UNIVERSITAT POLITECNICA DE CATALUNYA
BARGCELONATECH
Escola d'Enginyeria de Telecomunicacio

i Aeroespacial de Castelldefels

MASTER THESIS

TITLE: uTSN-CP: A Microservices-based Control Plane for Time Sensitive Network-
ing

MASTERS DEGREE: Master’s degree in Applied Telecommunications and Engineer-
ing Management (MASTEAM)

AUTHORS: Gabriel David Orozco Urrutia

ADVISORS: David Remondo
Anna Agusti Torra

DATE: July 7, 2023

Title: uTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking
(MASTEAM)
Authors: Gabriel David Orozco Urrutia

Advisors: David Remondo
Anna Agusti Torra

Date: July 7, 2023

Abstract

Time-Sensitive Networking (TSN) is a group of IEEE 802.1 standards that aim at providing
deterministic communications over |IEEE Ethernet. The main characteristics of TSN are
low bounded latency and very high reliability, which complies with the strict requirements
of industry and automotive applications. In this context, allocating time slots, configura-
tion paths, and Gate Control Lists (GCLs) to contending TSN streams is often laborious.
Software-Defined Networking (SDN) and the IEEE 802.1 Qcc standard provide the ba-
sis to design a TSN control plane to face these challenges. However, current SDN/TSN
control plane solutions are monolithic applications designed to run on dedicated servers.
None of them explores Microservice as a design pattern; these SDN controllers do not pro-
vide the required flexibility to escalate when facing increasing service requests. This work
presents uTSN-CP, a microservices-based Control Plane (CP) architecture for TSN/SDN
that provides superior scalability in situations with highly dynamic service demands. Using
a qualitative approach, we evaluate our uTSN-CP solution compared to a monolithic solu-
tion in terms of CPU usage, RAM usage, latency, and percentage of successfully allocated
TSN Streams. Our uTSN-CP architecture leverages the advantages of microservices, en-
abling the control plane to scale up or down in response to varying workloads dynamically.
We achieve enhanced flexibility and resilience by breaking down the control plane into
smaller, independent microservices. The experimental evaluation demonstrates that our
TSN-CP outperforms the monolithic solution, with significantly lower CPU and RAM usage,
reduced latency, and a higher percentage of successfully allocated TSN Streams. This ad-
vancement in TSN/SDN control plane design opens up new possibilities for highly scalable
and adaptable networks, catering to the ever-increasing demands of time-sensitive appli-
cations in various industries.

To my family and loved ones

whom always find methods to show me
that my only limit is on my own will
posteris lIvmen moritvrvs edat

CONTENTS

Introduction 1
CHAPTER 1. Background 3
1.1. Microservice Architecture Lo 3
1.2. Software Defined Networking 4
1.3. Time-Sensitive Networking 5
CHAPTER 2. Relatedworks 9
CHAPTER 3. Architecturedesign 11
3.1. Docker L 11
3.2. Message Broker 14
3.3. Jetconf Microservice 15
3.4. Topology Discovery Microservice 16
3.5. Preprocessing Microservice 18
3.6. ILP Calculator Microservice 18

3.6.1. ILPModel 20

3.6.2. Implementationdetails. 22
3.7. Scheduler Postprocessingo 23
3.8. VLANconfigurator 24
3.9. SDNcontroller 25
CHAPTER 4. Analysis 27
4.1. Scheduling Solution Inspection 27

41.1. First TSNExample, 28

41.2. Second TSNExample, 28

41.3. Third TSNExample 31

4.2. Laboratory Setup 33

4.3. AnalysisandBResults oL oL 35

4.3.1. ILP Solvers Comparisono 36
4.3.2. Hardware configurations Comparison - Using GLPK 37
4.3.3. Hardware configurations Comparison - Using Gurobi 39
4.4. Microservices as deploymentstrategy 40
CHAPTER 5. Conclusions 45
51. FutureWork 45
5.2. Sustainability Considerations 46
5.3. Ethical and Security Considerations 46
5.4. Acknowledgment Lo 46
Acronyms. 49
Bibliography 51
APPENDIX A. Pyang structure of custom Yang model 57
APPENDIX B. How to executethecode 61
B.1. Docker and Docker compose Installations 61
B.1.1. Installationover Linux 61
B.1.2. Installation over OSx and Windows 62
B.1.3. How to execute the code under Docker compose 63

APPENDIX C. About Dockerlmages 67

LIST OF FIGURES

1.1 Time Aware Shaper Example 5
1.2 Example Network Diagram 6
3.1 Overview of the SDN-TSN prototype 12
3.2 Microservices architecture of the CP functions. 13
3.3 Hardware vs OS Virtualizations 14
3.4 Message Queue with RabbitMQ asbroker 15
3.5 Overview of Jetconf Microservice 16
3.6 Overview of Topology Discovery Microservice 17
3.7 Overview of Preprocessing Microservice 19
3.8 Overview of ILP Calculator Microservice 19
3.9 Overview of Scheduler Post Processing Microservice 24
3.100verview of VLAN Configurator Microservice 25
3.110verview of SDN Controller Microservice 26
4.1 First Schedulerproblem o 29
4.2 Second Schedulerproblemo o 30
4.3 Third Schedulerproblem 32
4.4 Laboratory Setup description L 34
4.5 Topologyusedfortests 36
4.6 Seconds to find a solution - GLPKvs. Gurobi 37
4.7 Seconds to find Solution - Local Machine vs T3 Micro vs M5Z Large - Using GLPK 38
4.8 Seconds to find Solution - Local Machine vs. M5Z Using Gurobi 40
4.9 Microservices Distribution in a Kubernetes Cluster 41
B.1 Docker Desktop Graphical interface 62
B.2 Docker compose up commandoutputo 63
B.3 Docker compose ps commandoutputo Lo L 65
B.4 Accessing two container with docker-compose exec command 66
C.1 Some of the images available in the Dockerhub repository 67

LIST OF TABLES

1.1 Some of the TSN devices available in the literature market (as of June 2023) . . 7
3.1 Different Mathematical Problem Solvers considered in this project 23

4.1 Seconds to find a solution - GLPK vs. Gurobi including Average, minimum and

maximum values, and standard deviation 36
4.2 Seconds to find a solution - 15 Streams Local Machine vs. T3 small vs. M5Zn
Large - Using GLPK 39
4.3 Seconds to find a solution - 20 Streams Local Machine vs. T3 small vs. M5Zn
Large - Using GLPK 39
4.4 Seconds to find a solution - 30 Streams Local Machine vs. T3 small vs. M5Zn
Large - Using GLPK 39

4.5 Seconds to find a solution - Local Machine vs M5Zn Large - Using Gurobi . . . 41

INTRODUCTION

Time Sensitive Networking (TSN) refers to a set of IEEE 802.1 standards to provide deter-
ministic, low-latency, and highly reliable communications over the existing Ethernet. TSN
enables applications with different time-critical levels to share transmission resources in
Ethernet while meeting their latency, bandwidth, and reliability requirements [1]. One of
the main standards of TSN is the IEEE 802.1Qbv, which defines the Time-Aware Shaper
(TAS). The TAS establishes Gate Control Lists (GCLs) for each outgoing port of the TSN
switches to control which traffic classes can be transmitted at different time intervals. This
feature ensures that traffic classes can access the transmission medium in a time-triggered
manner, preventing non-critical traffic classes from invading the time slots assigned to time-
critical traffic classes and thereby achieving bounded end-to-end latency for these [2]. It is
essential to highlight that TAS requires precise time synchronization among all the nodes
of a TSN domain (i.e., end stations and TSN switches); this synchronization is achieved
with the Precision Time Protocol (PTP) by using the IEEE 802.1AS standard.

The assignment of time slots requires the TAS to know the network topology and the re-
quirements of the different data streams, which end stations demand via the User/Network
Interface (UNI). The IEEE 802.1Qcc standard defines three architecture models for get-
ting the topology and user/network requirements and configuring the underlying network
switches accordingly: the fully distributed model, the centralized network/distributed user
model, and the fully centralized model. This work focuses on the fully centralized approach
because it resembles an SDN architecture. It removes the control logic from the network
devices and allocates it in Centralized Network Configuration (CNC) and Centralized User
Configuration (CUC).

Even though the IEEE 802.1Qcc standard defines the basis for implementing the fully
centralized model, it includes general guidelines and does not provide concrete specifica-
tions. In the literature, several works contain designs of a centralized control plane for TSN
[1, 3, 4, 5]; however, these solutions follow non-scalable monolithic architectures, which
are unable to allocate additional resources to specific tasks as needed. Such TSN control
plane (CP) implementations waste significant computational resources and increase the
time invested to calculate schedules (i.e., the length and position of time slots assigned to
different GCLs at the outgoing ports of the TSN switches along network paths).

The concept of microservices is a promising approach to dealing with the scalability issues
of monolithic TSN CPs. Microservices are an architectural model that divides a monolithic
application into different components, each with a specific functionality [6]. Since these
components are smaller than the whole monolithic application, it is easier to add or remove
microservice instances [7], enabling resource allocation to highly demanded tasks more
efficiently. In the literature, some works use microservices for SDN controllers: in [8],
the authors create a cloud-native SDN controller for transport based on the concept of
microservices; the work in [9] explores the use of microservices for a CP for open optical
networks. However, to the best of our knowledge, there needs to be work exploring the
use of microservices to design a TSN CP.

In this work, we propose uTSN-CP, a microservice-based SDN CP architecture for TSN
that aims to reduce the time needed to retrieve network topology and stream requirements,
calculate valid schedules and configure switches accordingly by optimizing the associated
resource usage. Considering the CP’s atomic functionalities, uTSN-CP decomposes the

1

2 UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

CNC and CUC elements into microservices. Moreover, we implement a prototype of the
UTSN-CP elements using Python and JavaScript and execute it on a hybrid cloud running
on Amazon Web Services (AWS) using Docker and local instances. We analyze the per-
formance of the uTSN-CP prototype and compare it with a TSN-CP built with a monolithic
architecture. In such a comparison, we analyze the qualitative characteristics that improve
the computational resource usage (i.e., CPU and RAM) and the time spent calculating new
schedules when the TSN network topology changes or new service demands arrive from
end stations.

The main contributions presented in this work are:

* A microservice-based TSN CP architecture design to transfer data with mixed time-
criticality over Ethernet.

* A microservice-based TSN CP prototype that follows this design.

* The demonstration that our architecture provides increased scalability above a mono-
lithic solution implementation.

The remainder of the document is structured as follows. Chapter 1 presents a conceptual
review of the main topics of this document. Section 1.1. refers to the Microservices ar-
chitecture; it includes a definition of its components and their functionalities, a comparison
with a monolithic architecture, and its advantages in terms of resource usage. On the other
hand, Section 1.2. explores Software Defined Networks, deepening on the main concepts
and benefits compared to traditional networks. After that, in Section 1.3., we explore the
theory behind TSN. Chapter 2 explores the literature and all the available CP solutions for
TSN Networks. Chapter 3 explores all the pieces that made up the uTSN-CP; it presents
a complete description of all the microservices inside the CP solution. In the later chapter
4, we include a Section to validate the solutions delivered by our uTSN-CP 4.1., another
Section that describes the system we gave to the EETAC laboratory 4.2., a Section for ex-
ploring the different methods and variables that exist to improve the performance of the ILP
are analyzed 4.2., and a later Section of the discussion 4.3.. Finally, Chapter 5 presents
the work’s conclusions.

CHAPTER 1. BACKGROUND

1.1. Microservice Architecture

Microservices is an architectural model for service deployment that aims to divide a mono-
lithic application into multiple independent components, each with a specific function. [10].
The functional division enhances the creation and deletion of microservices and eases the
application release process. On the other hand, it also allows allocating computational
resources, such as RAM, CPU, Disk, or GPU, to specific microservices. In critical applica-
tions, this specific allocation of resources leads to a more efficient response to incoming
traffic, as we can assign resources specifically to the applications that consume most of
the computational resources.

For the proper functioning of microservices, it is necessary the presence of a specific
group of elements that together shape the MSA (MicroService Architecture). Even though
there is no such thing as a standard for microservices, the literature indicates the general
characteristics that shape the MSA.

To understand the characteristics of MSA available in the literature, we classified them into
two groups: the Microservices Peculiarities and the MSA Elements. The Microservices
Peculiarities consist of the properties of microservices to follow for dividing a monolithic
application into an MSA architecture. In this group, we have:

1. The functional decomposition taking as reference the business model [11]. This de-
composition indicates that each microservice must provide something of value to the
users or the other microservices while maintaining an adequate size in terms of func-
tionalities. Microservices that bundle many functions return to a monolithic design,
while very small microservices separate tightly linked functions, adding management
complexity [12].

2. Each microservice is independent of the others; consequently, we need a common
communication protocol between microservices such as HTTP [13] or, as in this
work, using a message broker such as RabbitMQ.

3. Each microservice must consume from its own database for achieving data isolation
[18, 14]. A centralized database implies losing the independence of microservices.

The second group of MSA features is the MSA Elements, which ensure the proper func-
tioning of microservices providing security, reliability, and management. These items are:

* [oad Balancer that distributes network traffic when a microservice is scaled across
multiple instances to enhance the capabilities of the architecture [14].

* API Gateway is an interface responsible for preventing the establishment of direct
communication between users and microservices, hiding the internal structure of the
architecture [15].

» Service Discovery stores and provides the addresses of the microservices to estab-
lish effective communication between the elements of the architecture [16, 17, 18].

3

4 UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

 Circuit Breaker is responsible for responding to failures when a microservice is not
working properly [15, 17, 18].

* Orchestrator [13, 16, 17, 18] manages the resources allocated into microservices
(i.e., create, delete, replicate, and update microservice instances), this allows to
increase and release resources.

1.2. Software Defined Networking

The Software Defined Networking (SDN) paradigm consists of the separation of the two
planes of the networks, the data plane and the Control plane [19, 20]. The data plane
is the part of the network that carries the user traffic directly. On the other hand, the
Control plane is the network division that handles the packages forwarding from one part
of the network to another. The decoupling between these two planes means that network
administrators can use Software to schedule and control the entire network from a single
control panel instead of on a device-by-device basis thus centralizing the control plane
operations, which opens the possibility of optimizing the operation of the network (in terms
of traffic, delay, energy consumption, etc), as one central entity has a global view of the
state of the devices. As well as in Network Function Virtualization (NFV), in SDN the
Software is decoupled from the Hardware [19].

