
BACHELOR’S DEGREE IN MATHEMATICS

BACHELOR’S DEGREE IN DATA SCIENCE AND
ENGINEERING

Automated detection of tumoural cells
with graph neural networks

Author: Jose Pérez Cano
Supervisor: Philippe Salembier Clairon
Co-director: Ferran Marqués Acosta

June 2023

To my beloved family,
for their unconditional support.

Abstract

The detection of tumoural cells from whole slide images is an essential task in medical diagnosis
and research. In this thesis, we propose and analyse a novel approach that combines computer
vision-based models with graph neural networks to improve the accuracy of automated tumoural
cell detection. Our proposal leverages the inherent structure and relationships between cells
in the tissue. Experimental results on our own curated dataset shows that several different
metrics improve by up to 15% compared to just using the computer vision approach. It has
been proved to work with H&E stained lung tissue and HER2 stained breast tissue. We believe
that our proposed method has the potential to improve the accuracy of automated tumoural
cell detection, which can lead to accelerated diagnosis and research in the field by reducing the
worload of hystopathologists.
Keywords: Histology, Lung, Breast, Graph Neural Networks, Convolutional Neural Networks,
Calibration.
AMS Codes: 92C50, 92C55, 92C37, 68T10, 68T45, 68R10

Resumen

La detección de células tumorales en imágenes de portaobjeto completo juega un papel esencial
en el diagnóstico médico y es un elemento fundamental de la investigación sobre el cáncer. En
esta tesis proponemos y analizamos un enfoque novedoso que combina modelos de visión por
ordenador con redes neuronales en grafos para mejorar la precisión de la detección automatizada
de células tumorales. Nuestra propuesta aprovecha la estructura inherente y las relaciones entre
las células del tejido. Los resultados experimentales obtenidos sobre nuestra propia base de
datos muestran que varias métricas mejoran hasta en un 15 % en comparación con solo usar
el enfoque de visión. Se ha demostrado que funciona con tejido pulmonar teñido con H&E y
tejido mamario teñido con HER2. Creemos que nuestro método tiene el potencial de mejorar
la precisión de los métodos automáticos de detección de células tumorales, lo que puede llevar
a acelerar los diagnósticos y la investigación en este ámbito al reducir la carga de trabajo de
los histopatólogos.
Palabras clave: Histología, Pulmón, Mama, Redes Neuronales en Grafos, Redes Neuronales
Convolucionales, Calibración.
Códigos AMS: 92C50, 92C55, 92C37, 68T10, 68T45, 68R10

Resum

La detecció de cèl·lules tumorals en imatges de seccions completes és una tasca essencial en
el diagnòstic mèdic i la investigació. En aquesta tesi, proposem i analitzem un enfocament
innovador que combina models basats en visió amb xarxes neuronals en grafs per millorar
la precisió de la detecció automatitzada de cèl·lules tumorals. La nostra proposta aprofita
l’estructura inherent i les relacions entre cèl·lules en el teixit. Els resultats experimentals en
el nostre propi conjunt de dades curat mostrin que diversos indicadors milloren fins a un 15%
en comparació amb només usar l’enfocament de visió. S’ha demostrat que funciona amb teixit
pulmonar tenyit amb H&E i teixit mamari tenyit amb HER2. Creiem que el nostre mètode
proposat té el potencial de millorar la precisió de la detecció automatitzada de cèl·lules tumorals,
el que pot portar a uns diagnòstics més ràpids i una investigació accelerada en el camp degut
a la reducció en la càrrega de treball dels histopatòlegs.
Paraulas clau: Histologia, Pulmó, Mama, Xarxes Neuronals en Grafs, Xarxes Neuronals
Convolucionals, Calibració.
Codis AMS: 92C50, 92C55, 92C37, 68T10, 68T45, 68R10

Contents

1 Introduction 1
1.1 When technology meets histology . 1
1.2 Why graphs? . 1

2 Problem Formulation and State Of The Art 3
2.1 Definition . 3
2.2 Data . 5

2.2.1 DigiPatics lung dataset . 5
2.2.2 DigiPatics breast dataset . 6
2.2.3 CoNSeP dataset . 6
2.2.4 MoNuSAC dataset . 7

2.3 Computer vision algorithms . 8
2.4 Graph neural networks . 12

2.4.1 Graph convolution . 12
2.4.2 Graph attention . 13

2.5 XGBoost . 14

3 Problem Solving 16
3.1 Method description . 16
3.2 Hyperparameter tuning . 17
3.3 Evaluation metrics . 17

3.3.1 Confusion Matrix . 17
3.3.2 Accuracy . 18
3.3.3 Precision . 19
3.3.4 Recall . 19
3.3.5 F1 Score . 19
3.3.6 Macro F1 Score . 19
3.3.7 Weighted F1 Score . 20
3.3.8 Micro F1 Score . 20
3.3.9 Dice’s coefficient . 21
3.3.10 ROC AUC . 21
3.3.11 Calibration . 22
3.3.12 Extending metrics . 24

3.4 Experiments . 25
3.4.1 GNN vs CNN . 25
3.4.2 GNN vs XGBoost . 25
3.4.3 Void GNNs . 25
3.4.4 Scaling CNNs . 25

4 Results 27
4.1 Quantitative analysis . 27

4.1.1 GNN vs CNN . 27
4.1.2 GNN vs XGBoost . 28
4.1.3 Void GNNs . 29
4.1.4 Scaling CNNs . 31
4.1.5 CNNs metrics in detail . 32

i

Jose Pérez Cano CONTENTS

4.2 Qualitative analysis . 35
4.2.1 CoNSeP . 35
4.2.2 MoNuSAC . 39
4.2.3 DigiPatics breast . 42
4.2.4 DigiPatics lung . 47

5 Conclusions 49

6 Future work 50

References 51

A Sustainability and costs 54

B The problem of merging cells 55

C TumourKit 57

D Soft Labels 58

E Hyperparameter study 59

ii

Chapter 1

Introduction

1.1 When technology meets histology

This project was born due to the necessity of alleviating physicians and researchers workload
in the field of digital pathology. On a typical day, our experts have to go through a wide
variety of tissue images in order to detect some anomaly or disease. Depending on the task at
hand they sometimes need to estimate the proportion of tumoural cells with respect to healthy
ones. How wonderful would it be if a machine could perform that task for them. That is the
purpose of this thesis, to automatically estimate the percentage of tumoural cells with respect
to non-tumoural ones and facilitate the physician’s job.

Analysing human tissue is a challenging task. The first part of the process consists of
extracting the tissue from the part of the body that is relevant to the patient’s condition. If
the patient is alive the extraction is typically done using a needle. Otherwise, if the organ is
already removed then a cube of tissue can be sliced. Then, simply watching those slices through
a microscope is not going to be enough. Cells are very small and their interior is difficult to
observe even when looking through the lenses of a microscope. For that reason tissue is stained
prior to observing it. There are different kind of staining, some of them highlight the cell nuclei,
others the membrane and other stainings react with specific kind of cells. Another factor to
take into account is the cost of the dye. Some of them make the task at hand easier but are
too expensive to do for every patient. A trade-off is usually found where the more expensive
one is used only when the cheaper is not enough for confidently diagnosing.

In the past, the surgically extracted slices were typically watched through the lenses of a
microscope [9], what is termed as optical microscopy. With the development of new technolo-
gies, the field has become more and more digitalised [17], now being called digital pathology.
The resulting digital images that originate from watching through the microscope the tissue are
called Whole Slide Images (WSI). Between when a biopsy procedure is made and when the spe-
cialist watches it, there is now a period of time required to digitalise it. In other words, at the
morning one specialist carries out the removal of the tissue. Afterwards, technicians digitalise
the image in the afternoon. It is in the next morning the physician watches the result. Taking
advantage of that interval between when the image is digitised and when the doctor watches
it, other computational methods can be applied prior to the experts receiving the images. This
will enhance the physician user experience while working without the need for them to wait
for the algorithm to give the result at real time because it is already precomputed. Having a
preliminary diagnosis can help reduce the workload and make the histologist more productive.

1.2 Why graphs?

This whole thesis was initially thought to be about lung tissue. Starting from a WSI we are
interested in detecting which cells are tumoural and which cells are healthy. The purpose of
the application is to rapidly detect tissue slices that contain a high amount of tumoural DNA
so that it can be later on processed and analysed. Finding such WSI requires the histologist
to look at several of them and deciding which one to choose. So we want to provide a ranking
of images from more likely of having a high percentage of tumour to less likely. This way, on

1

Jose Pérez Cano Introduction

average, the physician would require to look at less images per patient, making it possible to
analyse more patients’ WSI in the same time. So, where does graphs come into play?

In a previous thesis, the same problem was tackled using a computer vision-only approach
[28]. Initially, I was asked to improve on that method. After several months working on the
problem I began to notice the principal flaw (which is also the principal feature) of convolutional
neural networks: an inductive bias towards locality [6]. That means deep neural networks
classify cells based on their immediate morphological properties. However, having met with
pathologist Irene Sansano Valero, which is an expert histologist in the field of lung tumour,
made it clear that cells were considered being tumoural or not depending on their surroundings.
Visually identical cells may be classified differently if their neighbourhood is different. Here, I
am always referring to lung tissue, we will later on analyse if this still holds true for other tissues.
It was made clear then that a different approach was needed. Another kind of inductive bias
was required, a relational inductive bias. One that classified cells based on their relationships
with nearby cells and not only on their individual properties. This is the exact kind of inductive
bias graph neural networks provide [5].

This is how the idea came into existence. The exact details of how the graph is constructed
and which networks are employed are later discussed. But the key idea is that if relations
between cells are considered important when classifying them, using graphs in some way may
lead to better results. We expect this hypothesis to be specially true for lung tissue and, in fact,
we come across high evidence that it is so. The question then is, is it true for other tissues?
The answer is it depends. Apart from the lung dataset we repeat all the experiments for other
three datasets obtaining mixed results. Sometimes it is a good fit, sometimes it is not and
sometimes it works better but not because it is a graph but because it is a stacking classifier.
The exact meaning of these words and which experiments are made to prove it will be later
discussed.

2

Chapter 2

Problem Formulation and State Of The Art

2.1 Definition

In order to estimate the percentage of tumoural cells we decided to solve other problem. Instead
of just predicting a number from a WSI, which would make the problem a logistic regression
problem, we decided to segment and classify every cell to later count them and compute the
percentage. There are two reasons why we chose to do so. The first one is because it makes
models more interpretable, and the second one is because it makes the problem easier to solve.

Developing more on that first reason, we work in the medical field. Here, having a model
that is statistically better than, say, a student is not enough to consider it really better than
the student. The student can explain itself on why it made that diagnosis and so it provides
more insight on how and why it makes mistakes. A seemingly black box model that simply
outputs a number (the percentage of tumoural cells) gives no insight whatsoever of how and
when you may expect it to fail. This is very dangerous in a medical setting. If we were at a
factory classifying packages, we don’t care so much about that. We can recover lost packages
later on while still benefiting from the efficiency of using a automated process. However, we
cannot recover dead patients. That makes interpretability a must. If our model predicts cells
we can see which cells are causing more trouble. This helps know which data is needed to
used for retraining the model and fixing those mistakes in the future. In the end, we want a
model that can learn from its mistakes, looking at individual cell predictions makes it easier to
recognise patterns in the mistakes it is doing and so it makes it easier to incrementally improve
the model from its errors.

The second reason is that the regression problem is harder to solve. It may seem to be
the other way around but it is not. Having worked with machine learning problems for years,
my experience is that a regression problem where images are the input is almost never a good
idea. Reframing the problem to solve something apparently harder in between has brought me
better results in the past. Nonetheless, let’s describe mathematically each problem in order to
analyse each of them and come to an intuition of why it is a bad idea.

First, let’s denote by X and Y the input and output space of the problem. We expect to
find a function f : X → Y that effectively predicts the correct percentage given the WSI. Any
WSI is no more than a collection of pixels, for that reason they can be viewed as very high
dimensional vectors X = RN , with N > 109 [27]. Similarly, the percentage is just a number
between 0 and 1, so Y = [0, 1].

Now, the logistic regression approach consists of finding such function from a family of
parametric models Fθ = {fθ|fθ : X → Y} while the segmentation approach tries to find f
differently. It first divides the WSI into patches. Then, each patch is processed independently
to obtain pixel-wise predictions which are then used to compute the percentage. So, the family
of parametric models now in consideration is Gθ = {gθ|gθ : Xs → Xs, Xs ⊂ X} where Xs

represents the space of images of 1024 by 1024 pixels, meaning dim(Xs) ≈ 3.1 · 106. Given any
segmentation model gθ we construct its regression counterpart fθ as described in the following
commutative diagram.

3

Jose Pérez Cano Problem Formulation and State Of The Art

X Y

X P
s X P

s

fθ

s

g̃θ

c

Where we have extended gθ to several patches by applying it independently to all of them.

g̃θ : X P
s → X P

s

(x1, ..., xP) 7→ (gθ(x1), ..., gθ(xP))
(2.1)

And the s and c functions refer to the split and count operations. Given a WSI it is split
into several patches, for each patch, every cell is segmented and then all the tumoural and
healthy cells are counted.

Without making any further assumptions about the families of functions we can derive some
important insights about the advantages and disadvantages of each approach. First of all, it
is clear that in the first approach the models have access to a wider context. Considering
independent patches limits the ability to take into account global information. For instance,
in lung tissue there is a structure called the cilium. It is a filamentous structure that appears
near bronchioles. Its own existence is reason enough for considering the nearby cells as healthy.
An example of such structure is depicted on Figure 4.15. The presence of cilium in the middle
of a WSI cannot be taken into account when classifying the border of the tissue. But this
disadvantage is not such a big deal. In a 1024 by 1024 image there is room enough for all the
cells affected by the cilium, so limiting to such patches is enough. There is also another type
of cell that interacts with their surrounding, the erythrocyte, also called red blood cell. All
the cells glued to it are considered healthy. But that only applies to very close cells to it, so
by using patches you will have no problem with this type of interactions. On the other hand,
if we look at the dimensionality of input and output spaces we see a clear difference between
the two approaches. For Fθ the input space has a huge dimensionality while the output is uni-
dimensional. In contrast, for Gθ the input and output space both have the same dimensionality
which is several orders of magnitude smaller than the dimensionality of X . This makes the
first approach quite prone to the curse of dimensionality [38]1. Even worse, we have just one
number per each WSI. Even a simple regression problem needs more than 30 samples to have
a reasonable amount of uncertainty. Having such amount of WSI is a very difficult task.

One may also think that the regression problem can be split into patches too. That is, solving
the problem for individual patches and then averaging the percentages. This way the difference
in dimensionality of the input and output spaces is lower. Moreover, the data scarcity problem
is solved. But it is not so easy. In my experience, even with 224 by 224 images, regression is
quite unfeasible if done in a naive way. On the other hand, for the individual percentages of
each patch to be enough we will need to label all the patches of a WSI. Otherwise the sampling
may not be uniform enough since WSI are very different from one part of the image to another,
in other words, they are highly non-stationary. Labelling all the patches of one WSI could
mean labelling thousands of images, which is unfeasible.

All in all, we chose this way because we believed it was going to give better results and
because the doctors preferred that solution over the other for its interpretability.

1Notice that this is not true for other regression problems, NeRFs [24] need to increase the dimensionality
of the input to work properly.

4

Jose Pérez Cano Problem Formulation and State Of The Art

2.2 Data

Now that we have described the problem as a segmentation and classification one, let’s describe
the datasets in which it is going to be applied and how they were obtained. The first one and
the main focus of the thesis is the DigiPatics lung dataset, it is called like this because it was
created under the DigiPatics project [33] and contains patches of lung WSI. Then, I’ll describe
another dataset also focused on tumour detection but of another organ, the DigiPatics breast
dataset. And at the end I’ll explain two more dataset: CoNSeP [12] and MoNuSAC [37]. They
are two public datasets related to digital pathology and nuclei segmentation and classification
as well.

2.2.1 DigiPatics lung dataset

This dataset contains 85 images of 1024 by 1024 pixels referring to Hematoxilin and Eoxin
stained WSI. Every patch comes from a WSI of a patient with lung tumour and it is annotated
pixel-wise, that is, every pixel is either 0, 1 or 2 depending on whether it belongs to the
background, to a healthy cell or to a tumoural cell. To have a better understanding of the
problem at hand, look at Figure 2.1 below.

(a) Segmentation (b) Classification

Figure 2.1: Visualisation of the kind of labels that are needed. For each cell it is required to
have its contour, as seen in the left, together with their corresponding class as seen in the right.
Blue means tumoural and green non-tumoural.

