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Abstract

Cure models have gained increased attention in recent years due to the advances
within several disease treatments. This thesis focuses on cure models and their
applicability in handling survival models with long-term survival due to immunity.
A dataset including a large proportion of right-censored individuals at the follow-up
time can be suspected to have individuals who will never experience the event of
interest due to being cured (also expressed as being immune to the event).

The population is assumed to be divided into two subpopulations - one which is
susceptible to the disease, and one which is immune to the event. In this study, the
main objective is to estimate the proportion of cure, referred to as the incidence.
Various cure models will be investigated and applied to a dataset comprising 2074
hospitalized Covid-19 patients from the metropolitan area of Barcelona during the
first wave of the pandemic. The purpose of the study is to explore if there are some
cure models suitable to model the behaviour of Covid-19 patients.

Mixture cure models allow the subpopulations to have different survival distribu-
tions while non-mixture cure models are easily interpreted due to similarities with
proportional hazards models. The estimation of the survival of the uncured popu-
lation, called the latency function, has previously mainly been done parametrically.
However, recent research provides new complex and more accurate nonparametric
methods that will be applied in this study. A comparison of the various estimation
methods are provided with a discussion of the advantages and disadvantages of the
approaches.

The estimation of the incidence function further provides an estimation of the im-
mune proportion in our data set indicating the predicted percentage of hospitalized
patients discharged from the hospitals. Due to the impossibility of distinguishing if
a right-censored observation is uncured and not yet experienced the event or cured,
a sufficient follow-up time and big data set is vital for the analysis.

Keywords: cure models, latency, incidence, Covid-19
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1
Introduction

With the world at the end of overcoming a major pandemic, a sense of relief is
spread across the world. However, it is recognized that the potential occurrence of
future pandemics is a matter of concern. A recent study in Italy (2021) assessed
the annual probability of a new pandemic with a similar impact to Covid-19 to be
approximately 2% [1]. Diseases transmitted from animals to humans have more than
once been responsible for outbreaks, not least the Covid-19 pandemic. Factors such
as an increased global travel, intrusion in natural habitats and the climate change
can contribute to the emergence and spread of new diseases. Climate change is one of
the most significant factors since it can force more interaction between humans and
animals. This emphasizes the importance of being prepared and making proactive
measurements to prevent as much damage as possible for our world.

One of the major challenges faced during the recent pandemic was the limited avail-
ability of hospital beds, which made it difficult to accommodate the high number of
patients requiring hospitalization. In an eventual future similar situation it would
therefore be facilitated to be well educated with statistical models which can prepare
for a vital situation like this. How can statistical models derived from Covid-19 data
provide valuable knowledge to prevent shortages of critical resources, such as hospital
beds in potential future pandemics or similar situations? This Master’s thesis will
explore statistical models with the objective to answer this question.

The area of cure models might, for some, gone unnoticed. However, due to the
success in several medical research areas the patient outcomes have improved, which
brings a new attention to cure models within survival studies. Their theory violates
previous assumptions about the shape and behavior of the survival function and
is instead visualized as an improper survival function. This thesis will examine
whether cure models could be appropriate to model Covid-19 data and, if so, what
are the most efficient and most accurate estimation methods. Finally, a conclusion
concerning its usability in the future will be made.
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2
Theory

Modeling diseases and survival is a significant area within the field of statistics, given
its wide applicability in the development of medicines and other aspects of hospital
logistics. It has been an objective to create models for diseases and conditions that
take into account the potential for a cure within the population. This chapter will
first introduce the survival analysis followed by a brief introduction of cure models
and their different applications.

2.1 Survival analysis with right censoring
Survival analysis is a field within statistics with the objective to analyze the time
it takes for an event of interest to occur, such as death, failure or recovery [2]. It
is commonly used in medical research, engineering, social sciences, and other fields
where the goal is to model the data with a survival function. This function describes
the probability of an individual surviving up to a certain time point. The survival
function is defined as

S(t) = P (T > t) = 1 − F (t), t ≥ 0,

where F (t) is the cumulative distribution function of time t.

When working with survival data, it is crucial to consider the presence of censored
observations, which is indicated by incompleteness in the data. Right censoring
means that some individuals in the study have not experienced the event of interest
by the end of the study period. This type of censoring is common in many fields,
for instance in medical research where patients may be lost to follow-up or still
alive at the end of the study. Right censoring complicates the analysis because
the survival time of the censored individuals is unknown, and their contribution
to the analysis is limited. However, with the right methods it is still possible to
estimate the probability of an event occurring over time, taking into account both
the observed and censored data.

To analyze survival data with right censoring, two commonly applied methods are
the Kaplan-Meier estimator and the Cox proportional hazards model. The Kaplan-
Meier estimator is a nonparametric method that estimates the survival function from
the observed data and the proportion of censored individuals. The Cox proportional
hazards model is a semiparametric method that models the relationship between the

3



2. Theory

hazard function and the covariates, while accounting for censoring. Both methods
are widely used and provide valuable information about the time-to-event data, such
as the median survival time or the effect of covariates on the survival outcome.

Define Y as the survival time, a non-negative continuous or discrete variable. Fur-
ther, let C denote the time to censoring, indicating the time where the individual
will stop being followed given that the event has not yet occurred. For an individual
i the survival time is defined as Yi and the censoring time as Ci. We assume Ci to
be independent from Yi, which indicates a non-informative censoring. Furthermore,
we define Ti = min{Yi, Ci} and

δi =

1, if Yi ≤ Ci

0, if Yi > Ci

, (2.1)

where δi is the event indicator taking the value 1 if the individual experiences the
event before the end of the study and 0 if the individual does not.

Having a study with a lot of right-censored observations might indicate a plateau in
the survival curve after a certain amount of time. This makes us believe that some
individuals will not experience the event at all. A proportion of the population
are considered to be statistically cured implying that they instead have the same
mortality rate as the non-sick population. To have a population with a proportion
of cured/immune individuals might introduce bias in the result from traditional
survival methods. Cure models have been developed to account for this and the
different kinds of models will be explained in this report.