A typical SDN architecture is divided into three layers:

1. Applications, responsible for communicating requests for resources or information
about the network.

2. Drivers use information from applications to decide how to route a data packet.

3. Network devices receive information from the controller about where to move data.

The physical location of the previously mentioned elements depends on the network archi-
tecture characteristics [20].

There are different ways of implementing SDN. Some approaches use the OpenFlow pro-
tocol [21] proposed to standardize the communication between the SDN controller and the
network devices in an SDN architecture. The literature suggests to enable researchers to
test new ideas in a production environment. OpenFlow provides a specification to migrate
the control logic from a switch into the controller. It also defines a protocol for communica-
tion between the controller and the switches.

On the other hand, there is also the option of using Yet Another Next Generation (YANG)
data models and its related protocols network management protocols NETCONF and
RESTCONF [22]. YANG is a data modeling language used to model network configu-
ration, state data, and administrative actions; the first release was published on RFC 7950
in August 2016. YANG’s main characteristics are its easy readability, hierarchical config-
uration data models, and reusable types and grouping [23]. It is linked to NETCONF and
RESTCONF as both protocols were designed to provide a mechanism to install, manip-
ulate, and delete configurations of network devices using YANG Models. However, they
differ in their base protocol; NETCONF goes over SSH, and RESTCONF uses a RESTful
API| approach [24].

Background 5

In uTSN-CP we decided to use the combination between YANG models, NETCONF, and
RESTCONF as they are the best approach to match the requirements to configure a TSN
network’s parameters pragmatically. Moreover, there are already YANG models to define
the configuration parameters of the TSN interfaces and the communication between the
Centralized Network Configuration (CNC) and the Centralized User Configuration (CUC) .
As we will see in other sections, NETCONF will be used to configure the MTSN switches
from SoC-e [25] directly from an SDN controller, and RESTCONF will be used to send the
configurations to the SDN controller through a RESTful API approach over HTTP and to
communicate the CNC and the CUC in the UNI interface.

1.3. Time-Sensitive Networking

The literature defines Time-Sensitive Networking as a set of IEEE 802.1 standards that aim
to provide deterministic, low-latency, and highly reliable communications over the existing
Ethernet. TSN enables applications with different time-critical levels to share transmission
resources in Ethernet while meeting their latency, bandwidth, and reliability requirements
[1].

Several commercial devices that implement TSN’s functionalities are available in the mar-
ket. Table 1.3. shows an internet exploration performed during the project about the dif-
ferent devices in the market. The list includes the amendments of the 802.1 standards
implemented in each device as well as the final functionality of the device (i.e., if it is an
end-station or a TSN switch). However, in the laboratory, we had the MTSN kit from the
Spanish company SoC-e [26], with their headquarters in the Basque country. Such a de-
vice counts with the necessary models for implementing uTSN-CP and a Web interface for
configuration tests and constant support of the manufacturer.

| Hyperperiod |
I 1
| R R T ETY ETEEETEEPEPTEES |
| 1 I
1 1 I 1 I
1 1 1
[ESy,SWq] [i] 1] 1.1)
[ESq, SW1] k2 122 23|
[SW,ESs] 11p1p.2 1.1] 1).2 1.1)2.3
' : :
q]_ I 1 1
' : :
q]. : 1 1
1 1 1
4 L L | A L
50 100 150 200 250 300
Time (ps)
tg t1 tp t3 t4tg tg by tg totip tirfi2

Figure 1.1: Time Aware Shaper Example

One of the main standards of TSN is the IEEE 802.1Qbv, which defines the Time-Aware
Shaper (TAS), deeply explored in this work. The TAS establishes GCLs for each outgoing
port of the TSN switches to control which traffic classes can be transmitted at different

6 UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

time intervals, being able to discriminate between one or another according to its queue
priority. This feature ensures that traffic classes can access the transmission medium in
a time-triggered manner, preventing non-critical traffic classes from invading the time slots
assigned to time-critical traffic classes and thereby achieving bounded end-to-end latency
for these [2]. It is essential to highlight that TAS requires precise time synchronization
among all the nodes of a TSN domain (i.e., end-stations and TSN switches); using the
IEEE 802.1AS standard, we achieve time synchronization with the Precision Time Protocol
(PTP).

Figure 1.1 depicts the general functioning of the TAS for the network presented in Figure
1.2. As we can see, there is no superposition of the frames in the time domain when they
are crossing throughout the same link. The TAS should be able to open and close the
gates to enable the transmission of a type of traffic. The streams in TSN have several
characteristics, such as the communication period, the maximum latency, and the origin
and destination; all of these features are strict constraints to consider when generating a
TAS-compliant schedule. For instance, even if two streams have different periods, they
can never have a frame scheduled to transmit over the same link simultaneously.

ES;
Iy
SW; —— ES;3
/ t2
ES,

Figure 1.2: Example Network Diagram

Background

Name of the Product Company | Features Labor

It has the possibility of
synchronizing time and
with an interrupt-based
event trigger, which allows
it to be used as a TSN
end-station

netX 90N Hilscher end-Station

INNO It has suport of 802.1AS,
Trustnode ROUTE 802.1Qbv, 802.1Qci Switch TSN
and a NETCONF server

SJA1105TEL NXP Support of 802.1AS Switch TSN

It has 802.1AS, 802.1Qbv

According to Datasheet Switch TSN

Industrial Ethernet 4000 | Cisco

The manufacturer specifies
TSN-G5008 Moxa | natinthe future this Switch TSN
device will

have TSN capabilities

All of the standad
802.1AS-2019,
802.1Q,802.1Qbv,
802.1Qav,
802.1Qcc,802.1Qbu,
802.1Qci,802.1CB

TSN machine switch BR TSN

802.1AS, 802.1Qbyv,
TSN Starter Package TTTech 802.1Qbu, 802.1Qcc, Switch TSN
802.1CB

- 802.1 AS: timing and
synchronization,
802.1 Qbv: traffic
scheduling,
PCIE-0400-TSN Kotron 802.1 QPU: frame end-station
preemption,

802.1 Qcc: Stream
Reservation

Protocol enhancements,

-802.1 CB

IEEE 802.1AS,
IEEE 802.1Qbyv,
IEEE 802.1Qav,
IEEE 802.1Qcc,
IEEE 802.1CB,
IEEE 802.1Qci,
IEEE 802.1Qbu and
IEEE 802.3br

RELY-TSN-PCle Relyum end-station

MFN 100 TTTech Not specified Edge Computer

Table 1.1: Some of the TSN devices available in the literature market (as of June 2023)

CHAPTER 2. RELATED WORKS

Several works have addressed the design of a TSN CP based on the fully centralized
model of the IEEE 802.1Qcc standard. The authors of [3] offer an SDN CP for FPGA
TSN networks that includes a time-sensitive management protocol and a time-sensitive
switching model. However, that contribution resorts to a protocol for the management
of the underlying network that is different from the one described in the IEEE 802.1Qcc
standard (which uses RESTCONF and NETCONF). Additionally, all the elements of the
TSN CP are merged into a monolithic element, which limits the scalability and flexibility
of the architecture. In [4], the authors leverage SDN and Object Linking and Embedding
for Process Control Unified Architecture (OPC-UA) to build an SDN/TSN CP. In the imple-
mentation, they propose four elements (User Registration, Service Registration, Stream
Management Component, and an OpenDaylight SDN controller), where each element is
running on a different computer. Even though this solution shows a certain degree of
platform independence and is not completely monolithic, the authors do not exploit all
the potential advantages of a microservice architecture. Also, the Stream Management
Component, in particular, performs several tasks that could be split further into separate
microservices. On the other hand, the authors of [27] aims to enforce temporal isolation
for the flows already foreseen at the network design time in order to avoid affectation to
newly created flows. However, their solution does not show any intention of using MSA as
a deployment strategy.

On the other hand, the concept of microservices is used in the literature for the design
of SDN controllers. The authors of [8] propose uABNO (Application-based Network Op-
erations); this SDN architecture is based on microservices and achieves auto-scalability
while enabling cloud-scale traffic load management. They use Kubernetes to orchestrate
the containers that execute the microservices and a cloud-native architecture running on
the Adrenaline Test-bed platform. In [9], authors build an SDN controller for Open Op-
tical Networks based on microservices. They rely on a microservices architecture with
Docker containers and Kubernetes to enable platform-as-a-service network control, with
the automated and on-demand deployment of SDN controllers or applications and on-the-
fly upgrades or swaps of the Software components.

In summary, there is no work in the literature that explores the use of microservices in the
design of a TSN CP: the only existing approaches present a monolithic design that fails to
achieve good scalability and flexibility to accommodate varying traffic demands and wastes
significant computational resources. In contrast, our uTSN-CP architecture addresses this
issue by distributing the main CNC and CUC functionalities described in the IEEE 802.1
Qcc among microservices. This approach allows the system to dynamically adapt the
resources needed for just the necessary functions upon changing traffic demands.

CHAPTER 3. ARCHITECTURE DESIGN

We can see the general structure of the implemented TSN SDN prototype in Figure 3.1.
The CUC collects the characteristics of the data streams requested by the end-stations and
passes on this information to the CNC. The IEEE 802.1Qcc standard defines the interface
as User/Network Interface (UNI) for transferring information between the end-stations and
the CUC. However, it does not specify rules or protocols to configure that interface. Each
implementation can use the appropriate approach; many jobs in the literature widely use
OPC-UA to complete communication due to the standardized usage in Industry 4.0 [28].
The information traversing the different layers includes the end-station identifiers, the mes-
sage size, frequency, and the end-to-end latency requirements for each stream. Within the
CNC, the TSN controller receives the information about the requested data streams from
the CUC via the UNI employing RESTCONF. The scheduler determines a configuration
of the switches that complies with the requirements of the data streams according to the
network topology information received from the SDN controller through RESTCONF. The
SDN controller distributes the configuration commands to the switches via NETCONF and
YANG models. At the same time, it also transfers the topology information obtained from
LLDP to the TSN controller via RESTCONF.

Regarding the microservice architecture, Figure 3.2 illustrates the microservices created
for mapping the CP functions and the communication tools and interfaces between them.
Jetconf gathers the requested data stream information from the CUC, receives input on the
allocated streams from Southconf, and sends all of this to Preprocessing. This block com-
bines the information with the topology information obtained from the Topology Discovery
function and sends it to the scheduler (ILP calculator). The configuration resulting from the
scheduler is sent to Southconf, which forwards it to the Virtual Local Area Network (VLAN)
Configurator and the OpenDaylight SDN controller. The configuration of the TSN switches
will be per the VLAN-related information received via HTTP and the schedule received via
NETCONF.

3.1. Docker

To understand what Docker is, it is necessary to comprehend wider concepts namely, Op-
erative System virtualization (OS Virtualization) and Hypervisor Virtualization. At a glance,
virtualization is the process of isolating and abstracting resources of a computer system
and generating concurrent subsystems to run parallel over the same Hardware. Each of
these Virtual Machines (VMs) runs with a specific allocation of resources (i.e., CPU, mem-
ory, disk) from the host Hardware, isolated from the rest of the resources. Virtualization
aims to employ multiple smaller servers on a single large server, reducing hosting costs
and enhancing resource usage efficiency [29].

In Hypervisor Virtualization, the role of the hypervisor is crucial in managing and allocat-
ing Hardware resources to the VMs. The hypervisor, also known as the Virtual Machine
Monitor (VMM), can operate directly on the Hardware, known as bare-metal or Type 1
hypervisor, or it can be installed on top of the host operating system (OS), referred to as
Type 2 hypervisor. Regardless of the implementation, the hypervisor creates virtual en-
vironments where VMs can operate independently, completely isolated from one another

11

12 UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

Centralized User End stations
Configuration (CUC) configurator
Logical Unit UNI Interface

(RESTCONF client)

UNI Interface

Scheduler (RESTCONF server)

TSN

Controller RESlEe

v

RESTCONF

SDN
Controller

UNI Interface

Scheduler (RESTCONF server)

Centralized Network
Configuration (CNC)

End Station
(Talker)

End Station

» TSN Switch || TSN Switch >»{ TSN Switch > .
(Listener)

<«—> TSN <«—> Non-TSN
Communications Communications

Figure 3.1: Overview of the SDN-TSN prototype

and the host OS. This isolation extends to the operating system itself, allowing different
OSes to run simultaneously on the same physical machine.

Virtual Box, VMware Workstation, and Microsoft Hyper-V are popular examples of hypervisor-
based virtualization solutions. These platforms offer a wide range of features and capa-
bilities, including the ability to manage and configure VMs, allocate Hardware resources,
and even perform live migrations of VMs between physical hosts. Hypervisor virtualization

is widely used in enterprise environments, data centers, and cloud computing platforms,
providing flexibility, scalability, and efficient resource utilization.

On the other hand, OS virtualization, also known as containerization or operating system-
level virtualization, takes a different approach. Instead of creating fully independent VMs,
OS virtualization operates on top of the host OS, leveraging its kernel and sharing system
resources. In this model, instances are called containers, and each container represents
a lightweight and isolated execution environment. Containers share the same OS ker-
nel, libraries, and binaries, which results in reduced overhead and improved performance

Architecture design

13

Kubernetes Cluster

p Written in Python

E RabbitMQ Queue

== ‘ /\—# E
E Rabbit _ ILP Calculator
j & b | g
A Y
Scheduler
Lﬁ E Postprocessing
Lo,
. Jetconf ' E L
& b |
7 :%’I"reprocessmg a
E {REST:API}
(REST:API} Lidp A4 ﬁ Y *
'I:opology Discovery _Vlan_configurator . SDN Controller
CNC -~ 4 - 4 - 4
A
[HTTP | [Netcontf |
\ 4 \ 4
Ccuc
-p
n de A L = 4_::
<= - —y
: SSH - =
“#OPC UA P +
- =)
- <=
=S
4—-’ 4—-’
4_—>
" d End Stations TSN Network
e

@ Written in bash

n de

(with nodeJS)

8 Yang model %

Opendaylight

%‘ Docker Container

Written in Javascript

Figure 3.2: Microservices architecture of the CP functions.

compared to hypervisor virtualization.