In order to annotate those images it is first needed to choose which images to label. One can
extract hundreds of patches from surgical biopsies made by thoracotomy, and even in needle
biopsies it is possible to obtain more than two hundred patches. But labelling those patches
is very expensive and so they have to be chosen carefully. One important aspect to take into
account is the number of patients at consideration. One thousand labelled images are of no use
if they come from only one patient. There is a huge variance across WSI of different patients.
For that reason we decided to annotate images from nine different patients. The selection
within patient was made based on structures that seem very different from each other so that
the dataset captures as much variance as possible.

Once the images were chosen, the annotation can begin. However, labelling manually each
image can take days for each image. That is why we followed a semi-automated approach. To

5

Jose Pérez Cano Problem Formulation and State Of The Art

alleviate the amount of work required, an iterative procedure was designed. In a first step made
by David Anglada and Feliu Formosa, the max-tree [31] was used to create rough segmentations
of 24 patches that were later reviewed and improved by the students. Those initial labels were
used to train Hovernet [12], explained in detail in section 2.3. Using that newly trained model,
20 more images were annotated and reviewed by me. Then, Hovernet was trained again using
those 44 images and used to infer the GT of 41 more patches. Only after carefully correcting
all the 85 patches, would the pathologist Irene Sansano Valero start reviewing the dataset. The
whole process took around 100 hours of human labour, 20 hours of GPU computation and 15
hours of expert human labour.

As a side note, this dataset is enough for the research carried out here but is definitely not
enough for a production setting. Nine patients is by no means a representative sample. And
there are many structures not present in the patches selected. We made our best effort to
annotate a dataset that would validate our approach. Having proved its validity it remains to
extend the dataset and scale the models in order to achieve a production ready model.

2.2.2 DigiPatics breast dataset

Another tumour related dataset is provided by the DigiPatics group. This one was annotated
by David Anglada and supervised by pathologist Teresa Soler. It contains 141 images from 4
different patients that had breast cancer. The biopsies were stained with HER2 staining. This
time the dataset contains 6 different classes counting the background. I will not dive into much
details of this dataset and what represents every class, the only fact I would like to mention is
that domain experts on this field and the engineers collaborating with them do not think that
group structure is as important here as it is in the case of lung tumours. In fact, experiments
described in subsection 3.4.2 and subsection 3.4.3 show that this is the case. In Figure 2.2 you
can see an example of the type of images that are in this dataset.

(a) Patient 1 (b) Patient 2 (c) Patient 3 (d) Patient 4

Figure 2.2: Patches of the four patients that are in this database. Names are omitted for data
privacy. As you can observe, images are visually very different from patient to patient even
though the same staining is employed in all of them.

2.2.3 CoNSeP dataset

The name means colorectal nuclear segmentation and phenotypes. In other words, it is about
cell nuclei detection on colorectal adenocarcinoma WSIs. Yet another organ in which we are
interested of automatically visualise the cells that are related to a tumour. It uses the same
staining as the DigiPatics lung dataset: H&E. The size of the images is similar: 1000x1000.
And it also has many patients: 16 in total. The main difference with the other datasets so far
is that it only contains 41 images. Another difference with the lung dataset is that is has 7
classes, without counting the background. Instead of classifying cells as tumour vs non-tumour

6

Jose Pérez Cano Problem Formulation and State Of The Art

the authors here decided to provide a more detailed analysis of each cell. In Figure 2.3 you have
an example of what are the images it contains. We decided to use this dataset because it was
the one used in the Hovernet article although we don’t have too much insight on this type of
data. The results of the experiments on this dataset seem to prove that graphs neural network
are not a good choice for colorectal tissue. Nonetheless, more research is needed to confirm
that hypothesis. It remains to ask experts if the group structure is important here and other
approaches need to be carried out, like binarising the classes. Since in this thesis I could only
talk with lung experts, I couldn’t carry those experiments myself. It is left as future research.

Figure 2.3: Different examples of the CoNSeP dataset illustrating all the different cells that it
contains. Image was taken from the original article [12].

2.2.4 MoNuSAC dataset

As in previous subsection, the abbreviation has some meaning. It comes from Multi-Organ
Nuclei Segmentation and Classification Challenge. This time it is not tumour related but it
is still a nuclei segmentation and classification problem so we deemed it interesting to try our
method here. The MoNuSAC database contains 294 images from 71 patients. There are several
differences with respect to the other three datasets. The first one is the type of classes it has.
They are not tumour related, instead cells are classified into four types: epithelial, lymphocite,
macrophage and neutrophil. The second difference is the number of organs. In the previous
datasets only one tumour was considered at a time. Here we have lung, breast, kidney and
prostate. The third and last difference is that the WSI came from 37 hospitals instead of just
one. Every WSI was selected from The Cancer Genome Data Portal2 and were later labelled.
Having such amount of data made this dataset quite interesting to use. It has more variety
and many more images than all the datasets previously mentioned. Interestingly enough, using
graph neural networks here gives better results than not using them. Experimental results will

2https://portal.gdc.cancer.gov/ Accessed 15th May 2023

7

https://portal.gdc.cancer.gov/

Jose Pérez Cano Problem Formulation and State Of The Art

be discussed in more detailed on section 4.1. One technical detail to remark is that images
from this dataset have very different aspect ratios and sizes. To simplify the process we just
upsampled or downsampled every image into having size 1024x1024 using Lanczos interpolation.
An example of the images from this dataset is in Figure 2.4.

Figure 2.4: Image extracted from the MoNuSAC article [37]. It depicts various images from
each of the four organs used in the creation of it.

2.3 Computer vision algorithms

In this section I will provide a brief survey about the state of the art in segmentations problems
and a detailed explanation of Hovernet [12] which is the model used in the first phase of our
method. Prior to diving into specific neural network architectures I will make a quick recap
into what a convolutional neural network is. The forward pass of a single neuron from a layer
of a neural network can be described as

aj = f(w(j)x+ bj) = f
((n∑

i=1

w
(j)
i xi

)
+ bj)

)
(2.2)

where wj is the j-th row of the weight matrix of that layer W , xi is the i-th entry of the input
and bj is the j-th entry of the bias of that layer3. Here f is any non-linearity to give the network
expressivity. Now, a convolutional layer is similar in that it also has neurons that are made of
a linear operator applied to the input plus a bias and a non-linearity. However, the operator
is different. For a normal neural network, also called multilayer perceptron, the lineal operator
can be expressed as (W ·x)(j) being · the matrix multiplication and (·)(j) denotes the j-th entry
of the vector. For a convolutional neural network, the operator is the convolution (W ∗ x)(j).
In one dimension, if W = (w1, w2, w3)

T is a kernel of dimension 3, then the convolution can be
expressed as a matrix multiplication like so4

W ∗ x =



w1 w2 w3 0 0 0 0 · · · 0
0 w1 w2 w3 0 0 0 · · · 0
0 0 w1 w2 w3 0 0 · · · 0
0 0 0 w1 w2 w3 0 · · · 0
0 0 0 0 w1 w2 w3 · · · 0
...

...
...

...
...





x1

x2

x3

x4
...
xk
...
xn


(2.3)

To extend it to 2D data like images, we could still use this matrix definition but it would
get quite cumbersome so, instead, a simple formula can be used to describe 2D convolutions.

3https://atcold.github.io/pytorch-Deep-Learning/en/week02/02-3/ Accessed 15th May 2023
4https://atcold.github.io/pytorch-Deep-Learning/en/week04/04-1/ Accessed 15th May 2023

8

https://atcold.github.io/pytorch-Deep-Learning/en/week02/02-3/
https://atcold.github.io/pytorch-Deep-Learning/en/week04/04-1/

Jose Pérez Cano Problem Formulation and State Of The Art

(W ∗ x)(m,n) =
∞∑

i=−∞

∞∑
j=−∞

w(m−i,n−j) · x(i,j) (2.4)

where the superindex notation denotes pixel coordinates and the weight matrix is centred at
(0, 0) and has compact support, same as the image, which also has compact support meaning
it is only different than zero for a finite amount of coordinates. As you may have noticed,
convolutions return images as output. Therefore, we can visualise what a convolutional neural
network is doing by looking at the neuron activations, which in this context are called the
channels instead of neurons. In Figure 2.5 there is an example of two possible filters that may
be learned by a convolutional neural network.

(a) Original (b) Laplacian (c) Gaussian

Figure 2.5: Example of convolution filters. At the left we have a very classical image, called
Lena. On the center there is the laplacian filter applied to it using a convolution and on the
right there is the gaussian filter applied to it.

A single convolution is not expressive enough to solve segmentation problems. Normally,
several layers are required, but having too many layers has the problem of vanishing and
exploding gradient which is why residual connections are needed. That was one of the ideas
behind the first deep learning attempt at biomedical segmentation made by Olaf Ronneberger
et al. [30]. They proposed an encoder-decoder architecture as shown in Figure 2.6.

That architecture was improved recently with the development of transformers [35]. In 2021
Jieneng Chen et al. invented TransUNet [7] and later on in 2022 Jeya Maria Jose Valanarasu
et al. created UNeXt [34]. I will not dive into the specifics of those architectures but rather
comment on their limitations and why we couldn’t use them. The key limitation is their sample
efficiency. Even though transformers are more sample efficient in reinforcement learning than
previous deep learning methods [23], they still require a fair amount of data. In Jeya Maria
Jose Valanarasu et al. [34] they used two datasets of 2594 and 647 images respectively. That is
at least an order of magnitude more than what we could obtain. The other option, TransUNet
[7], was tried in a dataset with 3779 computer tomography (CT) images, yet too much for us.
Apart from that, the problem they tackled was organ segmentation, which is quite different
from cell segmentation. In order to achieve better sample efficiency, a method with specific
inductive biases is needed.

As explained in section 2.2, the max-tree [31] can give good results at detecting cell con-
tours while using no data at all. The algorithm used morphological properties of the cells to
distinguish them from the background. That set a precedent, morphological algorithms could
help us reduce the amount of data needed. Another important morphological algorithm is the
watershed [22]. It is known for creating accurate contours if the energy landscape is properly

9

Jose Pérez Cano Problem Formulation and State Of The Art

Figure 2.6: Original U-net architecture. It was composed by convolutional layers, pooling layers
and residual connections.

defined. Hovernet [12] combines both the U-net architecture with the watershed algorithm to
produce cell segmentations and classify them. An overview is on Figure 2.7.

Hovernet employs the same encoder-decoder architecture as U-net but it combines three
different decoders with only one shared encoder. Each of the three decoders is trained to infer
a different property from the GT. The NP branch separates the cells from the background,
ignoring their class. The HV branch predicts horizontal and vertical distances from each pixel
to the nuclei of the nearest cell. And the TP branch predicts the GT as is. Everything is
trained end-to-end under one single loss function, which is shown below

10

Jose Pérez Cano Problem Formulation and State Of The Art

Figure 2.7: Overview of the Hovernet method. It has three branches that predict different maps
derived from the GT. In a post-processing step all the maps are combined using the watershed
algorithm with carefully designed energy landscapes and markers.

L = λHV
mseLHV

mse + λHV
msgeLHV

msge + λNP
bce LNP

bce + λNP
diceLNP

dice + λTP
bceLTP

bce + λTP
diceLTP

dice (2.5)

=
λHV
mse

B

(
B∑
i=0

∥H(xi)− hi∥22 +
B∑
i=0

∥V (xi)− vi∥22

)
(2.6)

+
λHV
msge

B

(
B∑
i=0

∥∇H(xi)− ghi∥22 +
B∑
i=0

∥∇V (xi)− gvi∥22

)
(2.7)

+
λNP
bce

B

B∑
i=0

D∑
j=0

(yNP
i)j log(NP (xi)j) (2.8)

+
λNP
dice

B

B∑
i=0

(
1−

∑D
j=0NP (xi)j(y

NP
i)j∑D

j=0(NP (xi)j)2 +
∑D

j=0((y
NP
i)j)2

)
(2.9)

+
λTP
bce

B

B∑
i=0

D∑
j=0

(yTP
i)j log(TP (xi)j) (2.10)

+
λTP
dice

B

B∑
i=0

(
1−

∑D
j=0 TP (xi)j(y

TP
i)j∑D

j=0(TP (xi)j)2 +
∑D

j=0((y
TP
i)j)2

)
(2.11)

where all the λ are hyperparameters, the letter y denotes GT in any form, h and v are horizontal
and vertical GT maps, gh and gv are the gradients of horizontal and vertical maps, D is the
number of pixels in any image, B is the batch size, ∥ · ∥22 is the L2 norm, H(·) and V (·) are
the outputs of the HV branch, NP (·) the output of the NP branch and TP (·) the output of
the TP branch. This loss is particularly interesting because it combines multiple ideas. It is a
mix of classification, regression and segmentation losses. Moreover, it can be considered as a

11

Jose Pérez Cano Problem Formulation and State Of The Art

second order optimisation since it is using the mean square error over the gradients. On the
other side it combines the cross-entropy which is designed specially for classification problems
while optimising the Dice loss which is more or less like maximising the intersection of predicted
and real cells, more on that on subsection 3.3.9. It is expected that optimising all the different
objectives while using a single encoder is going to make that encoder extract features useful for
a variety of tasks, thus generalising better.

After the model is trained, it can be used for inference in addition with a post-processing
phase which consists of the watershed algorithm. This particular watershed requires an energy
landscape which defines the space where the flooding is made and a marker that contains the
starting points to start the flooding. Both are defined below

E = (1− Sm(X))⊙NP (X) (2.12)
M = ReLU(NP (X)− Sm(X)) (2.13)

being E the energy and M the marker. In those equations X refers to the input image, ReLU is
the rectified linear unit [2], ⊙ is the element-wise multiplication, also referred to as Hadamard
product, and Sm(X) is the thresholded gradient of the HV branch as expressed here

Sm(X) = max(Sx ∗H(X), Sy ∗ V (X)) (2.14)

where Sx and Sy are Sobel filters [32] and ∗ is the convolution operation. The whole process
can be visualised in Figure 2.7. The reason for using gradient filters over the HV branch is
that if the prediction is perfect, then such gradients are exactly the NP branch. Therefore, if
we apply a watershed of one over the other it is expected that one branch fills the errors of the
other. That is not so simple in practice, and for this post processing algorithm to work both
the HV branch and the NP branch need to be expanded and contracted using a thresholding
function over a threshold that was carefully selected by the authors based on empirical results.

2.4 Graph neural networks

Having described the state of the art for computer vision, let’s introduce the state of the art
of graph neural networks as well. Graph neural networks are very similar to neural networks
but the key difference is that the computational graph is different for every node and it varies
depending on which nodes it is connected to. GNNs as used in this thesis generate an embedding
which decodes all the relevant information of that node. Most of the techniques used with
neural networks can be extended to GNNs as well, like dropout [13], batch normalisation [14]
or pooling layers [41]. In fact, there are more than 50 different possible architectures [41] and
more than 300.000 possible configurations [42]. However I will focus mainly on two of the most
popular layers: graph convolution and graph attention. Both can be used for node classification
which is what we are interested about since we are going to treat cells as nodes. More on that
description in section 3.1.

2.4.1 Graph convolution

This architecture was proposed by Thomas N. Kipf et al. [15] in 2016 and has been cited almost
ten thousands times as of this date. The main idea is to adapt the notion of convolution from
images to graphs. An illustration of the concept can be seen in Figure 2.8.

Mathematically, the graph convolution operation as expressed in [15] can be defined as
shown below

12

Jose Pérez Cano Problem Formulation and State Of The Art

(a) 2D Convolution where each pixel can
be considered a node connected to all its
adjacent pixels. This operation returns
the weighted average of adjacent pixels
for each node.

(b) Graph Convolution where the
weighted average is taken with respect
to adjacent nodes. There is no notion
of pixels and each node has no absolute
spatial coordinates.

Figure 2.8: Visualisation of 2D Convolution vs Graph Convolution taken from [41].

h
(l+1)
j = σ

b(l) +
∑
k∈Nj

1

cjk
W(l)h

(l)
k

 (2.15)

where b(l) ∈ Rd,W(l) ∈ Rd×d are the bias and weights of the layer, Nj is the set of neighbours
of node j, cjk =

√
|Nj| · |Nk| is a normalisation factor and σ is an activation function. The

vectors h(l)
k are the hidden embeddings of the network for each layer, being h

(0)
k an initial vector

containing any relevant information about the node. That information can be the area of the
cell, the average colour, or even a prior distribution for the class label. In the last layer, the
weight matrix is of dimensions C × d, where C is the number of classes or 1 if C = 2 and
the activation function is either the sigmoid for a binary problem or the softmax [11] for a
multi-class problem.

2.4.2 Graph attention

As an improvement over simply doing the average, one year after the publication of the graph
convolution, Petar Veličković et al. [36] proposed the idea of including the attention mechanism
[3] to compute a weighted average instead. This idea, which has been cited over eight thousands
times, is visualised in Figure 2.9.

