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Abstract
This work presents a preliminary assessment of the

suitability of the immersed boundary method (IBM)
for high-fidelity direct sound computations. A ghost-
cell IBM is implemented in conjunction with a re-
cently developed non-dissipative and robust numeri-
cal framework based on kinetic-energy and pressure-
equilibrium preserving discretizations. The strategy is
validated using the well-known canonical benchmark
of acoustic scattering of a steady cylinder, providing
accurate results and thus holding great promise for its
application in complex scenarios.

1 Introduction
The computational fluid dynamics (CFD) commu-

nity is leading a transition from traditional lower-
fidelity strategies to embracing high-fidelity scale-
resolving simulations for the solution of complex in-
dustrial flows. One of the main challenges towards
this goal is to be able to combine accurate numeri-
cal schemes with complex geometries at an affordable
cost. In this regard, the field of computational aeroa-
coustics (CAA) is a major example where implement-
ing this paradigm shift is especially complex. The
direct computation of sound generation/propagation
through fully-resolved numerical simulations of the
compressible Navier-Stokes equations requires high-
order non-dissipative and non-dispersive discrete op-
erators, which are difficult to implement in the context
of unstructured or even body-conforming meshes, as
discussed by Colonius and Lele (2004). Consequently,
the vast majority of aeroacoustic studies have typically
relied on lower-fidelity cost-effective approaches, such
as acoustic analogies or splitting methods. In this
work, it is conjectured that a proper combination of:
i) an immersed boundary method (IBM) and ii) a
physics-compatible discretization framework can pave
the way for high-fidelity direct sound computations.

The IBM is a broad class of numerical algorithms
where the governing equations are solved on a non-
conforming regular Cartesian mesh, and the presence
of a body is accounted for through suitable forcing
schemes, implemented either within the continuous
model or directly at the discrete level – see e.g., the
recent review by Verzicco (2023) for a historical ac-

count of IBMs. Despite the fact that the IBM was ini-
tially conceived for compressible flows, its develop-
ment and application for wave-dominated problems,
and specifically for CAA, has been quite limited. For
instance, Seo & Mittal (2011) proposed a high-order
IBM to solve the linearized perturbation equations
in the context of an acoustic splitting methodology.
Their method needed a spatial filter to ensure numer-
ical stability. More recently, Wang et al. (2020) cou-
pled the IBM with a high-order upwind-biased scheme
(T/WENO) for direct sound computations.

Here, the IBM is implemented in conjunction with
a physics-compatible discretization. This is a flourish-
ing class of numerical methods that aim to discretely
preserve the underlying mathematical and physical
structure of the continuum model. These methods are
capable of providing robustness and physical fidelity
without the need for artificial stabilization mecha-
nisms, and while keeping the computational cost at
affordable levels. In particular, here the attention is
focused on discretely enforcing two properties: a)
kinetic-energy preservation (KEP), i.e., ensuring that
the discretization of the convective term does not spu-
riously contribute to the discrete kinetic energy bal-
ance, and b) pressure-equilibrium preservation (PEP),
i.e., the ability of maintaining constant pressure when
both pressure and velocity are initially uniform.

This paper presents a description of the proposed
approach and a preliminary validation of the method
based on a classical aeroacoustic benchmark.

2 Numerical formulation
The aeroacoustic problems considered in this work

are governed by the compressible Euler equations:

∂ρ

∂t
+∇ · (ρu) = 0, (1a)

∂ (ρu)

∂t
+∇ · (ρuu) = −∇P, (1b)

∂ (ρE)

∂t
+∇ · (ρuE) = −∇ · (Pu), (1c)

where ρ is the density, u is the velocity vector, P is
the pressure and E is the specific total energy, E =
e+ 1/2∥u∥2, with e = RT/(γ − 1) the specific inter-
nal energy, R the specific gas constant, γ the specific



heat ratio and T the gas temperature. The system is
closed by the ideal-gas equation of state P = ρRT .
The problem is defined within a simply-connected do-
main Ω, containing immersed closed contours S that
represent solid objects.