One of the most prominent platforms for OS virtualization is Docker, which has gained
significant popularity in the IT industry. Docker simplifies the packaging and deployment
of applications by encapsulating them within containers, along with their dependencies
and configuration. Docker containers provide a consistent and reproducible environment,
enabling developers to build, ship, and run applications seamlessly across different com-
puting environments. In addition to Docker, other alternatives like Linux containers (LXC)
and Containerd offer similar containerization capabilities, and several important projects
have started to migrate to use Containerd, such as Kubernetes.

14 UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

(N\ 4 "\
Application Application Application
- J S J
() ()
Guest Operative Guest Operative
System System
b <ib g Container tool
Hypervisor
p . Hypervisor p <
Host Operative Operative System
System (Host OS)

" J _ J
e N e)
Hardware Hardware Hardware
(& J o J
Typ_e ! Hg rdyvare Typfe ! I-!ard_w are OS Virtualization

Virtualization Virtualization

Figure 3.3: Hardware vs OS Virtualizations

The reason behind using Docker in a microservices architecture is to simplify the delivery
and management of microservices. Containers are lighter than VMs machines since they
already run over the kernel, and one of the design patterns is to put only the necessary
Software inside the container. The fact that containers are lighter means that they are
created faster and easier than VMs, improving the horizontal scalability of the system (i.e.,
the possibility of adding extra replicas of an instance in the system) and the failure recovery
times.

In uTSN-CP, all of the microservices are running over Docker containers; we explore two
different approaches, one with Docker compose and another over Kubernetes, a portable,
extensible, open-source platform for managing containerized workloads and services. The
first exploration is a prototype, and the second is a theoretical probe-of-concept consider-
ing the benefits of adding the extra layer Kubernetes offers. The usage of Docker allowed
us to use versions and distributions of Linux to execute each microservices and isolate
them in both the development process and the operations maintenance.

3.2. Message Broker

To communicate microservices between themselves, we decided to use a message broker
and inter-application communication technology that helps to build a common integration
mechanism to exchange information undependable on the language they were written or
the platform they ran over. In uTSN-CP, we decided to use RabbitMQ as a message broker

Architecture design 15

because it provides a message queuing service that allows asynchronous processing of
messages. When using message queuing, a part of the application pushes notifications
to a queue in the message broker, and then the consumers of those messages pull them;
when the processing of the message is asynchronous means that messages can stay in
the queue without being immediately processed.

Each microservices of uTSN-CP pulls/pushes messages to the appropriated queue. As
the application skeleton is written in Python, we used Pika [30], a pure-Python implementa-
tion of the AMQP 0-9-1 protocol for message queuing. The Software module to push/pull
is the same and is included as a library in each microservices that needs it. Besides,
RabbitMQ also runs as a microservice in the cluster, enabling the possibility of scaling it
horizontally.

o > Q¢ -

Message
bRt

Message Broker

Figure 3.4: Message Queue with RabbitMQ as broker

3.3. Jetconf Microservice

Jetconf microservice is the point of contact between the CUC and the CNC implementing
the UNI interface with the YANG model defined in the IEEE standard 802.1Qcc [31]. This
microservice will handle the communication of the user requirements to the CNC internal
microservices. As input, this microservice gets the JSSON payload using a REST/API us-
ing RESTCONF, and such payload must match the definitions of the parameters in the
YANG module. Some parameters included in the payload are the number of streams and
the communication period, maximum latency, size, and smallest and highest transmission
offsets. With such requirements, we decided to use Jetconf [32], an implementation of the
RESTCONF protocol written in Python3 as a base for the microservice.

In the output, this microservice should communicate the answer to the request payload
to the CUC; such output needs to include the feasibility of the communication as a binary
value and the offset that each talker should follow to achieve the communication. Addition-
ally, it should send the requested information in a JSON payload using the appropriated

16 UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

RabbitMQ queue to the Pre-processing microservice. Regarding security, Jetconf includes
HTTP/2 over TLS certificated-based authentication to the clients; such certificates should
be shared with the client (CUC) to grant the communication appropriately. Figure 3.5 de-
picts the general operation of Jetconf microservice.

Jetconf ﬁ
{REST:API}

Yang Preprocessing
4 » | Manifest Microservice
UNI 3 : A
— State/config
Data

+ @ jet-pre

Message parser Queue

I I Queue |,
generator |

Figure 3.5: Overview of Jetconf Microservice

3.4. Topology Discovery Microservice

The Topology Discovery microservice is in charge of getting the topology of the TSN net-
work and providing it to the other microservices as a network Matrix. For this task, this
microservice uses the LLDP [33], a vendor-neutral protocol of the data-link layer of the
Open Systems Interconnection (OSI) used for advertising the identity, capabilities, and
neighbors. In a nutshell, the Topology Discovery microservice will generate a list of all
the available devices in the network by accessing them through ssh to all the available
devices in the network and retrieving their LLDP information. We combined bash scripts
and Python3 to program this microservice, specifically using the Paramiko [34] library,
which implements the SSHv2 protocol. Image 3.6 shows the general architecture of this
microservice and its parts.

This is the general performance of the microservice in terms of the steps followed from the
moment we start the communication to the moment the information is retrieved from the
devices and parsed to the Preprocessing Microservice:

1. Signal to activate the microservice from Preprocessing microservice to the internal
topology generation module.

2. The topology generator module activates the retrieval of the topology information
using the Paramiko module. It uses a Paramiko to send the commands of the follow-
ing code sniped to every device on the network to get the information of neighbors

Architecture design 17

Network
Topology Matrix 'g 'g

H& > Queue Topology
— generator | generator
top-pre

queue
P

Napalm module

Preprocessing
Microservice

Bash LLP Broad cast
Script (E ((o)) message

\ 4
<l (=
- <= 4_->
&
4-’ 4-’
4-’ 4-'
TSN Network

Figure 3.6: Overview of Topology Discovery Microservice

of each device in the network. Raw data is collected and stored as files in the mi-
croservice.

3. The topology generator module gets all the files, cleans the information and trans-
lates it into a Network Topology Matrix.

4. Once the network information is ready, Topology Discovery Microservice generates
a JSON message in the RabbitMQ queue and sends it to the Preprocessing Mi-
croservice.

On the other hand, this is the code implemented in the microservice to retrieve the topology
of the network:

for ip in addresses:
ssh = paramiko.SSHClient ()
ssh.set_missing_host_key_policy (paramiko.AutoAddPolicy())
ssh.connect (ip, username=’soc-e’, password='soc-e’)
ssh_stdin, ssh_stdout, ssh_stderr = \
ssh.exec_command (' sudo 1ldpcli show neighbors’)
time.sleep (1)
data = ssh_stdout.readlines()

18 UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

with open(’devices/topology_’+ ip + '.txt’, 'a’') as f:
for line in data:
f.write(str(line) + '\n’)

3.5. Preprocessing Microservice

This microservice is the entry point between the data the Jetconf Microservice provides
and the Topology Discovery Microservice provides. In Figure 3.7, we can see the input
values inside this Microservice from the previous Microservices. Those values are re-
trieved from the respective RabbitMQ queues. Two modules are doing the functionalities
of the microservice. The first module is the Dijkstra Module, which implements the Dijk-
stra algorithm to get the shortest path possible from origin to destination for the routes in
the schedule. It is important to highlight that in our uTSN-CP, the module for calculating
the path from sources to destinations and the module for calculating the schedule are in
different microservices, as seen in other sections. The reason behind this design criteria
is to reduce the number of variables involved in the mathematical formulation of the ILP
problem for the schedule and reduce the complexity and the computation time to find a
solution. Furthermore, this design pattern enables us to easily adapt the microservice
to use different algorithms to calculate the path for the streams (e.g., Floyd-Warshall and
Johnson’s algorithms).

The other primal functionality of Preprocessing Microservice is to prepare the input pa-
rameter for the principal Microservice in the architecture, the ILP calculator. This prepro-
cessing job is necessary to reduce the number of tasks assigned to the ILP calculator. As
Figure 3.7 depicts, the output parameters for the microservice correspond to parameter-
ized resultant values from the Dijkstra module and the previous microservices. Besides,
maintaining specific functionalities in that microservice enhances the possibility of using
different approaches implemented as a microservice instead of the ILP calculator, simply
following the black box design criteria and respecting the input and outputs. Finally, as in
the previous microservices, the way to communicate the results to the ILP Microservice is
by a RabbitMQ queue.

3.6. ILP Calculator Microservice

The ILP Calculator Microservice takes its name from the usage of Integer Linear Program-
ming (ILP) , a mathematical optimization and feasibility programming method in which a
set of constraints (represented as linear inequalities) and a linear optimization function de-
scribe a problem. The variables used in the definition of the linear constraints create a
space of solution that is filled with the set of possible solutions that respect the constraints
inequalities. The larger the number of variables and constraints, the more complex is the
solution space and the harder to get a solution to the scheduling problem. In our uTSN-CP,
all of the characteristics of TSN TAS are included in the mathematical model. We adopted
the ILP Model described in [35] and implemented it with Python 3 using Pyomo, an open-
source optimization modeling language. In this section, we deepen the characteristics of
the TAS as we explore the ILP formulation problem.

Architecture design

19

jet_pre
Jetconf Microservice queue
- Preprocessing
Djikstra —>
top_pre
queue —p E Queue
generator

Topology Discovery ‘

Max_frames

Hyperperiod

Stream_Source_Destination
Number_of_streams

Frames_per_Stream
Streams_Period

[Network_|
Network_|

Adjacency_Matrix

nodes
links

Number_of_StreamsQ

Network_links
Link_order_Descriptor
Streams_Period
Hyperperiod
Frames_per_Stream
Max_frames
Num_of_Frames
Model_Descriptor
Deathline_Stream
Repetitions
Unused_links
Frame_Duration

ILP Calculator

Figure 3.7: Overview of Preprocessing Microservice

Preprocessing
Microservice

A

A %
‘/

ILP module

Mathematical
Solvers

Select Solver

Solution_visualizer Queue
module Generator

Scheduler
postprocessing
Microservice

Figure 3.8: Overview of ILP Calculator Microservice

20 UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

3.6.1. ILP Model

The first point to regard is the necessity of reducing the values for the total number of
excess queues denoted from now as K, and the total number of extra end-to-end latency
occasioned by interfering streams indicated as A. The article defines excess queues as
the number of times a stream has to be divided into separate sub-frames in the time
domain. Kis mathematically defined as the summation of all the excess queues (Ka’;7 -1)
in all of the used TSN ports of the devices in the network [V,,V,] € E. On the other
hand, A is defined as the summation of all of the subtractions of the end-to-end latency
of each stream (A;) and the latency of each stream as if any other stream wouldn’t have
interrupted the transmission (&) for all of the streams in the scheduling problem (s; € S).
Consequently, the optimization function in 3.1. The weight of the constants C1 and C2 will
determine the prioritization of reducing one parameter over the other.

Cl Y (Kyp—1D+C2Y (hi—M) (3.1)

[Va,Vl,]eE SiES

Constraint 3.2 represents that the number of queues used for all of the streams in a certain
link is lower-bounded by the number of queues used for each stream in that link sl[.v"’v”].p.
Equation 3.3 defines A; to be the total time used for transmitting the stream s; from the
moment the first frame is transmitted in the first link of the path until the last frame is fully

received at its destination.

g kap>sievlp yslenl e (3.2)

A = l?:']'{’,q)Jrf;j,'{’.L—t‘;jf.q) Vs, €S (3.3)

Constraint 3.4 ensures that the latency of each stream A; is upper bounded by its deadline
s;.D. Consequently, in the results provided by the model, all of the streams will arrive within
their deadline. Equation 3.5 ensures that every stream has to be fully scheduled within its
period s;.T. Equation 3.6 is to guarantee that every frame traversing a link [v,,vp] in
its path to the destination has to start transmitting after the same frame has been fully
received on the previous link of the path [vy, v,], even if the worst synchronization error &
is present.

A <s;.D Vs; €8 (3.4)
eVl g <s.m—fevlL vE e e F (3.5)
(e g > £ g 4 £ L1 wile vl gliovd ¢ (3.6)

Equation number 3.7 enforces that each link can transmit only one frame at a time and that
the frames in a stream must be transmitted in order. In constraint 3.8 is represented as the
general parameter of the hyper period (i.e., defined as the Least Common Multiple of all of
the periods of the streams in the schedule) hp; ; = lem(s;.T,s;.T). The set of translations

Architecture design 21

of stream s; and stream s; are denoted as A and B. All possible values in A and B are
denoted as o and a P, respectively. However, it is essential to highlight that in the real
implementation in Python, each stream in the schedule will have its own set of variables
representing the repetitions within the hyper period, so each stream will have its own sets
of variables for representing the repetitions within its hyper period.

Va Vb (]) + f[V’;ll,Vb] L S fB\:Zbe] .(l) \V/f[Va,Vb] : fl[V;:,Vb} c F2 m<n (37)
hpi,j hp;,j

A=<0,1,...,—= —1 B=<0,1,....,—= —1 3.8

{)) Sl.T }7 {) ,Sj.T ()

As it is possible to have overlapping in time and link within that repetitions, constraints 3.9

and 3.10 avoid this from happening by stating that f[v‘“vb] must finish before f[v“ Yol starts,
for all of the possible values of the repetitions of both streams in the hyper perlod (A and
B). Equations 3.9 and 3.10 represent opposite cases; if one of the equations is fulfilled,
the other should not because it indicates that one Frame starts before the other, and that
is why for those scenarios, there is a variable ¢ € 0,1 that represents this model disjunc-
tion. M is a large value used for prioritizing the variable in the inequality. In the Python
implementation, ¢ is a N dimensional array, each dimension being the set of repetitions of
each stream.

s T 10" o+ 9" L < Bs,T+114" o+ M0 (3.9)
BosiT + 104" g+ £ L < ousi T+ £ .0 4+ M.(1 o) (3.10)
weevel fhevl ¢ B2 va e A,vB € B (3.11)

We achieve TAS determinism by allowing only one stream to be present in a queue at any
moment. None of the frames of any stream can enter into a queue while another frame is
being queued. Constraints 3.12 and 3.13 achieve this characteristic in cases where two
streams share the same egress port in a switch. @ is an auxiliary variable representing the
disjunction between 3.12 and 3.13. Using this variable, we guarantee that only one of the
two constraints must be fulfilled for each pair of streams with the same link.

s T80 < B, T+ 870 o4 M(o+efe™ 1oy @342)
Bs; T+ 1240 < ousi T+ £ o+ M(1 — o)™ - glev)y (3.13)
welevl gl ghioval fhavl ¢ B vo e A, VB € B (3.14)

[m h]

The variable & represented in 3.15 captures whether or not two streams are assigned

in the same queue The variable will be 1 only if sl[V"’Vh}

[Vav b] [a7 b}

is assigned to a queue strictly less

than s; - Such of behaviour for &; ;"™ is depicted in equations 3.16 and 3.17.