More formally, the computation can be described as follows

h
(l+1)
j = σ

∑
k∈Nj

αjkW
(l)h

(l)
k

 (2.16)

where Wl ∈ Rd×d are the layer weights and αjk ∈ R are the attention weights which are defined
by the following formula

αjk =
exp(LeakyReLU(a · [Whj||Whk]))∑

r∈Nj
exp(LeakyReLU(a · [Whj||Whr]))

(2.17)

13

Jose Pérez Cano Problem Formulation and State Of The Art

Figure 2.9: On the left is the overview of the computation of the attention weights. For each
adjacent node an attention weight is computed based on the similarity of their embeddings. On
the right there is a visualisation about multi-head attention, which consists of concatenating
the result of several attention mechanisms. The figures are taken from the original article [36].

being a ∈ R2d′ ,W ∈ Rd′×d two learnable projection matrices, LeakyReLU is the leaky recti-
fied linear unit [19] and || the concatenation operation. Inspired by the multi-head attention
mechanism proposed in [35], the previous attention mechanism can be extended to H heads

h
(l+1)
j =

Hn

h=1

σ

∑
k∈Nj

αjkhW
(l)
h h

(l)
k

 (2.18)

where now W
(l)
h ∈ Rd×Hd, the attention weights are different for each head and sum up to one in

each head
∑

k∈Nj
αjkh = 1, ∀h and in the final layer heads are averaged instead of concatenated

as explained in [36]. Notice that there is not bias as with the convolution. This is because the
attention scores are thought to be similarities between nodes. The attention mechanism is just
a way of averaging embeddings based on their similarity to the target node. There is no need
for bias under that interpretation.

2.5 XGBoost

The last section of this chapter is devoted to give a very brief explanation of an algorithm
that is going to be tangentially used in the experiments as a way to perform an ablation study
to see if the graphs are really being useful or not. XGBoost [8] is an algorithm to perform
either regression or classification over tabular data. In our case, it is going to be used over
the extracted features of each cell (perimeter, area, ...) to predict its class. The XGBoost
algorithm is in fact a gradient boosted tree, the distinction here comes because XGBoost is a
faster implementation of such idea. To understand what a gradient boosted tree we first need
to explain what a random forest is. It is a set of tree classifiers that are ensembled together

14

Jose Pérez Cano Problem Formulation and State Of The Art

using the average of their predictions. A visualisation of it is here below5.
Training Data

sample and feature bagging

. . .

Tree 1 Tree 2 Tree n

mean in regression or majority vote in classification

prediction

Now, to pass from a random forest to a gradient boosted tree we have to substitute the idea
of bagging (doing the average) to boosting. Boosting consists of incrementally add models to
the ensemble that each of them predicts the error of the previous ensemble. This way every
model you add operates on a smaller target variable. For classification problems, the residual
is taken from the log likelihood so that it is treated as a regression problem over the real line.
The process is represented on Figure 2.106.

Figure 2.10: Visualisation of the concept of boosting for tree models. Image taken from a
medium post.

5http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/ Accessed 25th
January 2023

6Image taken from https://medium.com/analytics-vidhya/what-is-gradient-boosting-how-is-it-
different-from-ada-boost-2d5ff5767cb2 Accessed 15th May 2023

15

http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
https://medium.com/analytics-vidhya/what-is-gradient-boosting-how-is-it-different-from-ada-boost-2d5ff5767cb2
https://medium.com/analytics-vidhya/what-is-gradient-boosting-how-is-it-different-from-ada-boost-2d5ff5767cb2

Chapter 3

Problem Solving

Having described the problem at hand as well as relevant deep learning methods it is time to join
it all into one single method. In this chapter we will cover a detailed explanation of the method
proposed, the metrics that will be used to compare across architectures and hyperparameters
and the experiments carried out to show its usefulness.

3.1 Method description

I have described how the cell classification problem was tackled with the help of convolutional
neural networks. I have also explained two algorithms used for node classification. It is time
to merge both fields. For that, we need to describe the cell classification problem as a node
classification problem. What are going to be our nodes? The individual cells extracted from
Hovernet. Using that computer algorithm we are going to infer the location of the cells in a
patch by considering the contours in the predicted segmentation. Those contours are used just
to extract what we call morphological features of the cell and its coordinates in the image. It
is left to define the edges. We are going to consider two nodes (cells) to be related if they are
sufficiently close. By sufficiently close it is meant that their euclidean distance is less than some
previously defined amount. Apart from that, to have manageable graphs, the degree of each
node is limited by only considering a small amount of nearby nodes as possible connections.
This way we ensure the number of edges increases linearly with the number of nodes making
our method more scalable. An example of such graph is on Figure 3.1.

Figure 3.1: Example of an image and its associated graph. At the middle we have the nodes
located at their corresponding centroids. However, a graph is an abstraction, so it may also be
viewed as in the right image, since it only encodes relationships, not absolute positions. The
visualization of the graph was made using Gephi [4].

Given nodes and edges we can still give more information to the graph neural network. In
subsection 2.4.1 we showed that the network can be given an initial set of features h(0)

k . Those
features can be anything that gives information about the cell. We decided to use the following
set of descriptive features:

• The area and perimeter of the cell measured in pixels. Those values should give informa-
tion about the shape of the cell.

16

Jose Pérez Cano Problem Solving

• The standard deviation of the values of the pixels in gray format. This magnitude is
supposed to bring insights about the luminosity of the cell.

• The histogram of the red, green and blue colour channels. We expect it to summarise the
information about the colour of the cell.

• A prior distribution of the class. It is computed using the output of Hovernet. Each class
probability is inferred as the number of pixels of that class predicted by Hovernet divided
by the total number of pixels of the cell.

Later on, in section 3.4 an experiment is described to discover how relevant the selected features
are.

3.2 Hyperparameter tuning

In our first step, Hovernet, we did not try to optimize any hyperparameter for two reasons.
The first, the compute power needed is simply prohibitive. One configuration requires several
hours to train. Doing cross-validation on it or trying more than 10 configurations is going to
last for weeks for every dataset involved. The other reason is that the method is quite stable.
Looking at the loss function during training for the train and validation dataset, we observed
that after a few tens of epochs the curve converged for both datasets. So it seems to indicate
that changing hyperparameters is not going to give a significant difference for the Hovernet
model.

For the graph networks we will be tuning 4 variables. The first one is the number of layers.
We fixed the number of neurons on its layer to 100 and try architectures from 1 layer up to 15
layers. The second hyperparameter we tune is the dropout rate. We apply dropout after every
graph layer. The third hyperparameter is batch normalisation. We consider models with and
without it. And the last hyperparameter is the type of the graph layer, either convolution or
attention. Having defined those, we perform a grid search over them. We train all the different
configurations and evaluate them in a validation dataset. The configuration that gives the best
validation score is then evaluated on the test set, and those are the metrics that are reported.
Since we are optimising the type of graph layer used, I will refer to the model as GNN and not
as GCN (convolution) of GAT (attention) since it could be any of those.

In the case of XGBoost the tuning is done a bit differently. We optimize over the learning
rate, the maximum depth of each tree and the percentage of features visible to each tree. The
number of trees is fixed at 500 for every configuration. Since XGBoost is so efficient we could
perform cross validation to estimate the validation score. Concretely, we used 10 fold cross
validation. Then, the configuration with the best cross validation score was tested on the test
set, and those are the metrics reported. For a more detailed analysis of which combination of
hyperparameters was the optimal in each case, please refer to the Appendix E.

3.3 Evaluation metrics

This section is going to provide a review of the most common metrics for any classification
problem, either binary of multiclass.

3.3.1 Confusion Matrix

Prior to defining any metric we have to define the concept of confusion matrix. Most of the
metrics described can be expressed in terms of it. The confusion matrix is a way of measuring

17

Jose Pérez Cano Problem Solving

how precise is any method. For a binary classification problem one has positive (1) and negative
(0) classes. If the model correctly predicts the positive or negative class it is called true positive
and true negative. Then, if the model incorrectly predicts positive it is called false positive and
if it infers negative wrongly it is denoted by false negative. Confusion matrices are typically
expressed as shown below.

Table 3.1: Binary confusion matrix.

Predicted
Positive Negative

Actual Positive TP FP
Negative FN TN

On our specific problem the true positives are the tumoural cells that are correctly pre-
dicted as tumoural, true negatives are healthy cells rightly classified as so and false positives
or negatives are misclassifications of cells in one way or another. However, there is one nuance
needed to take into account. It may be possible that one cell is not predicted or that the model
predicts more cells than there really are. For that reason we will only be considering those cells
that are in the ground truth and in the prediction at the same time. This means that it is
needed to create a 1-1 correspondence between real and predicted cells. This correspondence
is created by distance. Two cells are considered a pairing if the former is the closest to the
latter, and the latter is the closest to the former. Ignoring cells that do not belong to such
pairings is not a problem because we are interested in improving the classification of already
predicted cells, not on improving the segmentation itself. Nonetheless, we can also evaluate the
performance on the missing cells by including the background as a new class.

To deal with such multiclass scenarios an adaptation is needed. Instead of adding more
rows and columns the matrix is built considering one class against all the others. In that case
several confusion matrices are needed. Of course, one can also create a bigger confusion matrix
as follows

Table 3.2: Multi-class confusion matrix. Here the terms true positive, negative and false
positive, negative lack any meaning unless you consider one class against the others.

Predicted
Class 1 Class 2 Class 3 Class 4 Class 5

Actual

Class 1
Class 2
Class 3
Class 4
Class 5

3.3.2 Accuracy

The first metric we will be defining is the most intuitive one. It is basically the percentage of
correct predictions. Using the terminology from Table 3.1 it can be expressed as

TP + TN

TP + FP + TN + FN
(3.1)

The main disadvantage of the accuracy comes when dealing with imbalanced datasets. By
predicting the class that appears the most a high accuracy can be easily achieved in those cases.

The accuracy is a binary classification metric, later on in subsection 3.3.8 an adaptation to
multi-class problems is described.

18

Jose Pérez Cano Problem Solving

3.3.3 Precision

The accuracy requires to know how many true negatives there are. But in some problems like
object detection that is not always possible. Due to how labels are constructed in some cases
it is impossible to know how many true negatives can be considered, although in the case of
object detection the trend seems to be changing these days [16]. In those cases it makes sense
to define the percentage of correct predictions only within the positive class. Mathematically,
precision is defined as

P =
TP

TP + FP
(3.2)

This metric, however, can be easily fooled. In an image with hundreds of cells, by only
predicting one true tumoural cell you achieve a precision of 100%. But that is a useless value
since you would be missing on most relevant cells.

3.3.4 Recall

As opposed to precision, recall focuses more on what relevant values are retrieved rather than
them being correct. It is defined like this

R =
TP

TP + FN
(3.3)

Again, this metric can also be fooled. By predicting everything as positive you achieve
100%. Since this metric ignores false positives you are left with a biased metric against the
negative label.

3.3.5 F1 Score

In order to take the best from precision and recall, the F-measure was proposed in 1992 at the
Proceedings of the 4th conference on Message understanding [26]. The F-measure is defined as
the harmonic mean between precision and recall.

2 · P ·R
P +R

=
2 · TP

2 · TP + FP + FN
(3.4)

Nowadays it is called F1 score because that measure has been extended to what is called
the Fβ score.

Fβ =
(1 + β2) · P ·R
β2 · P +R

=
(1 + β2) · TP

(1 + β2) · TP + β2 · FP + FN
(3.5)

By taking β = 1 the original F-measure is obtained. This metric achieves 100% when all the
relevant positive samples are retrieved and only the relevant samples, therefore it is not so
easily fooled. Moreover, it is less prone to suffer from class imbalance as the accuracy does.

There are three ways of extending the F1 score to a multi-class classification problem. All
of them involve some kind of averaging the individual F1 scores computed by considering one
class against all the others.

3.3.6 Macro F1 Score

The first way of averaging individual F1 scores is by simply taking the arithmetic mean. If we
have n classes, and we call F i

1 the F1 score of the class i against the others, then the macro F1

score is

19

Jose Pérez Cano Problem Solving

1

n

n∑
i=1

F i
1 (3.6)

The main drawback of only considering this metric is that classes can be imbalanced. In
fact, for multi-class problems that is the rule rather than the exception. Giving equal weights
to all of the classes harms the less represented labels.

3.3.7 Weighted F1 Score

As a way of solving the main drawback of the macro F1 score one can deal with the weighted
F1 score that averages individual scores based on their support, that is, based on the number of
true instances by class. Let’s call ni the number of true instances of class i, then the weighted
F1 score is

n∑
i=1

ni · F i
1

n1 + · · ·+ nn

(3.7)

3.3.8 Micro F1 Score

Another way of averaging the individual F1 scores is by micro-averaging. When macro-averaging,
true positives, false negatives and false positives are computed per-class prior to averaging all
the scores computed as defined in subsection 3.3.5. Micro-averaging changes the order. True
positives, false negatives and false positives are first aggregated among all the classes and then
the micro F1 score is computed using the formula in subsection 3.3.5. To illustrate the com-
putation let’s consider the matrix from Table 3.2 and let’s also fill it with false positives /
negatives and true positives, giving the matrix in Table 3.3. Now, this terminology only makes
sense when splitting by class. For that reason we will denote by TPi the true positives of class
i, and FPi, FNi the false positives and negatives of same class i. Notice that what is a false
positive for one class can be a false negative for another.

Table 3.3: Multi-class confusion matrix. The values in the diagonal are all true positives when
considering one class agains the others. Depending on which class you are considering, the
values considered false positives and false negatives could be interchanged.

Predicted
Class 1 Class 2 Class 3 Class 4 Class 5

Actual

Class 1 TP1 FP1, FN2 FP1, FN3 FP1, FN4 FP1, FN5

Class 2 FP2, FN1 TP2 FP2, FN3 FP2, FN4 FP2, FN5

Class 3 FP3, FN1 FP3, FN2 TP3 FP3, FN4 FP3, FN5

Class 4 FP4, FN1 FP4, FN2 FP4, FN3 TP4 FP4, FN5

Class 5 FP5, FN1 FP5, FN2 FP5, FN3 FP5, FN4 TP5

The micro-average is then the sum of the diagonal divided by the sum of all the entries in
the matrix. It is quite similar to how the accuracy is computed. For that reason sometimes
this metric is referred to as the accuracy in multi-class problems.

20

Jose Pérez Cano Problem Solving

3.3.9 Dice’s coefficient

The Dice’s coefficient can be viewed as a generalisation of the F1 score. Given two sets X and
Y the Dice’s coefficient is defined as

2 · |X ∩ Y |
|X|+ |Y |

(3.8)

If we consider X as the set of relevant items and Y as the set of retrieved elements, we
obtain the F1 score. To show that, let’s see what are the sets of retrieved and relevant objects.
The relevant items are the sum of true positives and false negatives. The retrieved ones are the
sum of true positives and false positives. The intersection is clearly just the true positives, so
|X ∩ Y | = TP and also |X|+ |Y | = 2 · TP + FN + FP . Substituting into the formula for the
Dice’s coefficient the formula for the F1 score appears.

But the Dice’s coefficient can be used for more than that. It can be used as a metric for
image segmentation problems. By defining X as the set of pixels that belongs to a class in the
ground truth and Y as the set of pixels of the same class but in the predictions, the Dice’s
coefficient can be used for evaluating the performance of a segmentation model.

Furthermore, it is possible to extend that measure to a loss function. All the metrics
presented so far require a thresholding function at the end. That function has a discontinuity
at 0.5 but worse than that, are completely flat in the rest of the [0, 1] interval, which means
the gradient is zero. A null gradient stops any deep learning method from using them as loss
functions. The adaptation of the Dice’s coefficient to a loss was made by Milletari et al. [25].
The idea is to take advantage from the fact that pixel class probabilities range from 0 to 1. The
Dice’s coefficient can be seen as a boolean operation. Therefore, the Dice’s loss is a function
that when given just 0s and 1s is that same boolean operation, but is also defined in the rest of
the [0, 1] interval and not just in the extremes. To be consistent with the original notation, let’s
call pi to the predicted probabilities and gi to the ground truth probabilities, where i ranges
from 1 to N being N the total number of pixels. Thus, the Dice’s loss is

D =
2
∑N

i=1 pigi∑N
i=1 p

2
i +

∑N
i=1 g

2
i

(3.9)

It is clear that when pi ∈ {0, 1}∀i and gi ∈ {0, 1}∀i the result is the same as the Dice’s
coefficient. But in this new version, the gradient can be computed with respect to any pixel
with this formula.

∂D

∂pj
= 2 ·

gj

(∑N
i=1 p

2
i +

∑N
i=1 g

2
i

)
− 2pj

∑N
i=1 pigi(∑N

i=1 p
2
i +

∑N
i=1 g

2
i

)2 (3.10)

3.3.10 ROC AUC

Another metric that avoids thresholding the probabilities is the Receiver Operating Character-
istic Area Under the Curve. It evaluates the ordering of the probabilities instead of the actual
predictions. Before diving into the details of the ROC curve, we need to first define the false
positive rate.