2.2 Mixture cure models
The first cure models were introduced by Boag in 1949 to model a proportion of cured
individuals after cancer treatment [2]. The general idea of the mixture models is
that the observed population is divided into two groups, one that will be susceptible
for the disease and one that will be immune to the event of interest. In this context,
being immune to the event and having been cured from the disease are synonymous.
The survival function will have two parts, one representing the cured individuals
and one for the uncured. The proportion of cured patients in the population is
represented by 1 − π and referred to as the incidence component of the expression.
The survival function for a mixture cure model is given by

S(t) = (1 − π) + πSu(t), (2.2)
where Su(t) is the survival function of the uncured population called the latency
function. The estimation of the incidence and the latency will be discussed in the
next chapter. An important benefit with the mixture model is that it allows the
covariates to have different influence of each group.

An extension of the mixture cure models
An extension to the mixture cure model also takes into account the background
survival of the population, which refers to the underlying distribution of the non-

4



2. Theory

sick population [3]. Previous research on mixture cure models has mainly considered
children to minimize the risk of dying from other causes than the disease in matter.
Nevertheless, when wanting to apply a cure model to an adult population, with a
higher risk of dying from non-disease related causes, an extension of the previous
method has been presented. This investigates the relative survival which is the ratio
between the observed survival (observed events) and the expected survival function
for the given group. This provides a measure of the excess survival experienced
by the diagnosed patients. From this ratio follows the expression for the overall
survival:

So(t) = S∗(t)R(t),
where S∗(t) is the background survival function, R(t) is the relative survival and S(t)
is the survival function for the entire population. The distribution for the underlying
population, S∗(t), is found externally (life tables for the general population is found
in the Human Mortality Database (HMD)) and chosen for the country and age that
will be analyzed. The relative survival is expressed as R(t) = (1−π)+πSu(t), which
is the survival in Equation (2.2), while S∗(t) is the background function obtained
from the mortality data base. Hence, the overall survival is derived by

So(t) = S∗(t)(π + (1 − π)Su(t)). (2.3)

The estimation of the various components in Equation (2.3) can be performed using
parametric, semiparametric or nonparametric methods, as well as for the mixture
models that do not consider background survival.

2.3 Non-mixture cure models
To model the growth of cancer cells more accurately another approach was presented
in [4]. Let N be the number of cancer cells each individual has after cancer treatment.
A cured individual has N = 0 cancer cells while an uncured has N > 0. The number
of cancer cells of the uncured can grow rapidly and if at least one of the N cancer
cells produces a detectable cancer mass the individual will develop cancer. Define

T = min{T̃1, ..., T̃N} = T̃(1),

where T̃i are the i.i.d. latent event times, i.e. the activation times for cancer cells
to develop a detectable cancer mass, and T̃(1) is the first order statistic of T̃1, ..., T̃N ,
also called the first-activation scheme suitable for tumour kinetics. There are several
different schemes developed for this purpose involving different distributions of T̃i

and T leading to different cure models. Considering the most common model, N
follows a Poisson distribution with mean λ. If T̃i ∼ F H(t) is a proper cumulative
distribution function, then the unconditional survival function of T is

P (T > t) = S(t | z) = P (N = 0) + P
(
T̃1 > t, . . . , . . . , T̃N > t, N ≥ 1

)
= e−λ +

∞∑
k=1

[
SH(t)λ

]k
k! e−λ

= e−λF H(t) = pF H(t),

5



2. Theory

and SH(t) = 1 − F H(t). In this expression p = e−λ is the probability of being cured
since limt→∞ SH(t) = p = e−λ, which implies that SH(t) is an improper survival
function. Furthermore, the hazard function of this non-mixture model is given by
h(t|z) = − ln(p)fH(t) where fH(t) = dF H(t)/dt.

If the parameters in fH(t) do not vary by covariates then the expression for the
hazard function is a proportional hazards model, which is another advantage of
a non-mixture cure model. This model also has an extension incorporating the
background survival and works similarly as the mixture cure model extension using
the same calculations. The overall survival function is given by

So(t) = S∗(t)pF H(t).

Furthermore, in case of no varying parameters this is a proportional hazards model.
To be able to use these cure models the latency function has to be estimated which
can be done parametrically or nonparametrically and will be introduced below.

2.4 Estimation methods for incidence and latency
There are various ways to estimate the two parts of the cure models which are based
on different assumptions. The parametric estimation assumes that the baseline dis-
tribution of the time to event in the uncured population is known. This distribution
is usually assumed to be exponential, Weibull or log-normal. In addition, the in-
cidence is modeled as a binary regression model for the cured population which is
assumed to follow a parametric distribution such as logistic regression or probit re-
gression. Parametric estimation requires the assumption of a specific distribution
and subsequently the estimation of the parameters of the distribution. Parametric
methods can provide very precise estimates of the survival function. It needs how-
ever the fit to be good, i.e. to closely follow a parametric distribution, to provide
an accurate estimation.

The difference between parametric and semiparametric estimation in cure models is
that semiparametric does not assume a specific distribution for baseline survival in
the uncured population. However, a similarity is that it also assumes a parametric
form for the regression model for the cured population. Semiparametric methods
use nonparametric estimation methods such as Kaplan-Meier or Cox proportional
hazards regression to estimate the survival function of the susceptible population.
Semiparametric methods can be more flexible than parametric methods, but they
may require larger sample sizes and can be computationally heavy.

A nonparametric estimation for the cure models does not assume a specific distri-
bution for either the latency or the incidence for the cured population. Instead, the
nonparametric estimation methods use a special form of Kaplan-Meier to estimate
the survival function in the susceptible population. Nonparametric methods are the
most flexible but can be less precise than parametric or semiparametric methods,
particularly for small sample sizes.

In summary, the choice of estimation method in cure models depends on the assump-
tions made about the underlying distributions and the desired level of flexibility and

6
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precision in the estimates. Parametric methods are more precise but require more
assumptions, while nonparametric methods are more flexible but may be less exact.
Nevertheless, semiparametric methods offer a balance between flexibility and pre-
cision. In the following chapter, various methodologies for the different estimation
approaches will be explained.