22 UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

glavl _ { Los e < sl | (3.15)

b 0, otherwise
slYevelp —slYevl o —pp(ele 1) > 1 (3.16)
ol o _ ol 5 pg gl < 3.17)
yslvevel ghvavel ¢ g2 (3.18)

J

Finally, the equations 3.19 and 3.20 are for taking into account the cases in which two
streams s;, s; that uses a same egress port of a TSN switch arrived at the different ingress
port. In that case, there can be a synchronization error between the two internal clocks of
both ports, disrupting the connection. Consequently, the maximum synchronization error
d is included in the equations to prevent this error from happening.

VWVa

osi. T+ £ 0+ 8 < Bus; T+ £ o+ M(o el ele)) (3.19)

Busi.T +10"L0 48 < o, T+, o+ M(1— o+l 1elel)) (3.20)

weliovel fvevel glioval ehavilypt v e 4, vp € B (3.21)

7]n 7]n

3.6.2. Implementation details

In an ILP program, there are two pieces, the model itself that, in our case, we implemented
with Pyomo, and the other is the mathematical solver that has to be installed in the same
Docker container as the model. There is a vast amount of solvers available, and some of
them are Open Source. Table 3.6.2. depicts some of the most used ILP solvers available,
including a small description to differentiate between them and the license type necessary
for their usage.

fopt=SolverFactory (' gurobi’,solver_io="Python")
opt=SolverFactory(’'glpk’)

self.instance = self.model.create_instance()
self.results = opt.solve(self.instance)
self.instance.solutions.load_from(self.results)

It is important to remark that the solver doesn’t maintain any relationship with the Pyomo
code, and changing between one another is as easy as changing a line in the code (Code
Sniped A.1 shows how to do it). However, the installation process differs, as some are
available as Open Source GitHub repositories, others are available as PIP packages for
Python, and the others have to be downloaded with Conda [36] package manager for
Python. In our scenarios, we analyzed GLPK and Gurobi. Later sections deepen this
comparison.

Architecture design 23

Solver Name | License Type | Description
Free reduced
AMPL version,

Pay license

Focus on maintainability, integrates a common
language for analysis and debugging [37]

Allows you to enter an optimization problem as a
Open Source, high-level model, with painless support for vector

Plco available in pip | and matrix variables and multidimensional
algebra [38]
An open-source mixed-integer program (MIP)
CBC Open Source solver written in C++. CBC is intended to be

used primarily as a callable library to create
customized branch-and-cut solvers [39]

It is a set of routines written in ANSI C and
organized in the form of a callable library.
GLPK Open Source Is intended for solving large-scale Linear
Programming (LP) and mixed-integer
programming (MIP) [40]

According to their website, Gurobi claims to be
Student license | the fastest and most powerful mathematical
Pay license programming solver available for your Linear
Problems [41]

Gurobi

Table 3.1: Different Mathematical Problem Solvers considered in this project

However, we decided to use GLPK in the final design for the ILP microservice as it is
and Open Source implementation and Gurobi due to the transient nature of microservices
and Docker containers (i.e., they can be replaced for another container when they present
an error); it requires the acquisition of a special license for being used inside of Docker
containers.

Regarding the architecture of the microservice by itself, several small pieces work together
to perform the full task; the two most important pieces are the ILP module, described
above, and the Solution Visualizer. The Solution Visualizer is a module also written in
Python whose principal task is to facilitate the exploration of the solution that the ILP is
provided to the current scheduler problem. This module references what is described
in the motivation scenario but adds the network topology and information of the different
modules.

3.7. Scheduler Postprocessing

The last microservice in the pipeline of the stream is the Scheduler Postprocessing Mi-
croservice which processes the information containing the schedule and network con-
figuration coming from the ILP Microservice. Figure 3.9 depicts the general interaction
between the sub-modules of the microservice and the other microservices. As in the pre-
vious elements, we implemented RabbitMQ in the microservice for communicating with
the ILP microservice. Once the JSON containing the information is received and parsed,
it is sent to the ConfGen submodules, The VLAN configurator, and TAS configurator. The

24 UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

ILP Queue Vlan
, . < VI — :
Microservice E Generator e e > Configurator

A
T

—» Restconf client ——> OpenDaylight

A

ConfGen

Vlans_configurator

Web Service
Interface

e e

Figure 3.9: Overview of Scheduler Post Processing Microservice

first one is responsible for generating the information necessary for configuring the VLAN
in the TSN Switches; this is out of the scope of the TSN standard and is performed by the
VLAN configurator microservice. The second one creates the JSON payload containing
the configuration to be sent through RESTCONF to the Opendaylight container.

Specifically, the TAS configurator sub-module uses the IEEE 802.1Qcc standard ieee802-
dot1g-sched YANG module. This module defines all of the parameters for the TAS TSN
switch setting; we mapped each to an output of the previous microservices. Normally, the
ieee802-dot1g-sched module defines the configuration for one single TSN Device. How-
ever, the SDN controller provides an inventory system for storing the network information
and YANG capabilities of all the devices managed in the SDN controller domain; this leads
to centralizing the configuration of all the elements into a single configuration payload
sent by RESTCONF. The SDN controller will parse this unified payload and will generate
NETCONF sessions in each device covered in the configuration to set its ieee802-dot1q-
sched YANG model. If the controller is not implemented in the architecture, the system
would need to generate a NETCONF payload for each network device in the network to be
managed by the CNC, which would be harder to implement, maintain and monitor since
NETCONF goes through SSH and not in HTTP as RESTCONF.

Lastly, we included a web server that prompts the scheduler and network configuration as
depicted in Figures 4.1, 4.2, 4.3. This web server is accessible by the system IP address
(i.e., Kubernetes cluster IP, Docker-compose IP) with port 8080.

3.8. VLAN configurator

It is important to note that in TSN, all flow communications from source A to destination
B are encapsulated within VLANs defined in the IEEE 802.1q standard. Therefore, all
the VLAN configurations must be carried out in the devices, which entails designing a
microservice that generates the necessary orders for the devices to apply these configu-
rations.

Architecture design 25

Post Processin ueue .
. . 9 —> Q Selenium
Microservice Generator

I

A

HTTP Request

P generator ﬁ

Vlan parser

MTSN Switches 7

Web
Interfaces

Figure 3.10: Overview of VLAN Configurator Microservice

Ideally, an SDN communication interface, such as those used in the 802.1Qbv protocol,
would be used to configure the TAS using YANG and RESTCONF/NETCONF models.
However, the MTSN Kit devices do not have these characteristics. Therefore, the VLAN
configuration microservice was specifically designed to be used in the MTSN Kit. Although
the MTSN Kit has a web interface for configuring VLANSs, this microservice takes as input
the sources and destinations of each flow received via RabbitMQ and performs the neces-
sary configurations using Selenium in Python. Figure 3.10 depicts the functioning of this
microservice.

This means this microservice will not work with equipment other than the MTSN Kit. How-
ever, due to the modular nature of the architecture, it is possible to build another microser-
vice that does the configuration using YANG models. It will only be required to create the
configuration using the model provided by the IEEE [42].

3.9. SDN controller

Finally, the SDN controller is the microservice that acts as the interface between the CP
and the network. It has a RESTCONF-type communication interface to communicate with
the post-processing microservice and a NETCONF communication interface to communi-
cate with the computers on the network. The main reason why this microservice is used for
communication with TSN switches instead of a direct NETCONF communication between
the post-processing microservice and network equipment is due to the simplicity and ben-
efits of an SDN controller. Figure 3.11 shows the operation diagram of the SDN controller

26 UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

microservice.

In our case, we choose OpenDaylight as the SDN controller for our CP. OpenDaylight
includes a module for YANG models and RESTCONF/NETCONF that allows storing all
exposed models in a device inventory. By incorporating the list of devices with their re-
spective IP addresses, the controller automatically creates a data model that allows all
devices to be accessed simultaneously using a single RESTCONF communication.

Therefore, it is only necessary to send a message containing all the configurations that
must be applied to the equipment to configure the TAS with the offsets provided by the ILP.
The process that this microservice follows is as follows:

Post Processing
Microservice

RESTCONF
calls
; .
Restconf Module <«———— SDN configurator
MTSN Switches
o Yang Module SSH
L interface
_Network Netconf module —J
: inventory :

Figure 3.11: Overview of SDN Controller Microservice

* The post-processing microservice sends the necessary configuration, including de-
vice IP addresses, using the RESTCONF protocol via REST API-like communica-
tion.

* OpenDaylight creates an inventory of all the computers on the network and gen-
erates a data model that includes all the YANG models exposed in the NETCONF
interfaces of the computers.

* Using NETCONF, OpenDaylight accesses all computers and configures them by
following the directions provided by the post-processing microservice.

CHAPTER 4. ANALYSIS

This chapter consists of three sections. The first section aims to validate the results the ILP
solver provides of the uTSN-CP. To do this, we present a stream and topology visualizer
developed as part of the code within the post-processing microservice. This display shows
information about the frames that make up each stream as well as the temporal distribution
of these frames during the hypercycle time period. It also includes a system topology
diagram and a color display system that eases traffic visualization on each link.

The second section describes the system we deployed on the EETAC laboratory. This
topology includes the computers where the microservices, the end-stations, and the switches
are deployed. Moreover, as well as distinguishing between the management and data
layers. Considering that the computer that contains the microservices, it is essential to
remember that this system is modular, and as long as the communication between the mi-
croservices and the switches is guaranteed, the computer is easily replaceable by a cloud
infrastructure using technologies such as Kubernetes or others container management
systems such as Fargate, Openshift, or Docker Swarm.

In the third section, the different methods and variables that exist to improve the perfor-
mance of the ILP are analyzed, understanding performance as the speed at which the
system provides a solution. In addition, we included a qualitative analysis of how to en-
hance such characteristics by using tools typical microservices architectures to achieve
the best possible performance.

4.1. Scheduling Solution Inspection

This subsection aims to verify that the results obtained by the combination between the
Dijkstra Algorithm output and the ILP scheduling are correct. As we have specified in
the previous chapter, the main objective of the uTS-CP is to be able to perform all the
necessary calculations to find a specific and viable solution for a set of flows, taking into
consideration that each stream will have an origin and destination, as well as characteris-
tics in terms of bandwidth and maximum latency. These requirements are imperative, and
it is impossible under any circumstances that a solution to a stream scheduling problem
does not meet their needs. We implemented a scheduling Solution Visualizer included in
the post-processing microservice to verify this goal.

As we can see in the Figures 4.1 4.2 4.3, the scheduling problem viewer includes:

1. Network topology: specifying the network nodes and the links between them. This
element is located in the upper left corner of the image.

2. Description of the Stream matrix: This includes a set of parameters such as the
matrix of network links, the number of frames in each Stream, the period of the flows,
specification of the order of the links to be used according to the Dijkstra algorithm
for each Stream. These are written in two-dimensional vectors and dictionaries; the
order in the array is the stream identifier. The parameters are in the upper right
corner of the diagram in red rectangles.

27

28 UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

3. Gantt Diagram: This defines each link with a specific color; on the horizontal axis,
we have the time in milliseconds, while on the vertical, we have the frames of each
stream in each link. The notation described is ('S’: Frame stream number, 'L’ Link
number through which the frame is traversing, 'F’: Frame order within the stream),
this graph is located at the bottom of the scheduling problem viewer.

Below there are three sections showing examples of the output provided by the visualizer
after finding a solution to the scheduling problem. It is important to note that these exam-
ples were tested theoretically and using a microservice that generates random networking
and TSN scheduling problems.

4.1.1. First TSN Example

In this example, we present the features of the Scheduling problem included in Figure 4.1:

* Four-node network, where Node 1 connects all other nodes.

* Two frames, each with a single subframe. One of the frames has a period of 5000ms,
while the other has a period of 2500ms.

* The fifth red box at the top left of the diagram contains an array of arrays that de-
scribes the paths from source to destination obtained using Dijkstra’s algorithm. The
first array refers to the set of routes of all the flows. The second subarray shows the
links that each stream must traverse from its destination to its origin, and each sub-
array contains a tuple of the two nodes that make up the link. In this example, the
first stream traverses from Node 2 to Node 3, passing through Node 1, while the
second stream traverses from Node 0 to Node 3, also passing through Node 1.

In the Gantt chart at the bottom of the Figure 4.1, the Y axis represents the offset of each
subframe of each stream in a specific link. The X-axis represents time in milliseconds. To
improve visualization, the visualizer draws each time slot with a different color when they
correspond to the same link.

This solution fulfills all of the conditions of a TSN scheduling; there is no overlap between
frames in the same temporal space and the same link; this is clear since no frame shares
the same temporal moment with another frame of the same color. In addition, the example
fulfills all the normal characteristics of any transmission: the streams pass through the
links in sequential order. In the case of stream 1, which has half the period of stream 0,
you can see the repeats in the hyper period after 2500 milliseconds.

4.1.2. Second TSN Example

Here we have the following characteristics that describe the TSN scheduling problem of
Figure 4.2.

* 5-node network, where Node 2 connects all other nodes. Also, nodes 3 and 4 have
a direct link between them.

