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Abstract

Background: Multimorbidity and frailty are characteristics of aging that need individualized evaluation, and there is a 2-way
causal relationship between them. Thus, considering frailty in analyses of multimorbidity is important for tailoring social and
health care to the specific needs of older people.

Objective: This study aimed to assess how the inclusion of frailty contributes to identifying and characterizing multimorbidity
patterns in people aged 65 years or older.

Methods: Longitudinal data were drawn from electronic health records through the SIDIAP (Sistema d’Informació pel
Desenvolupament de la Investigació a l’Atenció Primària) primary care database for the population aged 65 years or older from
2010 to 2019 in Catalonia, Spain. Frailty and multimorbidity were measured annually using validated tools (eFRAGICAP, a
cumulative deficit model; and Swedish National Study of Aging and Care in Kungsholmen [SNAC-K], respectively). Two sets
of 11 multimorbidity patterns were obtained using fuzzy c-means. Both considered the chronic conditions of the participants. In
addition, one set included age, and the other included frailty. Cox models were used to test their associations with death, nursing
home admission, and home care need. Trajectories were defined as the evolution of the patterns over the follow-up period.

Results: The study included 1,456,052 unique participants (mean follow-up of 7.0 years). Most patterns were similar in both
sets in terms of the most prevalent conditions. However, the patterns that considered frailty were better for identifying the
population whose main conditions imposed limitations on daily life, with a higher prevalence of frail individuals in patterns like
chronic ulcers &peripheral vascular. This set also included a dementia-specific pattern and showed a better fit with the risk of
nursing home admission and home care need. On the other hand, the risk of death had a better fit with the set of patterns that did
not include frailty. The change in patterns when considering frailty also led to a change in trajectories. On average, participants
were in 1.8 patterns during their follow-up, while 45.1% (656,778/1,456,052) remained in the same pattern.
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Conclusions: Our results suggest that frailty should be considered in addition to chronic diseases when studying multimorbidity
patterns in older adults. Multimorbidity patterns and trajectories can help to identify patients with specific needs. The patterns
that considered frailty were better for identifying the risk of certain age-related outcomes, such as nursing home admission or
home care need, while those considering age were better for identifying the risk of death. Clinical and social intervention guidelines
and resource planning can be tailored based on the prevalence of these patterns and trajectories.

(JMIR Public Health Surveill 2023;9:e45848) doi: 10.2196/45848
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Introduction

Aging is associated with the development of complex conditions,
such as multimorbidity and frailty [1,2], which need to be
assessed at the individual level. Frailty is a holistic state defined
by the biological age-related loss of homeostasis and resistance
to stressors, not by particular conditions, and it increases
vulnerability to adverse outcomes [2-5]. Frailty can be measured
either through the frailty phenotype [5] or cumulative deficit
models that consider physical, psychological, and social domains
[2,6,7]. On the other hand, multimorbidity is defined as the
simultaneous presence of two or more chronic diseases [8].
There is a 2-way causal relationship between multimorbidity
and frailty [4,9], and both are associated with higher health care
utilization and expenditure [10-14]. Health systems thus need
to characterize and monitor the older population to estimate
health care and social resource demand.

Electronic health records (EHRs) are essential nowadays to
monitor and evaluate patients [15]. Real-world studies use EHRs
to obtain a large quantity of observational data from diverse
populations. These data sources allow studies to be conducted
at a lower cost than traditional epidemiological studies or
randomized clinical trials [16,17] and can achieve similar results
to randomized clinical trials [18]. Most multimorbidity studies
in recent years have used EHRs [19], while EHR-based tools
have also been recently developed to measure frailty [20,21].

Clustering is an unsupervised exploratory data analysis
technique used for identifying and characterizing population
groups. It has already been extensively used to find subgroups
of people based on the similarity, in terms of co-occurrence, of
their concurrent chronic disease [22-28]. Several systematic
reviews [27-29] describe different clustering techniques used
to group patients based on multimorbidity, including hierarchical
clustering, exploratory factor analysis, multiple correspondence
analysis, network analysis, and k-means. K-means and fuzzy
c-means are the most common approaches [22-26]. K-means is
a hard clustering algorithm that forces each record to belong to
a single cluster, while fuzzy c-means is a soft clustering
technique that allows records to be simultaneously assigned to
multiple clusters through membership probability [30]. In our
study, this fuzziness allowed individuals to belong to several
clusters, thus creating clusters characterized by broader disease
combinations. These techniques have also been applied to
identify subgroups of people based on their frailty [31,32].
Although multimorbidity and frailty are strongly associated [4],
our review identified only 1 study that considers both
simultaneously to build clustering-based patterns [33]. Other

authors have related multimorbidity clusters to frailty-related
outcomes using regression models [10,26]. However, to our
knowledge, no study has assessed whether frailty may influence
well-established multimorbidity patterns.

Considering frailty in analyses of multimorbidity is important
for tailoring health and social care to the specific needs of the
ever-expanding population of elderly people [34]. Moreover,
frailty and multimorbidity evolve as people age, and these
patterns can change over time, defining a trajectory. Only a few
studies have been found that explored these trajectories [19],
using hidden Markov models [23,35], latent class growth
analysis [36], and descriptive statistics [37]. Furthermore,
identifying changes in multimorbidity patterns and trajectories
when considering frailty can enrich our understanding of
patients’ complex care needs and inform social and health care
service strategies [38]. Therefore, our primary aim was to assess
how the inclusion of frailty contributes to identifying and
characterizing multimorbidity patterns in people aged 65 years
or older. Moreover, we described the trajectory of the
multimorbidity patterns of individuals as they aged.

