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Abstract

The detection of tumoural cells from whole slide images is an essential task in medical diagnosis
and research. In this thesis, we propose and analyse a novel approach that combines computer
vision-based models with graph neural networks to improve the accuracy of automated tumoural
cell detection. Our proposal leverages the inherent structure and relationships between cells
in the tissue. Experimental results on our own curated dataset shows that several different
metrics improve by up to 15% compared to just using the computer vision approach. It has
been proved to work with H&E stained lung tissue and HER2 stained breast tissue. We believe
that our proposed method has the potential to improve the accuracy of automated tumoural
cell detection, which can lead to accelerated diagnosis and research in the field by reducing the
worload of hystopathologists.

Keywords: Histology, Lung, Breast, Graph Neural Networks, Convolutional Neural Networks,
Calibration.

AMS Codes: 92C50, 92C55, 92C37, 68T10, 68T45, 68R10



Resumen

La deteccion de células tumorales en imagenes de portaobjeto completo juega un papel esencial
en el diagnostico médico y es un elemento fundamental de la investigacion sobre el cdncer. En
esta tesis proponemos y analizamos un enfoque novedoso que combina modelos de visién por
ordenador con redes neuronales en grafos para mejorar la precision de la deteccion automatizada
de células tumorales. Nuestra propuesta aprovecha la estructura inherente y las relaciones entre
las células del tejido. Los resultados experimentales obtenidos sobre nuestra propia base de
datos muestran que varias métricas mejoran hasta en un 15% en comparacion con solo usar
el enfoque de visién. Se ha demostrado que funciona con tejido pulmonar tenido con H&E y
tejido mamario tenido con HER2. Creemos que nuestro método tiene el potencial de mejorar
la precision de los métodos automaticos de deteccidon de células tumorales, lo que puede llevar
a acelerar los diagnosticos y la investigacion en este ambito al reducir la carga de trabajo de
los histopatologos.

Palabras clave: Histologia, Pulmén, Mama, Redes Neuronales en Grafos, Redes Neuronales
Convolucionales, Calibracion.

Coédigos AMS: 92C50, 92C55, 92C37, 68T10, 68T45, 68R10



Resum

La deteccié de cél-lules tumorals en imatges de seccions completes és una tasca essencial en
el diagnostic meédic i la investigacid. En aquesta tesi, proposem i analitzem un enfocament
innovador que combina models basats en visi6 amb xarxes neuronals en grafs per millorar
la precisié de la detecci6 automatitzada de cél-lules tumorals. La nostra proposta aprofita
I’estructura inherent i les relacions entre cel-lules en el teixit. Els resultats experimentals en
el nostre propi conjunt de dades curat mostrin que diversos indicadors milloren fins a un 15%
en comparacié amb només usar ’enfocament de visié. S’ha demostrat que funciona amb teixit
pulmonar tenyit amb H&E i teixit mamari tenyit amb HER2. Creiem que el nostre métode
proposat té el potencial de millorar la precisio de la deteccié automatitzada de cél-lules tumorals,
el que pot portar a uns diagnostics més rapids i una investigaci6é accelerada en el camp degut
a la reducci6 en la carrega de treball dels histopatolegs.

Paraulas clau: Histologia, Pulm6, Mama, Xarxes Neuronals en Grafs, Xarxes Neuronals
Convolucionals, Calibracio.

Codis AMS: 92C50, 92C55, 92C37, 68T10, 68T45, 68R10
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Chapter 1

Introduction

1.1 When technology meets histology

This project was born due to the necessity of alleviating physicians and researchers workload
in the field of digital pathology. On a typical day, our experts have to go through a wide
variety of tissue images in order to detect some anomaly or disease. Depending on the task at
hand they sometimes need to estimate the proportion of tumoural cells with respect to healthy
ones. How wonderful would it be if a machine could perform that task for them. That is the
purpose of this thesis, to automatically estimate the percentage of tumoural cells with respect
to non-tumoural ones and facilitate the physician’s job.

Analysing human tissue is a challenging task. The first part of the process consists of
extracting the tissue from the part of the body that is relevant to the patient’s condition. If
the patient is alive the extraction is typically done using a needle. Otherwise, if the organ is
already removed then a cube of tissue can be sliced. Then, simply watching those slices through
a microscope is not going to be enough. Cells are very small and their interior is difficult to
observe even when looking through the lenses of a microscope. For that reason tissue is stained
prior to observing it. There are different kind of staining, some of them highlight the cell nuclei,
others the membrane and other stainings react with specific kind of cells. Another factor to
take into account is the cost of the dye. Some of them make the task at hand easier but are
too expensive to do for every patient. A trade-off is usually found where the more expensive
one is used only when the cheaper is not enough for confidently diagnosing.

In the past, the surgically extracted slices were typically watched through the lenses of a
microscope |9], what is termed as optical microscopy. With the development of new technolo-
gies, the field has become more and more digitalised |1 7], now being called digital pathology.
The resulting digital images that originate from watching through the microscope the tissue are
called Whole Slide Images (WSI). Between when a biopsy procedure is made and when the spe-
cialist watches it, there is now a period of time required to digitalise it. In other words, at the
morning one specialist carries out the removal of the tissue. Afterwards, technicians digitalise
the image in the afternoon. It is in the next morning the physician watches the result. Taking
advantage of that interval between when the image is digitised and when the doctor watches
it, other computational methods can be applied prior to the experts receiving the images. This
will enhance the physician user experience while working without the need for them to wait
for the algorithm to give the result at real time because it is already precomputed. Having a
preliminary diagnosis can help reduce the workload and make the histologist more productive.