2.5 Previous applications
As previous mentioned, cure models were first introduced to model cancer survival.
A study in Norway described in [5] applied the mixture cure models to twenty three
kinds of cancer, where the majority of them (fifteen types) resulted in an accurate
cure fraction. The model gave valid results for cancers of the mouth and pharynx,
oesophagus, stomach, colon, rectum, liver, gallbladder, pancreas, lung and trachea,
ovary, kidney, bladder, CNS, non-Hodgkin lymphoma (only for males) and leukemia.
Thus, there were some cancer types where cure models did not provide a good fit.

Maller and Zhou discuss in their book Survival Analysis with Long-Term Survivors
[2] the application of cure models in the context of recidivism among released pris-
oners. The survival time of an individual will be denoted as the time that elapses
before a rearrest. The prisoner’s release from the prison was observed as well as the
time to return to prison. The success was measured by how large the proportion of
the prisoners that never came back was. A cut-off date was chosen and the persons
who had not returned to the prison were labelled as right-censored. Due to the big
data set and other assumptions, they could further be labelled as immune to the
event of going back to prison. Since the prisoners were released at different times
left truncation had to be considered. Extending this analysis to include covariates,
such as country of origin and gender, makes these kind of models important within
criminology. The first model of this study was done by Partanen (1969) who success-
fully fitted through maximum likelihood a mixture cure model using the exponential
distribution. The data set consisted of times to first return to Finnish prisons out of
606 Finnish convicts. The conclusion was that this fit was better than a model with
same distribution but without considering immunes. Several different cure models
on convicts were constructed during the following year by applying different para-
metric distributions. Maller and Zhou applied their model on the data from Western
Australian prisoners and eventually extended the method into being able to handle
covariates.

Another area of application is engineering reliability where the individuals are com-
ponents instead of persons. Nelson (1982) explains an experiment with motorettes
components [2]. Ten motorettes are put on test at t = 0 on four different tempera-
tures, where the survival time was the time to breakdown of the insulation. Since
all motors eventually will fail, the immunes in this case were the motors that lived
much longer relative to the components. In this study competing risks had to be
considered since only breakdown due to insulation was the event in the study and
the motor could break down due to other reasons.

7
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Methods for the estimation of

mixture cure models

This section describes the methodology to estimate mixture cure models. Consider a
population divided into two subpopulations, one susceptible for the disease and one
immune of the disease. The first group involves the individuals that will experience
the event of interest given a sufficiently large follow-up time and the second the
individuals who will not experience the event regardless of the follow-up time.

Let Y be the random variable for time until the event of interest and C the ran-
dom variable for the censored times. The random variables are assumed to be
independent from each other and the minimum of Y and C for each individual
will be observed and defined as T = min{Y, C}. Moreover, the indicator of death
δ = 1{Y < C} is introduced. Denote τ > 0 as the upper bound of the survival time
for the non-susceptible individuals and let v be the indicator of cure that takes the
value of 1 for cured individuals and 0 otherwise. We assume P (T < τ |ν = 0) = 1,
which implies that the probability of experiencing the event before time τ given that
the individual is not cured is 1. For simplicity, τ is usually set to ∞ which indicates
that v = 1 can not be observed. Thus, a cured subject will never be observed but
always right-censored. Hence it is not possible to distinguish if ν takes the value of
1 or 0 for a right-censored individual. However, in practice it is possible to give τ a
finite value which implies a possibility for ν to take the value 1 .

Let Su(t) = P (Y > t|v = 0) and Sc(t) = P (Y > t|v = 1) be the survival functions
for the susceptible and the cured populations for any t < τ , respectively. According
to the definition of cured objects, Sc(t) is a degenerate function due to the fact that
it is constantly equal to 1 for t < τ . The mixture cure model can be defined as the
unconditional survival function of T for any t < τ , that is

S(t) = πSu(t) + (1 − π)Sc(t) = πSu(t) + (1 − π). (3.1)

The model expression comprises two components: the incidence, representing the
probability of being cured (1−π), and the latency, denoted as Su(t), which represents
the survival distribution for the uncured population. This formulation allows for
diverse effects of covariates on the different populations.

9



3. Methods for the estimation of mixture cure models

3.1 Parametric and semiparametric estimation
Several methods to estimate these two submodels have been presented since the
mixture cure models were introduced in 1949. The following section will introduce
several methods to estimate the incidence and latency parametrically or semipara-
metrically. The information for these approaches is mainly retrieved from the book
Cure models: Methods, Applications and Implementation (Yingwei Peng and Bin-
bing Yu) [6]. Consider X and Z to be the covariate vectors for the latency and in-
cidence, respectively. The sample is represented by (Ti, δi, Xi, Zi), i = 1, ..., n, where
T(i) denotes the i-th order statistic observation from the sample (T1, T2, ..., Tn), and
δ(i), X(i), and Z(i) refer to the concomitants corresponding to the δ, X, and Z sam-
ples, respectively.

Consider the covariate vectors X and Z. Then, the expression in (3.1) can be
further written as

S(t) = π(z)Su(t|x) + (1 − π(z)), (3.2)

where 1 − π(z) is the incidence and Su(t|x) the conditional survival function for the
susceptible subpopulation (the conditional latency function).

3.1.1 Parametric incidence submodel
The primary approach for estimating the incidence function will be through para-
metric methods. Given that the random variable Y exhibits a binary property, it
will be modeled with the Bernoulli distribution, where the parameter π is used to
represent the probability of a success. Let z be the vector of covariates for the inci-
dence, starting with value 1, and γ the corresponding coefficient vector. Following,
link functions will be presented to express the effect of the covariates on π, i.e. the
link between π and the linear predictor z′γ. The most common parametrization is
the logit link:

log(π(z)/(1 − π(z))) = z′γ.

An interpretation of the value eγ for a certain covariate z is that it represents
the odds ratio of being uncured when the covariate is increased by one unit, while
holding all other covariates constant. Another link function is the complementary
loglog link function:

log(− log(π(z))) = −z′γ.

In this case, the interpretation of eγ is the relative log risk of remaining uncured
when the corresponding covariate z is increased by one unit, assuming all other
covariates remain constant. A third link that can be applied is the probit link,
where the linear predictors effect is linked to π through the cumulative distribution
function of the standard normal distribution:

Φ(−1)[π(z)] = z′γ.

