of x corresponding
to each class. More precisely,

xa(i,j) = x(i+a,j+a) for a = 0, . . . , n− 1, (14)

(all arithmetic understood modulo n). But, in F2(Cn), the mapping (i, j) 7→ (i+a, j+a) is
an automorphism for every a = 0, . . . , n−1. In fact, it is known that AutF2(Cn) ∼= AutCn,
see Ibarra and Rivera [18]. Then, all the vectors xa are eigenvectors of F2(Cn) with
eigenvalue λ. Moreover, from (14), there exists a matrix R of size n × n such that for
every i, j (with i = j + h (mod n)):

x0(i+1,j+1)

x1(i+1,j+1)
...

xn−1
(i+1,j+1)

 = R


x0(i,j)
x1(i,j)
...

xn−1
(i,j)

 , (15)

where

R = circ(0, 1, 0 . . . , 0) =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 .

Then, with Rn = I, the n eigenvalues of R are simple and equal to the n-th roots of
unity ζr = eir

2π
n , with i =

√
−1 and r = 0, . . . , n − 1. Thus, there exists an inversible

(and orthogonal as L is symmetric) matrix Q such that D = Q−1RQ, where D =
diag(1, ζ, ζ2, . . . , ζn−1). LetX be the matrix with rows x0,x1, . . . ,xn−1. FromXL = λX,
we have Q−1XL = λQ−1X and, hence, the vectors y0,y1, . . . ,yn−1 with components

y0(i,j)
y1(i,j)
...

yn−1
(i,j)

 = Q−1


x0(i,j)
x1(i,j)
...

xn−1
(i,j)

 , (16)

or rows of the matrix Y = Q−1X, are also λ-eigenvectors of F2(G), provided that they
are different from 0. (Notice that the number of such eigenvectors, that is, rankY , is at
most m(λ), the multiplicity of λ.) Moreover, from (16) and (15) with R = QDQ−1, we
get 

y0(i+1,j+1)

y1(i+1,j+1)
...

yn−1
(i+1,j+1)

 = D


y0(i,j)
y1(i,j)
...

yn−1
(i,j)

 . (17)
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Now, since x ̸= 0, there is at least a non-zero vector ya satisfying ya(i+1,j+1) = ζaya(i,j) or,

iterating, ya(i+b,j+b) = ζabya(i,j). Therefore, letting b = −j,

ya(i,j) = ya(i−j,0)ζ
aj .

Then, the result in (13) follows by taking y = ya, ζ = ζa, and fh = ya(h,0). To show that

f(ζ) is an eigenvector of B(z) with z = ζ, we distinguish three cases:

(i) h = 1: The vertex (j + 1, j), with vector entry y(j+1,j) = f1ζ
j , is adjacent to

both vertices (j + 2, j) and (j + 1, j − 1), with respective vector entries f2ζ
j and

f2ζ
j−1. Then, the first entry of yL = λy is 2f1ζ

j − f2ζ
j − f2ζ

j−1 = λf1ζ
j . Hence,

2f1 − f2 − f2ζ
−1 = λf1, which corresponds to the first entries of B(ζ)f = λf , as it

should.

(ii) 2 ≤ h ≤ ν − 1: The vertex (j + h, j), with vector entry y(j+h,j) = fhζ
j , is adjacent

to the four vertices (j + h + 1, j), (j + h, j + 1), (j + h − 1, j), and (j + h, j − 1),
with respective vector entries fh+1ζ

j , fh−1ζ
j+1, fh−1ζ

j , and fh+1ζ
j−1. Then, the

h-th entry of yL = λy is

4fhζ
j − fh+1ζ

j − fh−1ζ
j+1 − fh−1ζ

j − fh+1ζ
j−1 = λfhζ

j .

Thus,
4fh − fh+1 − fh−1ζ − fh−1 − fh+1ζ

−1 = λfh,

which corresponds to the h-th entry of B(ζ)f = λf .

(iii) h = ν: The vertex (j+ν, j), with vector entry y(j+ν,j) = fνζ
j , is adjacent (according

to the used notation) to the four vertices (j, j+ν+1), (j+ν−1, j), (j+ν, j+1), and
(j−1, j+ν), with respective vector entries f−(ν+1)ζ

j+ν+1 = fνζ
j+ν+1 (the subscripts

of f are modulo n), fν−1ζ
j , fν−1ζ

j+1, and f−(1+ν)ζ
j+ν = fνζ

j+ν . Then, the ν-th
entry of yL = λy is

4fνζ
j − fνζ

j+ν+1 − fν−1ζ
j − fν−1ζ

j+1 − fνζ
j+ν = λfνζ

j .