Methods

Study Design, Setting, Data Source, and Participants
This observational study followed a dynamic cohort from
primary care services in Catalonia (Spain) from January 1, 2010,
to December 31, 2019. The cohort was drawn from the
Information System for Performing Primary Care Research
(SIDIAP [Sistema d’Informació pel Desenvolupament de la
Investigació a l’Atenció Primària]) database [39]. The SIDIAP
database collects pseudoanonymized EHRs from 328 primary
care centers in Catalonia managed by the Catalan Health
Institute (CHI) since 2005, and it currently has EHRs on more
than 8 million patients. This represents almost 80% of the
Catalan population and is a reliable representation of the region
in terms of age, sex, and geographic distribution [40].

Participants were included at baseline if they were aged 65 years
or older in 2010, or were added over the study period as they
turned 65 years or arrived in the catchment area (if already aged
65 years or older). They were followed until death, transfer out
of the catchment area (lost to follow-up), or end of the study
(December 31, 2019). Individuals with no available information,
those who did not attend a primary care center over the study
period, and those who were aged 100 years or older in 2010
were excluded. Of the initial sample of 1,702,062 individuals,
1,456,052 were finally included.

JMIR Public Health Surveill 2023 | vol. 9 | e45848 | p. 2https://publichealth.jmir.org/2023/1/e45848
(page number not for citation purposes)

Carrasco-Ribelles et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://dx.doi.org/10.2196/45848
http://www.w3.org/Style/XSL
http://www.renderx.com/


The CHI linked primary care data with hospital admission data
from public health care providers to maintain the
pseudoanonymization of the data for researchers. Data included
(1) sociodemographic information (ie, sex, age, and
socioeconomic status [41]), (2) visits to primary care (ie, date
of visit, health professional, and institution visited), (3) clinical
measures (eg, BMI, blood pressure, frailty, and dependency
questionnaires), (4) all diagnoses made in primary care (using
International Classification of Diseases, 10th revision [ICD-10]),
(5) laboratory results (eg, cholesterol and glycated hemoglobin),
(6) emergency admission episodes (ie, date, number of diagnoses
at admission, and length of stay), (7) medications dispensed in
pharmacies (using Anatomical Therapeutic Classification [ATC]
5th level), and (8) inclusion in social assistance programs.
Socioeconomic status was analyzed by census tract according
to a 5-category classification, which considers 22 indicators,
for instance, the proportion of the population with a manual
occupation or dependency, households without internet access,
and single-parent households.

This study complied with the RECORD (Reporting of Studies
Conducted using Observational Routinely-collected Data)
statement [42] (Multimedia Appendix 1).

Measurement of Multimorbidity and Frailty
Multimorbidity was measured using the operational definition
of the Swedish National Study of Aging and Care in
Kungsholmen (SNAC-K), which defined 60 categories of
chronic conditions using more than 900 ICD-10 codes, along
with clinical, laboratory, and drug-related parameters for
assessing certain conditions [43]. The SNAC-K definition of
multimorbidity is widely used in studies on older populations,
so our results are amenable to comparisons with other studies.
Frailty was measured using eFRAGICAP, a validated tool that
uses EHRs from Catalan primary care centers [21]. This index
considers 36 possible deficits that can be extracted from the
EHRs, with 20 related to diseases and 16 related to signs,
symptoms, laboratory results, and disabilities. According to the
proportion of deficits a person has, their frailty status can be
obtained using the cutoff points proposed by Clegg et al [20]
(ie, fit, <0.12; mild, 0.12-0.24; moderate, 0.24-0.36; and severe
≥0.36). The complete list of codes considered in both
multimorbidity and frailty definitions can be found in [43] and
[21], respectively.

Statistical Analysis
Following study approval, data were obtained from SIDIAP.
All authors had access to the database. Diagnoses with
inconsistent dates and wrong sex-specific diagnoses were
excluded. Duplicated diagnoses and clinical measures (same
person, same day, and same code) were also excluded. The
presence of each of the 60 disease groups and 36 deficits was
calculated annually for each participant, according to which
conditions were active and which laboratory results or clinical
measures were out of range in the participants’ EHRs [21,43].
There were no missing values related to diagnoses or frailty, as
a lack of information was interpreted as the absence of the
condition or frailty deficit, not as a loss of information.
Continuous variables were described using medians and IQRs,
as testing for normality showed a nonparametric distribution in

all cases, and categorical variables were expressed as absolute
and relative frequencies. Clustering and Cox regressions were
performed on R v4.1 (R Project for Statistical Computing).
Statistical significance was defined as P<.05 (2-sided).

Clustering Analysis
In this study, the information for each included person and year
was used to group people based on the similarity of their
combined concurrent chronic diseases. Each individual in the
clustering analysis contributed records for each year they were
included in the study. These groups represented multimorbidity
patterns and were found using fuzzy c-means and 2 sets of data.
Fuzzy c-means is a fuzzy form of clustering in which records
for each individual can be assigned to more than one cluster, or
multimorbidity pattern, through fuzzy membership, allowing
the pattern definition to be more diverse. Both sets considered
chronic conditions, as defined by SNAC-K; however,
multimorbidity & age also included the age associated with the
record, while multimorbidity & frailty considered the number
of frailty deficits. A detailed description of the clustering
analysis can be found in Multimedia Appendix 2 [21,43-47].

Dimensionality was reduced before clustering to simultaneously
reduce computational cost and obtain more meaningful
variables. First, chronic conditions with a low mean annual
prevalence (<2%) were removed. Second, a PCAmix
transformation [44], which is a mixture of the well-known
Principal Component Analysis (PCA) and Multiple
Correspondence Analysis (MCA), was applied, and a dimension
reduction was performed using the Karlis-Saporta-Spinaki rule
[45]. The choice of both the number of clusters (k) and the
degree of fuzziness (m) was validated between k ∈ (2, 15) and
m ∈ (1.1, 1.2, 1.4, 1.8), calculating analytical indexes using a
subset of 100,000 randomly selected participants and 100
repetitions to account for random initialization of the cluster
centroids. In addition to the analytical indexes, the opinion on
the clinical usefulness and validity of the different sets of
patterns of the research team was also considered to select the
final k. This approach has been used in other studies [22-24,26].