However, there is no clear interpretation of γ here due to its restricted form. This
link function, as well as the logit function will symmetrically model π(z) and 1 −
π(z) since the corresponding coefficient will only differ by a sign. However, the
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3. Methods for the estimation of mixture cure models

complementary loglog link approaches 0 slowly and 1 fast, and does not model the
complementary probabilities equivalently. With a large sample size it might be
useful to choose a link function based on the Box-Cox transformation (Box and
Cox, 1964):

π(z) =
(
1 + λe−z′γ

)
, 0 ≤ λ ≤ 1,

which has both the logit and complimentary log-log links as special cases.

3.1.2 Parametric latency submodel
To parametrically model the second part of the mixture cure model we specify the
distribution of the survival times of the uncured population together with the effect
of the covariates on the distribution. This is done by expressing the survival function
Su(t) in terms of the baseline survival function Su0(t) and a function ex′β where x is
the covariate vector. For the case with no covariates, i.e. when x = 0, the survival
function will be equal to the baseline survival function making only estimation of
the parameters of the chosen parametric distribution necessary. Specification of
the latency can be done in different ways. An important note is that the covariate
vectors x and z do not necessarily have to be equal. The first model that will be
explained is the parametric latency submodel under the proportional hazards (PH)
assumption.

3.1.2.1 Parametric PH latency submodel

The survival function for the susceptible population will be modeled as

Su(t|x) = Su0(t)exp(x′β). (3.3)

Here, Su0(t) is the baseline survival function which will be modeled with a parametric
distribution. For instance, Su0(t) can be modeled by the exponential distribution
which implies the baseline function Su0(t) = e−λt with rate λ. This further implies
the survival function Su(t|x) = e−λ exp(x′β)t from the exponential distribution but
with the rate λ exp(x′β). Another choice for the baseline survival function is the
Weibull distribution resulting in Su0(t) = e−λtp where λ is the scale parameter and
p is the shape. This further implies the survival function Su(t|x) = e−λ exp((x′β))tp

which as well is a Weibull function, but with the scale parameter λ exp(x′β). The
interpretation of β is equivalent to the one for the Cox model where βi for covariate
xi denotes the log-hazard ratio when the covariate is increased with 1 unit holding
all other covariates are fixed.

3.1.2.2 Parametric AFT latency submodel

An alternative parametric submodel is the accelerated failure time model, where the
survival for the uncured population will be modeled as

Su(t|x) = Su0(te−x′β), (3.4)

11



3. Methods for the estimation of mixture cure models

where Su0(t) is the baseline survival. If log(T |Y = 1) = x′β + σε satisfies P (eσε >
t) = Su0(t) where σ is the scale parameter and ε the error term, then T |Y = 1
will satisfy the accelerated failure time assumption. Usually, the distribution for
eσε is modeled with a parametric distribution. For instance, if eε follows the ex-
ponential distribution with σ = 1 or if ε follows the extreme value distribution
with survival function P (ε > s) = exp(−es) then the latency is given by Su(t|x) =
exp(−(te−x′β)1/σ). Thus, the corresponding mixture cure model is a Weibull AFT
mixture cure model. Additionally, this model can also be considered a PH mix-
ture cure model, as it satisfies the proportional hazards assumption. However, the
term eσε is not limited to the Weibull model alone; it can also be modeled using a
normal distribution, leading to a lognormal mixture cure model. While there are
other parametric models available, this project will focus specifically on these two
mentioned models.

3.1.2.3 Direct maximization of observed likelihood function

Suppose the observed data is given by: (ti, δi, zi, xi), i = 1, 2, ..., n where n is the
sample size. For each individual i, ti represents the observed survival time, δi is the
event indicator where δi = 1 if the event is uncensored and δi = 0 otherwise. The
covariate vectors for the incidence and latency for each individual are denoted zi and
xi, respectively. Let α be a vector with the unknown parameters in the parametric
baseline survival and θ = (γ, β, α)′. The likelihood function for the mixture cure
model is expressed as

L(θ) =
n∏

i=1
[{π(zi)fu(ti | xi)}]δi [{1 − π(zi)}{π(zi)Su(ti | xi)}]1−δi ,

and the log-likelihood ℓ(θ) = log(L(θ)) can be maximized using the Newton-Raphson
method. Let

U(θ) = ∂ℓ(θ)
∂θ

=


∂ℓ(θ)

∂γ
∂ℓ(θ)

∂β
∂ℓ(θ)
∂α

 , I(θ) = −∂2ℓ(θ)
∂θ∂θ′ = −


∂2ℓ(θ)
∂γ∂γ′

∂2ℓ(θ)
∂γ∂β′

∂2ℓ(θ)
∂γ∂α′

∂2ℓ(θ)
∂β∂γ′

∂2ℓ(θ)
∂β∂β′

∂2ℓ(θ)
∂β∂α′

∂2ℓ(θ)
∂α∂γ′

∂2ℓ(θ)
∂α∂β′

∂2ℓ(θ)
∂α∂α′

 .

The maximum likelihood estimator θ̂ is obtained through iterating over the formula
θ(k+1) = θ(k) + I−1(θ(k))U(θ(k)) until the difference between θ(k+1) and θ(k) is small
enough. The variance of θ̂ can be approximated by I−1(θ̂).

At the maximum likelihood estimator, U(θ) = 0 means that the partial derivatives
of the log-likelihood function with respect to the parameters, evaluated at θ̂, are
zero. This indicates that we have found the parameter values that maximize the
likelihood of the observed data. In other words, the score equation, which represents
the first-order condition for maximum likelihood estimation, is satisfied at θ̂. This
property confirms that the Newton-Raphson method has converged to the optimal
solution, ensuring that our estimates are the most likely values given the data.
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3.1.2.4 Estimation via EM algorithm

Another way to maximize the likelihood is with the EM algorithm. Let yi be the
value of Y for subject i, where yi = 1 when δi = 1. Since there is no way to know
if a censored individual has been cured or has not experienced the event yet when
δi = 0, yi will be unknown for the censored individuals. Consider the log-likelihood
for the observed data (ti, δi, zi, xi, yi), i = 1, 2, ..., n, given that all values of yi are
observed, as

ℓc(γ, β, α) = log
n∏

i=1
[π (zi) fu (ti | xi)δi Su (ti | xi)1−δi ]yi [1 − π (zi)]1−yi ,

which can be written as ℓc(γ, β, α) = ℓ1(γ) + ℓ2(β, α) where

ℓ1(γ) =
n∑

i=1

(
yi log [π (zi)] + (1 − yi) log [1 − π (zi)]

)
and

ℓ2(β, α) =
∑
i=1

yi

(
δi log[fu(ti|xi)] + (1 − δi) log[Su(ti | xi)]

)
.