FPR =
FP

FP + TN
(3.11)

False positives and true negatives depend on the threshold selected. Using 0.5 gives some
predictions while using −1 give everything as positive and using 2 returns all negatives. By

21

Jose Pérez Cano Problem Solving

changing the threshold different FPR are obtained. Moreover, the Recall, also known as true
positive rate (TPR), changes when using different thresholds too. There is a balance between
both of them, similar to what happened with precision and recall. Both metrics can be fooled,
but not at the same time. So by changing the threshold one can measure which metric is being
fooled the most. The ROC curve plots the TPR in the y axis and the FPR in the x axis. An
example is on Figure 3.2.

Figure 3.2: Example of a ROC curve.

This curve always starts in the (0, 0) and finishes in the (1, 1) corresponding to thresholds 2
and −1 respectively (or any other threshold that returns all negatives and all positives). Given
that, the ROC AUC is, as its name states, the area under that curve. A random classifier
would yield the orange line in Figure 3.2 that goes from (0, 0) to (1, 1), while a perfect classifier
would go from (0, 0) to (0, 1) and then to (1, 1). Therefore, any classifier has an AUC roughly
between 0.5 and 1. Notice that an AUC of 0 corresponds to an adversarial classifier, which is
a perfect classifier but changes negatives with positives.

3.3.11 Calibration

To finish this section, I’ll cover a different way of evaluating classifiers. Normally, the effective-
ness of a classifier is measured depending on how well it classifies samples. But that has its
flaws too. It may be interesting to have a way of measuring the uncertainty of a prediction.
If I am going to be diagnosed with cancer I want to know how likely that is wrong. Having a
51% probability of dying is not the same as having a 99.9% probability. None of the previous
metrics evaluates the quality of the uncertainty provided by the probabilities. Deep learning
methods oftentimes suffer from overconfidence [40, 21, 20]. Neural networks typically provide
probabilities that are close to 1 even when the available information is not enough to be so
sure about that prediction. To analyse that phenomena, reliability diagrams were invented. An
example is provided in Figure 3.3. On the x axis there is the predicted probability while in the
y axis is an estimation of the real probability.

More specifically, predicted probability is quantised. The x axis represents the probability
distribution of the model, but we only have a finite collection of samples, so that distribution
is estimated using the histogram. This means that the points in Figure 3.3 in fact represents a
set of samples that are predicted with very similar probabilities. The magnitude in the y axis
is how many of them really are positive. As an example, suppose we have 4 samples predicted

22

Jose Pérez Cano Problem Solving

Figure 3.3: Example of a reliability diagram.

with probabilities 0.74, 0.75, 0.75, 0.76 and only three of them are real positives. The mean
predicted probability of that group is 0.75, and the real probability is also 0.75 since 3 out of
4 are positives. This would give a point in the black line, a perfectly calibrated point. On the
other hand, consider the following example. Four samples, 3 with probability 1 and 1 with
probability 0. From the first three, one is negative and two are positive. The sample with
probability 0 is negative. In this case, we have a point at (0, 0) and another at (1, 2

3
). This

time, we have a less calibrated prediction. Nonetheless, in both examples we have an accuracy
of 75%. This illustrates the fact that calibration is independent from how well you classify
samples. An example of an uncalibrated model is on Figure 3.4.

Figure 3.4: Reliability diagram of Hovernet from one of our experiments. At the right is the
histogram of the predicted probabilities, clearly not a uniform distribution.

Reliability diagrams can be converted into a metric in the same way the ROC was made a
metric by using the area under it. Here, instead of the area under the curve, the area between
the model curve and a perfectly calibrated curve is taken. Furthermore, since points in that
diagram can represent sets of arbitrary size the area of each bin is weighted by the number
of samples in it. Where now we are calling the points bins, since in fact, each point has a
width that represents the range of probabilities it takes into account. A more appropriate

23

Jose Pérez Cano Problem Solving

visualisation is on Figure 3.51 since it also shows the differences between the real and predicted
probability which is what is used for computing the metric. The mean of the absolute value of
the differences showed in that figure is called Expected Calibration Error (ECE).

Figure 3.5: Another way of representing a reliability diagram. The blue colour is the real
probability of a class in that group. The two red colours denote the difference with respect to
the optimally calibrated classifier. The difference can be by lack or by excess, that is why there
are two colours. The darker one means the real probability is higher than the predicted one.
And the lighter one means the predicted probability is lower than what it should be.

3.3.12 Extending metrics

I have depicted a clear way of measuring uncertainty calibration in the previous section but it
has at least one downside, it is only for binary problems. I’ll devote this subsection to a way in
which one can extend any binary metric to a multiclass metric. Suppose we have a metric called
M . Now, given a multiclass setup one can compute Mk, the same metric but considering the
class k against the others. By grouping all the other classes into one, the problem is now binary
and so we can compute M . By averaging all the Mk we get the extension of M . For instance,
the macro F1 score correspond to doing this to the F1 score with equal weights to all classes.
While the weighted F1 score is the weighted average of the individual F1 scores. However,
the micro F1 score, which is also called accuracy, does not correspond to the extension of the
accuracy, although it is quite close. The extension of the accuracy is in fact 2

N
Micro + N−2

N

being N the number of classes. The proof is straightforward. If we call D the diagonal of the
confusion matrix and T the total sum then

Acck =
akk +

∑
i,j ̸=k aij∑

i,j aij
(3.12)

Accextended =
1

N

∑
k

Acck =

∑
k akk +

∑
k

∑
i,j ̸=k aij

N
∑

i,j aij
(3.13)

=
2D + (N − 2)T

NT
=

2

N
Micro +

N − 2

N
(3.14)

where the intermediate step can be deduced by counting how many times does each term
appears. The diagonal terms appear N − 1 times while the rest of terms appear N − 2 times,
therefore

∑
k

∑
i,j ̸=k aij = D + (N − 1)T , concluding the proof. Surprisingly enough, the

extension of the accuracy approaches 1 as the number of classes increases so it is quite a
bad metric and is not used in practice, that is why the Micro F1 is always preferred. In the

1Image taken from https://github.com/EFS-OpenSource/calibration-framework/issues/17 Accessed
15th May 2023

24

https://github.com/EFS-OpenSource/calibration-framework/issues/17

Jose Pérez Cano Problem Solving

experiments below, we will be using the extension of the ECE and call it just ECE for simplicity
in the multiclass datasets.

3.4 Experiments

Two experiments were carried out to show the usefulness of graph neural networks in the
problem of cell detection and another two experiments were made to provide insights about
the models involved. Results are in section 4.1, this section is only to describe the experiments
themselves.

3.4.1 GNN vs CNN

The main experiment and the one that supports the principal thesis of this work compares
convolutional neural networks with graph neural networks. In order to state that GNNs are
actually useful they must outperform CNNs (Hovernet) in every metric defined in section 3.3.
But outperforming in just one dataset is not enough. For that reason the comparison will be
made using all the datasets from the original Hovernet article [12, 10, 37], and using several
internal datasets of the DigiPatics project [33]. More concretely, the methods will be evaluated
in the HER2 stained breast dataset and the H&E stained lung dataset. For the multi-class
problems, multi-class metrics will be taken into account and for binary problems, binary metrics.

3.4.2 GNN vs XGBoost

Outperforming CNNs may not be due to the graph structure. It is possible that the extracted
features are sufficient to improve CNN results. It may be that the edges do not contain any
useful information. To account for that, GNN must be compared with node-only methods. In
this case we selected XGBoost [8] for comparison since it has been in the leaderboard of several
Kaggle competitions2. By comparing node-only methods with GNNs we can know if the value
of GNNs reside on the extracted features or on the graph structure itself.

3.4.3 Void GNNs

Finally, the last experiment is about knowing if the extracted features are relevant or not.
We distinguish two types of features: morphological and probabilities. The first group is
independent from the Hovernet output while the second is not. To see which of them are more
important we train the same GNN models with different features. One with all the features,
one only with morphological features and another only with probabilities. By comparing the
metrics obtained we can discern which set of features is more relevant.

3.4.4 Scaling CNNs

The original Hovernet article restricted their images to having 270x270 pixels. That is a very
narrow view of the cells. It seems intuitive that increasing the receptive field of the model
increases its performance too. But science does not understand intuition, only facts. So an
experiment needs to be carried out in order to prove if increasing the receptive field is really
beneficial. Apart from that, since the original weights of Hovernet are open source, we can
initialise our weights with them. Therefore, there are four different models that we will call
270, 270FT, 518 and 518FT. The number indicates the resolution of the images and FT means

2https://dataaspirant.com/xgboost-algorithm/

25

https://dataaspirant.com/xgboost-algorithm/

Jose Pérez Cano Problem Solving

fine-tuned. The models with FT in the name initialise their weights with the ones from the
original Hovernet article. The other models initialise their weights at random. The datasets
used in this experiment are only our own lung and breast datasets.

26

Chapter 4

Results

4.1 Quantitative analysis

In what follows there will be four tables per section showing the results of each experiment for
the four different datasets described in section 2.2. The order will also be the same, with the
lung dataset first since it is the main focus of the thesis. Also, at every table the best results
will be marked in bold.

4.1.1 GNN vs CNN

This is the main experiment of my thesis. It shows whether using graphs improves over not
using them. We observe that for the case of lung, putting a graph on top of Hovernet gives
better metrics. The last metric is of special interest. It means that overall the predicted
percentage of tumoural cells is just three points away from the real percentage. We strongly
believe that this value is more than enough to consider the model a good fit. Physician on their
day to day approximate their percentages to the nearest 5% to be faster and because they are
estimating areas of tumour. We believe the human eye cannot approximate areas any better.
It would be interesting to perform an experiment if that the case. Giving people the labelled
images and asking them to estimate the percentage given the real labels. I predict that the
error in percentage prediction is going to be around that 5%.

On the other datasets, for two out of the three multiclass datasets it does improve. More-
over it also lowers the ECE, showing it is not only predicting better but is better calibrated.
Nonetheless, the remaining dataset (CoNSeP) poses a question. Why is not working there?
Probably because the structure is not so useful when working with colorectal cancer. It may
also be that since there are seven classes, the relationship between them are more complex.
Maybe if we considered just two classes the GNNs would again win. We would have liked to
perform such experiment, but we lack the expertise on colorectal cancer to decide how to prop-
erly label the cells to achieve such results. Another remarkable property is that even though
GNNs are worse in the CoNSeP dataset overall, they have a lower ECE, meaning they are still
better calibrated.

In the datasets that GNNs do improve over CNNs, it is left to discern the real cause why
that is happening. When talking to experts, we expected GNNs to be a good fit for the lung
dataset but not for the breast one. In the lung dataset they pay special attention to the way
cells are grouped together, while in the breast dataset it was not so much the case. So, why
does using graphs give better results in both cases? The GNN vs XGBoost and the Void GNN
experiments will throw light in this matter. Also, we are here referring to GNNs in an abstract
manner for simplicity, the specific architecture that performed best on each case is reported in
Appendix E.

27

Jose Pérez Cano Results

Table 4.1: Result of the GNN vs CNN experiment.

Accuracy (↑) F1 score (↑) ROC AUC (↑) ECE (↓) %Err (↓)
CNN 82.39% 57.69% 75.20% 0.1653 11.89%
GNN 83.27% 66.53% 86.84% 0.0884 3.52%

Table 4.2: DigiPatics lung dataset.

Micro F1 score (↑) Macro F1 score (↑) Weighted F1 score (↑) ECE (↓)
CNN 65.12% 40.55% 66.38% 0.3243
GNN 70.47% 42.53% 71.13% 0.2501

Table 4.3: DigiPatics breast dataset.

Micro F1 score (↑) Macro F1 score (↑) Weighted F1 score (↑) ECE (↓)
CNN 71.11% 54.06% 70.39% 0.0680
GNN 64.44% 47.87% 61.42% 0.0539

Table 4.4: CoNSeP dataset.

Micro F1 score (↑) Macro F1 score (↑) Weighted F1 score (↑) ECE (↓)
CNN 82.06 % 68.76% 82.34% 0.0774
GNN 88.71% 69.72% 89.05% 0.0251

Table 4.5: MoNuSAC dataset.

4.1.2 GNN vs XGBoost

In the first experiment it was shown that GNNs outperform CNNs in most of the scenarios.
But why? Is it due to the relations among cells or due to stacking another classifier on top of
the CNN? In the former we should expect GNN to also outperform a node-only method like
XGBoost. If it is the latter, then XGBoost should win or give similar results. This experiment
can be viewed as an ablation study over the edges. We thought of using the same GNN
without edges, but that is simply a multilayer perceptron which, based on my own experience,
for tabular data is almost never a good approach. We wanted the node-only alternative to be
as good as possible, that is why we chose XGBoost, because it is the state of the art for tabular
data. If GNNs win XGBoost, then the edges are clearly relevant to the task, which is what we
wanted to show.

So, are edges neccessary? As we can see here, the answer is not crystal clear. In some cases
it is better to use GNNs and in others it is not. In order to further elucidate when is the case in
advance to training the models, the qualitative analysis will help give some insight. Looking at
individual images will provide some keys about when graphs are a good fit. Moreover, we find
that for those datasets where GNNs perform better, in the Void GNN experiment the models
trained without probabilities also perform better. While for those that XGBoost is the winner
here, the models with probabilities are the winner there. Showcasing that for MoNuSAC and
Digipatic lung datasets, the graph structure is indeed important and the performance boost is
not due to stacking a classifier on top. This is also consistent with our prior knowledge of the
breast dataset. We didn’t expect graphs to be a good fit because they indeed aren’t. Their
performance boost is because of the overall model being a stack classifier.

28

Jose Pérez Cano Results

Table 4.6: Result of the GNN vs XGBoost experiment.

Accuracy (↑) F1 score (↑) ROC AUC (↑) ECE (↓) %Err (↓)
CNN 82.39% 57.69% 75.20% 0.1653 11.89%
XGB 83.77% 62.64% 84.20% 0.1007 7.85%
GNN 83.27% 66.53% 86.84% 0.0884 3.52%

Table 4.7: DigiPatics lung dataset.

Micro F1 score (↑) Macro F1 score (↑) Weighted F1 score (↑) ECE (↓)
CNN 65.12% 40.55% 66.38% 0.3243
XGB 78.51% 47.36% 79.78% 0.2502
GNN 70.47% 42.53% 71.13% 0.2501

Table 4.8: DigiPatics breast dataset.

Micro F1 score (↑) Macro F1 score (↑) Weighted F1 score (↑) ECE (↓)
CNN 71.11% 54.06% 70.39% 0.0680
XGB 71.54% 51.64% 69.87% 0.0320
GNN 64.44% 47.87% 61.42% 0.0539

Table 4.9: CoNSeP dataset.

Micro F1 score (↑) Macro F1 score (↑) Weighted F1 score (↑) ECE (↓)
CNN 82.06 % 68.76% 82.34% 0.0774
XGB 85.23% 76.09% 85.20% 0.0449
GNN 88.71% 69.72% 89.05% 0.0251

Table 4.10: MoNuSAC dataset.

4.1.3 Void GNNs

Another way of seeing if the good performance of graphs is due to the fact that we are con-
sidering the existence of edges or it is explained by the attributes of the nodes, is to train
the graph models with and without the attributes. If there is no performance difference, then
edges are relevant. Otherwise, it is less relevant. Moreover, there is a set of attributes that
depends on the layers behind, the probabilities. To discern if GNNs are working cause they
are stacked above or because there is a graph structure we also train the models with and
without the probabilities. By training we refer to the full hyperparameter process as described
in section 3.2 where we optimise parameters on training set and hyperparameters on validation
set prior to evaluating on the test set. Specific details of the values that were selected are in
Appendix E.

We observe that in the datasets that XGBoost did not outperform GNNs the GNN trained
with no information about the prior probability given by Hovernet does in fact perform better
than the model with those probabilities. However, in the two datasets that XGBoost did give
better results we can see that using probabilities gives a benefit over using other types of
features. This tells us that MoNuSAC and DigiPatics lung datasets have more structure than
CoNSeP and DigiPatics breast datasets. In DigiPatics breast GNNs gave better results than
CNN but it was due to stacking. For DigiPatics lung it was because the graph is indeed a good
way of modelling the problem.

Another conclusion that derives from this tables is that some kind of features are needed,

29

Jose Pérez Cano Results

no matter how simple they are. Training the graph networks without any feature at all gave
very poor results. It also resulted in a more unstable training in general. Providing the model
with some information about the individual cells is crucial for the proper functioning of the
method.

Table 4.11: Result of the Void GNNs experiment.