Thus,
4fν − fνζ

ν+1 − fν−1 − fν−1ζ − fνζ
ν = λfν ,

which corresponds to the ν-th entry of B(ζ)f = λf .

This completes the proof.

In the case of F2(C9), the obtained eigenvalues are shown in Table 3.

We focus on the matrix B∗(r) in the following result.

Proposition 4.5. Given r = 0, 1, . . . , 2ν, let λr,1 ≤ λr,2 ≤ · · · ≤ λr,ν be the eigenvalues of
the matrix B∗(r). Then, the following holds:
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(i) The eigenvalues of B∗(0) are

λ0,s = 8 cos2
(sπ
2ν

)
for s = 1, 2, . . . , ν.

Then, λ0,ν = 0. Moreover, the smallest nonzero eigenvalue is obtained when s = ν−1
and satisfies λ0,ν−1 > α(C2ν+1).

(ii) For each r = 1, . . . , 2ν, the smallest eigenvalue of B∗(r) satisfies

λr,1 ≥ 4 sin2
(

rπ

2(2ν + 1)

)
.

(iii) The matrix B(ζr), with ζ = ei
2π

2ν+1 , has exactly one eigenvalue of C2ν+1, which is

λr = 2
(
1− cos

(
r2π
2ν+1

))
. Besides, the eigenvalues of B∗(0) have multiplicity one,

whereas the eigenvalues of B∗(r), with r = 1, . . . , 2ν, have multiplicity two.

Proof. (i) Notice that, when r = 0, B∗(0) is the tridiagonal matrix QL in (11), with
eigenvalues already given in Proposition 4.2. Moreover, the function

ϕ(ν) =
α(C2ν+1)

λ0,ν−1
=

sin2
(

π
2ν+1

)
2 cos2

(
(ν−1)π

2ν

)
satisfies ϕ(ν) < 1/2 for ν > 0.
(ii) From the matrix B∗(r), we have three different Gershgorin circles determining three
intervals Ii(r), for i = 1, 2, 3, in the real line. Thus, all eigenvalues of B∗(r) are within
I1(r) ∪ I2(r) ∪ I3(r). The left endpoints of these intervals are ℓ1(r) = 4 sin2( rπ

2(2ν+1)),

ℓ2(r) = 8 sin2( rπ
4ν+2), and ℓ3(r) = 4 for r odd and ℓ3(r) = 8 sin2( rπ

4ν+2) for r even. Then,

ℓi(0) = 0 for i = 1, 2, 3,

ℓ1(1) = 4 sin2
(

π

2(2ν + 1)

)
= α(P2ν+1),

ℓ1(2) = 4 sin2
(

π

2ν + 1

)
= α(C2ν+1).

(See Table 4 for the case ν = 4, corresponding to the matrices B∗(r) of F2(C9).) Now,
a simple analysis shows that the values of ℓi(r) are increasing when r = 0, 1, . . . , 2ν
when i = 1, 2, and r = 0, 2, . . . , 2ν when i = 3. Thus, the result follows since ℓ1(r) <
min{ℓ2(r), ℓ3(r)} for r ̸= 0.

(iii) We prove that, for every z = eir
2π
n , for r = 0, . . . , n − 1, the matrix B(z) ∼=

B∗(r) has exactly one eigenvalue of Cn. From Proposition 4.4, we know that each of the
eigenvectors y of F2(C2ν+1) has entries y(i,j) = fi−jζ

j = fhζ
j for i = 0, . . . , n − 1, h =

1, . . . , ν, and f = (f1, . . . , fν) an eigenvector of B(ζ). Let B be the (n, 2)-binomial matrix.
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ζ = ei
2π
9 , z = ζr λr,1 λr,2 λr,3 λr,4

sp(B(ζ0)) 0 1.171572876 4 6.828427124

sp(B(ζ1)) = sp(B(ζ8)) 0.4679111136 2.52079560 5.420264509 7.470414013

sp(B(ζ2)) = sp(B(ζ7)) 0.783324839 1.65270363 3.895673125 6.136209510

sp(B(ζ3)) = sp(B(ζ6)) 1.50913638 3 4.656620432 5.834243185

sp(B(ζ4)) = sp(B(ζ5)) 1.939683655 3.382489411 3.87938479 4.451145779

Table 3: All the eigenvalues of the matrices B(ζr), which yield the eigenvalues of the
2-token graph F2(C9). The values in boldface correspond to the eigenvalues of C9.

r = 0 r = 1 r = 2 r = 3

ℓ1(r) 0 0.1206147584 0.4679111138 1

ℓ2(r) 0 0.24122951686 0.93582222752 2

ℓ3(r) 0 4 0.93582222752 4

Table 4: Left endpoints of the Gershgorin circles of the matrices B∗(r). The values in
boldface correspond to the algebraic connectivities of P9 and C9.