Description of the Identified Patterns and Trajectories
To characterize the patterns, each person’s annual record was
assigned to the pattern with the highest membership probability.
The observed/expected (OE) ratio, that is, the ratio between the
condition prevalence in the pattern and the condition prevalence
in the overall population, and exclusivity, that is, the ratio
between the number of individuals in the pattern with the
condition and the total number of individuals in the population
with the condition, were calculated (see Multimedia Appendix
2 [21,43-47]). Conditions were considered associated with a
specific pattern when the exclusivity was ≥25% or the OE ratio
was ≥2. The patterns were named in line with these conditions
by consensus within the research team (2 general practitioners,
1 nurse, and 2 statisticians), aiming to maximize their clinical
utility and consistency with previous literature. In addition, each
pattern was described in terms of age, sex, socioeconomic status,
multimorbidity and frailty prevalence, smoking and alcohol
intake, and health care service use.
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The clustering model demonstrated the probability of every
record and person belonging to each pattern, showing which
pattern was most likely for each person each year. Therefore,
the evolution among patterns over the study period could be
followed as shown in Figure 1. Alluvial and chord plots were

used to describe the trajectories, focusing on their evolution
with aging, and a transition matrix showed the probability of
change from the pattern assigned in the first year of inclusion
to that in the last year.

Figure 1. Visual summary of the process of obtaining multimorbidity patterns and trajectories. A: Electronic Health Records (EHR) for three subjects,
represented as a line per year of follow-up. B: Clustering gathers each year of each patient. C: Multimorbidity Pattern Assignment. D: Multimorbidity
Trajectory.

Cox Regression
The association between the patterns identified for each data
set and the following outcomes was calculated: all-cause
mortality, nursing home admission, and home care need. The
last 2 outcomes were measured using ICD-10 codes (Z59.3 and
a Z74 starting code, respectively). The time to event was defined
as the interval between cohort entry and the event. Patients were
followed until censored (event, lost to follow-up, or end of
observation). Cox proportional hazard regression models were
fitted to test the association between the patterns and mortality.
Similarly, cause-specific Cox models were calculated for nursing
home admission and home care need, considering the competing
risk of death through a multistate definition. For each model,

the Akaike Information Criterion (AIC), R2, and c-statistic (area
under the receiver operating characteristic curve [AUC]) were
calculated to assess the goodness of fit, the explained variation,
and the predictive capacity of each set of patterns. The only
covariate for building these models was the assigned pattern,
and was considered time-varying, as each person was assigned
to a pattern every year. The proportional hazard assumption
was assured in all cases by checking the distribution of the
Schoenfeld residuals.

Ethical Considerations
This study was approved by the Scientific and Ethical
Committees of IDIAP (19/518-P) on December 18, 2019. The
SIDIAP database is based on optout presumed consent. If a
patient decides to opt out, their routine data are excluded from
the database. Regarding the hospital admission data, the CHI
acts as a trusted third party to execute the linkage and provide
the pseudoanonymized data set, without needing informed
consent. More information about the management of the SIDIAP
database can be found in a previous report [40].

Results

Description of the Population
During the follow-up period, 1,456,052 unique participants
were included in the study population (Figure 2 and Multimedia
Appendix 3), with a mean follow-up of 7.04 (SD 3.15) years.
The median age at cohort entry was 69.0 years, and 55.8%
(813,074/1,456,052) were women. Most (1,297,810/1,456,052,
89.1%) joined the study with at least two chronic conditions;
by the end of follow-up, this proportion was 94.5%
(1,376,367/1,456,052). Frailty prevalence increased from 33.4%
(486,320/1,456,052) to 60.3% (877,861/1,456,052) (Table 1).
The prevalence of each chronic condition is presented in Table
S2 in Multimedia Appendix 2.
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Figure 2. Flow chart of the study population. The figure reports the number of individuals who met each exclusion criterion, as well as the number of
individuals who met all the criteria simultaneously (unique IDs). CHI: Catalan Health Institute; SIDIAP: Sistema d’Informació pel Desenvolupament
de la Investigació a l’Atenció Primària.
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Table 1. Characteristics of the included individuals in their first and last years of follow-up (N=1,456,052).

Last year of follow-upa,bFirst year of follow-upa,bVariable

77.0 (70.0-85.0)69.0 (65.0-77.0)Age (years), median (IQR)

Sex, n (%)

813,074 (55.8)813,074 (55.8)Women

642,978 (44.2)642,978 (44.2)Men

Deprivation index, n (%)

163,452 (13.2)163,452 (13.2)1 (less deprived)

373,120 (30.2)373,120 (30.2)2

411,920 (33.4)411,920 (33.4)3

233,724 (18.9)233,724 (18.9)4

51,594 (4.2)51,594 (4.2)5 (more deprived)

222,242222,242Missing

Multimorbidity, median (IQR)

7.0 (5.0-10.0)5.0 (3.0-7.0)SNAC-Kc groups of chronic conditions

Type of multimorbidity, n (%)

79,685 (5.5)158,242 (10.9)No multimorbidity

401,306 (27.6)692,530 (47.6)2-5 diseases

675,798 (46.4)528,865 (36.3)6-10 diseases

299,263 (20.6)76,415 (5.3)>10 diseases

Frailty, median (IQR)

6.0 (3.0-9.0)3.0 (2.0-5.0)Deficits

3.0 (1.0-4.0)1.0 (1.0-2.0)Disease-related deficits

3.0 (1.0-4.0)2.0 (1.0-3.0)SSLDd deficits

Type of frailty, n (%)