Discretization framework
The conservation equations listed in Eq. (1) are

numerically tackled by employing a standard semi-
discretization procedure, i.e., they are firstly dis-
cretized in space and then integrated in time. Spatial
differential operators are treated using centered finite-
differencing formulas; all the flow variables are as-
sumed to be co-located in space on a regular Carte-
sian mesh in the entire domain Ω. Time integration is
performed using Runge-Kutta methods.

The semi-discretized equations, here shown for
simplicity for a one-dimensional case, read:

ρt = −Cρ, (2a)
(ρu)t = −Cρu − δxP, (2b)
(ρE)t = −(Cρe + Cρk)−ΠρE , (2c)

where subscript t indicates derivation with respect to
time, C represents the (semi-discretized) convective
terms, and δx is a discrete central-differencing oper-
ator. Within this discrete framework, each of the vari-
ables in Eqs. (2a)-(2c) is a N−sized vector, where N
is the number of grid points, and δx can be represented
as a N ×N derivative matrix.

As stated in Section 1, the discretization aims at
enforcing the KEP and PEP properties. The KEP
property has been shown to be essential to achieve
non-dissipative, stable simulations of compressible
discontinuity-free turbulent flows. For compressible
flow, a family of KEP, locally-conservative formula-
tions for the convective term has been recently derived
by Coppola et al (2019), and can be expressed as

CKEP
ρϕ = ξ

CD
ρϕ + Cϕ

ρϕ

2
+ (1− ξ)

Cu
ρϕ + Cρ

ρϕ

2
, (3)

where ϕ is the transported scalar, e.g., ϕ = 1 for Cρ

and ϕ = u for Cρu, whereas the various C terms are
consistent expansions of the convective terms:

CD
ρϕ = δxρuϕ, (4a)

Cϕ
ρϕ = ϕδxρu+ ρuδxϕ, (4b)

Cu
ρϕ = uδxρϕ+ ρϕδxu, (4c)

Cρ
ρϕ = ρδxuϕ+ ϕuδxρ. (4d)

Here ξ = 1/2 is selected, providing the so-called
Kennedy-Gruber-Pirozzoli (KGP) formulations, that
has proven to be particularly robust in previous stud-
ies. When Eq. (3) is used for ϕ = 1 and ϕ = u,
the resulting algorithm preserves mass, momentum
and kinetic energy by convection both globally and
locally. Of note, the KGP form admits a conve-
nient and cost-effective finite-volume implementation,

where the numerical flux function (e.g., for a second-
order scheme) is computed as Fi+1/2 = 1/8(ρi +
ρi+1)(ui + ui+1)(ϕi + ϕi+1).

The second component of the novel framework
is the enforcement of the PEP condition introduced
in Section 1. This property can be easily demon-
strated in a continuous setting by considering the one-
dimensional velocity- and pressure-evolution equa-
tions. For instance, the latter can be derived directly
from the internal energy equation exploiting the rela-
tionship P = ρe(γ − 1), yielding

Pt = − ∂

∂x
(Pu)− (γ − 1)P

∂u

∂x
. (5)

Based on Eq. (5), it can be immediately deduced that
when the initial pressure and velocity are spatially con-
stant, i.e., u = ū and P = P̄ , then the pressure does
not change in time; it is therefore highly desirable that
this equilibrium is discretely preserved also in numer-
ical simulations. In particular, it is hypothesized here
that for aeroacoustic simulations with (possibly mov-
ing) boundaries, this property can help to further in-
crease the fidelity of the numerical results.