1.2 Why graphs?

This whole thesis was initially thought to be about lung tissue. Starting from a WSI we are
interested in detecting which cells are tumoural and which cells are healthy. The purpose of
the application is to rapidly detect tissue slices that contain a high amount of tumoural DNA
so that it can be later on processed and analysed. Finding such WSI requires the histologist
to look at several of them and deciding which one to choose. So we want to provide a ranking
of images from more likely of having a high percentage of tumour to less likely. This way, on
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average, the physician would require to look at less images per patient, making it possible to
analyse more patients’ WSI in the same time. So, where does graphs come into play?

In a previous thesis, the same problem was tackled using a computer vision-only approach
[28]. Initially, T was asked to improve on that method. After several months working on the
problem I began to notice the principal flaw (which is also the principal feature) of convolutional
neural networks: an inductive bias towards locality [6]. That means deep neural networks
classify cells based on their immediate morphological properties. However, having met with
pathologist Irene Sansano Valero, which is an expert histologist in the field of lung tumour,
made it clear that cells were considered being tumoural or not depending on their surroundings.
Visually identical cells may be classified differently if their neighbourhood is different. Here, I
am always referring to lung tissue, we will later on analyse if this still holds true for other tissues.
It was made clear then that a different approach was needed. Another kind of inductive bias
was required, a relational inductive bias. One that classified cells based on their relationships
with nearby cells and not only on their individual properties. This is the exact kind of inductive
bias graph neural networks provide [5].

This is how the idea came into existence. The exact details of how the graph is constructed
and which networks are employed are later discussed. But the key idea is that if relations
between cells are considered important when classifying them, using graphs in some way may
lead to better results. We expect this hypothesis to be specially true for lung tissue and, in fact,
we come across high evidence that it is so. The question then is, is it true for other tissues?
The answer is it depends. Apart from the lung dataset we repeat all the experiments for other
three datasets obtaining mixed results. Sometimes it is a good fit, sometimes it is not and
sometimes it works better but not because it is a graph but because it is a stacking classifier.
The exact meaning of these words and which experiments are made to prove it will be later
discussed.



Chapter 2

Problem Formulation and State Of The Art

2.1 Definition

In order to estimate the percentage of tumoural cells we decided to solve other problem. Instead
of just predicting a number from a WSI, which would make the problem a logistic regression
problem, we decided to segment and classify every cell to later count them and compute the
percentage. There are two reasons why we chose to do so. The first one is because it makes
models more interpretable, and the second one is because it makes the problem easier to solve.

Developing more on that first reason, we work in the medical field. Here, having a model
that is statistically better than, say, a student is not enough to consider it really better than
the student. The student can explain itself on why it made that diagnosis and so it provides
more insight on how and why it makes mistakes. A seemingly black box model that simply
outputs a number (the percentage of tumoural cells) gives no insight whatsoever of how and
when you may expect it to fail. This is very dangerous in a medical setting. If we were at a
factory classifying packages, we don’t care so much about that. We can recover lost packages
later on while still benefiting from the efficiency of using a automated process. However, we
cannot recover dead patients. That makes interpretability a must. If our model predicts cells
we can see which cells are causing more trouble. This helps know which data is needed to
used for retraining the model and fixing those mistakes in the future. In the end, we want a
model that can learn from its mistakes, looking at individual cell predictions makes it easier to
recognise patterns in the mistakes it is doing and so it makes it easier to incrementally improve
the model from its errors.

The second reason is that the regression problem is harder to solve. It may seem to be
the other way around but it is not. Having worked with machine learning problems for years,
my experience is that a regression problem where images are the input is almost never a good
idea. Reframing the problem to solve something apparently harder in between has brought me
better results in the past. Nonetheless, let’s describe mathematically each problem in order to
analyse each of them and come to an intuition of why it is a bad idea.

First, let’s denote by X and Y the input and output space of the problem. We expect to
find a function f : X — Y that effectively predicts the correct percentage given the WSI. Any
WSI is no more than a collection of pixels, for that reason they can be viewed as very high
dimensional vectors X = RY, with N > 10° [27]. Similarly, the percentage is just a number
between 0 and 1, so Y = [0, 1].

Now, the logistic regression approach consists of finding such function from a family of
parametric models Fy = {fy|fy : X — Y} while the segmentation approach tries to find f
differently. It first divides the WSI into patches. Then, each patch is processed independently
to obtain pixel-wise predictions which are then used to compute the percentage. So, the family
of parametric models now in consideration is Gy = {gg|gs : Xs — X5, Xy C X} where X,
represents the space of images of 1024 by 1024 pixels, meaning dim(X,) = 3.1 - 10°. Given any
segmentation model gy we construct its regression counterpart fy as described in the following
commutative diagram.
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Where we have extended gy to several patches by applying it independently to all of them.

Go: X = xf

(1, ...,zp) — (go(x1), ..., go(xp)) (2.1)

And the s and c¢ functions refer to the split and count operations. Given a WSI it is split
into several patches, for each patch, every cell is segmented and then all the tumoural and
healthy cells are counted.