578,191 (39.7)969,732 (66.6)Fit

511,505 (35.1)404,665 (27.8)Mild

263,893 (18.1)71,950 (4.9)Moderate

102,463 (7.0)9705 (0.7)Severe

Smoking status, n (%)

854,407 (61.1)845,869 (65.6)Nonsmoker

418,086 (29.9)284,398 (22.1)Exsmoker

125,421 (9.0)159,178 (12.3)Smoker

58,138166,607Missing

Alcohol intake, n (%)

445,245 (66.6)412,938 (66.6)Nondrinker

217,360 (32.5)195,815 (31.6)Low-risk drinker

6,002 (0.9)10,916 (1.8)High-risk drinker

787,445836,383Missing

Health care service use, median (IQR)

9.0 (4.0-17.0)9.0 (4.0-16.0)Visits to primary care

7.0 (3.0-11.0)7.0 (3.0-12.0)Distinct drugse

5.0 (0.0-14.0)5.0 (0.0-11.0)Clinical measurements
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Last year of follow-upa,bFirst year of follow-upa,bVariable

16.0 (0.0-24.0)16.0 (0.0-20.0)Laboratory measurements

194,052 (13.3)44,473 (3.1)Receiving home care, n (%)

122,844 (8.4)31,480 (2.2)Living in a nursing home, n (%)

355,901 (24.4)25,254 (1.7)Death, n (%)

aFollow-up began in 2010 for individuals aged 65 years or older who were in the catchment area, or the year when they turned 65 years or arrived in
the catchment area. The end of follow-up was 2019, the year of death, or the year they left the catchment area. The characteristics were calculated at
the end of each year, using the records from that year.
bFor categorical variables, missing values, if any, are excluded from the calculation of the percentage.
cSNAC-K: Swedish National Study of Aging and Care in Kungsholmen.
dSSLD: signs, symptoms, laboratory results, and disabilities.
eThe number of distinct drugs was calculated using the first 5 digits of the Anatomical Therapeutic Classification (ATC) code.

Description of the Identified Multimorbidity Patterns
Two sets of 11 multimorbidity patterns were identified
(multimorbidity & age and multimorbidity & frailty). The most
prevalent chronic conditions in each pattern were similar
between sets in most patterns, regardless of whether frailty was
included (see Multimedia Appendix 4 for the complete
description; a demonstration is shown in Table 2) and the
characteristics of their members (see Multimedia Appendix 5
for the complete description; a demonstration is shown in Table
3). The following patterns were identified in both data sets:
allergy & migraine, chronic ulcers & peripheral vascular,
diabetes & obesity, genitourinary & respiratory, heart &
circulatory, mental & neurodegenerative, neuromusculoskeletal,
nonspecific, peripheral vascular & respiratory, and respiratory.
The prevalence of all chronic conditions in nonspecific was
lower than in the general population. On the other hand,
dementia & motility digestive appeared only in multimorbidity
& frailty, while autoimmune & metabolic appeared only in
multimorbidity & age.

Some patterns were female-dominant, such as allergy &
migraine, neuromusculoskeletal, chronic ulcers & peripheral
vascular, dementia & motility digestive, and mental &
neurodegenerative. On the other hand, autoimmune & metabolic,

respiratory, genitourinary & respiratory, and peripheral
vascular & respiratory were male-dominant, with the latter 2
patterns having the highest rates of smokers and high-risk
drinkers. Allergy & migraine, diabetes & obesity, genitourinary
& respiratory, neuromusculoskeletal, and nonspecific included
younger individuals, while chronic ulcers & peripheral vascular,
dementia & motility digestive, heart & circulatory, and mental
& neurodegenerative were more common in older individuals.
These, together with peripheral vascular & respiratory, were
the patterns with the highest prevalence of frailty. All patterns,
except nonspecific, had a high prevalence of multimorbidity.

The emergence of the dementia & motility digestive pattern in
multimorbidity & frailty significantly changed the definition of
mental & neurodegenerative between sets. As shown in Table
3, in multimorbidity & frailty, it comprised younger, less frail
individuals with more chronic conditions, such as Parkinson
disease and other neurological diseases (ie, Huntington disease
or myasthenia), rather than dementia (see Multimedia Appendix
4), while in multimorbidity & age, this pattern comprised older
and frailer individuals. On the other hand, the dementia &
motility digestive pattern was made up of older individuals,
mostly women, with moderate and severe frailty and a high
prevalence of dementia.
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Table 2. Top 10 conditions in terms of the observed/expected ratio and exclusivity for the heart & circulatory and mental & neurodegenerative patterns.

Multimorbidity & ageMultimorbidity & frailtyPattern and disease

Exclusivity, %OE ratioExclusivity, %OEa ratio

Heart & circulatory

55.57b7.67b54.38b7.86bHeart failure

52.47b7.24b50.98b7.37bCardiac valve diseases

46.81b6.46b45.29b6.54bAtrial fibrillation

42.57b5.87b39.83b5.75bBradycardia and conduction diseases

26.22b3.62b25.51b3.69bIschemic heart disease

16.172.23b15.952.30bChronic kidney diseases

16.052.21b15.852.29bAnemia

15.412.13b14.932.16bCerebrovascular disease

14.431.9914.332.07bCOPDc, emphysema, and chronic bronchitis

N/AN/Ad12.851.86Inflammatory arthropaties

12.671.75N/AN/AChronic pancreas diseases, and biliary tract and gallbladder diseases

Mental & neurodegenerative

73.46b9.24b90.67b19.98bParkinson disease and parkisonism

37.19b4.68b84.14b18.54bOther neurological diseases

55.24b6.95b10.182.24bDementia

26.92b3.39b9.532.10bCerebrovascular disease

17.50b2.20b8.001.76Depression and mood diseases

14.591.836.711.48Colitis and related diseases

17.262.17b6.281.38Anemia

N/AN/A6.221.37Sleep disorders

36.36b4.57b6.111.35Other digestive diseases

N/AN/A6.051.33Dorsopathies

13.101.65N/AN/AChronic kidney diseases

11.691.47N/AN/ADeafness and hearing impairment

aOE: observed/expected.
bThe conditions used to name the pattern. The conditions for the rest of the patterns can be found in Multimedia Appendix 4.
cCOPD: chronic obstructive pulmonary disease.
dN/A: not applicable.