Accuracy (↑) F1 score (↑) ROC AUC (↑) ECE (↓) %Err (↓)
Full 83.27% 66.53% 86.84% 0.0884 3.52%

Probabilities 82.87% 63.10% 87.26% 0.0470% 7.08%
Morphological 83.81% 70.18% 88.88% 0.0431% 0.78%

Void 73.24% 0.00% 54.66% 0.1250 26.76%
Table 4.12: DigiPatics lung dataset.

Micro F1 score (↑) Macro F1 score (↑) Weighted F1 score (↑) ECE (↓)
Full 70.47% 42.53% 71.13% 0.2501

Probabilities 67.94% 40.83% 68.91% 0.2666
Morphological 63.05% 30.48% 61.26% 0.2676

Void 36.91% 11.86% 24.96% 0.2413
Table 4.13: DigiPatics breast dataset.

Micro F1 score (↑) Macro F1 score (↑) Weighted F1 score (↑) ECE (↓)
Full 64.44% 47.87% 61.42% 0.0539

Probabilities 64.93% 47.37% 61.63% 0.0494
Morphological 52.11% 29.42% 48.19% 0.0582

Void 29.88% 8.08% 15.78% 0.0742
Table 4.14: CoNSeP dataset.

Micro F1 score (↑) Macro F1 score (↑) Weighted F1 score (↑) ECE (↓)
Full 88.71% 69.72% 89.05% 0.0251

Probabilities 82.59% 73.43% 82.60% 0.0784
Morphological 92.01% 69.83% 92.02% 0.0405

Void 53.61% 26.65% 52.20% 0.0580
Table 4.15: MoNuSAC dataset.

30

Jose Pérez Cano Results

4.1.4 Scaling CNNs

Deleting last layer weights and retraining can give better performance, as shown below in
Table 4.19. 270FT performs better than 270 and 518FT better than 518 for the CoNSeP
dataset. This aligns perfectly with the results from [43]. They observe that reinitialising
weights and retraining can boost performance. In our setup this translates to fine-tuning a
model in the same dataset it was pretrained. That is because to perform transfer learning from
a dataset to another we reinitialised the last layer of the decoders prior to training. The main
reason for that was to adapt the model to a different number of classes. The last layer is the
only one dependent on the number of classes, so reusing it is impossible without reinitialising
the weights in some way. Also, you may have noticed that the metrics for 518FT are slightly
different than those in the GNN vs CNN experiment even though they are the same model.
That is because we trained the same model twice converging to slightly different checkpoints. I
provide both metrics to demonstrate that the ordering is the same using either of both metrics,
thus proving training is sufficiently stable.

Same result is obtained for MoNuSAC dataset. Fine-tuning the checkpoint trained on
CoNSeP helps obtain better results when applied as initialisation for the models trained on
MoNuSAC dataset which comes from a totally different distribution. The features learned by
the encoder seems to generalise well to this other dataset. However, the results in the breast
dataset differ from the ones in the CoNSeP and MoNuSAC datasets. In that case using a
pretrained checkpoint didn’t perform well at neither resolution. This may be because the local
minima found for the CoNSeP dataset is far away from the nearest minima in the DigiPatics
breast dataset, making a random initialisation a better method. Another reason may be that
the breast dataset has a colour distribution very different that the others, probably because it
used a different staining method.

Another remarkable fact is that using a field of view of 518 pixels instead of 270 gives better
metrics no matter the initialisation nor the dataset, except for lung. We would have liked to
further try a bigger field of view. But training the 518 models required more than 20 GB of
GPU VRAM. Scaling to 1030x1030 images would require near 80 GB of GPU VRAM, which
is only feasible using A100 or H100, which cost more than 10000€. Using CPU offloading was
also not an option since that technique trades memory for time, typically increasing by 100 the
time required. The models required around 4 hours to train. This means one experiment may
take up to 2 weeks with a bigger field of view, which is clearly prohibitive. With our resources,
518 was the maximum we could achieve.

The lung case is quite strange for two reasons. First, because a smaller field of view gives
better results while on the other datasets it doesn’t. And second, because in previous experi-
ments we made when the labels were not reviewed by an expert revealed exactly the opposite
pattern. The DigiPatics lung dataset went through an iterative process until it arrived at the
state it is here. The scaling experiment consistently gave better results for 518FT at all the
steps except at the last one, when the labels were all reviewed by an expert. Although we still
use the 518FT backbone for the GNN, it doesn’t invalidate the point since the two stages are
independent. We are just showing that adding a graph neural network on top improves, that
is independent from improving the segmentation model.

31

Jose Pérez Cano Results

Table 4.16: Result of the Scaling CNNs experiment.

Accuracy (↑) F1 score (↑) ROC AUC (↑)
270 78.77% 67.17% 79.00%

270FT 85.46% 71.65% 79.90%
518 81.07% 56.16% 69.73%

518FT 82.22% 57.01% 70.13%
Table 4.17: DigiPatics lung dataset.

Micro F1 score (↑) Macro F1 score (↑) Weighted F1 score (↑)
270 70.04% 38.22% 68.43%

270FT 48.55% 21.57% 34.44%
518 72.36% 45.64% 75.80%

518FT 68.78% 43.27% 71.58%
Table 4.18: DigiPatics breast dataset.

Micro F1 score (↑) Macro F1 score (↑) Weighted F1 score (↑)
270 54.20% 36.21% 54.62%

270FT 66.73% 49.01% 65.96%
518 56.75% 37.76% 59.45%

518FT 71.02% 53.83% 70.52%
Table 4.19: CoNSeP dataset.

Micro F1 score (↑) Macro F1 score (↑) Weighted F1 score (↑)
270 76.46% 56.20% 77.04%

270FT 77.97% 62.84% 77.93%
518 78.57% 58.64% 79.61%

518FT 82.02% 70.40% 82.09%
Table 4.20: MoNuSAC dataset.

4.1.5 CNNs metrics in detail

In all the experiments above I provided metrics only for 1-1 matchings of cells as explained in
subsection 3.3.1. We are only considering cells that are located in almost the same position in
the ground truth and in the predicted segmentation. That is a fair way of comparing CNN to
GNN since GNN can only improve predictions on 1-1 matchings. However, it does not show the
full picture. The CNN can miss cells or predict cells that do not exist. For that reason I here
provide the same metrics as above but adding one extra class: the background. It never has true
positives, only false positives and false negatives. Thus, it will almost always be worse than the
metrics above given. For a counter example on when it is not worse, look at the next paragraph.
The bigger the gap, the more cells it is missing or incorrectly predicting. Nevertheless, such gap
does not alter any of the conclusions. In this project we did not try to narrow this gap because
we consider the classification problem to be inherently more difficult than the segmentation
problem. We believe improving the segmentation problem is simply a matter of more data and
bigger models. If you think about it, you can detect cells without formal knowledge, it is just a
matter of geometry and color. But recognising where are the tumours located? That requires
more than 10 years of training to humans, and even in that case experts still have doubts.

32

Jose Pérez Cano Results

Therefore we directed our efforts toward improving the classification, not the segmentation.
You may have noticed that in the DigiPatics breast dataset the macro F1 score did not

worsen when adding the background. It seems counterintuitive since we are adding a class with
no true positives, only false positives and false negatives. But, the key to why this happens is
purely technical. This is the global confusion matrix for the test set in the DigiPatics breast
dataset: 

0 95 151 116 9 425
26 100 14 1 0 64
518 752 1136 819 17 445
25 6.0 54 336 28 5
0 0 0 0 0 0
509 48 18 3 1 2672


Why is this matrix problematic? Well, there is one class which does not appear at all in the
ground truth. The reason why this causes the problem is because the two macro F1 scores
are computed differently. The "With Background" metrics are computed using the confusion
matrix and a custom function I designed. The "Without Background" metrics are computed
using pairs of labels and the sklearn f1_score function. Both functions are coded properly, that
is not the problem. But in my implementation of the metric, I coded a function that estimates
the number of classes based on the classes with support in the ground truth, and also ignoring
the zero class. However, the sklearn function estimates the number of classes as the class with
the maximum label. This is making one metric being divided by 4 and another being divided
by 5. If we adjust the sklearn given metric to consider 4 classes instead of 5 we get a macro
F1 score of 50.69% which is bigger than 44.56% as expected. The reason I don’t adjust this
metric in the other tables is because the GNN methods are also evaluated using the sklearn
function so the comparison is fair as it is. I just left the metrics below unchanged to showcase
how a simple decision in design of an algorithm or method can affect the final conclusions, even
creating mathematically impossible situations.

Metrics as presented here seems to put in a very bad place the Hovernet algorithm when
dealing with the background. It seems as if it is missing a lot of cells and predicting non-existent
cells. It is more complex than that. Let’s look at an illustrative image from the breast dataset
in which metrics are less than 60%.

33

Jose Pérez Cano Results

Table 4.21: Hovernet evaluated with and without background in four different datasets.

Accuracy F1 score ROC AUC Micro F1 Macro F1 Weighted F1

With Background NA NA NA 66.12% 66.06% 72.11%
Without Background 82.39% 57.69% 75.20% NA NA NA

Table 4.22: DigiPatics lung dataset.

Micro F1 score Macro F1 score Weighted F1 score
With Background 50.57% 44.56% 57.89%

Without Background 65.12% 40.55% 66.38%
Table 4.23: DigiPatics breast dataset.

Micro F1 score Macro F1 score Weighted F1 score
With Background 48.38% 49.58% 57.84%

Without Background 71.11% 54.06% 70.39%
Table 4.24: CoNSeP dataset.

Micro F1 score Macro F1 score Weighted F1 score
With Background 53.29% 43.95% 67.67%

Without Background 82.06% 68.76% 82.34%
Table 4.25: MoNuSAC dataset.

(a) Ground truth (b) Prediction

Figure 4.1: Comparison of the ground truth labels with the prediction from Hovernet.

By only looking at Figure 4.1 can you spot rapidly all the missing cells? Probably not. The
segmentation seems accurate. But there are a lot of subtleties to take into account. Let’s look
now at Figure 4.2.

34

Jose Pérez Cano Results

(a) Ground truth (b) Prediction

Figure 4.2: Comparison of the ground truth labels with the prediction from Hovernet with all
the differences marked in black. We are only considering as a difference if the cells do not
coincide. We are not looking at the classes of detected cells, just at the missing cells.

As you can see there are a lot of inconsistencies. But those inconsistencies are very difficult to
detect. They can be divided into three groups: missing cells on GT, missing cells on prediction
and cells which are split into parts. Most of the missing cells are very dubious. I cannot really
tell if all the cells detected by Hovernet and by GT are really not in the GT, many seem to be
plausible cells. And the case of cells which are split is difficult to say if it is really a problem.
In some cases in can be post-processed as explained in Appendix B. And in any case, the cell
is predicted, just in another way, so it is not such a big mistake. Another factor to highlight is
that these mistakes occur typically on small cells. This means that if we only look at the area
we will get high metrics, like the Dice loss reported on the Hovernet article. But since we are
giving equal weight to every cell, and there are lots of small cells, they can make the metrics
low even though you don’t perceive such a high difference. The drop in performance when
considering the background is around a quarter of the original metric. Looking at Figure 4.2 it
seems plausible that around a quarter of the cells are detected inconsistently but overall, they
do not represent a big area, so visually, the result seems good enough.

4.2 Qualitative analysis

In this section I will be providing insights as to why and when graph neural networks are a
good regularizer. The overall effect of using GNNs can be described as finding groups. In some
cases it is a good approach in others it isn’t, it depends on the data. Throughout this sections
I will be referring to all the classes by their colours. They all have a more profound meaning,
like epithelial or inflammatory or tumoural. But for simplicity I will just refer to them by the
colour they are painted with.

4.2.1 CoNSeP

This dataset is the smallest of all four which makes a model with higher inductive bias like
Hovernet perform better. Graphs are a more general structure, and that means they require
more data to function properly. As a first example look at Figure 4.3. Hovernet tries to identify

35

Jose Pérez Cano Results

some of the green cells while the graph convolution just consider everything to be a big group.
However, Hovernet also misclassifies some cells as blue or yellow when they are not, which is
something the GCN does not do. In this aspect, and as will be seen with more examples, GCN
normally play safe and assign the class with more cells as the main class of the group. GCNs
do not typically try to find outliers which is something Hovernet does but sometimes, as in this
case, it fails. Graph attention on the other hand may focus on smaller groups. In this case,
GAT has managed to properly identify a small green nest of cells, just missing one of the cells
in that nest.

(a) GT (b) Hovernet

(c) GCN (d) GAT

Figure 4.3: Comparison of the predictions of Hovernet, graph convolution and graph attention
methods.

To illustrate how diverse is this concrete dataset, I will show another example where the
sizes of the cells are different, the labels are different, and the way the cells are structured is
also different. This example shows how difficult this dataset is. With so many classes, the
number of possible ways of arranging cells is very high. Making less than 30 images not enough
for the graph to learn something useful.

36

Jose Pérez Cano Results

(a) GT (b) Hovernet

(c) GCN (d) Probabilities only

(e) Morphological features only (f) Void

Figure 4.4: Illustration of the behaviour of the different models.

37

Jose Pérez Cano Results

In Figure 4.4 we can see that Hovernet misses some of the magenta cells and classifies
them as blue. Here, the effect of the GCN is positive in some aspects and negative in others.
The positive side is that it recovers most of the yellow cells thanks to considering them as a
whole. The negative aspect is that it expands the cyan cells which were initially misclassified
by Hovernet. This is a common pattern. Since the GNN operates using the probabilities
from Hovernet, it can propagate the errors from it. As further proof of that look at the same
example, but now look at the output from the models trained without the probabilities of
Hovernet and trained only with those probabilities. The model that was trained only with
probabilities further propagates the cyan group while the model trained without them did not
produce any cyan cells at all. There is a trade-off when using Hovernet probabilities. It can
help fix groups where Hovernet misclassified a few of the inner cells. But relying too much
on Hovernet probabilities can worsen the results. When using just morphological features, the
GNN is more independent from Hovernet which in this case was beneficial. Nonetheless, using
no features at all is a bad idea. In this specific example the model trained only with the graph
but no features classified everything as magenta, wrongly forgetting the yellow cells. Visually
it is quite clear that the yellow cells and the magenta ones are a separate group, but if you just
consider nodes in a graph, without indicating the area or the perimeter, there is not enough
information to detect two groups in this image.

To end with the analysis of this dataset, I will display another image where cells of different
types are mixed together. In Figure 4.5 we can see how Hovernet predicts a more diverse set
of cells than the GCN. It has yellow cells which are not surrounded by other yellow cells, it
also has cyan, magenta and blue. In contrast, the GCN has mostly predicted the cyan as the
dominant class. The effect of using GNNs is visible again. Hovernet takes risk and predicts
lonely cells, cells with no neighbour of the same class. GNNs create neighbourhoods of cells.
In this case neither of them are really a good fit since Hovernet predicts many classes that are
not real and the GCN cannot really discern the mix of cyan and magenta that is in the middle
of the image and predicts the whole middle group as cyan.

(a) GT (b) Hovernet (c) GCN

Figure 4.5: Last example of CoNSeP database. It mixes different cell types which makes it
difficult for the GNN to work properly.

38

Jose Pérez Cano Results

4.2.2 MoNuSAC

In previous sections I have stated that this dataset was a good example of where the graph
neural networks are a good fit. With the CoNSeP dataset we have seen that those models tend
to group cell togethers. When there is a mix of different classes it works poorly. In Figure 4.6
we can see three examples out of this dataset which are exactly the opposite. They contain
well defined groups. It is difficult to appreciate but in the image on the left there are two well
defined groups, one green and one red and in the image at the left there are also blue cells close
to each other. Many of the images in this dataset are like the one in the middle, with only one
class in the whole image. Having this setup it is expected to see Hovernet misclassify some cells
since it is not considering the image as a whole while the GNNs solve that problem by merging
everything into big groups.

Figure 4.6: Three examples with their ground truth overlayed on top.

Let’s dive into the details of what every model predicted with the image on the left. Same
as what happened in CoNSeP, here in Figure 4.7 the Hovernet randomly misclassifies some
green cells into red cells. The graph network that was trained only with Hovernet probabilities
believes it and so it creates three nests. The green in the middle, the red at the top right and
the red at the bottom left grouping and merging the result from the Hovernet. The network
trained with morphological features is more correct in that the group at the bottom left is
correctly classified as green while preserving the red group at the top right. The GCN trained
with everything is confused and so it simply predicts everything as green. Finally, the GCN
that only sees the graph and no features at all behaves a bit unpredictably, creating another
group of red cells at the bottom right and at the top left.

Similar conclusions can be drawn with the result obtained from the image on the right of
Figure 4.6. The output is on Figure 4.8. The result with the remaining image at the center
of Figure 4.6 is less informative. In there all the models correctly predicted every cell as red.
Even though Hovernet sometimes randomly misclassifies little cells, there are cases like the
one in the middle of Figure 4.6 that everything is correctly classified. When there is only one
group to classify, the graph networks will be as right as Hovernet. After all, they are using the
probabilities as inputs and creating clusters of cells. If there is only one cluster, there is not
much work to do.