Without making any further assumptions about the families of functions we can derive some
important insights about the advantages and disadvantages of each approach. First of all, it
is clear that in the first approach the models have access to a wider context. Considering
independent patches limits the ability to take into account global information. For instance,
in lung tissue there is a structure called the cilium. It is a filamentous structure that appears
near bronchioles. Its own existence is reason enough for considering the nearby cells as healthy:.
An example of such structure is depicted on Figure 4.15. The presence of cilium in the middle
of a WSI cannot be taken into account when classifying the border of the tissue. But this
disadvantage is not such a big deal. In a 1024 by 1024 image there is room enough for all the
cells affected by the cilium, so limiting to such patches is enough. There is also another type
of cell that interacts with their surrounding, the erythrocyte, also called red blood cell. All
the cells glued to it are considered healthy. But that only applies to very close cells to it, so
by using patches you will have no problem with this type of interactions. On the other hand,
if we look at the dimensionality of input and output spaces we see a clear difference between
the two approaches. For Fy the input space has a huge dimensionality while the output is uni-
dimensional. In contrast, for G, the input and output space both have the same dimensionality
which is several orders of magnitude smaller than the dimensionality of A'. This makes the
first approach quite prone to the curse of dimensionality [35]'. Even worse, we have just one
number per each WSI. Even a simple regression problem needs more than 30 samples to have
a reasonable amount of uncertainty. Having such amount of WSI is a very difficult task.

One may also think that the regression problem can be split into patches too. That is, solving
the problem for individual patches and then averaging the percentages. This way the difference
in dimensionality of the input and output spaces is lower. Moreover, the data scarcity problem
is solved. But it is not so easy. In my experience, even with 224 by 224 images, regression is
quite unfeasible if done in a naive way. On the other hand, for the individual percentages of
each patch to be enough we will need to label all the patches of a WSI. Otherwise the sampling
may not be uniform enough since WSI are very different from one part of the image to another,
in other words, they are highly non-stationary. Labelling all the patches of one WSI could
mean labelling thousands of images, which is unfeasible.

All in all, we chose this way because we believed it was going to give better results and
because the doctors preferred that solution over the other for its interpretability.

!'Notice that this is not true for other regression problems, NeRFs [24] need to increase the dimensionality
of the input to work properly.
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2.2 Data

Now that we have described the problem as a segmentation and classification one, let’s describe
the datasets in which it is going to be applied and how they were obtained. The first one and
the main focus of the thesis is the DigiPatics lung dataset, it is called like this because it was
created under the DigiPatics project [33] and contains patches of lung WSI. Then, I'll describe
another dataset also focused on tumour detection but of another organ, the DigiPatics breast
dataset. And at the end I'll explain two more dataset: CoNSeP [12] and MoNuSAC [37]. They
are two public datasets related to digital pathology and nuclei segmentation and classification
as well.

2.2.1 DigiPatics lung dataset

This dataset contains 85 images of 1024 by 1024 pixels referring to Hematoxilin and Eoxin
stained WSI. Every patch comes from a WSI of a patient with lung tumour and it is annotated
pixel-wise, that is, every pixel is either 0, 1 or 2 depending on whether it belongs to the
background, to a healthy cell or to a tumoural cell. To have a better understanding of the
problem at hand, look at Figure 2.1 below.
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Figure 2.1: Visualisation of the kind of labels that are needed. For each cell it is required to
have its contour, as seen in the left, together with their corresponding class as seen in the right.
Blue means tumoural and green non-tumoural.

In order to annotate those images it is first needed to choose which images to label. One can
extract hundreds of patches from surgical biopsies made by thoracotomy, and even in needle
biopsies it is possible to obtain more than two hundred patches. But labelling those patches
is very expensive and so they have to be chosen carefully. One important aspect to take into
account is the number of patients at consideration. One thousand labelled images are of no use
if they come from only one patient. There is a huge variance across WSI of different patients.
For that reason we decided to annotate images from nine different patients. The selection
within patient was made based on structures that seem very different from each other so that
the dataset captures as much variance as possible.

Once the images were chosen, the annotation can begin. However, labelling manually each
image can take days for each image. That is why we followed a semi-automated approach. To
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alleviate the amount of work required, an iterative procedure was designed. In a first step made
by David Anglada and Feliu Formosa, the max-tree 31| was used to create rough segmentations
of 24 patches that were later reviewed and improved by the students. Those initial labels were
used to train Hovernet [12], explained in detail in section 2.3. Using that newly trained model,
20 more images were annotated and reviewed by me. Then, Hovernet was trained again using
those 44 images and used to infer the GT of 41 more patches. Only after carefully correcting
all the 85 patches, would the pathologist Irene Sansano Valero start reviewing the dataset. The
whole process took around 100 hours of human labour, 20 hours of GPU computation and 15
hours of expert human labour.

As a side note, this dataset is enough for the research carried out here but is definitely not
enough for a production setting. Nine patients is by no means a representative sample. And
there are many structures not present in the patches selected. We made our best effort to
annotate a dataset that would validate our approach. Having proved its validity it remains to
extend the dataset and scale the models in order to achieve a production ready model.

2.2.2 DigiPatics breast dataset

Another tumour related dataset is provided by the DigiPatics group. This one was annotated
by David Anglada and supervised by pathologist Teresa Soler. It contains 141 images from 4
different patients that had breast cancer. The biopsies were stained with HER2 staining. This
time the dataset contains 6 different classes counting the background. I will not dive into much
details of this dataset and what represents every class, the only fact I would like to mention is
that domain experts on this field and the engineers collaborating with them do not think that
group structure is as important here as it is in the case of lung tumours. In fact, experiments
described in subsection 3.4.2 and subsection 3.4.3 show that this is the case. In Figure 2.2 you
can see an example of the type of images that are in this dataset.