29

Analysis

Frames

('s',

('s',

('s',

('s',

. 0) 4

-B
o[

-

Network Topology

Gantt Chart

T T T T
1000 2000 3000 4000
Time in miliseconds

T
5000

£
Q2
Ko}
o
—
o
p—
ko)
>
e}
(0]
<
[&]
%)
it
w
=
i
<
(O]
S
>
i)
L

30

UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

SPUOI3SI[IW Ul W]

0009

0002

000F

0008

0000T

Heyd 13ues

Abojodo| yiomiaN

Figure 4.2: Second Scheduler problem

Analysis 31

* Four streams, the first consists of 3 frames, while the others have only one frame.
The first frame has a period of 2000ms, while the others have periods of 5000ms,
which makes the hyper period 10000ms.

¢ The stream distribution is as follows:

Stream 0: Origin at Node 3 and destination at Node 0, passing through Node
2.

Stream 1: Origin at Node 2 and destination at Node 0.

Stream 2: Origin at Node 3 and destination at Node 1.

Stream 3: Origin at Node 2 and destination at Node 4.

This example is noticeably more complicated than the previous one. It involves a larger
number of frames, a larger network, and more conditions to fulfill for the ILP due to the
repetitions of some streams within the hyper period. However, when looking at the image,
we can appreciate that there is no overlapping of streams in any of the links simultaneously,
even considering the repetitions in the hyper period. In addition, the system can predict
when a stream will repeat itself and occupy a temporary space in a link, thus avoiding
configuring another stream at that moment or in its multiples.

It is interesting to note that stream 0 never interrupts stream 1, even though they both use
Link 0. However, the most crucial moment occurs with streams 0 and 2 on Link 2. Although
stream 2 could have been transmitted consecutively, this option would interfere with when
stream 2 transmits over Link 2. Therefore, the system decides to wait, even if this occurs
in the third repetition period.

4.1.3. Third TSN Example

Here we have the following characteristics that describe the TSN scheduling problem of
Figure 4.3:

* 5-node network, where Node 0 connects the other nodes, but several nodes have
direct connections to each other.

* Four streams, two of them made up of 3 frames; the other two have only one frame.
The first two frames have periods of 2000ms, while the others have periods of
5000ms, making the hyper period 10000ms as in the previous example.

¢ The Stream distribution is as follows:

Stream 0: Origin at Node 2 and destination at Node 3, passing through Node
0.

Stream 1: Origin at Node 3 and destination at Node 1.

Stream 2: Origin at Node 3 and destination at Node 1.

Stream 3: Origin at Node 4 and destination at Node 2.

32

UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

SPUOI3SI[IW Ul W]

0009

0002

000F

0008

0000T

Heyd 13ues

Abojodo| yiomiaN

Figure 4.3: Third Scheduler problem

Analysis 33

In this example, we have increased the number of frames included and used a topology
with a higher number of links to verify that the solutions delivered by our solver meet all the
constraints for a TSN scheduling system. We can notice that in none of the links, at any
time, does the location of one frame overlap with another, even considering the repetitions
that the frames may have within the hyper period. It is important to note that our second
link, which uses the most streams, keeps its properties intact, ensuring that no two frames
from streams 3 and 0 are ever found occupying the same temporary space.

4.2. Laboratory Setup

In this section, our objective is to graphically show the distribution of the elements that
make up the laboratory assembly to test the correct functioning of our solution. Our solu-
tion functions when we can accurately configure the switches with the appropriate VLAN
settings. In other words, it transforms the offsets into settings for the MTSN kit equipment.

Below is a detailed list of the elements that make up Figure 4.5. First, it is necessary
to distinguish between the data plane and the control plane. The data plane consists of
all the components within the red block, as the diagram legend specifies. As we are in
a TSN architecture, these elements have Hardware interfaces capable of communicating
according to the IEEE 802.1 standards that define TSN.

Among these elements, we find:

1. The two TSN switches (SWO0, SW1) that make up the MTSN kit. As mentioned
above, these switches can communicate using TSN standards. Each Switch has 4
TSN interfaces and communicates with the other through the ETHS interface and
its respective end-station through the ETHO interface. Because TSN is used for
communication, switches must have some time synchronization mechanism, such
as PTP, built into the system of the switches.

2. The End Stations: In our assembly, we used two computers with Linux, specifically
Ubuntu 22.01 LTS. These computers can communicate according to IEEE 802.1
standards through the Intel i210 NIC. In addition, they have the necessary config-
uration to perform PTP synchronization through Linux PTP within the Linux Kernel.
These devices communicate with each other for industry-standard communications
using the OPC UA protocol. It is important to highlight that design and prototyping
are not part of our work; the deliverable documents of the Bachelor’s degree thesis
of Jordi Cros include a full description of them [43].

On the other hand, the elements inside the blue block correspond to the control plane.
These elements are not required to use TSN for communication but are responsible for
orchestrating and managing the data plane elements. Among these elements, we find:

1. The interfaces of Port Z of the TSN switches, these NICs are used only for man-
agement tasks. NETCONF protocol exposed the YANG models, and since SSH
encapsulates NETCONF, we can also use SSH for controlling purposes.

2. A layer two Switch that allows us to have all the elements of the control plane within
the same network. Therefore, if the TSN network is larger, all the Z Ports of the TSN

34 UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

switches should be connected to this Switch or to any switch array that abstracts the
communication between them into a single network.

3. uTSN-CP, the block in the upper center of the diagram, represents our prototype. We
deployed it on a single computer with Docker-compose installed in the lab deploy-
ment; this highlights another advantage of using microservices, as our controller can
run on any machine with Docker installed. It is important to mention that this block is
simply an abstraction, and to take full advantage of the microservices architecture;
the UTSN-CP should ideally be in a private or public cloud, running on some con-
troller orchestration tool like Kubernetes, Openshift, or Docker Swarm. Carrying out
this transition in the laboratory assembily is perfectly possible. It is only necessary to
guarantee that the interface exposed by the controller and the rest of the elements
of the control plane can communicate on the same network.

Control Plane

UTSN-CP

Ethernet Switch

PotZ MTSNKIT MTSN KIT PortZ
SWo SW1
Eth0 Eth1 Eth2 Eth3 Eth3 FEth2 Eth1 EthO

Data Plane

i210 | End Station End Station | i210
Regular TSN Capable Regular NICs | | TSN Capable NICs
Equipment Equipment
TSN Ethernet Regular
Connection Connection

Figure 4.4: Laboratory Setup description

Analysis 35

4.3. Analysis and Results

In this section, we compare the existing methods to improve the performance and re-
source usage of the microservices-based SDN controller for TSN. First, it is essential to
remember that at the system core, there is a microservice with an ILP model that defines
the constraints and the objective function of the TSN stream scheduling problem. Said
microservice uses a predefined solver to find the solution; it can be any available in the
state-of-the-art of ILP Solvers, including those shown in Table 3.1. This work compares
GLPK and Gurobi as chosen solvers for the ILP model in terms of the time they take to
offer a solution for a given number of streams in a defined topology.

Secondly, another condition that can affect the performance of our system is the Hardware
of the machine in which the ILP calculator microservice runs. Such parameters include
the number of processor cores, available RAM, and processor frequency are factors to
consider. Therefore, we conducted tests with different machines where the Hardware
parameters changed. For this, we use the following machines:

1. A local laptop with a 4-core Intel Core i7-7820HK processor with a maximum fre-
quency of 3.9GHz, and 16 GiB of RAM.

2. An Elastic Compute Cloud (EC2) instance on Amazon Web Services (AWS) of type
T3.small with a 2-core Intel Xeon Scalable processor with a maximum frequency of
3.1 GHz and 2 GiB of RAM [44].

3. An EC2 instance on AWS of type M5Zn large with a 4-core Intel Xeon Scalable
processor with a maximum frequency of 4.5 GHz and 16 GiB of RAM [45].

We chose these machines for having a point of comparison in which the number of cores,
the clock speed of the same, and the RAM will vary. It should be noted that, according to
the literature, the actual performance you will get from using multiple cores in an ILP prob-
lem depends on several factors, such as the nature of the optimization problem, the size
of the model, the availability of memory resources, and the specific system configurations
[46]. In the test, like in the previous one, it will be verified, which is the option that provides
a solution to the planning problem in the shortest time.

Finally, with the results of the two previous experiments, we select the best ILP model
solver and compare the two machines with the best performance to identify what char-
acteristics the machine running the microservice should have, both in terms of Hardware
resources as a solver.

The characteristics of the experiments were the following:
1. All were made using the topology shown in Figure 4.5.

2. For flows, a custom microservice was used that creates the inputs of the Jetconf
microservice, generating an input sent through the RabbitMQ queue.

3. All streams have a deadline of 500ms.

4. The periods of the streams vary between 125ms, 250ms, and 500ms with the same
probability.

36 UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

Number GLPK Gurobi

of Streams | Average | Min Max Std. dev. | Average | Min Max | Std. dev.
15 4.768 1.895 | 27.772 | 5.621 0.620 0.542 | 1.410 | 0.182
20 23.113 | 10.431 | 55.086 | 12.329 0.758 0.700 | 0.926 | 0.047
25 58.503 | 30.810 | 80.636 | 13.622 0.978 0.909 | 1.439 | 0.111

Table 4.1: Seconds to find a solution - GLPK vs. Gurobi including Average, minimum and
maximum values, and standard deviation

5. ltis assumed that all links are over a 1Gb/s channel.

6. The streams can be composed of 1 to 3 Frames with the same probability.

Figure 4.5: Topology used for tests

4.3.1. ILP Solvers Comparison

It is essential to mention that the literature already indicates what the comparison between
GLPK and Gurobi will yield. Various articles show that Gurobi generally offers better reso-
lution times and performance than GLPK, especially for large and complex problems [47].
Regarding our test, we increased streams from 15 to 25 streams per problem with jumps
of 5 streams between each test. We repeated each test 100 times for each number of
streams value.

Indeed, in agreement with the literature, Figure 4.6 shows that the performance of Gurobi
is considerably superior to that of GLPK. While the time to find a solution using GLPK
increases considerably, reaching up to 27 seconds maximum and 4.76 seconds average
in the first test with 15 streams, up to a maximum of 80.63 seconds in the test with 25
streams. It is important to mention that in Figure 4.6 as well as in the rest of the graphical
comparison, the colored bar is the average value, and the interval denoted in each bar
is between the minimum and maximum values. On the other hand, Gurobi times were
never higher than 1.5 seconds, with average values of less than 1 second for all tests.
On the other hand, an aspect that greatly differentiates the two solvers is the variance
that they deliver. Table 4.1 depicts the average time to solution value and the maximum
and minimum values, and the Standard Deviation (SD). Considering this last value, Gurobi
offers higher performance for our ILP model and, in turn, provides greater consistency in
its performance.

Analysis 37

90
GLPK
Gurobi I

80 - T N

70 *

50 -

Time, seconds

»
o
T

20

10

15 Streams 20 Streams 25 Streams

Figure 4.6: Seconds to find a solution - GLPK vs. Gurobi

4.3.2. Hardware configurations Comparison - Using GLPK

We carried out this experiment following the same patterns as the previous one, but this
time the final test was with 30 streams within the planning problem. As ILP solvers, we
used GLPK to determine how much the Hardware affects timing to get a solution to the
scheduling problem. We considered RAM, the number of processor cores, and its operat-
ing frequency as Hardware features.

This time, in search of simplicity and since the values change considerably between dif-
ferent streams number, we decided to present 3 subgraphs within the Figure 4.7. Each
subgraph refers to a defined number of streams and has a Y-axis that covers different
ranges. The figure depicts that the best results were obtained using the M5Zn large in-
stance, although the difference with the local machine is not too big. The worst were those
obtained with the T3 small instance, which presents much higher solution times than the
other two machines.

The T3 instance has completely different Hardware characteristics than the other two, it

38 UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

has much less RAM, fewer processor cores, and perhaps the most important feature, its
processor frequency is much lower than the other two machines. On the other hand, the
local machine and the M5Zn large only differ in their clock frequency, having the same
number of cores and the same RAM.

This test indicates that the Hardware characteristics significantly affect the time to obtain
a result. The tables 4.2, 4.3, and 4.4 show the average, maximum, and minimum values
for each test as well as the SD of the values collection. We highlight that all the machines’
results present considerable variations attributable to the less consistent performance of
GLPK. The next test, where we only used Gurobi as an ILP solver, shows the best perfor-
mance consistency.

15 Streams
10
g 8| -
c
8 6 .
()]
wn
g 4r 1 7
£
F 2 s
0
Local Machine AWS T3 Small AWS M5Zn Large
20 Streams
400
w 350 T
T 300 - =
8 250 T
$ 200 - |
g 150 _
=T]
0 - -
Local Machine AWS T3 Small AWS M5Zn Large
30 Streams
2000
[72]
T 15800 - 1
[®]
Q
$ 1000 - .
g
E 500 - w -
0
Local Machine AWS T3 Small AWS M5Zn Large

Figure 4.7: Seconds to find Solution - Local Machine vs T3 Micro vs M5Z Large - Using
GLPK

Analysis 39

Instance Average | Min Max | Std. dev.
Local Machine 3.125 1.895 | 4.560 | 0.798
AWS T3 Small 4.263 2.584 | 9.051 | 1.484
AWS M5Zn Large | 3.503 1.287 | 9.672 | 2.426

Table 4.2: Seconds to find a solution - 15 Streams Local Machine vs. T3 small vs. M5Zn
Large - Using GLPK

Instance Average | Min Max Std. dev.
Local Machine 19.154 | 10.431 | 55.086 | 11.244
AWS T3 Small 129.062 | 13.994 | 267.103 | 75.260
AWS M5Zn Large | 18.370 | 7.488 | 48.252 | 11.461

Table 4.3: Seconds to find a solution - 20 Streams Local Machine vs. T3 small vs. M5Zn
Large - Using GLPK

4.3.3. Hardware configurations Comparison - Using Gurobi

Finally, in this test, we decided to use the two instances that showed the best performance
in the previous test, the Local machine and the M5Zn Large instance on AWS. In addition,
we used Gurobi as an ILP solver to obtain the best possible performance. It is essential
to emphasize that according to AWS, M5zn instances deliver the highest all-core turbo
CPU performance from Intel Xeon Scalable processors in the cloud; therefore, they are
specifically designed to deliver the highest frequency in their processors. As we described
at the beginning of the section, the local machine and the M5zn Large instance only differ
in their processor frequency since the amount of RAM and the number of cores are the
same.