While the KEP property depends exclusively on
how the continuity and momentum equations are dis-
cretized, the fulfilment of the PEP property depends on
the numerical treatment of the energy equation. When
the total energy is directly discretized, the pressure
equation is an induced equation, and whether ut = 0
and Pt = 0 are satisfied or not has to be verified on a
case-by-case basis by deriving the corresponding dis-
crete evolution equations for velocity and pressure. In
a pressure-equilibrium framework, i.e., when u = ū, it
is useful to preliminarily observe that any combination
of the split forms in Eq. (4) reduces to

Cρ = ūδxρ; Cρu = ū2δxρ; Cρk =
ū3

2
δxρ. (6)

The induced discrete equation for velocity reads:

ut = −1

ρ

(
Cρu − ūCρ + δxP̄

)
(7)

which, in light of Eq. (6), is easily seen to satisfy ut =
0 for any choice of the split forms for Cρ and Cρu.

The induced pressure equation can be obtained
from the internal energy one, which is in turn an in-
duced equation and can be obtained by subtracting the
(induced) discrete kinetic energy equation to Eq. (2c):

(ρe)t = (ρE)t −
[
u(ρu)t −

u2

2
ρt

]
=

= −
[
Cρe + Cρk −

(
uCρu − u2

2
Cρ

)]
− [ΠρE − uδxP ] .

(8)

Taking Eq. (6) into account, and the linear relation-
ship between internal energy and pressure, the induced
pressure-evolution equation reads

Pt = −(γ − 1) [Cρe +ΠρE ] . (9)



There are several ways to make sure that Pt = 0 in
Eq. (9). Any linear combination of the forms CD

ρe and
Cu

ρe can be easily shown to be PEP; here, the arith-
metic average is selected as in Shima et al (2021) and
Singh and Chandrashekar (2021). Furthermore, any
discretization of ΠρE as δxPu, as its advective expan-
sion, or as their linear combination is also PEP; the
choice here is ΠρE = Pδxu+ uδxP .

Finally, note that the choice for the term Cρk has
remained unspecified. Here, Cρk = CKGP

ρe ; however,
other choices are possible, notably to enforce consis-
tency in terms of discrete kinetic energy balance, as
proposed by Kuya et al (2018). This has not been con-
sidered here and could be the subject of future work.

Immersed boundary method
Boundary conditions on the closed contour(s) S

are imposed through the IBM. Several classes of im-
mersed boundary methods have been proposed over
the last decades – see, e.g., Roy et al (2020) for a re-
cent overview. Generally speaking, the IBM has been
historically more developed in the context of incom-
pressible flows, while it has been relatively less ex-
plored for compressible flow models. In this work,
a so-called direct-forcing approach is selected, where
boundary conditions on S are enforced directly at a
discrete level. Similarly as in Seo and Mittal (2011)
and De Vanna et al (2020), a ghost-cell approach is
employed in the present work. The ghost-cell method
provides more flexibility and ease of implementation
in terms of imposing both Dirichlet and Neumann con-
ditions, compared to IBM schemes where a forcing
term has to be explicitly computed.

The core idea of the ghost-cell IBM is to assign
proper values of the flow variables to a certain num-
ber of layers of (ghost) points that lie inside the con-
tour S and close to the boundary, so that the desired
boundary condition is (discretely) satisfied on S. This
is achieved in a sequence of three main steps:

1. The points of Ω interior to S are identified and
tagged, generating two subsets of: i) solid and ii)
fluid points. The solid points are further subdi-
vided into ghost points and interior points, see
Fig. 1. The number of ghost points (interior
points close to S) depends on the order of ac-
curacy of the discretization scheme, and thus on
the computational stencil. In this work, three lay-
ers of boundary solid points are identified to al-
low for up to a sixth-order central scheme. For
each ghost point, a corresponding reflected (im-
age) point is constructed within the fluid domain,
based on the local normal vector to the surface,
as well as a projection of the point on S.