Denote the probability of an individual with covariates xi and zi to be uncured
given that it survived until time t by

w0i(t) = π (zi) Su (t | xi)
1 − π (zi) + π (zi) Su (t | xi)

.

The algorithm consists of two steps, the expectation step (E-step) and the maxi-
mization step (M-step). The initial state of the EM algorithm is (γ(0), β(0), α(0)).
Given the estimates of the parameters in the (k−1)th iteration the E-step calculates
the posterior expectation of yi as

w
(k)
i = δi + (1 − δi)w0i(ti),

where (γ, β, α) = (γ(k−1), β(k−1), α(k−1)). This follows from Bayes’ Theorem and
the properties of yi. Hereafter, the purpose of the M-step is to maximize the two
terms in the log-likelihood. In the kth iteration yi is replaced with w

(k)
i and to

update the current estimates of θ the sums

ℓ1(γ) =
n∑

i=1

(
w

(k)
i log[π (zi)] + (1 − w

(k)
i ) log[1 − π(zi)]

)
(3.5)

and
ℓ2(β, α) =

n∑
i=1

w
(k)
i

(
δi log [fu (ti | xi)] + (1 − δi) log [Su (ti | xi)]

)
are maximized.

The algorithm is iterated until the difference between the new and old estimates is
small enough, hence the algorithm converged. ℓ1 can be seen as the log-likelihood
function for logistic regression with the vector of w

(k)
i , k = 1, ..., n as response while ℓ2

can be treated as a weighted log-likelihood for censored data due to their similarities.
Hence, both expressions can be maximized with the Newton-Raphson method or
through computational methods for logistic regression or standard survival methods
allowing weights, respectively.
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3.1.3 Software for parametric estimation
For the simplest parametric cure models, standard statistical packages can be enough
to fit and obtain the maximum likelihood for the models. This could be if for
instance the latency function is a Weibull or exponential function and the model
does not consider any covariates. In cases where the latency distribution is complex
or the effects of covariates exhibit nonlinearity in either the incidence or latency,
standard survival analysis packages may not be sufficient. The following R packages
implement the methods described above to provide estimates of the incidence and
latency function [6].

3.1.3.1 gfcure

The package gfcure in R can fit different parametric accelerated failure time mixture
cure models. The function gfcure works similar as survreg from the survival
package, but includes two formula arguments for the two parts in the mixture cure
model. Most parametric distributions can be specified for the baseline distribution in
the AFT latency submodel part; lognormal, exponential, Rayleigh, Weibull, gamma,
loglogistic, general loglogistic, generalized F, and extended generalized gamma.

3.1.3.2 mixcure

mixcure was developed to fit a parametric mixture cure model using already existing
packages in R. Using survreg from the survival package or flexsurvreg from
flexsurv the latency function can be fitted with any of the parametric distributions
available in the corresponding package. The incidence can be fitted with the function
glm by adding an argument which specifies what link function that will be used.

3.1.3.3 flexsurvcure

The R package flexsurvcure utilizes the flexsurv package to estimate a range of
parametric cure models, including both mixture and non-mixture models. To achieve
this, the function incorporates custom distributions that correspond to specific cure
models and adds them to the flexsurv package. This approach allows for more
flexibility in the modeling process, as additional parameters in a distribution can be
dependent on covariates. As a result, the cure models generated using flexsurvcure
are more versatile than those previously mentioned.

3.1.4 Residuals to assess goodness of fit
The Schoenfeld residuals can be used to assess the goodness of the parametric fit for
the mixture cure model. Assuming the same set of covariates in both the incidence
and the latency part of the model, the Schoenfeld residuals are given by

δi

[
xi −

∑n
j=1 Yj(ti)xjh(ti | xj, zj)∑n

j=1 Yj(ti)h(ti | xj, zj)

]
, i = 1, . . . , n,

where Yi(t) = I(ti ≥ t) is an indicator taking the value 1 if the condition is true and
0 otherwise. The function h(t|x, z) represents the unconditional hazard function
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corresponding to the survival function. These residuals represent the discrepancy
between the covariate value of a certain uncensored individual and the weighted
average of the covariate values for those still at risk, where the conditional hazard
function at the uncensored time is the weight. The mean of the residuals for a
perfectly fitted mixture model would be zero. Two good ways to detect patterns in
the fit is to either plot the residuals against time or to fit a polynomial regression
to the residuals.

3.1.5 Semiparametric latency submodels
In addition to parametric estimation, semiparametric estimation methods offer an
alternative approach for estimating the mixture cure model. Similar to the paramet-
ric approach discussed earlier, the incidence is estimated parametrically, resulting in
ℓ1 as described in Equation (3.5). However, in the following sections, we will explore
various semiparametric methods for estimating the latency component of the model.

3.1.5.1 Semiparametric PH latency submodel

Equivalently as for the parametric PH latency submodel, the survival function is
given by Su(t|x) = Su0(t)exp(x′β). The corresponding hazard function is hu(t | x) =
hu0(t)eβ′x which implies the likelihood function for the parameters β and Su0, de-
noted as

ℓ2(β, Su0) =
n∑

i=1
wi

(
δi log hu0(ti) + δiβ

′xi + eβ′xi log[Su0(ti)]
)

. (3.6)

In the case where δi = 1 we have that wi = 1 and log wi = 0 and therefore we
express it as

ℓ2(β, Su0) =
n∑

i=1

(
δi log hu0 (ti) + δiβ

′xi + elog wi+β′xi log [Su0 (ti)]
)

. (3.7)

Similarly as in the previous section, the expression in Equation (3.6) can be seen
as a weighted PH likelihood function for all individuals with wi > 0. Furthermore,
Equation (3.7) can be seen as a likelihood function of a PH model with an offset
term log wi. These two likelihood expressions can be maximized with either Newton-
Raphson method or methods in R that allow weights or offset terms.