Recall that, from Lemma 2.1(ii), if y is a λ-eigenvector of F2(G) and x = B⊤y ̸= 0, then
x is a λ-eigenvector of G. In our case, notice that, for j = 0, . . . , n− 1, the j-th entry of
the vector x = B⊤y is obtained by adding all the n− 1 entries of the vector y with labels
having a common j, that is, corresponding to the vertices

(j + 1, j), (j + 2, j), . . . , (j + ν, j), (j, j − ν), (j, j − ν + 1), . . . , (j, j − 1).

Then, the j-th entry of the vector x turns out to be

f1(ζ
j + ζj−1) + f2(ζ

j + ζj−2) + · · ·+ fν(ζ
j + ζj−ν), j = 0, . . . , n− 1. (18)

Let F be the ν × ν matrix whose columns f1, . . . ,fν are the eigenvectors of B(ζ), and Z
the n× ν matrix with j-th row (ζj + ζj−1), (ζj + ζj−2), . . . , (ζj + ζj−ν). Then, in matrix
form, (18) is X = ZF , where X is the n × ν matrix with columns being the putative
eigenvectors of Cn. But F has full rank, whereas Z has rank 1 (every row is a multiple
of the first one). Consequently, rankX = 1 and, hence, exactly one λ-eigenvector of B(ζ)
gives a λ-eigenvector of Cn. The statement about the multiplicities follows from the fact
that if ζ ̸= 1, the spectra of B(ζ) and B(ζ−1) = B(ζ) coincide, where ζ is the conjugate
of ζ.

Moreover, results from Table 3 suggest that the minimum and maximum eigenvalues
of the matrix B∗(1) correspond to the algebraic connectivity α(F2(C2ν+1)) = α(C2ν+1),
and spectral (Laplacian) radius ρ(F2(C2ν+1)), respectively.
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Figure 2: (a) The token graph F2(C10) of the cycle graph C10, with the different copies of
the U-shaped regular partition, here drawn as paths. (b) Its base digraph with voltages
in Z10, which gives rise to the U-shaped regular partition. The thick edges represent the
path P9 obtained with this partition. (c) The quotient graph of the path-shaped regular
partition. In boldface, there is the numbering of the vertex classes.

4.2 The case of even n and odd n/2

In the case of even n = 4r+2 (so that n/2 is odd), the 2-token F2(Cn) can also be seen as
a lift graph, as shown in the following result. See an example of this kind of token graph
in Figure 2.

Given an integer r, let us consider the path graph G = P4r+1 with vertices

u−2r, u−2r+1, . . . , u−1, u0, u1, . . . , u2r−1, u2r,

(with its corresponding edges) and additional arcs

a+i = u−iui−1, a−i = ui−1u−i, for i = 0, 1 . . . , 2r,
b+i = uiu−i+1, b−i = u−i+1ui, for i = 0, 1, . . . , 2r.

Let β be the voltage assignment on G in the cyclic group Z2r+1 given by

β(a+i ) = β(b+i ) = +r,
β(a−i ) = β(b−i ) = −r.

(19)
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Vertex
Copy g

0 r + 1 1 r + 2 · · · r

u−2r {0, 1} {2r + 2, 2r + 3} {2,3} {2r + 4, 2r + 5} · · · {2r, 2r + 1}
u−2r+1 {0, 2} {2r + 2, 2r + 4} {2,4} {2r + 4, 2r + 6} · · · {2r, 2r + 2}
u−2r+2 {0, 3} {2r + 2, 2r + 5} {2,5} {2r + 4, 2r + 7} · · · {2r, 2r + 3}

...
...

...
...

...
...

u−1 {0, 2r} {2r + 2, 0} {2, 2r + 2} {2r + 4, 2} · · · {2r, 4r}
u0 {0, 2r + 1} {1, 2r + 2} {2, 2r + 3} {3, 2r + 4} · · · {2r, 4r + 1}
u1 {2r + 1, 4r + 1} {1, 2r + 1} {2r + 3, 1} {3, 2r + 3} · · · {4r + 1, 2r − 1}
...