JMIR Public Health Surveill 2023 | vol. 9 | e45848 | p. 8https://publichealth.jmir.org/2023/1/e45848
(page number not for citation purposes)

Carrasco-Ribelles et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Description of the participants in the dementia & motility digestive, heart & circulatory, and mental & neurodegenerative patterns.

Mental & neurodegenerativea,bHeart & circulatorya,bDementia & motili-

ty digestivea,b
Variable

Multimorbidity &
frailty (n=465,417)

Multimorbidity &
age (n=815,597)

Multimorbidity &
frailty (n=709,909)

Multimorbidity &
age (n=743,257)

Multimorbidity &
frailty (n=783,590)

78.0 (72.0-84.0)84.0 (80.0-89.0)82.0 (76.0-87.0)82.0 (77.0-87.0)83.0 (78.0-88.0)Age (years), median (IQR)

Sex, n (%)

264,225 (56.8)541,039 (66.3)382,768 (53.9)398,282 (53.6)588,734 (75.1)Women

201,192 (43.2)274,558 (33.7)327,141 (46.1)344,975 (46.4)194,856 (24.9)Men

Deprivation index, n (%)

66,020 (21.9)119,722 (25.5)87,347 (20.3)93,677 (20.9)109,882 (23.3)1 (less deprived)

61,623 (20.4)97,525 (20.7)85,288 (19.8)89,449 (20.0)95,209 (20.2)2

63,731 (21.1)99,451 (21.1)87,580 (20.3)91,379 (20.4)99,621 (21.1)3

59,089 (19.6)83,397 (17.7)87,256 (20.3)89,469 (20.0)87,895 (18.6)4

51,528 (17.1)70,225 (14.9)82,908 (19.3)83,854 (18.7)78,990 (16.7)5 (more deprived)

163,426345,577279,530295,429311,993Missing

Multimorbidity, median (IQR)

8.0 (6.0-11.0)8.0 (6.0-10.0)10.0 (8.0-2.0)10.0 (8.0-12.0)9.00 (7.0-11.0)SNAC-Kc groups of chronic conditions

Type of multimorbidity, n (%)

2025 (0.4)445 (0.1)0 (0.0)0 (0.0)0 (0.0)No multimorbidity

80,560 (17.3)145,376 (17.8)32,702 (4.6)45,354 (6.1)71,676 (9.2)2-5 diseases

254,128 (54.6)500,503 (61.4)368,236 (51.9)395,802 (53.3)507,806 (64.8)6-10 diseases

128,704 (27.7)169,273 (20.8)308,971 (43.5)302,101 (40.6)204,108 (26.0)>10 diseases

Frailty, median (IQR)

7.0 (5.0-10.0)8.0 (6.0-10.0)9.0 (7.0-12.0)9.0 (7.0-11.0)9.0 (7.0-11.0)Deficits

3.0 (2.0-5.0)5.0 (3.0-6.0)4.0 (2.0-5.0)3.0 (2.0-5.0)5.0 (3.0-6.0)Disease-related deficits

4.0 (2.0-5.0)3.0 (2.0-5.0)5.0 (4.0-7.0)5.0 (4.0-7.0)4.0 (3.0-5.0)SSLDd deficits

Type of frailty, n (%)

96,397 (20.7)90,181 (11.1)31,624 (4.5)49,158 (6.6)40,827 (5.21)Fit

207,835 (44.7)364,281 (44.7)268,474 (37.8)295,094 (39.7)349,212 (44.6)Mild

122,853 (26.4)279,797 (34.3)276,323 (38.9)269,356 (36.2)312,751 (39.9)Moderate

38,332 (8.2)81,338 (10.0)133,488 (18.8)129,649 (17.4)80,800 (10.3)Severe

Smoking status, n (%)

299,351 (66.8)544,408 (70.5)430,558 (61.7)454,844 (62.4)541,491 (71.8)Nonsmoker

120,789 (27.0)196,319 (25.4)240,234 (34.4)246,506 (33.8)182,092 (24.1)Exsmoker

28,002 (6.2)31,545 (4.1)27,585 (4.0)27,744 (3.8)30,528 (4.1)Smoker

17,27543,32511,53214,16329,480Missing

Alcohol intake, n (%)

178,703 (76.0)297,365 (83.6)333,548 (75.6)342,552 (75.7)315,999 (83.8)Nondrinker

54,962 (23.4)56,921 (16.0)104,929 (23.8)107,637 (23.8)59,668 (15.8)Low-risk drinker

1,434 (0.6)1,218 (0.3)2,600 (0.6)2,475 (0.6)1,596 (0.4)High-risk drinker

230,318460,093268,832290,593406,327Missing

Health care service use, median (IQR)

13.0 (7.0-21.0)12.0 (6.0-21.0)21.0 (11.0-34.0)20.0 (10.0-33.0)14.0 (8.0-23.0)Visits to primary care
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Mental & neurodegenerativea,bHeart & circulatorya,bDementia & motili-

ty digestivea,b
Variable

Multimorbidity &
frailty (n=465,417)

Multimorbidity &
age (n=815,597)

Multimorbidity &
frailty (n=709,909)