Due to the fact that a nonparametric or unspecified Su0 will result in a special case
of the Cox PH model the likelihood functions in (3.6) and (3.7) can be maximized
individually. Hence, the partial log-likelihood function for parameter β is

log
k∏

j=1

exp (β′sj){∑
i∈Rj

exp (log wi + β′xi)
}dj

,

where sj = ∑
i:ti=τj

δixi, k is the number of uncensored failure times τ1 < τ2 < ... <
τk, dj is the number of uncensored times equal to τj and Rj the risk set at time τj.
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With updated β̂, the estimated baseline survival function can be obtained by the
Nelson-Aalen estimator, written as

Ŝu0(t) = exp

−
∑

j:τj<t

dj∑
i∈Rj

exp
(
log wi + β̂

′
xi

)
 .

3.1.5.2 Semiparametric AFT latency submodel

In this section we explore the effect on x in the latency under the accelerated failure
time assumption. As for the semiparametric PH model a direct maximization of the
likelihood is not plausible due to the unspecified baseline survival. An implemen-
tation of the EM algorithm in R is more complex than for the semiparametric PH
model, making other methods reasonable to consider, for instance the linear rank
method, M-estimation or Kernel smoothing estimation.

The linear rank method will now be briefly explained. Similar to the parametric
AFT model, we model the effects on x using Su(t|x) = Su0(te−x′β), where Su0(t)
represents the baseline survival. Considering the function log(T |Y = 1) = x′β + σε,
we define f0(·), h0(·), and S0(·) as the density, hazard, and survival function of
ε, respectively. These three functions are employed to formulate the log-likelihood
function for the latency component as

ℓ2(β, α) =
n∑

i=1,wi>0

(
δi log f0 (log ti − β′xi) + wi (1 − δi) log [S0 (log ti − β′xi)]

)

=
n∑

i=1,wi>0

(
δi log h0 (log ti − β′xi) + wi log [S0 (log ti − β′xi)]

)
.

To estimate β the linear programming method (Jin et al. 2003). Define the rank-like
function (Zhang and Peng, 2007) as

n∑
i=1

δig (εi)
(

xi −
∑n

j=1 xjwjI (εj ≥ εi)∑n
j=1 wjI (εj ≥ εi)

)
,

where εi = log ti − β′xi and g(·) is be defined as a Gehan-type weight function
g(u) = ∑n

j=1 I (εj ≥ u) wj/n. Thus, the expression in Equation (3.1.5.2) can further
be written as:

n−1
n∑

i=1

n∑
j=1

δi (xi − xj) wjI (εj ≥ εi) ,

and interpreted as the gradient of a convex function. This function can then be
minimized by the linear programming method.

Given an estimator β̂, the survival function of ε can be estimated nonparametrically
using the Nelson-Aalen estimator:

Ŝ0(ε) = exp

−
∑

j:τ∗
j <ε

dj∑
i∈Rj

wi

 ,
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where τ ∗
1 < τ ∗

2 , ..., < τ ∗
k are distinct uncensored values of log ti − β′xi, dj the corre-

sponding amount of uncensored survival times and Rj is the risk set at τ ∗
j . Moreover,

the estimate of Su0(t) can be derived from Ŝ0(ε). Further methods to estimate the
AFT latency model semiparametrically are explained in [6].

3.1.5.3 Residuals to assess goodness of fit

To evaluate the fit of a semiparametric mixture cure model is challenging because
of the limited information about the hazard function. However, it is still possible
to investigate the fit by using the martingale residuals, which are also common in
standard survival analysis fitting. The martingale residuals are given as

Mi = δi + log
[
1 + eγ′zi−Hu0(ti) exp(β′xi)

]
− log

[
1 + eγ′zi

]
. (3.8)

Adding the estimations for β, γ and Hu0 into (3.8) we get the martingale residual of
the fit. This represents the difference between the observed number of events for an
individual and the expected amount based on the fitted model, taking into account
the covariates and follow-up time.

The package smcure provides estimations for both the semiparametric proportional
hazards mixture cure model and the accelerated failure time mixture cure model by
implementing the methods presented in this section. This is done using the functions
predictsmcure and plotpredictsmcure.

3.2 Nonparametric estimation
When the data does not follow the distribution assumed by a given parametric
model, using that model to estimate incidence and latency can introduce bias. An
alternative is nonparametric estimation, where nonparametric methods can be em-
ployed to estimate these quantities without assuming any specific distribution for
the data [7].

For simplicity, we consider X as the covariate vector for both the incidence and the
latency. Let F (t|x) = P (Y ≤ t|X = x) and G(t|x) = P (C ≤ t|X = x) be the
distribution functions of Y and C conditional on X = x, respectively. The sample
is denoted by (Ti, δi, Xi), i = 1, ..., n, where T(i) represents the observation of the i-th
order statistic with respect to the sample (T1, T2, ..., Tn), and δ(i) and X(i) represent
the concomitants to the δ and X samples, respectively.