(a) Patient 1 (b) Patient 2 (c) Patient 3 (d) Patient 4

Figure 2.2: Patches of the four patients that are in this database. Names are omitted for data
privacy. As you can observe, images are visually very different from patient to patient even
though the same staining is employed in all of them.

2.2.3 CoNSeP dataset

The name means colorectal nuclear segmentation and phenotypes. In other words, it is about
cell nuclei detection on colorectal adenocarcinoma WSIs. Yet another organ in which we are
interested of automatically visualise the cells that are related to a tumour. It uses the same
staining as the DigiPatics lung dataset: H&E. The size of the images is similar: 1000x1000.
And it also has many patients: 16 in total. The main difference with the other datasets so far
is that it only contains 41 images. Another difference with the lung dataset is that is has 7
classes, without counting the background. Instead of classifying cells as tumour vs non-tumour
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the authors here decided to provide a more detailed analysis of each cell. In Figure 2.3 you have
an example of what are the images it contains. We decided to use this dataset because it was
the one used in the Hovernet article although we don’t have too much insight on this type of
data. The results of the experiments on this dataset seem to prove that graphs neural network
are not a good choice for colorectal tissue. Nonetheless, more research is needed to confirm
that hypothesis. It remains to ask experts if the group structure is important here and other
approaches need to be carried out, like binarising the classes. Since in this thesis I could only
talk with lung experts, I couldn’t carry those experiments myself. It is left as future research.

) Malignant,/dysplastic @ Normai epithelium @ Inflammatory @ ribroblast
epithelium
. Muscle ! Endothelial D Miscellaneous

Figure 2.3: Different examples of the CoNSeP dataset illustrating all the different cells that it
contains. Image was taken from the original article [12].

2.2.4 MoNuSAC dataset

As in previous subsection, the abbreviation has some meaning. It comes from Multi-Organ
Nuclei Segmentation and Classification Challenge. This time it is not tumour related but it
is still a nuclei segmentation and classification problem so we deemed it interesting to try our
method here. The MoNuSAC database contains 294 images from 71 patients. There are several
differences with respect to the other three datasets. The first one is the type of classes it has.
They are not tumour related, instead cells are classified into four types: epithelial, lymphocite,
macrophage and neutrophil. The second difference is the number of organs. In the previous
datasets only one tumour was considered at a time. Here we have lung, breast, kidney and
prostate. The third and last difference is that the WSI came from 37 hospitals instead of just
one. Every WSI was selected from The Cancer Genome Data Portal? and were later labelled.
Having such amount of data made this dataset quite interesting to use. It has more variety
and many more images than all the datasets previously mentioned. Interestingly enough, using
graph neural networks here gives better results than not using them. Experimental results will

Zhttps://portal.gdc.cancer.gov/ Accessed 15th May 2023
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be discussed in more detailed on section 4.1. One technical detail to remark is that images
from this dataset have very different aspect ratios and sizes. To simplify the process we just
upsampled or downsampled every image into having size 1024x1024 using Lanczos interpolation.
An example of the images from this dataset is in Figure 2.4.

Prostate ] Breast ‘ Kidney Lung
j . I e

Figure 2.4: Image extracted from the MoNuSAC article [37]. It depicts various images from
each of the four organs used in the creation of it.

2.3 Computer vision algorithms

In this section I will provide a brief survey about the state of the art in segmentations problems
and a detailed explanation of Hovernet |[12] which is the model used in the first phase of our
method. Prior to diving into specific neural network architectures I will make a quick recap
into what a convolutional neural network is. The forward pass of a single neuron from a layer
of a neural network can be described as

a; = f(w9x +b;) ( Zw ;) + b)) ) (2.2)

where w’ is the j-th row of the weight matrix of that layer W, z; is the i-th entry of the input
and b; is the j-th entry of the bias of that layer®. Here f is any non-linearity to give the network
expressivity. Now, a convolutional layer is similar in that it also has neurons that are made of
a linear operator applied to the input plus a bias and a non-linearity. However, the operator
is different. For a normal neural network, also called multilayer perceptron, the lineal operator
can be expressed as (W -x)¥) being - the matrix multiplication and (-)¢) denotes the j-th entry
of the vector. For a convolutional neural network, the operator is the convolution (W  x)¥),
In one dimension, if W = (wy, ws, w3)? is a kernel of dimension 3, then the convolution can be
expressed as a matrix multiplication like so*

o]
[w;, wy wy 0 0 0 0 0] |2
0 wp W2 Ws 0 0 0 0 Zs
0 0 w wy wy 0 0 O |%a
WEx=10 0 0 w wy, ws 0 0 (2.3)
0 0 0 0 w1, Wy Ws 0 T
_.fL'n_

To extend it to 2D data like images, we could still use this matrix definition but it would
get quite cumbersome so, instead, a simple formula can be used to describe 2D convolutions.

3https://atcold.github.io/pytorch-Deep-Learning/en/week02/02-3/ Accessed 15th May 2023
4https://atcold.github.io/pytorch-Deep-Learning/en/week04/04-1/ Accessed 15th May 2023
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1=—00 j=—00

where the superindex notation denotes pixel coordinates and the weight matrix is centred at
(0,0) and has compact support, same as the image, which also has compact support meaning
it is only different than zero for a finite amount of coordinates. As you may have noticed,
convolutions return images as output. Therefore, we can visualise what a convolutional neural
network is doing by looking at the neuron activations, which in this context are called the
channels instead of neurons. In Figure 2.5 there is an example of two possible filters that may
be learned by a convolutional neural network.