Multimorbidity &
age (n=743,257)

Multimorbidity &
frailty (n=783,590)

10.0 (6.0-14.0)9.0 (6.0-13.0)12.0 (8.0-16.0)11.0 (8.0-15.0)10.0 (7.0-14.0)Distinct drugse

7.0 (2.0-14.0)6.0 (1.0-12.0)12.0 (5.0-20.0)11.0 (5.0-19.0)7.00 (2.0-14.0)Clinical measures

17.0 (3.0-25.0)17.0 (0.0-24.0)18.0 (11.0-33.0)18.0 (10.0-32.0)17.0 (10.0-30.0)Laboratory results

aEach column reports the information of all individuals and years included in each pattern. The description of the rest of the patterns can be found in
Multimedia Appendix 5.
bFor categorical variables, missing values, if any, are excluded from the calculation of the percentage.
cSNAC-K: Swedish National Study of Aging and Care in Kungsholmen.
dSSLD: signs, symptoms, laboratory results, and disabilities.
eThe number of distinct drugs was calculated using the first 5 digits of the Anatomical Therapeutic Classification (ATC) code.

Effect of Considering Frailty
Compared to the multimorbidity & age patterns, the
multimorbidity & frailty grouping assigned more frail individuals
to the patterns defined by chronic conditions imposing greater
limitations on daily life. For example, severe frailty was more
prevalent in the heart & circulatory pattern and a lack of frailty
was more common in the nonspecific pattern in multimorbidity
& frailty than in multimorbidity & age (Table 3). In addition,
the dementia & motility digestive pattern appeared only in
multimorbidity & frailty, and the definition of mental &
neurodegenerative changed considerably, as described above.

Each set of patterns behaved differently in terms of the
associated outcomes (Table 4). Multimorbidity & age patterns
had a better goodness of fit (AIC) with mortality than
multimorbidity & frailty, while multimorbidity & frailty patterns

had a better or similar goodness of fit with nursing home
admission or home care need. A similar behavior was observed

for R2, while both sets of patterns achieved similar results in all
outcomes in terms of AUC. Regarding the hazard ratios, they
were very similar between multimorbidity & age and
multimorbidity & frailty in all patterns and outcomes, except
mental & neurodegenerative, which were lower in
multimorbidity & frailty. Chronic ulcers & peripheral vascular,
dementia & motility digestive, heart & circulatory, mental &
neurodegenerative, and peripheral vascular & respiratory
showed the highest risk of death. All patterns had a higher risk
of nursing home admission than nonspecific, with dementia &
motility digestive, chronic ulcers & peripheral vascular, and
mental & neurodegenerative standing out. These latter patterns,
together with heart & circulatory, also had a higher risk of home
care need.
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Table 4. Data for the unadjusted survival models using the multimorbidity patterns as the time-varying covariate.

Home care needNursing home admissionMortalityPatterna,b

Multimorbidity
& frailty, HR
(95% CI)

Multimorbidity
& age, HR
(95% CI)

Multimorbidity
& frailty, HR
(95% CI)

Multimorbidity
& age, HR
(95% CI)

Multimorbidity
& frailty, HR
(95% CI)

Multimorbidity

& age, HRc

(95% CI)

2.98 (2.87-3.10)2.50 (2.41-2.59)1.53 (1.45-1.61)1.68 (1.61-1.76)0.43 (0.42-0.44)0.39 (0.39-0.70)Allergy & migraine

N/A4.66 (4.52-4.81)N/A2.51 (2.40-2.62)N/Ad0.97 (0.96-0.99)Autoimmune & metabolic

34.36 (33.24-
35.52)

26.25 (25.44-
27.08)

23.43 (22.58-
24.31)

22.28 (21.47-
23.12)

6.87 (6.78-6.96)6.94 (6.85-7.03)Chronic ulcers & peripheral vascular

25.38 (24.67-
26.12)

N/A22.95 (22.25-
23.67)

N/A2.88 (2.86-2.92)N/ADementia & motility digestive

3.23 (3.13-3.34)0.68 (0.67-0.69)1.42 (1.37-1.48)1.62 (1.56-1.69)0.62 (0.61-0.63)0.7 (0.69-0.71)Diabetes & obesity

2.97 (2.86-3.07)1.69 (1.63-1.75)1.48 (1.42-1.55)1.22 (1.16-1.28)1.05 (1.04-1.07)0.8 (0.79-0.81)Genitourinary & respiratory

21.59 (20.97-
22.22)

15.64 (15.23-
16.07)

8.13 (7.86-8.42)7.71 (7.45-7.98)3.07 (3.03-3.10)3.14 (3.10-3.18)Heart & circulatory

16.98 (16.46-
17.51)

20.46 (19.93-
21.00)

10.91 (10.53-
11.30)

24.41 (23.66-
25.18)

1.96 (1.93-1.99)3.56 (3.52-3.60)Mental & neurodegenerative

3.83 (3.70-3.96)3.36 (3.25-3.46)1.43 (1.36-1.49)1.61 (1.54-1.68)0.31 (0.31-0.32)0.32 (0.31-0.33)Neuromusculoskeletal

9.54 (9.23-9.87)7.53 (7.30-7.77)4.02 (3.85-4.20)3.99 (3.82-4.17)1.98 (1.95-2.01)2.04 (2.01-2.07)Peripheral vascular & respiratory

7.10 (6.86-7.35)5.78 (5.60-5.97)2.98 (2.84-3.12)3.11 (2.98-3.26)0.87 (0.86-0.89)0.9 (0.89-0.92)Respiratory

10,924,083f10,945,8029,996,581f10,261,8149,637,8729,605,078fAICe

0.39f0.360.38f0.210.320.37fR2

0.721f0.7190.7170.718f0.7050.713fAUCg

aNonspecific was used as reference.
bAll P<.001.
cHR: hazard ratio.
dN/A: not applicable.
eAIC: Akaike Information Criterion.
fThe set of patterns that achieved better performance for each metric and outcome.
gAUC: area under the receiver operating characteristic curve.