Using Gurobi, the time to find solutions is considerably fast; for that reason, to differentiate
both machines, we increase the number of streams in the same planning problem in all
the tests. Therefore, the considered problems are 40, 45, and 50 streams. As Figure 4.8
depicts, the M5Zn instance performs much better than the local machine for all tests. On
the other hand, the difference between the maximum and the minimum values in the tests
is considerably larger in the local instance. That fact also indicates that the consistency of
the performance with the M5Zn Instance is greater; this is also visible in the comparison of
the SD for both cases. Table 4.5 shows the average time to obtain a solution, the maximum
and minimum values, and the SD obtained in the 100 repetitions of the tests.

This indicates that the clock frequency of the CPI for our particular problem is a transcen-
dental parameter when it comes to reducing the time to obtain a solution. All the tests
indicate that the best combination to obtain the lowest load times is with Gurobi and the
M5Zn Large instance.

Instance Average | Min Max Std. dev.
Local Machine 255.013 | 30.810 | 1013.215 | 302.593
AWS T3 Small 501.388 | 45.194 | 1546.723 | 478.889
AWS M5Zn Large | 162.642 | 12.672 | 634.854 | 135.549

Table 4.4: Seconds to find a solution - 30 Streams Local Machine vs. T3 small vs. M5Zn
Large - Using GLPK

40 UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

180 \
Local Machine IS
M5Z Machine DI

160

140

120

100

Time, seconds

80

60

40

20

40 Streams 45 Streams 50 Streams

Figure 4.8: Seconds to find Solution - Local Machine vs. M5Z Using Gurobi

We have made various comparisons that have allowed us to observe that certain features
have a greater impact on improving system performance. In particular, we have concluded
that the processor’s operating frequency is directly related to the execution time needed to
solve the TSN problem. Using the best virtual machine available on AWS, the M5Zn Large,
we have achieved significantly higher performance than the local machine and T3 small.
Also, of the two solvers we tested, Gurobi offers the best performance with one significant
difference, which heavily influences processing time.

4.4. Microservices as deployment strategy

Using microservices allows us to take full advantage of these features. In particular, since
the ILP microservice is the one that consumes the most resources, we can optimize the
resources if we run the ILP on a specially designed machine with a high frequency of op-
eration. This optimization is not possible in a monolithic architecture since all the pieces of

Analysis 41

Number of | Local Machine M5Zn Large

Streams Average | Min Max Std. dev. | Average | Min Max | Std. dev.
40 57.570 | 51.236 | 64.660 | 4.675 2.201 2.024 | 2.328 | 0.089
45 87.403 | 75.829 | 105.118 | 8.256 3.070 2.673 | 3.598 | 0.212
50 138.381 | 112.855 | 163.418 | 14.569 4.255 3.779 | 4.573 | 0.247

Table 4.5: Seconds to find a solution - Local Machine vs M5Zn Large - Using Gurobi

the Software are tightly integrated, and separating these components would be impossible.
However, microservices are specifically designed to allow for this separation.

To achieve the ideal scenario, the ILP runs on a high-capacity Hardware computer, with the
maximum operating frequency for its processor and using Gurobi. In contrast, the rest of
the elements run on general-purpose machines; we can use container orchestration tools
such as Kubernetes or Openshift.

Kubernetes Cluster

Type 1 Instances Type 2 Instances
A

L 1/‘

_ _ ILP Microservice
Regular Microservices

HTSN-CP

Figure 4.9: Microservices Distribution in a Kubernetes Cluster

Kubernetes and Openshift are two related technologies but with significant differences.
Kubernetes is a widely adopted, highly scalable, open-source container orchestration plat-
form. It provides robust tools for container cluster management, application deployment,
and autoscaling. On the other hand, Openshift is a Kubernetes-based application platform
developed by Red Hat that offers an additional layer of added value by providing a more

42 UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

complete and enterprise-ready experience. Openshift incorporates Kubernetes but adds
additional features and functionality, such as deployment automation, application lifecy-
cle management, and a more intuitive and simplified approach to application deployment.
In short, while Kubernetes is a more basic and flexible option, Openshift is focused on
offering a complete and enterprise solution based on Kubernetes.

Both solutions allow you to manage where and when the containers containing the mi-
croservices are deployed and store their configuration parameters and secrets. They also
provide components to expose the microservices to the outside and mechanisms to select
the nodes on which the microservices can be deployed.

The ideal scenario to deploy our TSN CP consists of a Kubernetes cluster comprising two
groups of nodes. The first group is made up of machines specifically designed to operate
at high frequency (for example, the AWS M5Zn machine group), while the second group
is general purpose and is used to run all other microservices. Figure 4.9 describes that
approach.

To achieve this in Kubernetes, we can use labels on the cluster nodes to differentiate them
into type 1 (general purpose) and type 2 (specialized). Then we can use a tag named
"nodeSelector” as shown in the following code:

apivVersion: apps/vl
kind: Deployment
metadata:
name: ilp-microservice
spec:
replicas: 1
selector:
matchlLabels:
app: ilp-microservice
template:
metadata:
labels:
app: ilp-microservice
spec:
nodeSelector:

type: 2

containers:

- name: ilp-microservice
image: ilp-microservice:latest
ports:

- containerPort: 8080

In the example above, we specify that the ILP pod should run on a node labeled type 2,
which indicates that you should select a node from the pool of specialized machines with
high operating frequencies.

In this way, using the tags and the "nodeSelector” in Kubernetes, we can ensure that the
microservices are deployed in the appropriate groups of nodes, allowing efficient use of
resources and optimizing system performance.

Although we mentioned before that the ideal scenario would be to use Gurobi for our

Analysis 43

deployment, it is important to note that this Software is paid. However, Gurobi offers a free
student license that can be obtained by request, specifying its use and the educational
institution in which it will be used. It is important to note that due to containers’ temporary
nature, it is impossible to link a student account to a group of containers.

In cases like these, Gurobi offers an option that must be purchased by the institution and
has an economic cost that was not considered in the project’s development. However,
considering the features in this document, it is possible to use Kubernetes and deploy the
ILP microservice with any resolver mentioned in this work.

44

UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

CHAPTER 5. CONCLUSIONS

In this project, we explored the usage of SDN and an MSA to implement a functional
prototype of a TSN CP. We tested such prototype using real equipment for the CUC, the
CNC, the end-stations with the Intel i210 NICs and the TSN switches of MTSN kit. It is
important to highlight, that for the best of our knowledge, this is the first time that a SDN
controller for TSN is designed and implemented by following a MSA.

Besides, we explore the characteristics of microservice architecture and its advantages
compared to monolithic architecture. Specifically, we discover that it can be used to
achieve scalability granularity, assigning computational resources to the specific microser-
vices that consume the most resources. Moreover, the MSA also enables the option to
have a different development and integration process between microservices. As we have
seen so far, replacing the microservices with others that perform the same functionality
but with a different approach is always possible. For instance, the VLAN generator module
can be modified in the future by the YANG models for configuring VLANs once SoC-e has
implemented it in the MTSN Kit.

We discover the necessity of prioritizing the frequency oscillation of the processor of the
machines that are running our ILP implementation of the Raagard ILP model for the TAS.
This is because solving a Linear mathematical problem is a single-thread task. It doesn’t
matter how many cores the processor has available; it only will use one single thread. That
was the main reason for the M5Zn large AWS machine outperforming the local machine
and not the available resources. However, in a real scenario, it will be possible to allocate
specifically that microservice to a working device with the highest oscillation frequency to
achieve better results thanks to MSA.

As allocating resources specifically to some microservices is possible, an MSA architecture
can achieve better results regarding the number of Streams processed with the same
amount of computational resources. Such affirmation is based on the fact that we can
have granularity in the assignation of resources. At the same time, in a monolith, we can
not allocate resources specifically to some parts of software.

Finally, this project allowed us to explore a plethora of technologies that will be useful in
our professional careers, such as Docker, Kubernetes, Pyomo, GLPK, Gurobi, NETCONF,
RESTCONF, well as many others. This project was developed in several programming
languages, such as Python, Javascript, and Bash scripts.

5.1. Future Work

The modular design provided by the MSA allows the flexibility to replace individual compo-
nents in future work as long as the new microservice receives the same inputs and delivers
the same outputs as the old one. In this case, we suggest replacing the ILP Solver mi-
croservice with another that uses Atrtificial Intelligence (Al) algorithms to generate solutions
to scheduling problems. This new microservice could be trained using a dataset generated
from the results obtained by the current microservice.

Using Al algorithms instead of the ILP Solver can offer several significant benefits regard-
ing the time required to solve scheduling problems. Al algorithms can learn patterns and
automatically optimize the solution-generation process. By training the algorithm with a

45

46 UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

dataset based on the results of the current microservice, you can take advantage of ex-
isting knowledge and potentially improve the efficiency and accuracy of the generated
solutions.

Furthermore, by replacing the ILP Solver microservice with one based on Al, different
machine-learning approaches and techniques can be explored to address scheduling prob-
lems. This could open up new possibilities and allow the adaptation of the system to
different scenarios and specific requirements.

5.2. Sustainability Considerations

SDN controllers based on microservices are crucial for efficient and environmentally friendly
networking. Energy efficiency is prioritized through intelligent workload distribution, dy-
namic scaling, and efficient scheduling algorithms. Integrating renewable energy sources
reduces reliance on fossil fuels. Scalability and flexibility are achieved through microser-
vices architecture, allowing optimal resource allocation and preventing overprovisioning.
Specifically, any virtualization technique optimizes the energy usage of the hardware since
the number of on devices can be reduced to cope with lesser load. Additionally, lifecy-
cle management practices ensure the use of recyclable materials and consider end-of-life
disposal options. By optimizing energy consumption, leveraging renewable energy, en-
abling scalability, and incorporating lifecycle management, TSN SDN controllers promote
sustainability in network infrastructure.

5.3. Ethical and Security Considerations

The use of Software-Defined Networking (SDN) in Time-Sensitive Networking (TSN) raises
important ethical considerations. It is necessary to ensure the privacy and security of the
data transmitted. Equity and justice in access to network resources must also be guar-
anteed, avoiding discriminatory practices. In addition, environmental implications must be
addressed, and a sustainable approach to using SDN in TSN must be sought. In addition
to these ethical concerns, security considerations must also be addressed to protect the
network infrastructure, ensure data privacy and integrity, prevent unauthorized access, and
comply with regulatory requirements. Robust security measures, access controls, encryp-
tion techniques, and incident response procedures should be implemented while selecting
reliable vendors and regularly updating software and firmware. By addressing both ethical
and security considerations, organizations can make responsible decisions to maximize
the benefits and minimize the risks of SDN in TSN.

5.4. Acknowledgment

This research has been partially funded by the Agencia Estatal de Investigacion of Minis-
terio de Ciencia e Innovacion of Spain under projects PID2019-108713RB C51 MCIN/ AEI
/10.13039/501100011033 and TSI-064100-2022-6, and by the European Regional Devel-
opment Fund of the European Union in the framework of the ERDF Operational Program

Conclusions 47

of Catalonia 2014-2020 under the Research Project 001-P-001643 Agrupacio Emergent
Looming Factory (IU16-011733 BAMPLA).

48

UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

ACRONYMS

3GPP 3rd Generation Partnership Project
Al Artificial Intelligence

API Application Programming Interface
AWS Amazon Web Services

CNC Centralized Network Communications
CP Control Plane

cucC Centralized User Communications
EC2 Elastic Compute Cloud

GCLs Generic Cell Libraries

IEEE Institute of Electrical and Electronics Engineers
ILP Integer Linear Programming

LXC Linux Containers

LP Linear Programming

MIP Mixed Integer Programming
NETCONF Network Configuration Protocol
NFV Network Functions Virtualization
OLE Obiject Linking and Embedding
OPC OLE for Process Control

OPC-UA OPC Unified Architecture

oSl Open Systems Interconnection

oS Operating System

PTP Precision Time Protocol

SD Standard Deviation

SDN Software-Defined Networking
REST Representational State Transfer
RESTCONF REST-based Configuration Protocol
TAS Time Aware Shaper

TSN Time-Sensitive Networking

UNI User Network Interface

VLAN Virtual Local Area Network

VMs Virtual Machines

VMM Virtual Machine Monitor

YANG Yet Another Next Generation

49

50

UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

BIBLIOGRAPHY

[1] T. Gerhard, T. Kobzan, I. Blécher, and M. Hendel, “Software-defined flow
reservation: Configuring ieee 802.1 q time-sensitive networks by the use of
software-defined networking,” in 2019 24th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA). IEEE, 2019. doi:
https://doi.org/10.1109/ETFA.2019.8869040 pp. 216—223. 1, 5

[2] M. L. Raagaard and P. Pop, “Optimization algorithms for the scheduling of ieee 802.1
time-sensitive networking (tsn).” Tech. Univ. Denmark, Lyngby, 2017. 1, 6

[8] W. Quan, W. Fu, J. Yan, and Z. Sun, “Opentsn: an open-source project for time-
sensitive networking system development,” in CCF Transactions on Networking,
vol. 3, 2020. doi: https://doi.org/10.1007/s42045-020-00029-8 pp. 51-65. 1,9

[4] T. Kobzan, |. Blécher, M. Hendel, S. Althoff, A. Gerhard, S. Schriegel, and
J. Jasperneite, “Configuration solution for tsn-based industrial networks utiliz-
ing sdn and opc ua,” in 2020 25th IEEE International Conference on Emerg-
ing Technologies and Factory Automation (ETFA), vol. 1. IEEE, 2020. doi:
https://doi.org/10.1109/ETFA46521.2020.9211897 pp. 1629-1636. 1, 9

[5] M.-T. Thi, S. B. H. Said, and M. Boc, “Sdn-based management solution for time
synchronization in tsn networks,” in 2020 25th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), vol. 1. IEEE, 2020. doi:
https://doi.org/10.1109/ETFA46521.2020.9211923 pp. 361-368. 1