¥

(a) Original (b) Laplacian (c) Gaussian

Figure 2.5: Example of convolution filters. At the left we have a very classical image, called
Lena. On the center there is the laplacian filter applied to it using a convolution and on the
right there is the gaussian filter applied to it.

A single convolution is not expressive enough to solve segmentation problems. Normally,
several layers are required, but having too many layers has the problem of vanishing and
exploding gradient which is why residual connections are needed. That was one of the ideas
behind the first deep learning attempt at biomedical segmentation made by Olaf Ronneberger
et al. [30]. They proposed an encoder-decoder architecture as shown in Figure 2.6.

That architecture was improved recently with the development of transformers [35]. In 2021
Jieneng Chen et al. invented TransUNet [7] and later on in 2022 Jeya Maria Jose Valanarasu
et al. created UNeXt [34]. T will not dive into the specifics of those architectures but rather
comment on their limitations and why we couldn’t use them. The key limitation is their sample
efficiency. Even though transformers are more sample efficient in reinforcement learning than
previous deep learning methods [23], they still require a fair amount of data. In Jeya Maria
Jose Valanarasu et al. [34] they used two datasets of 2594 and 647 images respectively. That is
at least an order of magnitude more than what we could obtain. The other option, TransUNet
[7], was tried in a dataset with 3779 computer tomography (CT) images, yet too much for us.
Apart from that, the problem they tackled was organ segmentation, which is quite different
from cell segmentation. In order to achieve better sample efficiency, a method with specific
inductive biases is needed.

As explained in section 2.2, the max-tree [31]| can give good results at detecting cell con-
tours while using no data at all. The algorithm used morphological properties of the cells to
distinguish them from the background. That set a precedent, morphological algorithms could
help us reduce the amount of data needed. Another important morphological algorithm is the
watershed [22]. It is known for creating accurate contours if the energy landscape is properly
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Figure 2.6: Original U-net architecture. It was composed by convolutional layers, pooling layers
and residual connections.

defined. Hovernet [12] combines both the U-net architecture with the watershed algorithm to
produce cell segmentations and classify them. An overview is on Figure 2.7.

Hovernet employs the same encoder-decoder architecture as U-net but it combines three
different decoders with only one shared encoder. Each of the three decoders is trained to infer
a different property from the GT. The NP branch separates the cells from the background,
ignoring their class. The HV branch predicts horizontal and vertical distances from each pixel
to the nuclei of the nearest cell. And the TP branch predicts the GT as is. Everything is
trained end-to-end under one single loss function, which is shown below
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Figure 2.7: Overview of the Hovernet method. It has three branches that predict different maps
derived from the GT. In a post-processing step all the maps are combined using the watershed
algorithm with carefully designed energy landscapes and markers.
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where all the A are hyperparameters, the letter y denotes GT in any form, h and v are horizontal
and vertical GT maps, gh and gv are the gradients of horizontal and vertical maps, D is the
number of pixels in any image, B is the batch size, || - ||3 is the Ly norm, H(-) and V(-) are
the outputs of the HV branch, N P(-) the output of the NP branch and T'P(-) the output of
the TP branch. This loss is particularly interesting because it combines multiple ideas. It is a
mix of classification, regression and segmentation losses. Moreover, it can be considered as a
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second order optimisation since it is using the mean square error over the gradients. On the
other side it combines the cross-entropy which is designed specially for classification problems
while optimising the Dice loss which is more or less like maximising the intersection of predicted
and real cells, more on that on subsection 3.3.9. It is expected that optimising all the different
objectives while using a single encoder is going to make that encoder extract features useful for
a variety of tasks, thus generalising better.

After the model is trained, it can be used for inference in addition with a post-processing
phase which consists of the watershed algorithm. This particular watershed requires an energy
landscape which defines the space where the flooding is made and a marker that contains the
starting points to start the flooding. Both are defined below

E=(1-8,(X))®NPX) (2.12)
M = ReLU(NP(X) — Sy (X)) (2.13)

being E the energy and M the marker. In those equations X refers to the input image, ReLLU is
the rectified linear unit [2], ® is the element-wise multiplication, also referred to as Hadamard
product, and S,,(X) is the thresholded gradient of the HV branch as expressed here

S(X) = max(S, * H(X), S, * V(X)) (2.14)

where S, and S, are Sobel filters [32] and = is the convolution operation. The whole process
can be visualised in Figure 2.7. The reason for using gradient filters over the HV branch is
that if the prediction is perfect, then such gradients are exactly the NP branch. Therefore, if
we apply a watershed of one over the other it is expected that one branch fills the errors of the
other. That is not so simple in practice, and for this post processing algorithm to work both
the HV branch and the NP branch need to be expanded and contracted using a thresholding
function over a threshold that was carefully selected by the authors based on empirical results.

2.4 Graph neural networks

Having described the state of the art for computer vision, let’s introduce the state of the art
of graph neural networks as well. Graph neural networks are very similar to neural networks
but the key difference is that the computational graph is different for every node and it varies
depending on which nodes it is connected to. GNNs as used in this thesis generate an embedding
which decodes all the relevant information of that node. Most of the techniques used with
neural networks can be extended to GNNs as well, like dropout [13], batch normalisation |1]
or pooling layers [11]. In fact, there are more than 50 different possible architectures [11] and
more than 300.000 possible configurations [12|. However I will focus mainly on two of the most
popular layers: graph convolution and graph attention. Both can be used for node classification
which is what we are interested about since we are going to treat cells as nodes. More on that
description in section 3.1.