Study of the Trajectories
Over the follow-up, individuals changed patterns an average of
1.75 (multimorbidity & age) and 1.85 (multimorbidity & frailty)
times, while 45.1% (656,778/1,456,052) of the individuals
remained in the same pattern. Multimedia Appendix 6 shows
that these values depended on the length of the trajectory. For
example, people with 5 years of follow-up had an average of
1.55 different patterns in their trajectory, while around 54.5%
(52,634/96,578, 54.5% in multimorbidity & age; 52,586/96,578,
54.4% in multimorbidity & frailty) remained in the same pattern.
In those with 10 years of follow-up, these values changed to
2.15 and 26.6%, respectively. The prevalence of most patterns
varied with age, as shown in Figure 3. The prevalence of
nonspecific showed the largest reduction, as most of its members
developed diseases as they aged and shifted to more
disease-specific patterns. On the other hand, heart & circulatory
and mental & neurodegenerative for multimorbidity & age, and
dementia & motility digestive for multimorbidity & frailty
showed the highest increases in prevalence with age.

Figure 4 shows the transition matrices for both multimorbidity
& age and multimorbidity & frailty. Chronic ulcers & peripheral
vascular, heart & circulatory, mental & neurodegenerative,
and dementia & motility digestive were the multimorbidity
patterns most closely associated with mortality, as more than
55% of the individuals who started in them died during
follow-up (Figure 4). On the other hand, the allergy & migraine,
neuromusculoskeletal, and nonspecific clusters showed the
lowest mortality. When considering frailty, the number of
individuals transitioning to mental & neurodegenerative from
any pattern was reduced. Nevertheless, considering the general
stability of the trajectories, a relatively high percentage of
individuals transitioned to dementia & motility digestive.
Multimedia Appendix 7 (multimorbidity & age) and Multimedia
Appendix 8 (multimorbidity & frailty) show the evolution of 3
subsets of 50 random individuals aged 65, 75, and 85 years,
respectively, in 2010 to illustrate how multimorbidity trajectories
vary with age. These figures show that the percentage of
individuals starting in nonspecific decreased inversely with age
at cohort entry, as did the percentage of individuals remaining
in this pattern throughout follow-up.
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Figure 3. Prevalence of each multimorbidity pattern for each age. (A) Multimorbidity & age; (B) multimorbidity & frailty. For each age, the information
considered is from the individuals of that age in any time, regardless of the year of the study.
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Figure 4. Transition matrices for multimorbidity & age (A) and multimorbidity & frailty (B) with k=11. Each cell shows the proportion of individuals
transitioning from their initial pattern (y-axis) to the last pattern observed (x-axis).

Discussion

This study aimed to assess how frailty contributes to the
characterization of multimorbidity patterns, as identified through
clustering techniques. In a Mediterranean cohort of 1,456,052
people aged over 65 years, 2 sets of 11 multimorbidity patterns
were identified based on the presence of chronic conditions.
One considered age and the other considered the number of
frailty deficits. The consideration of frailty modified

multimorbidity patterns, revealing patterns with better goodness
of fit to the outcomes related to frail aging, such as nursing
home admission and home care need, and gathering more frail
individuals in patters characterized by more limiting conditions.
The better fit to aging-related outcomes when considering frailty
has been previously reported [48]. Moreover, the trajectories
of multimorbidity patterns were different when considering
frailty. When considering only conditions and age, and not
frailty, the patterns showed better goodness of fit with the
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outcome of death, and described an additional disease-related
pattern.

When considering frailty, an additional pattern more specific
to aging was identified (dementia & motility digestive).
Distinguishing this pattern from mental & neurodegenerative
can enable more personalized clinical treatment. In the former
case, palliative care would be appropriate, while the latter would
call for active treatments to delay disease progression. Patterns
defined by less limiting conditions for daily life, such as diabetes
& obesity, had a lower prevalence of frailty when frailty was
considered, in contrast with more limiting patterns such as heart
& circulatory. For this same reason, the genitourinary &
respiratory pattern also had a higher proportion of men when
frailty was considered, as it included more individuals with
prostate diseases, which usually lead to more frailty [49,50],
while the same pattern included more women when frailty was
not considered, as it involved addictions (ie, drug, alcohol, or
tobacco use), which usually involve less frailty than prostate
diseases.

Most of the 11 multimorbidity patterns were similarly described
whether frailty was considered or not and could be classified
into concordant or discordant multimorbidity patterns depending
on whether the conditions defining the pattern shared
pathophysiology or approaches to clinical management [51,52].
For example, heart & circulatory, chronic ulcers & peripheral
vascular, respiratory, and diabetes & obesity are patterns of
concordant multimorbidity, while genitourinary & respiratory
and peripheral vascular & respiratory are patterns of discordant
multimorbidity. Discordant conditions might be grouped
together because of shared risk factors, such as smoking or
alcohol intake, rather than shared pathophysiology. This is the
case for genitourinary & respiratory and peripheral vascular
& respiratory, which mainly included men, with a higher
prevalence of smokers and high-risk drinkers. Another risk
factor these individuals may share could be their genetics, which
can also influence the development of multimorbidity [53]. This
discordance makes treatment more complex [52]; thus,
identifying patients who follow a discordant multimorbidity
pattern can signal a need for integrated care.