39

Jose Pérez Cano Results

(a) GT (b) Hovernet

(c) GCN (d) Probabilities only

(e) Morphological features only (f) Void

Figure 4.7: Illustration of the behaviour of the different models.

40

Jose Pérez Cano Results

(a) GT (b) Hovernet

(c) GCN (d) Probabilities only

(e) Morphological features only (f) Void

Figure 4.8: Another illustration of the behaviour of the different models.

41

Jose Pérez Cano Results

4.2.3 DigiPatics breast

Let’s start the qualitative analysis of this section with a question. Given the following three
images with their ground truth on top. Which of them would you think is going to give less
trouble to the graph neural networks? If you have read the previous two sections the answer
should be obvious by now.

Figure 4.9: Three examples with their ground truth overlayed on top.

That’s right, the left one. It has clearly identifiable groups. The other two also have nests
of cells but in between there are cells of other classes. In the first image the nests are clearly
defined and separated between each others. Now comes the second question. Watch the next
image in Figure 4.10, which is the output of Hovernet, and try to predict which are going to
be the groups detected by the GCN trained with all the features, with probabilities only, with
morphological features only and with features at all.

Figure 4.10: Output of Hovernet for the leftmost image of Figure 4.9.

This question was more tricky. Although GNNs behave predictably, there is still margin
for uncertainty. The GCN with all the features has made the green cells eat their neighbours
although it missed the group at top right which is detected by the model trained only with
probabilities. On the other hand, the model that does not have Hovernet probabilities has

42

Jose Pérez Cano Results

predicted some red cells where the other predicted red or magenta. And the void model has
played the safest of them all by just classifying everything with the dominant class. Note that
being safe does not mean being good. It is just a poetic license to state that it did not bother
trying to identify minority groups.

(a) GCN (b) Morphological features

(c) Probabilities (d) Void

Figure 4.11: Output of the GCN trained with different sets of input features.

In Figure 4.12 and Figure 4.13 there are the outputs for the other two images from the
beginning. Graph networks try to find clusters, sometimes they guess it right, sometimes they
don’t. Hovernet, as usual, tries to identify lonely cells correctly. Again, sometimes it works,
sometimes it does not.

43

Jose Pérez Cano Results

(a) GT (b) Hovernet

(c) GCN (d) Probabilities only

(e) Morphological features only (f) Void

Figure 4.12: Illustration of the behaviour of the different models.

44

Jose Pérez Cano Results

(a) GT (b) Hovernet

(c) GCN (d) Probabilities only

(e) Morphological features only (f) Void

Figure 4.13: Yet another illustration of the behaviour of the different models.

45

Jose Pérez Cano Results

To finish this section I will compare graph convolution to graph attention. Graph attention
networks also create nests of cells. The difference now is that the attention network is trying
to detect smaller groups and mixed groups. This may derive from the fact that the attention
mechanism gives more flexibility in how labels are propagated through the graph. With the
convolution everything gets spread equally likely. But with attention other patterns can emerge
and, in fact, emerge. In Figure 4.14 we can see that in the first pair the graph attention has
surrounded a green group by a red group. That is quite unlikely for convolution to do. With
the convolution cells get eaten by the biggest group. In the second pair there are some blue
cells that are alone in the GAT case and more group diversity. If we consider graph networks
to act as regularisers, then GCN penalizes more the existence of lonely cells than GAT.

(a) GCN (b) GAT

(c) GCN (d) GAT

Figure 4.14: Comparison of graph convolution and graph attention predictions.

46

Jose Pérez Cano Results

4.2.4 DigiPatics lung

I was personally involved in the creation of this dataset. This means that I know some in-
formation that is normally not documented in these databases. When labelling, the physician
sometimes decided entirely based on information not present on the image itself. Or information
present in the image but very subtle. One such case is the cilium. Cells near cilium are never
tumoural but can be very similar to tumoural cells. In all the experiments we made, including
those that are not documented here, the specific image in Figure 4.15 was always predicted
as tumoural. However, our best performing graph model somehow solved that problem. It is
possible that it has been pure luck. But it is still remarkable because we didn’t have such luck
with Hovernet.

(a) GT (b) Hovernet (c) GCN without probabilities

Figure 4.15: Example of an image containing cilium together with Hovernet and GNN predic-
tions.

Another special case is shown in Figure 4.16. When labelling this specific patch, Irene
needed a few minutes to notice that it was not tumoural at all. And she discovered that by
looking at the whole slide image. I was told that with that image alone it was not possible to
be 100% sure that all the cells were not tumoural. And we can see that both Hovernet and
the GNN fail in this case. The cells marked in blue look so similar to tumoural cells that the
models classify them as that because they lack the information needed to discard them from
being tumoural.

(a) GT (b) Hovernet (c) GCN without probabilities

Figure 4.16: Example of a patch that required extra context to label together with Hovernet
and GNN predictions.

47

Jose Pérez Cano Results

To finish this chapter I will leave a canonical example of when graphs are a good fit. The
case depicted in Figure 4.17 contains three groups perfectly separated from each other. Two
nests of tumoural cells at both sides and in the middle a group of healthy cells. Hovernet
struggles to detect some of the tumoural cells from the left and right. Probably because they
are small, round and with a low nuclei to cytoplasm ratio, which are the properties typical of
non-tumoural cells. But they are indeed tumoural, in part because they are all so close together.
The graph network, on the other hand, leverages the fact that they are grouped together and
propagates the dominant class of each cluster to all the cells of that cluster, perfectly classifying
the whole patch.

(a) GT (b) Hovernet (c) GCN without probabilities

Figure 4.17: Another example from the validation dataset where the graph network is clearly
better than Hovernet.

48

Chapter 5

Conclusions

Digital pathology can be very difficult to tackle. Our experiments have showed that there is
not a single method that works properly in every setup. Each organ and stain requires their
own specific and carefully designed model. For lung and H&E stain the method proposed not
only works better than previous state of the art models but our experiments have proven that
it is properly leveraging extra information hidden to computer vision algorithms and tabular
methods like XGBoost. Domain expertise was key for designing the algorithm. By talking to
real experts on the topic I was able to discover how important the neighbourhood of a cell
was to classify it as tumoural or not. Since in digital pathology data is so scarce, discovering
such inductive biases can be very valuable. A simple vision transformer would easily solve this
problem with billions of images. But we have hundreds. That is why the method presented in
this thesis is so valuable, because of its sample efficiency.

49

Chapter 6

Future work

The obvious lines of research here are improving the CNN backbone, improving the GNN head
or training everything end-to-end instead of having two-phases as in this work. All of them
would bring better metrics and more robust classification methods. However, the obvious is
not always the best. Progress is made by impressive discoveries that few people expected. That
is why I want to propose a different way of advancing science in this field. The classification
paradigm has served us well, but a new paradigm is emerging nowadays. Multimodal models
are on the rise. Image captioning models like BLIP [18] or CLIP [29] have gained popularity
in the last years. They provide a way of opening the black boxes that are neural networks.
Captioning an image is just one step behind a model explaining itself and the reasoning about
the result. Why not make a model explain cancer? Expert pathologist train new physicians
showing them images and explaining them with voice or text. Why not train models the same
way? Obviously those models won’t be better than the experts, but they can outscale them.
One person can only view a small amount of patients in a life. A model can be trained with
billions of cases in months and can infer the result of millions of new cases in days given enough
computational resources. So that is the non-obvious future work: Image captioning for medical
image analysis.

I’ll use the rest of the page to describe the roadmap to achieving the goal of medical images
explaining themselves. First step: data. That is the most important part of the whole project.
No data no models. Typically foundational models require billions of image-text pairs, or if
only trained with text they require trillions of tokens. Such amount of medical data is not
available yet, although it would be possible if experts were into it. But I’ll assume physicians
don’t really want to spend time creating datasets (which is more or less my experience dealing
with doctors). The good news is that one can fine-tune a foundational model with smaller
amounts of data. With thousands of image-text pairs would be enough for a production ready
model. To obtain such pairs pathologist would be required to think loud. That’s it. We can
automatically transcribe audio into text, so it is enough for them to record their voice while
working. The next step is the model. In the previous paragraph I have shown two methods
of jointly training a latent text-image space. But we can achieve much more than that, we
want to speak to the images. Something like what is done in Mini-GPT4 [44]. Right now there
is a wide variety of language models to be used as backbones. Stability AI recently released
StableLM1, and we have the LLaMa family of models too2. We are not running out of open
source LLMs anytime soon. Using them is a huge boost in performance and sample efficiency.
Moreover, there is also DINOv23 which can be used as image encoder to further reduce the
burden of training. We just need to merge everything and finetune it with the appropiate data.
Sounds easy, right?

1https://github.com/Stability-AI/StableLM
2https://ai.facebook.com/blog/large-language-model-llama-meta-ai/
3https://dinov2.metademolab.com/

50

https://github.com/Stability-AI/StableLM
https://ai.facebook.com/blog/large-language-model-llama-meta-ai/
https://dinov2.metademolab.com/

References

[1] Sil (https://math.stackexchange.com/users/290240/sil). Injectivity of given integer func-
tion. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/4567383 (ver-
sion: 2022-11-02). eprint: https://math.stackexchange.com/q/4567383. url: https:
//math.stackexchange.com/q/4567383.

[2] Abien Fred Agarap. Deep Learning using Rectified Linear Units (ReLU). 2019. arXiv:
1803.08375 [cs.NE].

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation
by Jointly Learning to Align and Translate. 2014. doi: 10.48550/ARXIV.1409.0473.
url: https://arxiv.org/abs/1409.0473.

[4] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. “Gephi: an open source soft-
ware for exploring and manipulating networks”. In: Third international AAAI conference
on weblogs and social media. 2009.

[5] Michael M. Bronstein et al. “Geometric Deep Learning: Grids, Groups, Graphs, Geodesics,
and Gauges”. In: CoRR abs/2104.13478 (2021). arXiv: 2104.13478. url: https://
arxiv.org/abs/2104.13478.

[6] Nadav Cohen and Amnon Shashua. “Inductive Bias of Deep Convolutional Networks
through Pooling Geometry”. In: CoRR abs/1605.06743 (2016). arXiv: 1605.06743. url:
http://arxiv.org/abs/1605.06743.

[7] Jieneng Chen et al. TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation. 2021. arXiv: 2102.04306 [cs.CV].

[8] Tianqi Chen and Carlos Guestrin. “XGBoost”. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, Aug. 2016.
doi: 10.1145/2939672.2939785. url: https://doi.org/10.1145%2F2939672.
2939785.

[9] Xiaodong Chen, Bin Zheng, and Hong Liu. “Optical and Digital Microscopic Imag-
ing Techniques and Applications in Pathology”. In: Analytical Cellular Pathology 34.1-2
(2011), pp. 5–18. doi: 10.1155/2011/150563. url: https://doi.org/10.1155/2011/
150563.

[10] Jevgenij Gamper et al. PanNuke Dataset Extension, Insights and Baselines. 2020. arXiv:
2003.10778 [eess.IV].

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. “Deep Learning”. In: http://www.
deeplearningbook.org. MIT Press, 2016. Chap. 6.2.2.3.

[12] Simon Graham et al. HoVer-Net: Simultaneous Segmentation and Classification of Nuclei
in Multi-Tissue Histology Images. 2019. arXiv: 1812.06499 [cs.CV].

[13] Geoffrey E. Hinton et al. “Improving neural networks by preventing co-adaptation of
feature detectors”. In: CoRR abs/1207.0580 (2012). arXiv: 1207.0580. url: http://
arxiv.org/abs/1207.0580.

[14] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”. In: CoRR abs/1502.03167 (2015). arXiv:
1502.03167. url: http://arxiv.org/abs/1502.03167.

51

https://math.stackexchange.com/q/4567383
https://math.stackexchange.com/q/4567383
https://math.stackexchange.com/q/4567383
https://arxiv.org/abs/1803.08375
https://doi.org/10.48550/ARXIV.1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/1605.06743
http://arxiv.org/abs/1605.06743
https://arxiv.org/abs/2102.04306
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145%2F2939672.2939785
https://doi.org/10.1145%2F2939672.2939785
https://doi.org/10.1155/2011/150563
https://doi.org/10.1155/2011/150563
https://doi.org/10.1155/2011/150563
https://arxiv.org/abs/2003.10778
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1812.06499
https://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167

Jose Pérez Cano REFERENCES

[15] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolu-
tional Networks. 2016. doi: 10.48550/ARXIV.1609.02907. url: https://arxiv.org/
abs/1609.02907.

[16] Alexander Kirillov et al. Segment Anything. 2023. arXiv: 2304.02643 [cs.CV].

[17] Neeta Kumar, Ruchika Gupta, and Sanjay Gupta. “Whole Slide Imaging (WSI) in Pathol-
ogy: Current Perspectives and Future Directions”. In: Journal of Digital Imaging 33.4
(May 2020), pp. 1034–1040. doi: 10.1007/s10278-020-00351-z. url: https://doi.
org/10.1007/s10278-020-00351-z.

[18] Junnan Li et al. BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-
Language Understanding and Generation. 2022. arXiv: 2201.12086 [cs.CV].

[19] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. “Rectifier Nonlinearities Improve
Neural Network Acoustic Models”. In: ICML Workshop on Deep Learning for Audio,
Speech and Language Processing (2013).

[20] Gledson Melotti et al. Reducing Overconfidence Predictions for Autonomous Driving Per-
ception. 2022. arXiv: 2202.07825 [cs.CV].

[21] Lassi Meronen et al. Fixing Overconfidence in Dynamic Neural Networks. 2023. arXiv:
2302.06359 [cs.LG].

[22] Fernand Meyer. The watershed concept and its use in segmentation : a brief history. 2012.
doi: 10.48550/ARXIV.1202.0216. url: https://arxiv.org/abs/1202.0216.

[23] Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are Sample-Efficient
World Models. 2023. arXiv: 2209.00588 [cs.LG].

[24] Ben Mildenhall et al. NeRF: Representing Scenes as Neural Radiance Fields for View
Synthesis. 2020. arXiv: 2003.08934 [cs.CV].

[25] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-Net: Fully Convolutional
Neural Networks for Volumetric Medical Image Segmentation. 2016. arXiv: 1606.04797
[cs.CV].

[26] MUC4 ’92: Proceedings of the 4th Conference on Message Understanding. McLean, Vir-
ginia: Association for Computational Linguistics, 1992. isbn: 1558602739.

[27] National Electrical Manufacturers Association. Digital Imaging and Communications in
Medicine (DICOM) Standard. Technical Report. [Online; accessed 4-April-2023]. National
Electrical Manufacturers Association. url: https://www.dicomstandard.org/.

[28] Julia Sala Prat. Cell detection and classification of breast cancer histology images using a
deep learning approach based on the U-Net architecture. [Online; accessed 2-April-2023].
June 2021. url: https://upcommons.upc.edu/handle/2117/353765.

[29] Alec Radford et al. Learning Transferable Visual Models From Natural Language Super-
vision. 2021. arXiv: 2103.00020 [cs.CV].

[30] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks
for Biomedical Image Segmentation. 2015. arXiv: 1505.04597 [cs.CV].

[31] Philippe Salembier, Albert Oliveras, and Luis Garrido. “Antiextensive connected oper-
ators for image and sequence processing”. In: IEEE transactions on image processing
: a publication of the IEEE Signal Processing Society 7 (Feb. 1998), pp. 555–70. doi:
10.1109/83.663500.

[32] Irwin Sobel. “An Isotropic 3x3 Image Gradient Operator”. In: Presentation at Stanford
A.I. Project 1968 (Feb. 2014).

52

https://doi.org/10.48550/ARXIV.1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/2304.02643
https://doi.org/10.1007/s10278-020-00351-z
https://doi.org/10.1007/s10278-020-00351-z
https://doi.org/10.1007/s10278-020-00351-z
https://arxiv.org/abs/2201.12086
https://arxiv.org/abs/2202.07825
https://arxiv.org/abs/2302.06359
https://doi.org/10.48550/ARXIV.1202.0216
https://arxiv.org/abs/1202.0216
https://arxiv.org/abs/2209.00588
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/1606.04797
https://arxiv.org/abs/1606.04797
https://www.dicomstandard.org/
https://upcommons.upc.edu/handle/2117/353765
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/1505.04597
https://doi.org/10.1109/83.663500

Jose Pérez Cano REFERENCES

[33] Jordi Temprana-Salvador et al. “DigiPatICS: Digital Pathology Transformation of the
Catalan Health Institute Network of 8 Hospitals;Planification, Implementation, and Pre-
liminary Results”. In: Diagnostics 12.4 (2022). issn: 2075-4418. doi: 10.3390/diagnostics12040852.
url: https://www.mdpi.com/2075-4418/12/4/852.