...
...

...
...

...
u2r−2 {2r + 1, 2r + 4} {1,4} {2r + 3, 2r + 6} {3,6} · · · {4r + 1, 2}
u2r−1 {2r + 1, 2r + 3} {1, 3} {2r + 3, 2r + 5} {3,5} · · · {4r + 1, 1}
u2r {2r + 1, 2r + 2} {1, 2} {2r + 3, 2r + 4} {3,4} · · · {4r + 1, 0}

Table 5: All the vertices of the 2-token graph F2(Cn) for even n and odd n/2. The vertex
{2,4} and its adjacent vertices are in boldface, following the example.

Figure 2(b) shows the base graph G for r = 2. Now, we have the following result.

Lemma 4.6. Given G = P4r+1 with the voltage assignment (19) on Z2r+1, the 2-token
graph of the cycle Cn with n = 4r + 2 is the lift graph Gβ. That is,

F2(C4r+2) ∼= Gβ.

Proof. The vertex set V (Gβ) of the lift Gβ has elements labeled with the pairs (ui, g)
for i = −2r, . . . , 2r and g ∈ Z2r+1. Thus |V (Gβ)| = (4r + 1)(2r + 1) =

(
4r+2
2

)
, which

corresponds to the number of vertices of F2(C4r+2). Indeed, such vertices correspond to 2-
subsets {i, j} of the set {1, 2, . . . , 4r+2}. Thus, we have to show a 1-to-1 mapping between
V (Gβ) and V (F2(C4r+2)) that must be consequent with the adjacencies of both graphs.
Such a mapping is shown in Table 5, from where it is easily checked that the adjacency
conditions are fulfilled. Let us take an example. The vertex (u−2r+1, 1) ≡ {2, 4} (written
as 24 in Figure 2) of Gβ is adjacent to:

• The vertices (u−2r, 1) and (u−2r+2, 1) of the same ‘copy’.

• The vertex (u2r−2, r + 1) by the arc a+2r−1 with voltage +r.

• The vertex (u2r, r + 2) by the arc b−2r with voltage −r.

Then, looking again at Table 5, we find the following equivalences:

• (u−2r, 1) ≡ {2, 3} and (u−2r+2, 1) ≡ {2, 5},

• (u2r−2, r + 1) ≡ {1, 4} and (u2r, r + 2) ≡ {3, 4},

which correspond to the vertices adjacent to {2, 4} in F2(C4r+2).
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As a consequence, for each z = ζℓ, where ζ = ei
2π

2r+1 , with ℓ = 0, 1, . . . , 2r, an irreducible
representation of the Laplacian base matrix ofGβ ∼= F2(C2r+2) is the matrixB(z) as shown
next.

Note that matrix B(z) is tridiagonal with respect to the main and the secondary
diagonals.

B(z) =



2 −1 0 · · · 0 0 0 0 0 · · · 0 −zr 0
−1 4 −1 · · · 0 0 0 0 0 · · · −zr 0 −z−r

0 −1 4 · · · 0 0 0 0 0 · · · 0 −z−r 0
...

...
...

. . .
...

...
...

...
... . .

. ...
...

...
0 0 0 · · · 4 −1 0 −zr 0 · · · 0 0 0
0 0 0 · · · −1 4 −1− zr 0 −z−r · · · 0 0 0
0 0 0 · · · 0 −1− z−r 4 −1− z−r 0 · · · 0 0 0
0 0 0 · · · −z−r 0 −1− zr 4 −1 · · · 0 0 0
0 0 0 · · · 0 −zr 0 −1 4 · · · 0 0 0
...

...
... . .

. ...
...

...
...

...
. . .

...
...

...
0 −z−r 0 · · · 0 0 0 0 0 · · · 4 −1 0

−z−r 0 −zr · · · 0 0 0 0 0 · · · −1 4 −1
0 −zr 0 · · · 0 0 0 0 0 · · · 0 −1 2


.

For instance, in the case of F2(C6) (r = 1), we have

B(z) =


2 −1 0 −z 0
−1 4 −1− z 0 −z−1

0 −1− z−1 4 −1− z−1 0
−z−1 0 −1− z 4 −1
0 −z 0 −1 2

 .

In Table 6, we show the different eigenvalues of F2(C6), obtained as the eigenvalues of
each B(z) for z = ζℓ with ℓ = 0, 1, 2.