[6] D. Gallipeau and S. Kudrle, “Microservices: Building blocks to new workflows and
virtualization,” in SMPTE Motion Imaging Journal, vol. 127, no. 4. SMPTE, 2018.
doi: https://doi.org/10.5594/JM1.2018.2811599 pp. 21-31. 1

[7] F. Moradi, C. Flinta, A. Johnsson, and C. Meirosu, “Conmon: An automated con-
tainer based network performance monitoring system,” in 2017 IFIP/IEEE Sympo-
sium on Integrated Network and Service Management (IM). |EEE, 2017. doi:
https://doi.org/10.23919/INM.2017.7987264 pp. 54—62. 1

[8] C. Manso, R. Vilalta, R. Casellas, R. Martinez, and R. Mufoz, “Cloud-native
sdn controller based on micro-services for transport networks,” in 2020 6th
IEEE Conference on Network Softwarization (NetSoft). IEEE, 2020. doi:
https://doi.org/10.1109/NetSoft48620.2020.9165377 pp. 365-367. 1,9

[9] Q. P. Van, H. Tran-Quang, D. Verchere, P. Layec, H.-T. Thieu, and D. Zeghlache,
“Demonstration of container-based microservices sdn control platform for open op-
tical networks,” in 2019 Optical Fiber Communications Conference and Exhibition
(OFC). |EEE, 2019, pp. 1-3. 1,9

[10] J. Thénes, “Microservices,” in IEEE software, vol. 32, no. 1. |EEE, 2015. doi:
https://doi.org/10.1109/MS.2015.11 pp. 116—-116. 3

[11] A. Boubendir, E. Bertin, and N. Simoni, “A vnf-as-a-service design through
micro-services disassembling the ims,” in 2017 20th Conference on In-
novations in Clouds, Internet and Networks (ICIN). IEEE, 2017. doi:
https://doi.org/10.1109/ICIN.2017.7899412 pp. 203-210. 3

51

52 UTSN-CP: A Microservices-based Control Plane for Time Sensitive Networking

[12] S. Klock, J. M. E. Van Der Werf, J. P. Guelen, and S. Jansen, “Workload-based
clustering of coherent feature sets in microservice architectures,” in 2017 IEEE
International Conference on Software Architecture (ICSA). IEEE, 2017. doi:
https://doi.org/10.1109/ICSA.2017.38 pp. 11-20. 3

[13] J. Rufino, M. Alam, J. Ferreira, A. Rehman, and K. F. Tsang, “Orchestra-
tion of containerized microservices for iiot using docker,” in 2017 IEEE In-
ternational Conference on Industrial Technology (ICIT). IEEE, 2017. doi:
https://doi.org/10.1109/ICIT.2017.7915594 pp. 1532-1536. 3, 4

[14] A. Bucchiarone, N. Dragoni, S. Dustdar, S. T. Larsen, and M. Mazzara, “From mono-
lithic to microservices: An experience report from the banking domain,” in IEEE Soft-
ware, vol. 35, no. 3. IEEE, 2018. doi: https://doi.org/10.1109/MS.2018.2141026 pp.
50-55. 3

[15] S. Newman, Building microservices. O’Reilly Media, 2021. ISBN 978-1-4919-5035-7

3,4
[16] X. Larrucea, |[|. Santamaria, R. Colomo-Palacios, and C. Ebert, “Mi-
croservices,” in IEEE Software, vol. 35, no. 3. IEEE, 2018. doi:

https://doi.org/10.1109/MS.2018.2141030 pp. 96—-100. 3, 4

[17] F Montesi and J. Weber, “Circuit breakers, discovery, and api gateways in microser-
vices,” in arXiv preprint arXiv, 2016. doi: https://doi.org/10.48550/arXiv.1609.05830
3,4

[18] F. Gutierrez, Spring Boot Messaging. Springer, 2017. ISBN 1484212258 3, 4

[19] K. Benzekki, A. El Fergougui, and A. Elbelrhiti Elalaoui, “Software-defined networking
(sdn): a survey,” in Security and communication networks, vol. 9, no. 18. Wiley Online
Library, 2016. doi: https://doi.org/10.1002/sec.1737 pp. 5803-5833. 4

[20] S. Rowshanrad, S. Namvarasl, V. Abdi, M. Hajizadeh, and M. Keshtgary, “A sur-
vey on sdn, the future of networking,” in Journal of Advanced Computer Sci-
ence & Technology, vol. 3, no. 2. Science Publishing Corporation, 2014. doi:
https://doi.org/10.1002/sec.1737 pp. 232-248. 4

[21] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using openflow: A
survey,” in IEEE communications surveys & tutorials, vol. 16, no. 1. |EEE, 2013. doi:
https://doi.org/10.1109/SURV.2013.081313.00105 pp. 493-512. 4

[22] B. Claise, J. Clarke, and J. Lindblad, Network programmability with YANG: the struc-
ture of network automation with YANG, NETCONF, RESTCONF, and gNMI. Addison-
Wesley Professional, 2019. ISBN 0135180392 4

[23] M. Jethanandani, “Yang, netconf, restconf: What is this all about and how is it used for
multi-layer networks,” in Optical Fiber Communication Conference. Optica Publishing
Group, 2017, pp. W1D-1. 4

[24] L. Richardson and S. Ruby, “Restful web services.” O’Reilly Media, Inc., 2008. ISBN
9780596529260 4

BIBLIOGRAPHY 53

[25] SOC-e, “MTSN-Kit: A comprehensive multiport TSN setup,” Retrieved from https:
//soc-e.com/mtsn-kit-a-comprehensive-multiport-tsn-setup/. 5

[26] “Soc-e mtsn kit Jun 2022. [Online]. Available: https://soc-e.com/
mtsn-kit-a-comprehensive-multiport-tsn-setup/ 5

[27] L. Leonardi, L. L. Bello, and G. Patti, “Exploiting software-defined networking to im-
prove runtime reconfigurability of tsn-based networks,” in 2022 IEEE 27th Interna-
tional Conference on Emerging Technologies and Factory Automation (ETFA), 2022.
doi: 10.1109/ETFA52439.2022.9921723 pp. 1-4. 9

[28] M. Schleipen, S.-S. Gilani, T. Bischoff, and J. Pfrommer, “Opc ua industrie 4.0-
enabling technology with high diversity and variability,” in Procedia Cirp, vol. 57. El-
sevier, 2016. doi: https://doi.org/10.1016/j.procir.2016.11.055 pp. 315-320. 11

[29] S. Soltesz, H. Pétzl, M. E. Fiuczynski, A. Bavier, and L. Peterson, “Container-based
operating system virtualization: a scalable, high-performance alternative to hypervi-
sors,” in Proceedings of the 2Nd ACM SIGOPS/EuroSys european conference on
computer systems 2007, 2007. doi: https://doi.org/10.1145/1272996.1273025 pp.
275-287. 11

[30] “Pika library,” Jun 2022. [Online]. Available: https://pika.readthedocs.io/en/stable/ 15

[31] “leee standard for local and metropolitan area networks—bridges and bridged
networks — amendment 31: Stream reservation protocol (srp) enhancements and
performance improvements,” Jun 2022. [Online]. Available: https://standards.ieee.
org/ieee/802.1Qcc/5784/ 15

[382] “Jetconf,” June 2022. [Online]. Available: https://jetconf.readthedocs.io/en/latest/ 15

[33] P. Congdon, “Link layer discovery protocol and mib,” in V1. 0 May, vol. 20, no. 2002,
2002, pp. 1-20. 16

[34] M. Zadka, “Paramiko,” in DevOps in Python. Springer, 2019, pp. 111-119. 16

[35] M. L. Raagaard and P. Pop, “Optimization algorithms for the scheduling of ieee 802.1
time-sensitive networking (tsn),” in Tech. Univ. Denmark, Lyngby, Denmark, Tech.
Rep, 2017. 18

[36] “Conda,” Jun 2022. [Online]. Available: https://docs.conda.io/en/latest/ 22

[37] “Ampl,” Jun 2022. [Online]. Available: https://ampl.com/ 23

[38] “Pico,” Jun 2022. [Online]. Available: https://www.swmath.org/software/2252 23
[39] “Cbe,” Jun 2022. [Online]. Available: https://www.coin-or.org/Cbc/ 23

[40] “Glpk,” Jun 2022. [Online]. Available: https://www.gnu.org/software/glpk/ 23
[41] “Gurobi,” Jun 2022. [Online]. Available: https://www.gurobi.com/ 23

[42] YangModels, “IEEE 802.1Q Bridge Yang Model,” GitHub repository, July 2023,
Accessed on July 2, 2023. [Online]. Available: https://github.com/YangModels/yang/
blob/main/standard/ieee/published/802.1/ieee802-dot1g-bridge.yang 25

https://soc-e.com/mtsn-kit-a-comprehensive-multiport-tsn-setup/
https://soc-e.com/mtsn-kit-a-comprehensive-multiport-tsn-setup/
https://soc-e.com/mtsn-kit-a-comprehensive-multiport-tsn-setup/
https://soc-e.com/mtsn-kit-a-comprehensive-multiport-tsn-setup/
https://pika.readthedocs.io/en/stable/
https://standards.ieee.org/ieee/802.1Qcc/5784/
https://standards.ieee.org/ieee/802.1Qcc/5784/
https://jetconf.readthedocs.io/en/latest/
https://docs.conda.io/en/latest/
https://ampl.com/
https://www.swmath.org/software/2252
https://www.coin-or.org/Cbc/
https://www.gnu.org/software/glpk/
https://www.gurobi.com/
https://github.com/YangModels/yang/blob/main/standard/ieee/published/802.1/ieee802-dot1q-bridge.yang
https://github.com/YangModels/yang/blob/main/standard/ieee/published/802.1/ieee802-dot1q-bridge.yang

[43] J. Cros, “Development of an sdn control plane for time-sensitive networking (tsn) end-
points,” https://upcommons.upc.edu/handle/2117/348819, 2021. 33

[44] “T3 aws instances,” July 2023. [Online]. Available: https://aws.amazon.com/ec2/
instance-types/t3/ 35

[45] “M5 aws instances,” July 2023. [Online]. Available: https://aws.amazon.com/ec2/
instance-types/m5/ 35

[46] K. Chakrabarty, “Test scheduling for core-based systems using mixed-integer linear
programming,” in IEEE Transactions on Computer-aided design of integrated circuits
and systems, vol. 19, no. 10. |EEE, 2000. doi: https://doi.org/10.1109/43.875306
pp. 1163—-1174. 35

[47] B. Meindl and M. Templ, “Analysis of commercial and free and open source solvers for
linear optimization problems,” in Eurostat and Statistics Netherlands within the project
ESSnet on common tools and harmonised methodology for SDC in the ESS, vol. 20,
2012. 36

https://upcommons.upc.edu/handle/2117/348819
https://aws.amazon.com/ec2/instance-types/t3/
https://aws.amazon.com/ec2/instance-types/t3/
https://aws.amazon.com/ec2/instance-types/m5/
https://aws.amazon.com/ec2/instance-types/m5/

APPENDICES

APPENDIX A. PYANG STRUCTURE OF CUSTOM
YANG MODEL

This section includes the yang tree used for implementing the communication between the
CUC and the CNC. This tree is a modification of the original module ieee802-dot1qg-tsn-
types provided by the IEEE. To build this tree we used Pyang an easy to install python
library included in pip. The full code is in the Github repository.

Listing A.1: ieee802-dot1g-tsn-types-upc-version@2018-02-15.yang

module: ieee802-dot1gq—-tsn—types—upc—version
+——rw tsn—uni-
+——rw stream-—list* [stream-id]
| +——rw stream-id stream-id-type
+——rw request
| +—-rw talker
| +—-rw stream-rank
| +-—rw rank? uint8
+——rw end-station-interfaces* [mac—address interface —name]

| +——rw mac-address string

| +-——rw interface -name string

+——rw data—-frame-specification+ [index]

| +—rw index uint8

+——rw (field)?
+——:(ieee802-mac—addresses)
| +——rw jeee802-mac-addresses
| +——rw destination -mac-address? string
| +——rIW source—mac-address? string
+——:(ieee802-vlan-tag)
| +——rw ieee802-vlan-tag
+——fW priority —code—point? uint8

|
| +——rw vlan-id? uint16
+——:(ipv4-tuple)
| +——rw ipv4—tuple
| +——Iw source—ip—address? inet:ipv4—address
| +——rw destination —-ip—address? inet:ipv4—address
| +——rw dscp? uint8
| +—rw protocol? uint16
| +——rw source—port? uint16
| +—rw destination—-port? uint16
+——:(ipv6—tuple)
+——rw ipv6—tuple
+——rw source—ip—address? inet:ipvé—address
+——rw destination—ip—address? inet:ipv6—address
+——rw dscp? uint8
+——rw protocol? uint16
+——rw source—port? uint16
+——rw destination-port? uint16

+——rw interval
| +——rw numerator? uint32
| +——rw denominator? uint32
+——rw max—frames—per—interval? uint16
+——rw max—frame-size? uint16
+——rw transmission-selection? uint8
+——rw time-aware!!
+——rw earliest—transmit—offset? uint32
+——rw latest—transmit-offset? uint32
+——rw jitter? uint32
—rw user—to—network—reuirements

\
\
\
\
\
\
\
\
|
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
|
+——rw traffic —specification
\
\
\
\
\
\
\
\
\
\
—
| +-—rw num-seamless—trees? uint8
\

+——rw max-latency? uint32

+——rw interface—capabilities
+——rw vlan-tag-capable? boolean
+——rw cb-stream-iden—type—list« uint32
+——rw cb-sequence-type—list * uint32

+——rw listeners—list+ [index]

57

| +——rw index uint16

| +—-rw end-station-interfaces+ [mac-address interface —name]
| | +——rw mac-address string

| | +——rw interface—name string

| +—-rw user—to-network-requirements

| | +——rw num-seamless—trees? uint8
\
|
\
\
\

| +——rw max-latency? uint32

+——rw interface—-capabilities
+——rw vlan-tag-capable? boolean
+——rw cb-stream-iden—type—list« uint32
+——rw cb-sequence-type—list« uint32