2.4.1 Graph convolution

This architecture was proposed by Thomas N. Kipf et al. [15] in 2016 and has been cited almost
ten thousands times as of this date. The main idea is to adapt the notion of convolution from
images to graphs. An illustration of the concept can be seen in Figure 2.8.

Mathematically, the graph convolution operation as expressed in [15] can be defined as
shown below

12
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(a) 2D Convolution where each pixel can
be considered a node connected to all its
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weighted average is taken with respect
to adjacent nodes. There is no notion
of pixels and each node has no absolute
spatial coordinates.

Figure 2.8: Visualisation of 2D Convolution vs Graph Convolution taken from [11].
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where b®) € RY, W) € R¥*4 are the bias and weights of the layer, Nj is the set of neighbours
of node j, ¢j = /|Nj|-|Ni| is a normalisation factor and o is an activation function. The
vectors h,(f) are the hidden embeddings of the network for each layer, being hg)) an initial vector
containing any relevant information about the node. That information can be the area of the
cell, the average colour, or even a prior distribution for the class label. In the last layer, the
weight matrix is of dimensions C' x d, where C' is the number of classes or 1 if C' = 2 and
the activation function is either the sigmoid for a binary problem or the softmax [11] for a

multi-class problem.

2.4.2 Graph attention

As an improvement over simply doing the average, one year after the publication of the graph
convolution, Petar Velickovi¢ et al. [30] proposed the idea of including the attention mechanism
[3] to compute a weighted average instead. This idea, which has been cited over eight thousands
times, is visualised in Figure 2.9.

More formally, the computation can be described as follows

b = [ Y apwOn (2.16)
keN;
where W' € R¥? are the layer weights and aj; € R are the attention weights which are defined
by the following formula
exp(LeakyReLU(a - [Wh;||Why]))

- 2.17
Yk >_ren; exp(LeakyReLU(a - [Why|[Wh,])) (2.17)
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1

Figure 2.9: On the left is the overview of the computation of the attention weights. For each
adjacent node an attention weight is computed based on the similarity of their embeddings. On
the right there is a visualisation about multi-head attention, which consists of concatenating
the result of several attention mechanisms. The figures are taken from the original article [30].

being a € R** W € R?*¢ two learnable projection matrices, LeakyReLU is the leaky recti-

fied linear unit [19] and || the concatenation operation. Inspired by the multi-head attention
mechanism proposed in [35], the previous attention mechanism can be extended to H heads
H
I+1 1)q. (1
B = || o[ 3 ajmWn (2.18)
h=1 keN;

where now W,(ll) € R¥>*Hd the attention weights are different for each head and sum up to one in
each head ), _ N, Qkh = 1, Vh and in the final layer heads are averaged instead of concatenated
as explained in [30]. Notice that there is not bias as with the convolution. This is because the
attention scores are thought to be similarities between nodes. The attention mechanism is just
a way of averaging embeddings based on their similarity to the target node. There is no need
for bias under that interpretation.

2.5 XGBoost

The last section of this chapter is devoted to give a very brief explanation of an algorithm
that is going to be tangentially used in the experiments as a way to perform an ablation study
to see if the graphs are really being useful or not. XGBoost [3] is an algorithm to perform
either regression or classification over tabular data. In our case, it is going to be used over
the extracted features of each cell (perimeter, area, ...) to predict its class. The XGBoost
algorithm is in fact a gradient boosted tree, the distinction here comes because XGBoost is a
faster implementation of such idea. To understand what a gradient boosted tree we first need
to explain what a random forest is. It is a set of tree classifiers that are ensembled together
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using the average of their predictions. A visualisation of it is here below®.
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Now, to pass from a random forest to a gradient boosted tree we have to substitute the idea
of bagging (doing the average) to boosting. Boosting consists of incrementally add models to
the ensemble that each of them predicts the error of the previous ensemble. This way every
model you add operates on a smaller target variable. For classification problems, the residual
is taken from the log likelihood so that it is treated as a regression problem over the real line.
The process is represented on Figure 2.106.

Error

{:_.'(_) LN ]

Iterations

Figure 2.10: Visualisation of the concept of boosting for tree models. Image taken from a
medium post.

Shttp://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/ Accessed 25th

January 2023
6Image taken from https://medium.com/analytics-vidhya/what-is-gradient-boosting-how-is-it-
different-from-ada-boost-2d5ff5767cb2 Accessed 15th May 2023
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Chapter 3

Problem Solving

Having described the problem at hand as well as relevant deep learning methods it is time to join
it all into one single method. In this chapter we will cover a detailed explanation of the method
proposed, the metrics that will be used to compare across architectures and hyperparameters
and the experiments carried out to show its usefulness.

3.1 Method description

I have described how the cell classification problem was tackled with the help of convolutional
neural networks. I have also explained two algorithms used for node classification. It is time
to merge both fields. For that, we need to describe the cell classification problem as a node
classification problem. What are going to be our nodes? The individual cells extracted from
Hovernet. Using that computer algorithm we are going to infer the location of the cells in a
patch by considering the contours in the predicted segmentation. Those contours are used just
to extract what we call morphological features of the cell and its coordinates in the image. It
is left to define the edges. We are going to consider two nodes (cells) to be related if they are
sufficiently close. By sufficiently close it is meant that their euclidean distance is less than some
previously defined amount. Apart from that, to have manageable graphs, the degree of each
node is limited by only considering a small amount of nearby nodes as possible connections.
This way we ensure the number of edges increases linearly with the number of nodes making
our method more scalable. An example of such graph is on Figure 3.1.

pove
ST,

e

Figure 3.1: Example of an image and its associated graph. At the middle we have the nodes
located at their corresponding centroids. However, a graph is an abstraction, so it may also be
viewed as in the right image, since it only encodes relationships, not absolute positions. The
visualization of the graph was made using Gephi [1].