ζ = ei
2π
3 , z = ζr λr,1 λr,2 λr,3 λr,4 λr,5

sp(B(ζ0)) 0 2 5−
√
5 ≈ 2.764 4 5 +

√
5 ≈ 7.236

sp(B(ζ1)) 1 1
2(7−

√
17) ≈ 1.438 3 5 1

2(7 +
√
17) ≈ 5.561

sp(B(ζ2)) 1 1
2(7−

√
17) ≈ 1.438 3 5 1

2(7 +
√
17) ≈ 5.561

Table 6: All the eigenvalues of matrices B(ζr), which yield the eigenvalues the 2-token
graph F2(C6). The values in boldface correspond to the eigenvalues of C6.

4.3 The case of even n and n/2

When we consider the case of cycles Cn with n and n/2 even, it is not very useful to
represent F2(Cn) as a lift graph to compute the whole spectrum. The reason is that the
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base graph has too many vertices with respect to the original graph. Alternatively, besides
the spectrum of Cn, we can easily find another part of the spectrum by means of regular
partitions. In fact, we can use the regular path-partition and U-partition with the same
structure as in the previous subsection. As an example, the 2-token graph of C8 is shown
in Figure 3(a) and (b), together with its regular partitions (c) (the path Pn/2) and (d) (the
U-shaped graph). Compare such partitions with those in Figure 2(b) and (c). Then, the
quotient 7 × 7 Laplacian matrix of the regular U-shaped partition τ of F2 = F2(C8) and
its spectrum are

Q(F2/τ) =



2 −1 0 0 0 −1 0
−1 4 −1 0 −1 0 −1
0 −1 4 −2 0 −1 0
0 0 −2 4 −2 0 0
0 −1 0 −2 4 −1 0
−1 0 −1 0 −1 4 −1
0 −1 0 0 0 −1 2


,

spQ(F2/τ) = {0, 1.5060, 2, 42, 4.8900, 7.6038} ⊂ spF2(C8).

With respect to the path-shaped partition π, Proposition 4.2 gives that the quotient
Laplacian matrix and its spectrum are

Q(F2/π) =


2 −2 0 0
−2 4 −2 0
0 −2 4 −2
0 0 −4 4

 ,

spQ(F2/π) = {0, 1.5060, 4.8900, 7.6038} ⊂ spQ(F2/τ) ⊂ spF2(C8).

Notice that the inclusion spQ(F2/π) ⊂ spQ(F2/τ) is due to the fact that τ can be
seen as a regular partition of the quotient graph F2/π. Moreover, according to the same
proposition, the largest eigenvalue 7.6038 of Q(F2/π) (or Q(F2/τ)) is the spectral radius
ρ(F2(C8)).

Compare these results with the whole spectrum of F2(C8), which is

spF2(C8) = {0, 0.58572, 0.94862, 1.5060, 1.71172, 23, 3.12592, 3.41422,
43, 4.51732, 4, 87402, 4.8900, 6.28822, 6.53402, 7.6038}. (20)

4.4 The new method of over-lifts

In this subsection, we use a new method called over-lifts, which allows us to unify the cases
of cycles with even n and compute the whole spectrum of F2(Cn). (For instance, as a result
of such a method, all the eigenvalues in (20) are shown in Table 7.) This is accomplished
by means of a new polynomial matrix B(z) that does not correspond to the base graph
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Figure 3: (a) The 2-token graph F2(C8) of the cycle graph on 8 vertices. (b) Another
view of F2(C8). (c) The quotient graph from the path-shaped regular partition. (d) The
quotient graph of the U-shaped regular partition obtained from (b). In boldface, there is
the numbering of the vertex classes.

of a lift. By its characteristics, we say that B(z) is associated with an over-lift. The basic
difference is that such a matrix has dimension ν × ν (recall that n = 2ν), and there are n
possible values for z (n-th roots of unity). Thus, the total number of eigenvalues obtained
is νn. However, F2(Cn) has

(
n
2

)
= ν(n− 1) vertices, which is the number of eigenvalues of

L. We will see that, in fact, the ν ‘extra’ eigenvalues provided by B(z) are all equal to 4.

Theorem 4.7. Let L be the Laplacian matrix of F2(Cn), with n = 2ν. Let Λ be the mul-

tiset with elements 4, 4, (ν). . ., 4. Then, the spectrum of L can be obtained from the spectrum
of the ν × ν matrix B(z) or, equivalently, from the spectrum of its similar matrix B∗(r):

B(z) =



2 −1− z−1 0 0 . . . 0
−1− z 4 −1− z−1 0 . . . 0

0 −1− z 4 −1− z−1 . . . 0

0 0 −1− z
. . .