+———X compute—-request
+——ro configuration
+——ro status—info

| +——ro talker-—status? enumeration

| +——ro listener—-status? enumeration

| +——ro failure —code? uint8

+——ro failed—interfaces+ [mac-address interface —name]
| +—-ro mac-address string

| +——ro interface -name string

+—ro talker

| +-—-ro accumulated-latency? uint32

+——ro interface—configuration
+——ro interface—list+ [mac-address interface —name]

+——ro mac-address string
+——ro interface —name string
+——ro config—list* [index]
+——ro index uint8

+——ro (config—value)?
+——:(ieee802—-mac—addresses)
| +——ro ieee802-mac-addresses
| +——ro destination -mac-address? string
| +——ro source—mac—address? string
+——:(ieee802-vlan-tag)
| +—-ro ieee802-vlan-tag
| +——ro priority —code—point? uint8
| +——ro vlan-id? uint16
+——:(ipv4—tuple)
| +——ro ipv4-tuple
| +——ro source—ip-address? inet:ipv4—address
| +——ro destination-ip—address? inet:ipv4—address
| +——ro dscp? uint8
| +——ro protocol? uint16
| +——ro source—port? uint16
\ +——ro destination-port? uint16
+——:(ipv6—tuple)
| +——ro ipv6—tuple
\
\
\
\
\
\
-

+——ro source—ip—address? inet:ipv6é—address
+——ro destination—-ip—address? inet:ipv6—address
+——ro dscp? uint8
+——ro protocol? uint16
+——ro source-port? uint16
+——ro destination-port? uint16
—:(time—-aware—offset)
+——ro time-aware—offset? uint32
—ro listener—list* [index]
+——ro index uint16
+——ro accumulated-latency? uint32

+——ro interface—-configuration
+——ro0 interface—list+* [mac-address interface —name]

+——ro mac—address string
+——ro interface —name string
+——ro config—list* [index]
+——ro index uint8

+——ro (config-value)?
+——:(ieee802-mac—addresses)
| +——ro ieee802-mac-addresses
| +——ro destination -mac-address? string
| +—ro source—mac—address? string
+——:(ieee802-vlan-tag)
| +—-ro ieee802-vlan—-tag
| +——ro priority —code—point? uint8

\ +——ro vlan-id? uint16

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
—
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

+——X
+———X
+——X
+———X

—:(ipv4—-tuple)
+——ro ipv4-tuple
+——ro source-ip—address?
+——ro destination—-ip—address?
+——ro dscp?
+——ro protocol?
+——ro source-port?
—:(ipvb6—tuple)

+——ro ipv6-tuple
+——ro source—ip—address?
+——ro destination-ip—address?
+——ro dscp?
+——ro protocol?
+——ro source-port?
| +——ro destination—port?
+——:(time—aware—offset)
+———x deploy—configuration
+———x undeploy—configuration
+———x delete—configuration
compute—all —configuration
deploy-all-configuration
undeploy—all —configuration
delete—all —configuration

—
\

\

\

\

\

\

| +——ro destination—port?
.

\

\

\

\

\

\

inet:ipv4—address
inet:ipv4—address
uint8

uint16

uint16

uint16

inet:ipv6é—address
inet:ipvé—address
uint8

uint16

uint16

uint16

| +——ro time-aware—offset? uint32

APPENDIX B. HOW TO EXECUTE THE CODE

This annex includes the necessary commands and recommendations to execute the code
inside of docker-compose.

B.1. Docker and Docker compose Installations

First it is necessary to install Docker and Docker-compose. Depending on the host opera-
tive system you can follow this series of steps. All of these commands have to be executed
within the Command Line Interface.

B.1.1. Installation over Linux
First make sure that your system repositories are up to date:

sudo apt update
sudo apt upgrade

Then is necessary to have the prerequisites (i.e., curl apt-transport-https ca-certificates
software-properties-common) installed

sudo apt—get install curl \
apt—transport—https \
ca—certificates \
software—properties —common \

Go to add the necessary Docker repositories, this is to have the option of downloading
directly using the linux package manager. The first to add is GPG

curl —fsSL https ://download.docker.com/linux/ubuntu/gpg | \
sudo apt-key add -

Then the Docker repository:

sudo add-apt-repository “deb [arch=amd64]\
https ://download.docker.com/linux /ubuntu \
$(Isb_release —cs) stable”

Then update the repositories again:

sudo apt update

It is necessary to do it from the correct repository, then we will use this command to check
if it is the case:

apt—cache policy docker—ce

The output should be as follows:

61

docker—ce:

Installed: (none)

Candidate: 16.04.1"ce"4—-0"ubuntu

Version table:

16.04.17ce"4—-0"ubuntu 500

500
https ://download.docker.com/linux/
ubuntubionic/stableamd64packages

Install Docker with apt packet manager:

sudo apt install docker—ce

Check that everything is configured and docker is running with the following commands:

sudo systemctl status docker
docker—version

With those commands Docker should be up and running for using within a local machine.

B.1.2. Installation over OSx and Windows

For installing Docker over Mac and Windows it is better idea to use Docker Desktop the
installation is straight forward from the website of Docker:
https://docs.docker.com/desktop/

Once installed you will have a GUI similar as the presented in Figure B.1. Moreover, all of
the commands from the cli can be used as in the Linux distribution.

loving_jones
microservices

) microservices_rabbitmg-microservice_1

w microservices_opendaylight_1

microservices_jetconf_1

microservices_ilp_1

microservices_random_generator-microservice_1

microservices_preprocessing-microservice_1

microservices_southconf_1

Figure B.1: Docker Desktop Graphical interface

https://docs.docker.com/desktop/

B.1.3. How to execute the code under Docker compose

To execute the code we can use a set of commands necessary from docker.

In the file structure of the repository we have to go move to the proper folder in our repos-
itory and execute appropriated docker command. Supposing the code is in the home
directory it should be as follows:

cd TSN-CNC-CUC-UPC/CNC/ Microservices
docker—-compose up

This command will go to the docker-compose.yml file and look for the configuration of the
docker infrastructure to deploy, the output of the command should be as depicted in Figure
B.2.

docker-compose up

up
Creating network "microservices_default" with the default driver
Creating microservices_rabbitmg-microservice_1 ...
Creating microservices_opendaylight_1
Creating m1croserv1ces_preproces51ng—m1croserv1ce 1
Creating microservices_random_generator-microservice_1 ...
Creating microservices_ilp_1
Creating microservices_southconf_1
Creating microservices_jetconf_1
Attaching to microservices_rabbitmg-microservice_1, microservices_open
daylight_1, microservices_preprocessing-microservice_1, microservices_
ilp_1, microservices_random_generator-microservice_1, microservices_so
uthconf_1, microservices_jetconf_1
Couldn't connect to RabbitMQ'
Couldn't connect to RabbitMQ'
random_generator-microservice_1 | Python 3.9.12 (main, Apr 20 2022, 1
8:32:33)
random_generator-microservice_1 | [GCC 10.2.1 20210110] on linux
random_generator-microservice_1 | Type "help", "copyright", "credits"
or "license" for more information.
southconf_1 | Couldn't connect to RabbitMQ'
ilp_1 | Couldn't connect to RabbitMQ'
2022-07-08 15:54:00.976935+00:00 [i
nfo] <0.222.0> Feature flags: list of feature flags found:
2022-07-08 15:54:00.988729+00:00 [i
nfol <0.222.0> Feature flags: [] implicit_default_bindings
2022-07-08 15:54:00.988758+00:00 [i
nfol <@.222.0> Feature flags: [1 maintenance_mode_status
2022-07-08 15:54:00.988778+00:00 [i
nfo] <0.222.0> Feature flags: [1 quorum_gueue
2022-07-08 15:54:00.988818+00:00 [i

Figure B.2: Docker compose up command output

The file docker-compose.yml contains the each of the definitions for the microservices.
For instance, Code Snipped B.1 shows the part of the code that corresponds to the pre-

processing microservice. the dockerfile shows the path for the Dockerfile (i.e., a file that
defines the steps followed to deploy the container), volumes generates a volume mirror
between a path within the host machine and the Docker container, this is extremely useful
for deploying and testing new code within the container. Additionally, depends_on indi-
cates that none of the microservices should be executed if the rabbitmqg-microservice is
not ready. The rest of the file is available at the code repository.

Listing B.1: Code Sniped of Docker-compose preprocessing Microservice

preprocessing—microservice:
build :
context:
dockerfile: Preprocessing_microservice/Dockerfile
volumes:
— ./ Preprocessing_microservice :/ preprocessing
stdin_open: true
tty : true
depends_on:
— rabbitmg-microservice

We can check containers are up and running with the fig:DockerComposeUP command
from the cli. The Image B.3 shows the proper output. This command will show the con-
tainers running (related to the docker-compose.yml file) the command they are executing,
the state, and the ports they are listening.

The open ports are the way of communicating within microservices and for the out-site
world to access to the microservices. For instance, the container that corresponds to the
Jetconf Microservice has the port 8443 open for receiving https traffic from the outside
world. This port is necessary since Jetconf exposes the RESTCONF API in this port for
the UNI interface with the CUC.

Additionally, it is possible to get inside the Command Line Interface of the docker container
if something there needs to be done. For that we can use the command with the following
structure:

docker—compose exec <Name of the microservice> bash

Figure B.4 depicts the usage of the command for accessing to two of the docker containers
of the Jetconf and ILP Calculator Microservices.

Finally, to bring down the docker containers and turn-off the system is necessary to use
the docker-compose down command.

Even thought there are far more docker commands used for implementing uTSN-CP with
the provided information in this Annex is enough to the system to work.

o0 docker-compose up

Every 2.0s: docker—compose ps

microservices_ilp_1

microservices_jetco
nf_1
microservices_opend
aylight_1

microservices_prepr
ocessing-
microservice_1
microservices_rabbi
tmg-microservice_1

microservices_rando
m_generator-
microservice_1
microservices_south
conf_1

Command
/bin/sh —c python
rabbitmq ...
/bin/bash

/bin/bash

/bin/sh -c python
/preproc ...

docker-
entrypoint.sh rabbi

python3

/bin/sh —c python
/southco ...

watch docker-compose ps

F2200832: Fri Jul 8 18:30:46 2022

0.0.0.0:8443->8443
/tcp
0.0.0.0:6633—>6633
/tcp, 0.0.0.0:8101
—>8101/tcp, 0.0.0.
0:8181>8181/tcp

0.0.0.0:15672—>156
72/tcp, 15691/tcp,
15692/tcp,
25672/tcp,
4369/tcp,
5671/tcp, 0.0.0.0:
5672->5672/tcp

Figure B.3: Docker compose ps command output

o0 docker-compose up root@7bb436277563: [Jetconf

> exec jetconf bash

root@7bb436277563: /Jetconf# echo This is the Jetconf microservice
This is the Jetconf microservice

root@7bb436277563: /Jetconf# 1s

Dockerfile

__init__.py

configuration_deployer.sh

ieeeB802-dotlg-tsn-types-upc-version-v2@2018-02-15.yang

tsn—example. json

usr_conf_data_handlers.py
usr_datastore.py

) exec ilp bash

(base) root@@00c911e6f3c:/ILP# echo This is the ILP microservice
This is the ILP microservice

(base) root@@00c911e6f3c:/ILP# 1s

Dockerfile Solutions_Visualizer.py rabbitmqg_queues
ILP_Generator.py __init__.py requirements.txt
Rabbitmq_queues.py __pycache__

(base) root@@00c911e6f3c:/ILP# []

Figure B.4: Accessing two container with docker-compose exec command

APPENDIX C. ABOUT DOCKER IMAGES

The work is not only reflected in the code repository in GitHub, we also have an essential
component that has a particular repository the Docker Images. Each one of this software
pieces are the building block for the architecture. Even thought, by themselves the Docker
image does not contain any code, each microservice needs a particular environment in
which to run. For instance, the ILP microservice needs the Pyomo library and GLPK to
be installed on the system to run correctly. Those images contain the majority are in
a repository in order to be downloaded every-time the system needs runs and they are
selected to be used in the Dockerfile or in the docker-compose.yml. The repository can
be in many places such as Docker Container Registry, Amazon Container Registry or
Dockerhub. In our case we decided to use directly Dockerhub as the Image repository.

Figure C.1 depicts some of the created images. Such images can be accessed in the
following repository:

https://hub.docker.com/repository/docker/gabrielorozcoupc.

gabrielorozcoupc Create Repository

gabrielorozcoupc / glpk 3 .

Last pushed: 7 months ago ff 0 x5 @ Public

gabrielorozcoupc / express %0 ¥ 108 @ Public

Last pushed: 9 months ago -

gabrielorozcoupc / ilp_raagard ¥ 0 * 10 @ public

Last pushed: 10 months ago -

gabrielorozcoupc / jetconf 1 .
o ¥ 32 ®) Public

Last pushed: a year ago

gabrielorozcoupc / java-cnc Y0 *7 @ Public

Last pushed: a year ago

Figure C.1: Some of the images available in the Dockerhub repository

67

https://hub.docker.com/repository/docker/gabrielorozcoupc

	Introduction
	Background
	Microservice Architecture
	Software Defined Networking
	Time-Sensitive Networking

	Related works
	Architecture design
	Docker
	Message Broker
	Jetconf Microservice
	Topology Discovery Microservice
	Preprocessing Microservice
	ILP Calculator Microservice
	ILP Model
	Implementation details

	Scheduler Postprocessing
	VLAN configurator
	SDN controller

	Analysis
	Scheduling Solution Inspection
	First TSN Example
	Second TSN Example
	Third TSN Example

	Laboratory Setup
	Analysis and Results
	ILP Solvers Comparison
	Hardware configurations Comparison - Using GLPK
	Hardware configurations Comparison - Using Gurobi

	Microservices as deployment strategy

	Conclusions
	Future Work
	Sustainability Considerations
	Ethical and Security Considerations
	Acknowledgment

	Acronyms
	Bibliography
	Pyang structure of custom Yang model
	How to execute the code
	Docker and Docker compose Installations
	Installation over Linux
	Installation over OSx and Windows
	How to execute the code under Docker compose

	About Docker Images