2. The flow variables are interpolated on the reflec-
tion (image) points, as well as (if needed) at the
projection points on the body. A bilinear interpo-
lation is used as in De Vanna et al (2020), using
the four closest surrounding points to each image

Figure 1: Depiction of the three layers of ghost points,
their reflections/projections and the solid interior
points. The latter are represented with black dots.
The green, red and blue dots contained between
the red solid line (geometry) and the interior points
represent the three layers of ghost points. The
black lines emerging from the ghost points are nor-
mal probes that connect them with their projec-
tions and reflections, in this sequence. The thin
cyan lines represent the Cartesian mesh; their in-
tersections define the computational nodes.

point (in 2D). The primitive variables (velocity,
pressure, temperature) are interpolated. Higher-
order interpolation kernels, such as those used by
Seo and Mittal (2011) were not considered here
and might be the subject of future work.

3. Once the primitive variables have been interpo-
lated on the image points, the boundary condi-
tions on S are enforced by assigning proper val-
ues to the corresponding ghost points. The values
depend on the specific nature of boundary condi-
tion. For free-slip rigid walls, for instance, the lo-
cal velocity vector interpolated at the image point
ũip is split into a normal and a tangential com-
ponent, ũip = ũip

⊥ + ũip
∥ , and the velocity at the

corresponding ghost point is assigned as

u = −ũip
⊥ + ũip

∥ (10)

General Neumann conditions for a certain vari-
able ψ are enforced as follows at the ghost points

ψ = ψip −∆l
∂ψ

∂n

∣∣∣∣p , (11)

where the last term is the desired normal gradient
of the variable at the projection point, on the sur-
face S, and ∆l is the distance between the ghost
point and its image. For steady walls, the homo-
geneous version of the condition in Eq. (11) is
implemented for both pressure and temperature.



Note that the solution is evolved for the entire Eulerian
mesh, including the interior points. However, nothing
is done for those points; according to the scheme sten-
cil, which at most involves three lateral points, they do
not take part in the computation of the fluid region.

Implementation
The overall methodology has been implemented

into a flexible pseudo-spectral solver, where finite-
differencing schemes of various order of accuracy are
mimicked using the modified wavenumber approach.
Nonetheless, the proposed methodology is general,
flexible and highly modular and can be easily inserted
in any finite-differencing solver.

3 Numerical Results
A classical and well-established benchmark is se-

lected to assess the implementation described above:
the acoustic wave scattering of a circular cylinder, ini-
tially proposed by Tam and Hardin (1997). Despite
its simplicity, it has proven to be highly challenging
for the accuracy of the underlying numerical method.
The test has been performed, among others, by Liu
and Vasilyev (2007), Seo and Mittal (2011), Chen et al
(2014), Bailoor et al (2017), Brehm et al (2019), Wang
et al (2020), in all cases with a certain form of the im-
mersed boundary method, and in conjunction with a
large variety of discretization schemes. Furthermore,
an analytical solution is available for this problem, as
provided by Tam and Hardin (1997).

In the test, a circular cylinder of diameter D = 1 is
placed at (x, y) = (0, 0), and the pressure is disturbed
by a Gaussian pulse at (x, y) = (4, 0):

p′ = exp

(
− ln(2)

(x− 4)2 + y2

0.22

)
. (12)

The full non-linear Euler equations are solved on a do-
main of size 20×16 on a uniform Cartesian mesh with
different grid sizes h and central-difference schemes
of second, fourth and sixth order of accuracy. Time
integration is performed using a standard four-stage
Runge-Kutta scheme with ∆t = 0.01. Initial condi-
tions include u = 0, P = 1/γ+p′ and ρ = 1. Bound-
ary conditions at the cylinder surface are of free slip
for velocity, and homogeneous Neumann for pressure
and temperature. At the outer domain, periodic bound-
ary conditions are imposed; the domain is selected to
be sufficiently large so that the pressure disturbance
does not reach the domain boundary within the simu-
lated time. In addition to simplify the implementation
in a pseudo-spectral code, this choice completely elim-
inates the influence of boundary conditions.