. . . 0
...

...
. . .

. . . 4 −1− z−1

0 0 . . . 0 −1− z − zν − zν+1 4


for z = ζr = eir

2π
n , r = 0, 1, . . . , n− 1, and
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B∗(r) =



2 2 cos( rπn ) 0 0 . . . 0
2 cos( rπn ) 4 2 cos( rπn ) 0 . . . 0

0 2 cos( rπn ) 4 2 cos( rπn )
. . . 0

0 0 2 cos( rπn )
. . .

. . . 0
...

...
. . .

. . . 4 2 cos( rπn )

0 0 . . . 0 2 cos( rπn ) + 2 cos( r(n−1)π
n ) 4


(21)

for r = 0, 1, . . . , n− 1. Formally,

⋃
z∈R(n)

spB(z) =

n−1⋃
r=0

spB∗(r) = Λ ∪ spL, (22)

where R(n) denotes the set of the n-th roots of unity,

Proof. For convenience, we will use indistinctly B(z) or B∗(r) because of z = ζr. First, let
us prove that, as in the case of odd n, most of the eigenvectors f = (f1, f2, . . . , fν) of B(z),
with eigenvalue λ, give rise to an eigenvector of L, with the same eigenvalue λ. Indeed,
with the same notation for the vertices (i, j) = (i+ h, j) of F2(Cn) as in Proposition 4.4,

let us consider the vector x ∈ R(
n
2) with components

x(i,j) = fhζ
j , i = 0, . . . , n− 1, h = 1, . . . , ν, (23)

where ζ is a given n-th root of unity. Now, to show that, under some conditions, f is an
eigenvector of B(z) with z = ζ, we distinguish four cases: (i) h = 1; (ii) 2 ≤ h ≤ ν − 2;
(iii) h = ν − 1; and (iv) h = ν. Since the cases (i) and (ii) are proved as in Proposition
4.4, we only consider (iii) and (iv). Since case (iii) is the most involved, we begin with
(iv).

(iv) h = ν: The vertex (j+ν, j) = (j, j+ν), with vector entry x(j+ν,j) = fνζ
j , is adjacent

to the four vertices (j + ν − 1, j), (j + ν, j + 1), (j − 1, j + ν), and (j, j + ν + 1).
(Notice that the two entries i, j of each vertex have been chosen in such a way that
h = i− j (mod n) is not greater than ν, as required.) These vertices have respective
vector entries fν−1ζ

j , fν−1ζ
j+1, fν−1ζ

j+ν , and fν−1ζ
j+ν+1. Then, the ν-th entry of

Lx = λx is

4fνζ
j − fν−1ζ

j − fν−1ζ
j+1 − fν−1ζ

j+ν − fν−1ζ
j+ν−1 = λfνζ

j .

Thus,
4fν − fν−1(1 + ζ + ζν + ζν+1) = λfν ,

which corresponds to the ν-th entry of B(ζ)f = λf .
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(iii) h = ν−1: The vertex (j+ν−1, j), with vector entry x(j+ν−1,j) = fν−1ζ
j , is adjacent

to the four vertices (j+ν−2, j), (j+ν, j) = (j, j+ν), (j+ν−1, j−1) = (j−1, j+ν−1),
and (j + ν − 1, j + 1). To be consistent with the notation, these vertices must have
respective vector entries

fν−2ζ
j , fνζ

j = fνζ
j+ν , fνζ

j−1 = fνζ
j−1+ν , and fν−2ζ

j+1. (24)

Then, if the above equalities hold, the (ν − 1)-th entry of Lx = λx is

4fν−1ζ
j − fν−2ζ

j − fνζ
j − fνζ

j−1 − fν−2ζ
j+1 = λfν−1ζ

j .

Thus,
4fν−1 − fν−2(1 + ζ)− fν(1 + ζ−1) = λfν−1,

which corresponds to the (ν − 1)-th entry of B(ζ)f = λf . Now, the second and
third equalities in (24) hold if, either

fν = 0 or ζν = 1. (25)

Let us show that one or the other condition happens in the two following subcases:

(iii.1) r even: When ζ is an even power of ei
2π
n , we have that ζν = 1, and (25) holds.