3.2.1 Nonparametric incidence submodel

First of all, to estimate the incidence for a model with no covariates define ŜKM(t) as
the Kaplan-Meier estimator of the survival function with observations {(Ti, δi), i =
1, ..., n} and T 1

max = max
i:δi=1

(Ti) as the largest uncensored time. Taking limt→∞ in the
expression in (3.1) we get the cure estimate (1 − π) which corresponds to the last
value of the ŜKM(t). Hence, the estimate of π can be expressed as

π̂ = 1 − ŜKM(T 1
max).
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Furthermore, we consider a model with a univariate continous covariate X. The
generalized Kaplan-Meier estimator of Beran (1981) [8] is used to estimate the con-
ditional survival function denoted as

Ŝh(t | x) =
∏

T(i)≤t

(
1 −

δ(i)Bh(i)(x)∑n
r=i Bh(r)(x)

)
, (3.9)

where Bh(i)(x) = Kh

(
x − x(i)

)
/
∑n

j=1 Kh

(
x − x(j)

)
are the Nadaraya-Watson weights

and Kh(·) = 1
h
K(h) is the rescaled kernel with bandwidth h > 0. Using the estima-

tor in Equation (3.9), Xu and Peng (2014) introduced the estimator for the incidence
function and thereby the cure rate is given by

1 − π̂h(x) = Ŝh(T 1
max|x). (3.10)

Xu and Peng (2014) further provided a condition which if fulfilled should strength
the reliability of the method by ensuring a sufficient follow-up time. Define τS0(x) =
sup{t : S0(t|x) > 0} and τG(x) = sup{t : G(t|x) < 1} and further τ0 = supx∈D τS0(x)
where D is the support of X and consider the inequality:

τ0 < τG(x), ∀x ∈ D. (3.11)
This condition is vital for a couple of reasons. First of all, it ensures that when the
probability that a susceptible individual survives beyond the largest censoring time
τG(x) is zero, the estimations of the incidence and latency will still be consistent.
Secondly, due to the fact that T 1

max converges to τ0 the condition ensures that all
times observed after T 1

max can be assumed to correspond to cured individuals. If
this would not be true the estimator of the incidence function would be larger than
the actual value. Another point is that if the last observation is uncensored, no
matter how many late censored observations are in the study, the cure rate will be
estimated to zero. Hence, it is very important to have a large sample size and be
careful with the choice of the follow-up time.

To make sure that the condition in (3.11) is true Maller and Zhou (1996) proposed
a nonparametric test that evaluates the constant right tail of the KM estimate, i.e.
looks at the difference between the last failure time and the last censored time.
A long plateau together with a heavy censoring in this interval should result in a
sufficiently long follow-up time for the condition to hold [2].

3.2.2 Nonparametric latency submodel
Given the same covariate effects for the latency as for the incidence in the mixture
cure model a nonparametric estimator for the conditional latency function follows
from Equation (3.2) (López-Cheda et al. 2017b) and is given by

Ŝu0(t | x) = Ŝh(t | x) − (1 − π̂h(x))
π̂h(x)

with Ŝh(t|x) and (1 − π̂h(x)) as in (3.9) and (3.10), respectively. The optimal
bandwidths for these two estimates are not necessarily equal, but it is recommended
to be to ensure that Ŝh(t|x) → 1 − π̂h(x) when t → ∞. The bandwidth is chosen
through bootstrap selection [7].
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3.2.3 Software for nonparametric estimation
The package npcure in R is available for nonparametric estimation of the latency
and incidence functions based on the theory in Section 3.2. For estimation of the Be-
ran estimator in (3.9) npcure uses the Epanechnikov kernel: K(u) = 3

4(1−u2)1|u|≤1.
The functions probcure() and latency() provide estimates of the incidence and
latency functions, respectively [9]. The probcure() is called with:

probcure(x, t, d, dataset = NULL, x0, h, local = TRUE, conflevel = 0L
bootpars = if (conflevel == 0 && !missing(h)) NULL else

controlpars()),

where the x argument specifies the covariate included in the model, t the survival
time, d indicates whether the event happened or not, x0 specifies the covariate val-
ues the cure rate will be estimated for. The h argument specifies the bandwidth
while local is either true or false depending on whether it is a local or a global
bandwidth. The conflevel argument can be used in case a confidence interval is
wanted. The latency() function has similar arguments to probcure() and is called
with:

latency(x, t, d, dataset = NULL, x0, h, local = TRUE, testimate =
NULL, conflevel = 0L, bootpars = if (conflevel == 0) NULL else

controlpars(), save = TRUE).

Additionally, it has an argument testimate which determines the time t at which
the function S0(t) is estimated. Furthermore, the functions probcurehboot() and
latencyhboot() compute bootstrap bandwidths for the estimators. A full descrip-
tion of the functions of the package npcure is found in Table 3.1 below.

3.2.4 Nonparametric estimation when the cure status is par-
tially known

The estimators in the previous method can be biased if some individuals in the
data are known to be cured before the end of the follow-up time. An approach that
considers a known cure status for some subject has been developed by Safari, López-
de Ullibarri and Jácome [10]. The proposed estimator is based on the nonparametric
estimator introduced in Section 3.2.1. We introduce a new indicator, denoted as ξ,
which represents whether the cure status of a subject is known (ξ = 1) or unknown
(ξ = 0). Recall that ν serves as the indicator of cure, taking the value of 0 for
the individuals who are uncured and 1 for those who are cured. In contrast to the
previously presented estimator, this new method incorporates the indicator ξ, which
allows us to determine the cure indicator (v = 1) for patients when ξ = 1. However,
for patients who have not experienced the event or whose cure status is unknown,
ν remains unknown. To address this, we introduce the product νξ, which equals 0
for the aforementioned group since ξ is 0.

The censoring distribution will be an improper distribution function G(t|x) = {1 −
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Function Description
beran Computes Beran’s estimator of the conditional survival func-

tion.
berancv Computes the CV bandwidth for Beran’s estimator of the con-

ditional survival function.
controlpars Sets the control parameters of the latencyhboot() and

probcurehboot() functions.
hpilot Computes pilot bandwidths for the nonparametric estimators

of the cure rate and the latency.
latency Computes the nonparametric estimator of the latency.
print.npcure Method of the generic function print for ’npcure’ objects.
probcure Computes the nonparametric estimator of the cure rate.
probcurehboot Computes the bootstrap bandwidth for the nonparametric es-

timator of the cure rate.
summary.npcure Method of the generic function summary for ’npcure’ objects.
testcov Performs covariate significance tests for the cure rate.
testmz Performs the nonparametric test of Maller and Zhou (1992).

Table 3.1: Descriptions of the functions in the npcure package.