Given nodes and edges we can still give more information to the graph neural network. In
subsection 2.4.1 we showed that the network can be given an initial set of features h,(co). Those
features can be anything that gives information about the cell. We decided to use the following
set of descriptive features:

e The area and perimeter of the cell measured in pixels. Those values should give informa-
tion about the shape of the cell.
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e The standard deviation of the values of the pixels in gray format. This magnitude is
supposed to bring insights about the luminosity of the cell.

e The histogram of the red, green and blue colour channels. We expect it to summarise the
information about the colour of the cell.

e A prior distribution of the class. It is computed using the output of Hovernet. Each class
probability is inferred as the number of pixels of that class predicted by Hovernet divided
by the total number of pixels of the cell.

Later on, in section 3.4 an experiment is described to discover how relevant the selected features
are.

3.2 Hyperparameter tuning

In our first step, Hovernet, we did not try to optimize any hyperparameter for two reasons.
The first, the compute power needed is simply prohibitive. One configuration requires several
hours to train. Doing cross-validation on it or trying more than 10 configurations is going to
last for weeks for every dataset involved. The other reason is that the method is quite stable.
Looking at the loss function during training for the train and validation dataset, we observed
that after a few tens of epochs the curve converged for both datasets. So it seems to indicate
that changing hyperparameters is not going to give a significant difference for the Hovernet
model.

For the graph networks we will be tuning 4 variables. The first one is the number of layers.
We fixed the number of neurons on its layer to 100 and try architectures from 1 layer up to 15
layers. The second hyperparameter we tune is the dropout rate. We apply dropout after every
graph layer. The third hyperparameter is batch normalisation. We consider models with and
without it. And the last hyperparameter is the type of the graph layer, either convolution or
attention. Having defined those, we perform a grid search over them. We train all the different
configurations and evaluate them in a validation dataset. The configuration that gives the best
validation score is then evaluated on the test set, and those are the metrics that are reported.
Since we are optimising the type of graph layer used, I will refer to the model as GNN and not
as GCN (convolution) of GAT (attention) since it could be any of those.

In the case of XGBoost the tuning is done a bit differently. We optimize over the learning
rate, the maximum depth of each tree and the percentage of features visible to each tree. The
number of trees is fixed at 500 for every configuration. Since XGBoost is so efficient we could
perform cross validation to estimate the validation score. Concretely, we used 10 fold cross
validation. Then, the configuration with the best cross validation score was tested on the test
set, and those are the metrics reported. For a more detailed analysis of which combination of
hyperparameters was the optimal in each case, please refer to the Appendix E.

3.3 Evaluation metrics

This section is going to provide a review of the most common metrics for any classification
problem, either binary of multiclass.

3.3.1 Confusion Matrix

Prior to defining any metric we have to define the concept of confusion matrix. Most of the
metrics described can be expressed in terms of it. The confusion matrix is a way of measuring
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how precise is any method. For a binary classification problem one has positive (1) and negative
(0) classes. If the model correctly predicts the positive or negative class it is called true positive
and true negative. Then, if the model incorrectly predicts positive it is called false positive and
if it infers negative wrongly it is denoted by false negative. Confusion matrices are typically
expressed as shown below.

Table 3.1: Binary confusion matrix.

Predicted
Positive | Negative
Positive TP FpP
Actual -0 Hve | FN TN

On our specific problem the true positives are the tumoural cells that are correctly pre-
dicted as tumoural, true negatives are healthy cells rightly classified as so and false positives
or negatives are misclassifications of cells in one way or another. However, there is one nuance
needed to take into account. It may be possible that one cell is not predicted or that the model
predicts more cells than there really are. For that reason we will only be considering those cells
that are in the ground truth and in the prediction at the same time. This means that it is
needed to create a 1-1 correspondence between real and predicted cells. This correspondence
is created by distance. Two cells are considered a pairing if the former is the closest to the
latter, and the latter is the closest to the former. Ignoring cells that do not belong to such
pairings is not a problem because we are interested in improving the classification of already
predicted cells, not on improving the segmentation itself. Nonetheless, we can also evaluate the
performance on the missing cells by including the background as a new class.

To deal with such multiclass scenarios an adaptation is needed. Instead of adding more
rows and columns the matrix is built considering one class against all the others. In that case
several confusion matrices are needed. Of course, one can also create a bigger confusion matrix
as follows

Table 3.2: Multi-class confusion matrix. Here the terms true positive, negative and false
positive, negative lack any meaning unless you consider one class against the others.

Predicted
Class 1 | Class 2 | Class 3 | Class 4 | Class 5
Class 1
Class 2
Actual | Class 3
Class 4
Class 5

3.3.2 Accuracy

The first metric we will be defining is the most intuitive one. It is basically the percentage of
correct predictions. Using the terminology from Table 3.1 it can be expressed as

TP+TN
TP+ FP+TN+ FN
The main disadvantage of the accuracy comes when dealing with imbalanced datasets. By
predicting the class that appears the most a high accuracy can be easily achieved in those cases.

The accuracy is a binary classification metric, later on in subsection 3.3.8 an adaptation to
multi-class problems is described.