[34] Jeya Maria Jose Valanarasu and Vishal M. Patel. UNeXt: MLP-based Rapid Medical
Image Segmentation Network. 2022. arXiv: 2203.04967 [eess.IV].

[35] Ashish Vaswani et al. Attention Is All You Need. 2017. arXiv: 1706.03762 [cs.CL].

[36] Petar Veličković et al. Graph Attention Networks. 2017. doi: 10.48550/ARXIV.1710.
10903. url: https://arxiv.org/abs/1710.10903.

[37] Ruchika Verma et al. “MoNuSAC2020: A Multi-Organ Nuclei Segmentation and Classi-
fication Challenge”. In: IEEE Transactions on Medical Imaging 40.12 (2021), pp. 3413–
3423. doi: 10.1109/TMI.2021.3085712.

[38] Analytics Vidhya. The Curse of Dimensionality in Machine Learning. https://www.
analyticsvidhya.com/blog/2021/04/the-curse-of-dimensionality-in-machine-
learning/. [Online; accessed 2-April-2023]. 2021.

[39] Zifu Wang et al. Dice Semimetric Losses: Optimizing the Dice Score with Soft Labels.
2023. arXiv: 2303.16296 [cs.CV].

[40] Hongxin Wei et al. Mitigating Neural Network Overconfidence with Logit Normalization.
2022. arXiv: 2205.09310 [cs.LG].

[41] Zonghan Wu et al. “A Comprehensive Survey on Graph Neural Networks”. In: IEEE
Transactions on Neural Networks and Learning Systems 32.1 (Jan. 2021), pp. 4–24. doi:
10.1109/tnnls.2020.2978386. url: https://doi.org/10.1109/tnnls.2020.
2978386.

[42] Jiaxuan You, Rex Ying, and Jure Leskovec. Design Space for Graph Neural Networks.
2021. arXiv: 2011.08843 [cs.LG].

[43] Hattie Zhou et al. Fortuitous Forgetting in Connectionist Networks. 2022. arXiv: 2202.
00155 [cs.LG].

[44] Deyao Zhu et al. MiniGPT-4: Enhancing Vision-Language Understanding with Advanced
Large Language Models. 2023. arXiv: 2304.10592 [cs.CV].

53

https://doi.org/10.3390/diagnostics12040852
https://www.mdpi.com/2075-4418/12/4/852
https://arxiv.org/abs/2203.04967
https://arxiv.org/abs/1706.03762
https://doi.org/10.48550/ARXIV.1710.10903
https://doi.org/10.48550/ARXIV.1710.10903
https://arxiv.org/abs/1710.10903
https://doi.org/10.1109/TMI.2021.3085712
https://www.analyticsvidhya.com/blog/2021/04/the-curse-of-dimensionality-in-machine-learning/
https://www.analyticsvidhya.com/blog/2021/04/the-curse-of-dimensionality-in-machine-learning/
https://www.analyticsvidhya.com/blog/2021/04/the-curse-of-dimensionality-in-machine-learning/
https://arxiv.org/abs/2303.16296
https://arxiv.org/abs/2205.09310
https://doi.org/10.1109/tnnls.2020.2978386
https://doi.org/10.1109/tnnls.2020.2978386
https://doi.org/10.1109/tnnls.2020.2978386
https://arxiv.org/abs/2011.08843
https://arxiv.org/abs/2202.00155
https://arxiv.org/abs/2202.00155
https://arxiv.org/abs/2304.10592

Appendix A

Sustainability and costs

This project was carried out by a single student, which means the cost of it was very low.
However, a project that depends on students is not a sustainable one since students are highly
underpaid. For that reason I would like to provide a quantitative analysis on the real costs of
carrying out this work.

Let’s start counting the hours of work required to just build the dataset. Even after using a
semi-automatic procedure to label the data, many hours were needed to end up with 85 labelled
images. Roughly 100 hours of human labour and 20 hours of compute power were employed to
create segmentations. Another 15 hours of expert human labour were required to review the
class annotations by the physician. Now, let’s translate that into money. The first 100 hours
required very low training, just the ability to paint circles. A fair salary for that can be 10€/h
(if outsourced it could be less than 2€/h). That translates into a cost of 1000€. The compute
power requires GPUs that consume at most 350W. Let’s estimate the CPU, memory and GPU
consumption by 300W on average, which means 4.5kWh were consumed. That means 0.93€ if
the price of electricity is 0.15€/kWh. And the expert work is typically paid more, let’s estimate
20€/h which means 300€ in total. The total cost of creating the database would be 1300.93€.
If we divide by the number of images we have a total of 15.30€ per image.

Second, the salary of the technical workers. A project like this normally requires a software
developer, a data engineer and a project manager. Depending on the experience the salaries
may range. For simplicity, let’s consider the software developer is junior (30K/year), the data
engineer is senior (50K/year) and the project manager has nearly five years of experience
(80K/year). Assuming the project is carried out in just one year, and taking into account the
extra 30% that needs to be payed to the social security, the total cost in salaries would be
208000€.

Third, putting a machine learning model in production is more than just creating it. It
needs to be maintained, and someone has to care about the drift. Models performs worse when
time passes because the data distribution is not fixed. New patients means new training is
needed. Hospitals would need to train their technicians to perform retrainings and physicians
to relabel. The cost of relabelling is already estimated: 15.30€ per image. Remains to estimate
the cost of training technicians. 385$ or 350€ per person is what a course on machine learning
would cost1.

Finally, to show that the project is sustainable, it has to generate some value. I believe in
open science and medicine. Putting a price in other people’s lives is not ethical, so privatising
this project is not an option. But someone has to pay the cost, in this case, the government.
A project like this is only sustainable if public opinion is in favour of it. More data is needed
to exactly estimate the social value this will bring. In my opinion, this product will reduce
physician workloads, which is beneficial. By reducing the workload, the diagnostic process can
be accelerated, and receiving faster diagnostics is something the public opinion will definitely
be interested about.

1https://www.ml.school/c/start-here Accessed 8th April 2023

54

https://www.ml.school/c/start-here

Appendix B

The problem of merging cells

One of the problems that appeared when using Hovernet was broken cells. In many cases, big
cells were predicted as various small cells. It is visually appalling and that is why we designed
an algorithm to merge broken cells. The result is on Figure B.1.

(a) Before

(b) After

Figure B.1: Example of cells that were not fully detected by Hovernet. After applying our
algorithm all the smaller cells were merged into one.

The algorithm leverages techniques of mathematical morphology. If we call X1 the predicted
image and X2 the image that identifies the background with the value zero and the rest with
one, then, the image (δ(X1)−X1) ·X2 contains the frontiers of the cells, being δ a dilation. An
illustration of the process is on Figure B.2.

55

Jose Pérez Cano The problem of merging cells

Figure B.2: Top-left is the original image, top-right is the dilation, bottom-left the gradient
and bottom-right the masking which is the final result.

The problem here is that different frontiers may end up with the same identifier. X1 contains
the identifier of each cell in every pixel of such cell. But, (δ(X1)−X1)·X2 contains the differences
of identifiers in the position of the frontier. Differences of different pairs may end up with the
same value. E.g.: 4 − 3 = 2 − 1. To solve that, it is needed to properly set the identifiers
so that each pair can be uniquely identified by the difference between the maximum and the
minimum. One simple solution to that is to use powers of two. More concretely, applying the
function n 7→ 2n to the identifiers. This way 2n − 2m is a function that can be inverted back
to the pair (n,m) where n > m. However, we can have up to 1500 cells, requiring identifiers
up to 21500 is clearly unfeasible and is not computationally optimal since to identify pairs we
only need

(
1500
2

)
= 1.124.250 identifiers. The best function I have found so far is n 7→ n5, using

other simple lower degree polynomials doesn’t uniquely identify the difference for values up to
1500 [1].

56

Appendix C

TumourKit

The whole thesis dealt with the theory and the results of the experiments. Behind all that
there was a lot of software needed to make it all work. I decided to build a python library that
other people could use to replicate my experiments and design new ones. The library is called
TumourKit. The code is available on GitHub1 under the Affero GPLv3 license. It is tested on
Ubuntu and Windows for python versions 3.8, 3.9 and 3.10. It has more than ten thousands
lines of code, counting comments. For a more detailed explanation on how to use it and what
is offered, please, read the docs2.

1https://github.com/Jerry-Master/lung-tumour-study
2https://lung-tumour-study.readthedocs.io/en/latest/

57

https://github.com/Jerry-Master/lung-tumour-study
https://lung-tumour-study.readthedocs.io/en/latest/

Appendix D

Soft Labels

One of the problems we encountered when reviewing the lung dataset was that the expert was
not sure which label to give to some cells. It was solved by simply ignoring those cells since
in practice it didn’t really matter because we are interested in percentages and a cell with no
label can be removed from the numerator and denominator. However, we do preserve that
information in the dataset because it could be used to train the models with soft labels. Even
though we didn’t try it, we expect it could help further calibrate the resulting probabilities.
For that reason, in this appendix I will be explaining how to adapt all the methods presented
in the thesis to soft labels.

The easiest ones to adapt are the graph neural networks. They are trained using the softmax,
so they are already compatible with soft labels. It is only needed to substitute the one hot
encoded vector of labels to a vector of probabilities and everything works exactly the same.

The XGBoost method requires a little trick. Although XGBoost also uses softmax for
training, current implementations threshold the label so providing probabilities is of no use
since the soft labels will be made into hard labels. Nonetheless, XGBoost supports a weight
for each row in the dataset. This makes it possible to use the probabilities as weights. The
trick consists of repeating rows one time for each class and assign that class probability to that
repeated row weight. The idea was taken for an online forum1 and the explanation behind how
this works is that XGBoost multiplies the gradient and hessian by the weight and not by the
label, as explained in another online forum2.

The trickiest method to adapt is HoVerNet. Having soft labels does not affect neither the
HV branch nor the NP branch but it does affect the NC branch. That branch is trained using
the softmax and the dice loss. The first one is quite easy to adapt as described for the graph
neural networks. However, the dice loss requires more thinking. In Zifu Wang et al. [39] they
propose a way of extending the dice loss for soft labels with promising results. On a more
technical and practical level, modifying the codebase to support this metric is too much of a
hurdle given the expected benefits. But it is interesting on a theoretical perspective to know of
the existence of such possibility. In the future, when it becomes a more refined technique with
wider support on the main libraries, it may be a good way of training better models.

1https://stackoverflow.com/a/66481600
2https://stats.stackexchange.com/a/365555/378093

58

https://stackoverflow.com/a/66481600
https://stats.stackexchange.com/a/365555/378093

Appendix E

Hyperparameter study

Instead of showing the losses here which would be pretty useless since there are 32 configurations
per dataset and for each configuration we track 5 or 6 metrics. That much information cannot
be shown in a non-interactive way. Therefore, we provide public links to the tensorboard logs
with all the training and validation metrics for every configuration. This way you can see how
every configuration evolved in time and filter by hyperparameters. The naming convention is
as follows. The first letters are either GCN or ATT meaning graph convolution of attention.
Then, the next number is the number of layer, after that is the dropout value and then whether
or not it used batch normalisation. So, ATT_10_0.3_bn means graph attention with 10 layers
and 30% of dropout with batch normalisation. The links are below, if you do not see anything
it may be because you need to select some configurations in the left bar.

• DigiPatics lung: https://tensorboard.dev/experiment/HVSvkl8LQyuNWIWw4dgNmg/

• DigiPatics breast: https://tensorboard.dev/experiment/cQoaRA5GRZSEdYh3ijuPmw/

• CoNSeP: https://tensorboard.dev/experiment/Zb6YbBWWSO6q17DdMEVtZw/

• MoNuSAC: https://tensorboard.dev/experiment/rfvi7c48Q7CEU7yNvdxEGg/

I am also providing links to the tensorboard logs of every void gnn experiment. For Digi-
Patics lung:

• Probabilities: https://tensorboard.dev/experiment/3Q9pt4KlSvWiv6xAeEE3cA/

• Morphological: https://tensorboard.dev/experiment/hgMqRfVbRr2XWs0xKmX2sQ/

• Void: https://tensorboard.dev/experiment/Ko52fAFqTRyKXwqXRQx4gQ/

For DigiPatics breast:

• Probabilities: https://tensorboard.dev/experiment/tVB2jfeWR4yWuolpKaEBFg/

• Morphological: https://tensorboard.dev/experiment/o1QXFlsMSPGo6zmVNY7f1g/

• Void: https://tensorboard.dev/experiment/IMC4U8y9R7KXzwaJMlm2Qg/

For CoNSeP:

• Probabilities: https://tensorboard.dev/experiment/uRu2tXp0Rr6HKVJ7bend0w/

• Morphological: https://tensorboard.dev/experiment/tBlaEjlqRJyTq5NfMGMWEg/

• Void: https://tensorboard.dev/experiment/aKsWfarRTYmw1CGyZY37RA/

For MoNuSAC:

• Probabilities: https://tensorboard.dev/experiment/EPvvFnj1SGC5AgE7geJmRA/

59

https://tensorboard.dev/experiment/HVSvkl8LQyuNWIWw4dgNmg/
https://tensorboard.dev/experiment/cQoaRA5GRZSEdYh3ijuPmw/
https://tensorboard.dev/experiment/Zb6YbBWWSO6q17DdMEVtZw/
https://tensorboard.dev/experiment/rfvi7c48Q7CEU7yNvdxEGg/
https://tensorboard.dev/experiment/3Q9pt4KlSvWiv6xAeEE3cA/
https://tensorboard.dev/experiment/hgMqRfVbRr2XWs0xKmX2sQ/
https://tensorboard.dev/experiment/Ko52fAFqTRyKXwqXRQx4gQ/
https://tensorboard.dev/experiment/tVB2jfeWR4yWuolpKaEBFg/
https://tensorboard.dev/experiment/o1QXFlsMSPGo6zmVNY7f1g/
https://tensorboard.dev/experiment/IMC4U8y9R7KXzwaJMlm2Qg/
https://tensorboard.dev/experiment/uRu2tXp0Rr6HKVJ7bend0w/
https://tensorboard.dev/experiment/tBlaEjlqRJyTq5NfMGMWEg/
https://tensorboard.dev/experiment/aKsWfarRTYmw1CGyZY37RA/
https://tensorboard.dev/experiment/EPvvFnj1SGC5AgE7geJmRA/

Jose Pérez Cano Hyperparameter study

• Morphological: https://tensorboard.dev/experiment/gS9WVXkHQTapbAZNT2lOjQ/

• Void: https://tensorboard.dev/experiment/e6lLbjeZRwCO4Avz2Ar03A/

The best configuration of hyperparameters for each dataset can be found on Table E.1 and the
test metrics of every configuration are presented in the remaining tables of this appendix. Keep
in mind that these metrics are on the test set and provided only for curious readers. They were
never used in the selection of the model nor configuration since we only used the validation set
for that. In fact, you can see that the best metrics here are not always the same as the metrics
presented. Also for curious readers, more tensorboard links are provided from the training of
Hovernet below. Tensorboard dev does not support image visualisation so, even though I have
image logs they cannot be shared easily. If you are interested on them, feel free to email me for
it. Here, 00 is the first phase of the training where the encoder was frozen and 01 is the second
phase of training which was done after 00 and had the encoder unfrozen.

• DigiPatics lung: https://tensorboard.dev/experiment/Ah3wt2t9Tl6ArIQ1qqGXDQ/

• DigiPatics breast: https://tensorboard.dev/experiment/W416onQiQbaAkWpplkm4TA/

• CoNSeP: https://tensorboard.dev/experiment/vcz3QWa2SouqvqYOGpVpXg/

• MoNuSAC: https://tensorboard.dev/experiment/3g6kp9xmTa6a6jKcxUAJcw/

The main takeaway from all this information is that there is no golden rule. Do not try to
find any pattern, there is not any. Sometimes more layers is better, sometimes is not. Sometimes
dropout works sometimes it does not. You always need to optimise for those hyperparameters
since every problem is different and no intuition can be obtained from empirical data about
the behaviour of those hyperparameters. If you want better results you are forced to use more
compute power.

Table E.1: Best hyperparameter configurations.

Dataset #Layers Dropout Batch Normalisation
DigiPatics lung 5 0.9 Yes

DigiPatics breast 1 0.6 Yes
CoNSeP 1 0.0 Yes

MoNuSAC 15 0.3 No

60

https://tensorboard.dev/experiment/gS9WVXkHQTapbAZNT2lOjQ/
https://tensorboard.dev/experiment/e6lLbjeZRwCO4Avz2Ar03A/
https://tensorboard.dev/experiment/Ah3wt2t9Tl6ArIQ1qqGXDQ/
https://tensorboard.dev/experiment/W416onQiQbaAkWpplkm4TA/
https://tensorboard.dev/experiment/vcz3QWa2SouqvqYOGpVpXg/
https://tensorboard.dev/experiment/3g6kp9xmTa6a6jKcxUAJcw/

Jose Pérez Cano Hyperparameter study

Table E.2: Graph convolution hyperparameter optimization on DigiPatics lung.