Figure 2 reports the time evolution of the pressure
disturbance p′ = P − 1/γ at the point (x, y) = (2, 0),
which is in between the initial location of the pulse
and the cylinder. The plot shows the passage of the
initial pulse (t ≈ 2) and the first reflected wave front
(t ≈ 5); also, two parts of the principal wave front split
by the cylinder traverse its span, collide, and merge,

thereby generating a third acoustic wave front (t ≈ 8),
as reported by Liu and Vasilyev (2007). The influ-
ence of the scheme order for h = D/40 –as previ-
ously used by Wang et al (2020) and Chen et al (2014),
among others– is shown in Figure 2(left). The second-
order scheme displays significant dispersion errors al-
ready at the passage of the first pulse, confirming its
well-known inability to solve delicate wave propaga-
tion problems such as the one under study; the errors
are mitigated as the order of accuracy is increased. On
the other hand, Figure 2 shows results for the sixth-
order accurate scheme at three different resolutions,
h = D/20, h = D/25 and h = D/40. Results are in
good agreement with the analytical solution, although
some waves of small amplitude can be observed even
at the finest spatial resolution. The waves are produced
after the impact of the acoustic pulse with the cylinder,
and are therefore attributed to the immersed-boundary
formulation utilized in this work.

Contours of the pressure disturbance p′ = P −1/γ
are shown in Figure 3 at four different times, depict-
ing the initial transport of the pulse, its reflection, and
later stages of the complex wave pattern that emerges
from this configuration. Results refer to the sixth-order
scheme at a resolution h = D/40. The wave propaga-
tion is generally well captured and in line with previ-
ous work, e.g., Bailoor et al (2017) and Seo and Mittal
(2011), not shown here. Some spurious wiggles are
visible in the wave pattern reflected from the cylinder,
as discussed above, and require further investigation in
terms of the interpolation accuracy of the IBM.

Finally, the behaviour of the method is also as-
sessed with regards to the reflected wave at a probe
located at (x, y) = (0, 5). Results are shown in
Figure 4, and compared to both analytical and liter-
ature references. The current method is reported for
the sixth-order accurate scheme and h = D/40. Of
note, literature results were all obtained at this same
spatial resolution. The current method correctly cap-
tures the phase of the wave, while only slightly un-
derestimating its amplitude. It performs very well
compared to the other schemes; note that Sun et al
(2012) used a fourth-order dispersion-relation preserv-
ing scheme, while Chen et al (2014) employed a
Lattice-Boltzmann method. Interestingly, the spuri-
ous wave generated at the interface and previously
mentioned appear to have disappeared at this location,
and/or not to affect this part of the domain.

4 Discussion and conclusions
The broad, long-term objective of this research is

to contribute to the implementation of high-fidelity
CFD in complex scenarios of practical interest. In
this regard, a robust, efficient and accurate method-
ology for direct computation of sound generated by
multi-scale (e.g., turbulent) flow sources is being de-
veloped. The proposed approach combines the im-
mersed boundary method with a discretization frame-
work that preserves important non-linear properties
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Figure 2: Time evolution of the pressure perturbation p′ = P − 1/γ at the point (x, y) = (2, 0). The inset plot shows a
zoom for t ∈ [4, 6]. Left: second-order (dash-dotted line); fourth-order (dotted) and sixth-order (solid) schemes at
h = D/40. Right: sixth-order scheme at h = D/20 (blue), h = D/25 (green) and h = D/40 (black). Red circles:
analytical solution.

of the continuous model, such as kinetic-energy and
pressure-equilibrium preservation.

In this work, the method was described and prelim-
inarily validated in terms of acoustic scattering of a cir-
cular cylinder. Although this test is mostly concerned
with linear wave propagation, it allowed to identify
certain ingredients of the algorithm that need further
improvement; most importantly, a bilinear interpola-
tion at the IB interface appears to be unsuitable in
conjunction with a higher-order central scheme, as it
produced small (but non-negligible) spurious waves.
Further work is underway to overcome this limitation;
the optimization of the underlying scheme in terms of
linear dissipation/dispersion properties, as classically
done in CAA, also warrants examination.
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