(3.1)
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3.3.3 Precision

The accuracy requires to know how many true negatives there are. But in some problems like
object detection that is not always possible. Due to how labels are constructed in some cases
it is impossible to know how many true negatives can be considered, although in the case of
object detection the trend seems to be changing these days [16]. In those cases it makes sense
to define the percentage of correct predictions only within the positive class. Mathematically,
precision is defined as

p__ 1P

TP+ FP

This metric, however, can be easily fooled. In an image with hundreds of cells, by only

predicting one true tumoural cell you achieve a precision of 100%. But that is a useless value
since you would be missing on most relevant cells.

(3.2)

3.3.4 Recall

As opposed to precision, recall focuses more on what relevant values are retrieved rather than
them being correct. It is defined like this
Re_1T (3.3)
TP+ FN
Again, this metric can also be fooled. By predicting everything as positive you achieve
100%. Since this metric ignores false positives you are left with a biased metric against the
negative label.

3.3.5 Fj Score

In order to take the best from precision and recall, the F-measure was proposed in 1992 at the
Proceedings of the 4th conference on Message understanding [26]. The F-measure is defined as
the harmonic mean between precision and recall.

2-P-R 2.TP
P+R 2-TP+FP+FN

Nowadays it is called F} score because that measure has been extended to what is called
the I} score.

(3.4)

oo (45 -P-R_ (1L+4)-TP (3.5)
7 . P+R  (1+p)-TP+3 -FP+FN '
By taking 5 = 1 the original F-measure is obtained. This metric achieves 100% when all the
relevant positive samples are retrieved and only the relevant samples, therefore it is not so
easily fooled. Moreover, it is less prone to suffer from class imbalance as the accuracy does.
There are three ways of extending the F) score to a multi-class classification problem. All
of them involve some kind of averaging the individual F; scores computed by considering one

class against all the others.

3.3.6 Macro Fj; Score

The first way of averaging individual Fj scores is by simply taking the arithmetic mean. If we
have n classes, and we call F} the F score of the class 7 against the others, then the macro F}
score 1S
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I
- z; F! (3.6)

The main drawback of only considering this metric is that classes can be imbalanced. In
fact, for multi-class problems that is the rule rather than the exception. Giving equal weights
to all of the classes harms the less represented labels.

3.3.7 Weighted F; Score

As a way of solving the main drawback of the macro F; score one can deal with the weighted
F score that averages individual scores based on their support, that is, based on the number of
true instances by class. Let’s call n; the number of true instances of class i, then the weighted
F score is

n

i=1

(3.7)

3.3.8 Micro F} Score

Another way of averaging the individual F} scores is by micro-averaging. When macro-averaging,
true positives, false negatives and false positives are computed per-class prior to averaging all
the scores computed as defined in subsection 3.3.5. Micro-averaging changes the order. True
positives, false negatives and false positives are first aggregated among all the classes and then
the micro F} score is computed using the formula in subsection 3.3.5. To illustrate the com-
putation let’s consider the matrix from Table 3.2 and let’s also fill it with false positives /
negatives and true positives, giving the matrix in Table 3.3. Now, this terminology only makes
sense when splitting by class. For that reason we will denote by T'P; the true positives of class
1, and F'P;, F'N; the false positives and negatives of same class 7. Notice that what is a false
positive for one class can be a false negative for another.

Table 3.3: Multi-class confusion matrix. The values in the diagonal are all true positives when
considering one class agains the others. Depending on which class you are considering, the
values considered false positives and false negatives could be interchanged.

Predicted
Class 1 Class 2 Class 3 Class 4 Class 5
Class 1 TP FP,, FN, | FP,, FN; | FP,, FNy | FP,, FN5
Class 2 | FPy,, FN; TP, FP,, FNs | FP, FN, | FP,, FN;
Actual | Class 3 | FP;, FN, | FP;, N, TPy FP;, N, | FP3;, F N5
Class 4 | FPy,, FN, | FP,, FNy | F'P;, FNj TP, FPy, FNs
Class b | FPs, FN, | FPs, FNy | F'Ps, FN3 | FPs, FN, TP

The micro-average is then the sum of the diagonal divided by the sum of all the entries in
the matrix. It is quite similar to how the accuracy is computed. For that reason sometimes

this metric is referred to as the accuracy in multi-class problems.
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3.3.9 Dice’s coefficient

The Dice’s coefficient can be viewed as a generalisation of the F} score. Given two sets X and
Y the Dice’s coefficient is defined as

2.1 XNY|
[ X+ Y]

If we consider X as the set of relevant items and Y as the set of retrieved elements, we
obtain the F} score. To show that, let’s see what are the sets of retrieved and relevant objects.
The relevant items are the sum of true positives and false negatives. The retrieved ones are the
sum of true positives and false positives. The intersection is clearly just the true positives, so
| XNY|=TP and also | X|+ |Y|=2-TP + FN + FP. Substituting into the formula for the
Dice’s coefficient the formula for the F; score appears.

But the Dice’s coefficient can be used for more than that. It can be used as a metric for
image segmentation problems. By defining X as the set of pixels that belongs to a class in the
ground truth and Y as the set of pixels of the same class but in the predictions, the Dice’s
coefficient can be used for evaluating the performance of a segmentation model.

Furthermore, it is possible to extend that measure to a loss function. All the metrics
presented so far require a thresholding function at the end. That function has a discontinuity
at 0.5 but worse than that, are completely flat in the rest of the [0, 1] interval, which means
the gradient is zero. A null gradient stops any deep learning method from using them as loss
functions. The adaptation of the Dice’s coeflicient to a loss was made by Milletari et al. [25].
The idea is to take advantage from the fact that pixel class probabilities rang