F1 Acc AUC %ERR ECE #Layers Dropout Norm type
62.77% 82.67% 84.94% 6.96% 0.0711 1 0.0 bn
69.44% 83.53% 90.06% 0.38% 0.0646 1 0.0 None
61.95% 82.55% 87.01% 7.64% 0.0761 1 0.3 bn
68.54% 84.13% 90.44% 3.06% 0.0415 1 0.3 None
63.00% 82.63% 88.05% 6.56% 0.0810 1 0.6 bn
68.04% 83.23% 89.97% 1.04% 0.0593 1 0.6 None
65.46% 83.15% 88.41% 4.72% 0.0544 1 0.9 bn
66.94% 83.75% 89.89% 4.36% 0.0504 1 0.9 None
62.83% 82.67% 86.84% 6.88% 0.0601 5 0.0 bn
64.78% 83.03% 87.29% 5.32% 0.0902 5 0.0 None
62.87% 82.63% 83.14% 6.72% 0.0746 5 0.3 bn
64.21% 83.09% 87.43% 6.26% 0.0870 5 0.3 None
63.74% 82.97% 85.23% 6.54% 0.0622 5 0.6 bn
64.87% 83.33% 87.56% 6.06% 0.0951 5 0.6 None
66.53% 83.27% 86.84% 3.52% 0.0884 5 0.9 bn
66.43% 83.29% 88.50% 3.74% 0.1117 5 0.9 None
56.93% 81.59% 86.89% 10.77% 0.0596 10 0.0 bn
66.75% 83.63% 87.10% 4.28% 0.0873 10 0.0 None
63.77% 82.81% 85.40% 6.06% 0.0451 10 0.3 bn
67.15% 83.67% 86.78% 3.80% 0.0907 10 0.3 None
66.48% 83.31% 86.34% 3.72% 0.0828 10 0.6 bn
65.55% 83.13% 86.28% 4.54% 0.0924 10 0.6 None
65.73% 83.35% 86.69% 4.92% 0.0846 10 0.9 bn
71.42% 84.27% 86.95% 1.52% 0.1190 10 0.9 None
66.06% 83.71% 89.08% 5.52% 0.0439 15 0.0 bn
71.31% 84.57% 86.82% 0.26% 0.0663 15 0.0 None
57.77% 81.83% 81.31% 10.49% 0.0563 15 0.3 bn
69.03% 84.27% 86.83% 2.72% 0.0612 15 0.3 None
67.36% 83.07% 85.58% 1.64% 0.0686 15 0.6 bn
68.74% 83.87% 86.79% 1.92% 0.0972 15 0.6 None
70.74% 84.75% 86.89% 1.40% 0.0842 15 0.9 bn
73.50% 84.59% 87.66% 4.64% 0.1351 15 0.9 None

61

Jose Pérez Cano Hyperparameter study

Table E.3: Graph attention hyperparameter optimization on DigiPatics lung.

F1 Acc AUC %ERR ECE #Layers Dropout Norm type
56.81% 81.59% 84.26% 10.89% 0.0356 1 0.0 bn
61.03% 82.37% 90.23% 8.26% 0.0910 1 0.0 None
60.63% 82.43% 86.74% 8.89% 0.0795 1 0.3 bn
55.89% 81.49% 89.34% 11.55% 0.0982 1 0.3 None
64.28% 83.03% 88.51% 6.00% 0.1065 1 0.6 bn
65.02% 83.03% 89.35% 5.00% 0.0817 1 0.6 None
3.67% 73.74% 88.90% 26.26% 0.1446 1 0.9 bn
41.83% 78.63% 86.76% 16.77% 0.1009 1 0.9 None
59.73% 82.11% 85.68% 9.09% 0.0548 5 0.0 bn
63.85% 82.87% 87.43% 6.12% 0.1014 5 0.0 None
47.42% 80.25% 87.61% 15.95% 0.1143 5 0.3 bn
67.32% 83.97% 87.78% 4.46% 0.1376 5 0.3 None
67.84% 84.29% 91.34% 4.66% 0.1086 5 0.6 bn
68.88% 83.71% 89.21% 1.16% 0.1233 5 0.6 None
0.00% 73.24% 76.25% 26.76% 0.0171 5 0.9 bn
0.00% 73.24% 39.62% 26.76% 0.2574 5 0.9 None
53.42% 80.95% 89.55% 12.61% 0.1048 10 0.0 bn
55.01% 81.77% 86.10% 12.99% 0.1321 10 0.0 None
68.69% 84.09% 89.74% 2.70% 0.0499 10 0.3 bn
67.44% 83.63% 90.76% 3.24% 0.0791 10 0.3 None
0.00% 73.24% 89.37% 26.76% 0.0914 10 0.6 bn
0.00% 73.24% 31.83% 26.76% 0.2673 10 0.6 None
0.00% 73.24% 50.00% 26.76% 0.1027 10 0.9 bn
0.00% 73.24% 37.30% 26.76% 0.2674 10 0.9 None
71.79% 84.57% 89.85% 1.18% 0.0526 15 0.0 bn
71.71% 84.87% 89.95% 0.04% 0.0863 15 0.0 None
67.23% 84.51% 89.59% 6.24% 0.0727 15 0.3 bn
73.56% 84.69% 89.90% 4.38% 0.0750 15 0.3 None
0.00% 73.24% 75.87% 26.76% 0.0691 15 0.6 bn
11.18% 60.58% 39.72% 9.13% 0.2755 15 0.6 None
0.00% 73.24% 54.20% 26.76% 0.0490 15 0.9 bn
0.00% 73.24% 22.17% 26.76% 0.2676 15 0.9 None

62

Jose Pérez Cano Hyperparameter study

Table E.4: Graph convolution hyperparameter optimization on DigiPatics breast.

Micro F1 Macro F1 Weighted F1 ECE #Layers Dropout Norm type
70.56% 41.00% 70.63% 0.2542 1 0.0 bn
68.57% 41.16% 68.07% 0.2712 1 0.0 None
68.84% 40.92% 68.72% 0.2674 1 0.3 bn
70.62% 42.32% 70.52% 0.2565 1 0.3 None
70.47% 42.53% 71.13% 0.2501 1 0.6 bn
70.61% 42.81% 71.87% 0.2694 1 0.6 None
69.35% 41.50% 69.37% 0.2587 1 0.9 bn
70.04% 42.26% 70.13% 0.2571 1 0.9 None
61.34% 41.90% 59.75% 0.2816 5 0.0 bn
61.94% 41.87% 60.57% 0.2891 5 0.0 None
55.93% 34.51% 54.45% 0.3007 5 0.3 bn
55.42% 37.74% 53.37% 0.3143 5 0.3 None
62.31% 42.61% 62.76% 0.2798 5 0.6 bn
53.93% 34.59% 52.27% 0.3183 5 0.6 None
69.40% 34.25% 67.53% 0.2423 5 0.9 bn
61.47% 42.49% 61.90% 0.2881 5 0.9 None
51.30% 29.90% 46.98% 0.3230 10 0.0 bn
54.86% 34.87% 53.42% 0.3051 10 0.0 None
51.57% 35.26% 50.82% 0.3037 10 0.3 bn
55.64% 34.09% 54.02% 0.3004 10 0.3 None
56.13% 37.90% 56.80% 0.2877 10 0.6 bn
53.83% 32.87% 53.88% 0.3157 10 0.6 None
65.87% 35.59% 62.88% 0.2681 10 0.9 bn
65.58% 35.72% 62.66% 0.2938 10 0.9 None
54.70% 36.89% 52.84% 0.2831 15 0.0 bn
49.67% 31.46% 47.47% 0.3174 15 0.0 None
57.22% 36.64% 55.77% 0.2797 15 0.3 bn
54.38% 33.52% 54.51% 0.3062 15 0.3 None
49.15% 29.97% 46.72% 0.3226 15 0.6 bn
51.00% 31.14% 50.70% 0.3064 15 0.6 None
64.98% 34.08% 61.82% 0.2581 15 0.9 bn
64.20% 33.50% 60.95% 0.3143 15 0.9 None

63

Jose Pérez Cano Hyperparameter study

Table E.5: Graph attention hyperparameter optimization on DigiPatics breast.

Micro F1 Macro F1 Weighted F1 ECE #Layers Dropout Norm type
64.57% 38.40% 65.43% 0.2772 1 0.0 bn
61.67% 36.83% 60.40% 0.2867 1 0.0 None
71.38% 40.58% 70.53% 0.2536 1 0.3 bn
64.72% 38.37% 64.66% 0.2740 1 0.3 None
69.49% 41.55% 70.46% 0.2751 1 0.6 bn
70.59% 41.34% 70.82% 0.2574 1 0.6 None
44.75% 24.36% 31.87% 0.3307 1 0.9 bn
72.16% 39.09% 71.57% 0.2428 1 0.9 None
52.85% 38.19% 49.38% 0.3166 5 0.0 bn
55.56% 34.86% 52.16% 0.3158 5 0.0 None
64.40% 37.01% 64.90% 0.2472 5 0.3 bn
60.73% 38.45% 60.38% 0.2901 5 0.3 None
66.05% 32.22% 63.85% 0.2583 5 0.6 bn
59.78% 38.04% 55.77% 0.3445 5 0.6 None
42.08% 14.81% 24.92% 0.2713 5 0.9 bn
41.92% 14.77% 24.86% 0.3512 5 0.9 None
40.25% 18.55% 32.70% 0.3634 10 0.0 bn
46.88% 30.67% 44.74% 0.3398 10 0.0 None
50.99% 27.44% 52.42% 0.3007 10 0.3 bn
24.88% 22.21% 33.39% 0.4510 10 0.3 None
42.08% 14.81% 24.92% 0.2850 10 0.6 bn
48.18% 18.78% 35.70% 0.3670 10 0.6 None
42.08% 14.81% 24.92% 0.2588 10 0.9 bn
6.60% 3.09% 0.82% 0.5596 10 0.9 None
43.95% 28.14% 46.56% 0.3415 15 0.0 bn
45.56% 26.04% 41.67% 0.3567 15 0.0 None
58.08% 27.71% 55.01% 0.3047 15 0.3 bn
2.61% 1.96% 4.77% 0.2060 15 0.3 None
42.08% 14.81% 24.92% 0.2838 15 0.6 bn
25.31% 11.16% 23.68% 0.2399 15 0.6 None
42.08% 14.81% 24.92% 0.2670 15 0.9 bn
47.19% 19.39% 43.47% 0.2700 15 0.9 None

64

Jose Pérez Cano Hyperparameter study

Table E.6: Graph convolution hyperparameter optimization on CoNSeP.

Micro F1 Macro F1 Weighted F1 ECE #Layers Dropout Norm type
64.44% 47.87% 61.42% 0.0539 1 0.0 bn
63.67% 45.25% 60.02% 0.0419 1 0.0 None
64.17% 47.01% 61.46% 0.0541 1 0.3 bn
63.75% 46.39% 60.78% 0.0394 1 0.3 None
61.74% 46.78% 59.18% 0.0637 1 0.6 bn
64.67% 48.24% 61.82% 0.0415 1 0.6 None
57.46% 26.66% 51.03% 0.0681 1 0.9 bn
58.98% 26.46% 52.75% 0.0376 1 0.9 None
62.66% 42.05% 59.30% 0.0544 5 0.0 bn
58.77% 39.85% 56.42% 0.0589 5 0.0 None
58.08% 32.41% 51.75% 0.0759 5 0.3 bn
64.01% 46.02% 60.56% 0.0654 5 0.3 None
46.21% 18.21% 34.93% 0.0879 5 0.6 bn
49.08% 32.92% 46.46% 0.1057 5 0.6 None
31.58% 6.86% 15.15% 0.0960 5 0.9 bn
35.13% 15.62% 28.62% 0.0683 5 0.9 None
45.16% 35.88% 43.11% 0.1235 10 0.0 bn
57.76% 38.56% 55.33% 0.0884 10 0.0 None
61.63% 43.54% 58.23% 0.0562 10 0.3 bn
61.84% 42.40% 57.42% 0.0704 10 0.3 None
21.27% 5.01% 7.46% 0.0758 10 0.6 bn
15.65% 5.56% 11.84% 0.1898 10 0.6 None
21.27% 5.01% 7.46% 0.0812 10 0.9 bn
25.86% 9.86% 17.46% 0.1449 10 0.9 None
29.28% 21.74% 29.48% 0.1663 15 0.0 bn
51.08% 38.71% 47.74% 0.1195 15 0.0 None
55.27% 32.16% 48.99% 0.1047 15 0.3 bn
21.66% 12.53% 16.38% 0.1571 15 0.3 None
21.27% 5.01% 7.46% 0.0660 15 0.6 bn
29.18% 6.50% 13.40% 0.1931 15 0.6 None
31.58% 6.86% 15.15% 0.0883 15 0.9 bn
11.90% 5.04% 8.82% 0.2094 15 0.9 None

65

Jose Pérez Cano Hyperparameter study

Table E.7: Graph convolution hyperparameter optimization on MoNuSAC.

Micro F1 Macro F1 Weighted F1 ECE #Layers Dropout Norm type
83.60% 72.26% 83.67% 0.0549 1 0.0 bn
85.48% 75.53% 85.49% 0.0436 1 0.0 None
84.54% 74.18% 84.62% 0.0509 1 0.3 bn
86.67% 74.19% 86.75% 0.0386 1 0.3 None
84.46% 75.41% 84.42% 0.0577 1 0.6 bn
87.21% 75.98% 87.28% 0.0394 1 0.6 None
83.89% 74.60% 83.92% 0.0503 1 0.9 bn
87.32% 76.17% 87.42% 0.0429 1 0.9 None
86.38% 76.62% 86.36% 0.0344 5 0.0 bn
84.63% 73.59% 84.66% 0.0436 5 0.0 None
83.59% 71.47% 83.59% 0.0604 5 0.3 bn
84.49% 73.06% 84.56% 0.0436 5 0.3 None
83.53% 71.09% 83.46% 0.0533 5 0.6 bn
84.41% 73.95% 84.44% 0.0446 5 0.6 None
83.92% 45.29% 82.79% 0.0663 5 0.9 bn
84.88% 69.20% 84.76% 0.0511 5 0.9 None
87.11% 72.21% 87.32% 0.0418 10 0.0 bn
87.07% 73.01% 87.26% 0.0244 10 0.0 None
85.16% 74.56% 85.23% 0.0537 10 0.3 bn
85.44% 75.31% 85.44% 0.0427 10 0.3 None
84.66% 70.08% 84.67% 0.0484 10 0.6 bn
85.95% 73.55% 86.04% 0.0422 10 0.6 None
84.00% 42.56% 82.75% 0.0719 10 0.9 bn
87.90% 44.56% 86.67% 0.0440 10 0.9 None
82.32% 68.89% 82.44% 0.0689 15 0.0 bn
87.11% 72.75% 87.32% 0.0364 15 0.0 None
79.96% 63.06% 80.48% 0.0907 15 0.3 bn
88.71% 69.72% 89.05% 0.0251 15 0.3 None
85.39% 70.00% 85.40% 0.0283 15 0.6 bn
88.37% 75.00% 88.41% 0.0400 15 0.6 None
84.25% 42.69% 82.99% 0.0689 15 0.9 bn
87.16% 44.19% 85.97% 0.1254 15 0.9 None

66

	Introduction
	When technology meets histology
	Why graphs?

	Problem Formulation and State Of The Art
	Definition
	Data
	DigiPatics lung dataset
	DigiPatics breast dataset
	CoNSeP dataset
	MoNuSAC dataset

	Computer vision algorithms
	Graph neural networks
	Graph convolution
	Graph attention

	XGBoost

	Problem Solving
	Method description
	Hyperparameter tuning
	Evaluation metrics
	Confusion Matrix
	Accuracy
	Precision
	Recall
	F1 Score
	Macro F1 Score
	Weighted F1 Score
	Micro F1 Score
	Dice's coefficient
	ROC AUC
	Calibration
	Extending metrics

	Experiments
	GNN vs CNN
	GNN vs XGBoost
	Void GNNs
	Scaling CNNs

	Results
	Quantitative analysis
	GNN vs CNN
	GNN vs XGBoost
	Void GNNs
	Scaling CNNs
	CNNs metrics in detail

	Qualitative analysis
	CoNSeP
	MoNuSAC
	DigiPatics breast
	DigiPatics lung

	Conclusions
	Future work
	References
	Sustainability and costs
	The problem of merging cells
	TumourKit
	Soft Labels
	Hyperparameter study