Regarding the trajectories of multimorbidity patterns, the heart
& circulatory and mental & neurodegenerative patterns (when
not considering frailty), and the dementia & digestive motility
pattern (when considering frailty) showed the most changes
over time. Their prevalence increased the most with aging, and
the patients in these groups had the highest probability of
transitioning to death at the end of their follow-up. This may
be due to the high prevalence of frailty in these patterns, and
the association of frailty with death [54]. The nonspecific pattern
also had a high probability of transition, as it included healthier
individuals who transitioned to other patterns as diseases
appeared with age. Peripheral vascular & respiratory involved
a burden of heart conditions, which could lead the trajectory
toward heart & circulatory. However, many of these individuals
died, possibly before the onset of the cardiac diseases could be
recorded in the EHRs. On the other hand, neuromusculoskeletal
and respiratory were the patterns with the fewest transitions
during follow-up, with more than 50% of the individuals
remaining in the same pattern throughout the study period. This

may be because both patterns tended to evolve toward disability
rather than death or the development of other comorbidities,
and nowadays, treatments are more effective in maintaining the
status of patients. In our study, trajectories included a mean of
1.8 different multimorbidity patterns. Even people who had 10
years of follow-up did not make 3 changes on average; thus,
the trajectories can be considered quite stable. This result is
similar to that found in previous research in this same
population, albeit with slightly different methods, where 59%
of individuals did not change their pattern [23] over 5 years of
follow-up (54.5% in this study).

In terms of patient-based multimorbidity patterns reported in
the literature, the substantial variability [55] could be attributed
to differences in the populations or to the lack of consensus on
how many and which diseases should be considered in
determining multimorbidity [9]. However, the most commonly
reported patterns from multimorbidity data include cardiac,
cognitive, psychiatric, musculoskeletal, respiratory, and
genitourinary system diseases [27,28], and these patterns have
also been found in this work. Few studies have described
multimorbidity trajectories [19], and none considered frailty in
their definition; thus, our study is pioneering in this line of
research. Only 1 scoping review on multimorbidity trajectories
compiled evidence from 34 studies, finding significant
associations between multimorbidity and adverse outcomes
[56]. However, the heterogeneity of the described methods and
the long-term conditions considered in each study preclude a
robust comparison.

This study has strengths and limitations. We used a large
high-quality database [57] along with standardized and validated
tools to identify both multimorbidity [43] and frailty [20,21].
EHRs are a representation of real-world data and may, despite
cleaning, contain mistakes inherent to daily clinical practice.
This could represent an information bias, but SIDIAP has
implemented several standardized quality protocols to avoid it
[40]. In addition, we considered the absence of any condition
or frailty information in the EHRs to indicate an absence of that
condition or frailty status in the individual. Therefore, some
chronic conditions or frailty deficits could be underreported
among patients who visit primary care centers less frequently,
constituting an information bias. Consequently, only data
available in the EHRs were considered, and to avoid the creation
of unreal records, no missing values were imputed. The SIDIAP
database is representative of the population of Catalonia [40],
so its use does not imply a selection bias. We excluded people
who did not visit primary care during the entire study period in
order to eliminate those with private health insurance; however,
we cannot rule out that some were healthy individuals. After
the first filtering, a criterion based on the predominance of
diseases in the identified patterns had to be defined and used to
make the final selection. The inclusion of all potential diagnoses
would have entailed greater complexity, which would have
hindered both the interpretation of findings and the comparison
with other studies. Other studies have proceeded in the same
way [22,23]. Clustering is an unsupervised exploratory technique
whose results depend on the population. Therefore, different
patterns could be identified from a database in another region.
However, the variables used to generate the patterns were
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obtained using electronic tools based on routine EHR data, such
as SNAC-K and eFRAGICAP, so their acquisition is
reproducible in information systems in other countries. This
increases the international applicability of this study, helping
to establish multimorbidity management worldwide. In addition,
clustering techniques can suffer from dependency on random
initialization, and there is no guarantee of optimal clustering.
To minimize this disadvantage, 100 repetitions with different
seeds were performed when optimizing the choice of the number
of clusters. Particularly in fuzzy clustering techniques, the
membership probability in the heuristic global cost function
depends on the number of clusters, and specifying a wrong
number of clusters may affect the clustering solution [58].
However, we have validated the number of clusters both
analytically and clinically.

Care for older people requires holistic patient-centered care
plans that are effectively coordinated and minimally disruptive,
considering the social and family context in which health care
activities are managed, decisions are made, and care is
experienced. As a future line of work, these multimorbidity
patterns could be used as adjustment covariates in prediction
models for outcomes, such as those reported here, or others,
such as emergency admission. Similarly, artificial
intelligence–based models that predict the timing and direction
of transitions between patterns can be developed. These models
could help to improve and anticipate decision-making regarding
end-of-life management.

More work can be done on the study of trajectories, such as the
development of care and treatment guidelines that
simultaneously consider the current individual’s multimorbidity
pattern and the trajectory over time. Sequence analysis, which
combines longitudinal analysis and clustering, could also be
used to identify trajectories [59]. The relationship between
genetics and concordant and discordant multimorbidity patterns
could also be studied.

This study took a person-centered approach, offering relevant
information about the multimorbidity patterns and trajectories
in the aging population based on age, frailty, and other health
determinants. Multimorbidity and frailty can define aging, so
both characteristics are relevant considerations made when
designing and developing tools, such as multimorbidity patterns,
to characterize the aging population. When considering the
frailty of individuals, the estimation of outcomes, such as
nursing home admission and home care need, improved, as did
the characterization of the patterns themselves in terms of how
limiting their main chronic conditions can be. The consideration
of both multimorbidity and frailty can help to improve treatment
guidelines, social assistance, and decision-making in primary
care. If most patients in a primary care center follow patterns
associated with frailty, increased spending on home-based care
services and integrated care programs may be warranted, while
a higher burden of multimorbidity would imply higher spending
on physician visits. Therefore, and echoing other studies, we
recommend that future research involving older populations
consider frailty [60].
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