Thus, each eigenvector of B∗(r) gives rise to an eigenvector of L. In particular,
when r = 0, the matrix B∗(0) is similar to B(1), which equals the quotient matrix
QL in (11) of the path-shaped regular partition of F2(Cn). This is the special case
when we know, in advance, that all eigenvalues of B∗(0) are eigenvalues of L.

(iii.2) r odd: In this case cos( rπn ) + cos
(
r(n−1)π

n

)
= 0. Thus, the last row of B∗(r) is

(0, . . . , 0, 4) and, hence, the matrix has one eigenvalue λ = 4, with corresponding

eigenvector f having fν ̸= 0. Moreover, since ζ is an odd power of ei
2π
n , we get

ζν ̸= 1. Consequently, f does not yield an eigenvector of L since (25) does not
hold. Apart from this eigenvalue 4, the other eigenvalues of B∗(r) are those of the
principal submatrix B− of the first ν−1 rows and columns. Thus, the corresponding
eigenvectors of B∗(r) have the last component fν = 0 to satisfy (25) and, then they
yield an eigenvector of L.

From the above discussion, we see that the eigenvalues not present in L are all equal
to 4 and belong to the spectrum of B∗(r) when r is odd. More precisely, for every
odd r( ̸= n/2), there is an eigenvalue 4 not in the spectrum of L, obtaining n/2 of such
eigenvalues. Besides, when r = ν = n/2, all the off-diagonal entries of B∗(r) are zero,
and B∗(r) = diag(2, 4, . . . , 4). If ν is even, this provides one eigenvalue 2 and n/2 − 1
eigenvalues 4 in L. Otherwise, if ν is odd, the condition in (24) is not fulfilled for one
4-eigenvector of B∗(r) and, hence, we only obtain one eigenvalue 2 and n/2−2 eigenvalues
4. We obtain, in this way, a total of nν = 2ν2 eigenvalues (including repetitions), which is
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the number 2ν(ν − 1) of eigenvalues of the matrix L plus ν = |Λ| eigenvalues equal to 4.
Now, to complete the proof, we need to show that the eigenvalues of B(z) for z ∈ R(n)
(not belonging to Λ) constitute the spectrum of L. With this aim, we first use that,
because of the properties of the polynomial matrix (see Dalfó, Fiol, Miller, Ryan, and

Širáň [9]), if (B(z)ℓ)ii = α
(ℓ)
i0 + α

(ℓ)
i1 z + α

(ℓ)
i2 z

2 + · · · (for ℓ ≥ 0), then

tr(Lℓ) + ν4ℓ =
∑

λ∈spL∪Λ

λℓ = n
ν∑

i=1

α
(ℓ)
i0 ,

where we have taken into account that the matrices B(z), for z ∈ R(n), have ν eigenvalues
4 not in L. Since

∑
z∈R(n) z

ℓ = 0 for every z ̸= 1 and ℓ ̸= 0, we have that

α
(ℓ)
i0 =

1

n

∑
z∈R(n)

(B(z)ℓ)ii.

Hence,

∑
λ∈spL

λℓ + ν4ℓ =

ν∑
i=1

∑
z∈R(n)

(B(z)ℓ)ii =
∑

z∈R(n)

tr(B(z)ℓ)

=
∑

z∈R(n)

∑
µ

∈ spB(z)µℓ.

Since this holds for every ℓ ≥ 0, both multisets of eigenvalues in (22) must coincide (see
Gould [16]). This completes the proof.

By way of example, when L and B(z) are the matrices associated to F2(C8), the
equality tr(Lℓ) + ν4ℓ =

∑
z∈R(n) tr(B(z)ℓ) for ℓ = 0, . . . , 8, give the values 32, 112, 512,

2656, 14976, 9792, 564032, 3670464, so that the corresponding traces tr(Lℓ) =
∑

λ∈spL

λℓ

are 28, 96, 448, 2400, 13952, 85696, 547648, 3604928, as can be checked by using the values
in (20) or Table 7.

5 Asymptotic results

In this last section, we derive closed formulas that give asymptotic approximations of the
eigenvalues of F2(Cn) when n is large.

Theorem 5.1. (i.1) For n odd, n = 2ν + 1, and fixed odd r < n, the eigenvalues of
F2(Cn), in the matrix B∗(r) of (12), are asymptotically equal to

λk = 4 + 4 cos
(rπ
n

)
cos

(
2k − 1

n− 1
π

)
, k = 1, 2, . . . , ν. (26)
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ζ = ei
2π
8 , z = ζr λr,1 λr,2 λr,3 λr,4

sp(B(ζ0)) 0 1.506040792 4.890083735 7.603875471

sp(B(ζ1)) = sp(B(ζ7)) 0.5857864376 3.12596795 4.0 6.288245611

sp(B(ζ2)) = sp(B(ζ6)) 0.9486257582 2.0 4.517304045 6.534070196

sp(B(ζ3)) = sp(B(ζ5)) 1.711754388 3.414213562 4.0 4.87403204

sp(B(ζ4)) 2.0 4.0 4.0 4.0

Table 7: All the eigenvalues of the matrices B(ζr), which yield the eigenvalues of the
2-token graph F2(C8). The values in boldface correspond to the eigenvalues of C8.

(i.2) For n odd, n = 2ν +1, and fixed even r < n, the eigenvalues of the matrix B∗(r) in
(12) are asymptotically equal to

λk = 4 + 4 cos
(rπ
n

)
cos

(
k − 1

n− 1
2π

)
k = 1, 2, . . . , ν. (27)

(ii) For n even, n = 2ν, and fixed odd r < n or r = ν even, the eigenvalues of F2(Cn),
in the matrix B∗(r) of (21), are asymptotically equal to

λk = 4 + 4 cos
(rπ
n

)
cos

(
2k − 1

n− 1
π

)
, k = 1, 2, . . . , ν − 1. (28)

Proof. We begin with the case (ii). For odd r or r = ν even, the last row of B∗(r) is
(0, . . . , 0, 4). Hence, apart from the eigenvalue 4, the other eigenvalues of B∗(r) are those
of the principal submatrix B− of the first ν − 1 rows and columns. Moreover, since the
function cos( rπx ) is continuous for x > 1 and tend to 1 when x → ∞, we can work with
the approximation

B− ≈ Ce =



4− 2 cos( rπn ) 2 cos( rπn ) 0 0 . . . 0
2 cos( rπn ) 4 2 cos( rπn ) 0 . . . 0

0 2 cos( rπn ) 4 2 cos( rπn ) . . . 0
...

...
. . .

. . .
. . .

...
0 0 . . . 2 cos( rπn ) 4 2 cos( rπn )
0 0 . . . 0 2 cos( rπn ) 4


.

(29)

Then, from the results by Yueh, see [23, Th.2], the eigenvalues of Ce are those in (28).
For the cases (i.1) and (i.2) of odd n = 2ν + 1, we proceed similarly. Now, the approxi-
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mation B′ of the matrix B∗(r) in (12) is

B′ ≈ Co =



4− 2 cos( rπn ) 2 cos( rπn ) 0 0 . . . 0
2 cos( rπn ) 4 2 cos( rπn ) 0 . . . 0

0 2 cos( rπn ) 4 2 cos( rπn ) . . . 0
...

...
. . .

. . .
. . .

...
0 0 . . . 2 cos( rπn ) 4 2 cos( rπn )
0 0 . . . 0 2 cos( rπn ) 4± 2 cos( rπn )


,

(30)

where in (ν, ν)-entry, we must take the plus sign when r is odd and the minus when r
is even. Then, by using the results of Yueh, [23, Th.3] and [23, Th.5], respectively, the
eigenvalues of Co are the claimed ones in (26) and (27).

By using Gershgorin circles as in Proposition 4.5, we can prove that the minimum
eigenvalue of F2(Cn) coincides with the minimum eigenvalue of the matrices B∗(r) in (12)
and (21) when r = 1. Moreover, the minimum eigenvalue in (26) and (28) is obtained
when k = ν and k = ν − 1, respectively, giving

α(F2(Cn)) ≈ λν = 4 + 4 cos
(π
n

)
cos

(
n− 2

n− 1
π

)
, (31)

and

α(F2(Cn)) ≈ λν−1 = 4 + 4 cos
(π
n

)
cos

(
n− 3

n− 1
π

)
. (32)

Notice that, as n increases, the expressions in (31) and (32) tend to 2 − 2 cos(2πn ), which
is the exact value of α(Cn), as expected.

Furthermore, the equalities in (27) for r = 0 become

λk = 4 + 4 cos

(
k − 1

n− 1
2π

)
= 8 cos2

(
k − 1

n− 1
π

)
, k = 1, 2, . . . , ν, (33)

which correspond to the asymptotic approximation of the exact values (10) in Proposition
4.2(ii).
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