π(x)}G0(t|x). This can be interpreted as that the probability that C takes the
value of ∞ is π(x) while the probability that it takes the value of a random variable
C0 with proper continuous distribution function G0(t) is 1 − π(x). Due to the
assumption of conditional independence between Y and C given the covariates, a
cured individual will be identified with probability

P (ξ = 1|ν = 1, X = x) = P (C = ∞|X = x) = π(x).

The method will assume three groups in the observed data {(Ti, δi, X i, ξiνi) : i =
1, ..., n}:

1. (Ti, δi = 1, X i, ξiνi = 0) - The subjects who experienced the event of interest
(uncensored).

2. (Ti, δi = 0, X i, ξiνi = 0) - The subjects who have neither experienced the event
nor been cured at the follow-up time (censored).

3. (Ti, δi = 0, X i, ξiνi = 1) - The subjects where cure has been observed before
the follow-up time.

The survival time will be given as Ti = min{Yi, Ci}[1 − 1(Yi = ∞, Ci = ∞)] +
C0i1(Yi = ∞, Ci = ∞) making the survival time for the last group be given as the
constant C0i. Similarly as previous introduced methods, the mixture cure model is
constructed by defining the probability of cure as 1 − π(x) = P (Y = ∞, X = x)
and the latency as S0(t|x) = P (Y > t|Y < ∞, X = x). We consider, for simplicity,
a univariate continous covariate X with density function m(x). An estimator of the
conditional cumulative hazard function of Y , Λ(t|x) when the cure status is partially
known is

Λ̂c
h(t|x) =

n∑
i=1

δ[i]Bh[i](x)1(T(i) ≤ t)∑n
j=i Bh[j](x) +∑i−1

j=1 Bh[j](x)1(ξ[j]v[j] = 1)
,
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where X[i], δ[i], ξ[i] and v[i] are the concomitants of the ordered observed times T(1) ≤
... ≤ T(n). The corresponding proposed product-limit estimator of the conditional
survival function S(t|x) when the cure status is partially known is

Ŝc
h(t | x) =

n∏
i=1

1 −
δ[i]Bh[i](x)1

(
T(i) ≤ t

)
∑n

j=i Bh[j](x) +∑i−1
j=1 Bh[j](x)1

(
ξ[j]v[j] = 1

)
 .

An important note is that the subjects who are known to be cured before the time
T(i) remain in the risk set, and are thereby encountered in the denominator of the
expression. The proof of this estimator is presented in [10].

In the case of no known cured individuals the estimator will be reduced to Beran’s
estimator in Equation (3.9). For the case where there are known cures with survival
times only at one specific threshold the estimator will be reduced to Beran’s as well.
Lastly, when there is no censoring it will be reduced to the kernel-type estimator of
the conditional survival function that was introduced by Nadaraya (1964), expressed
as

S̃h(t | x) =
n∑

i=1
Bh[i](x)1

(
T(i) > t

)
.

The corresponding estimator of the cure probability 1 − π(x) (Safari et al. 2022) is

1 − π̂c
h(x) = Ŝc

h

(
T 1

max | x
)

.

Similarly as for the estimator in Section 3.2.2, the optimal bandwidth for Ŝc
h(t | x) is

not necessarily the same as the optimal for 1− π̂c
h(x) [11]. The latency was proposed

(Safari et al. 2023) as

Ŝc
0,h1,h2(t | x) =


Ŝc

h2
(t|x)−

{
1−π̂c

h1
(x)
}

π̂c
h1

(x) if 0 ≤ t ≤ T 1
max and Ŝc

h2(t | x) > 1 − π̂c
h1(x)

0 otherwise.
(3.12)

In the unconditional case the estimator in Equation 3.12 is expressed as

Ŝc
0,n(t) = Ŝc

n(t) − (1 − p̂c
n)

p̂c
n

(3.13)

where

Ŝc
n(t) =

n∏
i=1

1 −
δ[i]1

(
T(i) ≤ t

)
n − i + 1 +∑i−1

j=1 1
(
ξ[j]v[j] = 1

)


is the generalization of the Kaplan-Meier estimator of the survival function with a
cured proportion in the data and where some of the subjects are identified as cured.
Lastly, the unconditional estimator of the probability of cure is given by

1 − p̂c
n = Ŝc

n

(
T 1

max

)
.
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3. Methods for the estimation of mixture cure models

3.2.4.1 Bootstrap selection of the bandwidths

The optimal bandwidths h1 and h2 are selected through bootstrapping. The prin-
ciple of the bootstrap-based selection methods is to choose the bandwidths that
minimize a bootstrap estimate of the mean integrated squared error (MISE). An
approximation of the bootstrap MISE can be written as

MISE∗
x (h1, h2) ≃ 1

B

B∑
b=1

∫ {
Ŝc,∗b

0,h1,h2(v | x) − Ŝc
0,g1x,g2x

(v | x)
}2

ω(v, x)dv (3.14)

where Ŝc,∗b
0,h1,h2(t|x) is the estimator computed with the bth boostrap resample and

the bandwidths, while Ŝc
0,g1x,g2x

(v | x) is the estimator computed with the original
sample using the pilot bandwidths (g1x , g2x). Furthermore, ω(v, x) is a non-negative
weight with purpose of giving a lower weight to the right tail of the distribution.
The bootstrap bandwidths will be computed through six steps presented in [11].

3.2.4.2 Asymptotic properties

In this section we will present the asymptotic properties for the estimators in the
previous section. For further information we refer to the articles [10] and [11].
Consider the following (sub)distribution functions:

H(t | x) = P (T ≤ t | X = x),
H1(t | x) = P (T ≤ t, δ = 1 | X = x),

H11(t | x) = P (T ≤ t, ξ = 1, v = 1 | X = x),
J(t | x) = 1 − H(t | x) + H11(t | x).

The estimator Ŝc
h(t|x) will be expressed as 1 − F̂ c

h(t|x) according to the definition
of the survival function. Assumptions 1-8 in [10] state that the random variables
Y and C are conditionally independent and that the derivatives and the second
derivatives of the sub(distributions) exist and are continuous with respect to t and/or
x. Moreover, the kernel function K(v) is a symmetrical density with zero mean,
vanishing outside of (-1,1) and the total variation is less than λ < ∞. Under
these assumptions, Theorems 1-2 establish the asymptotic representations of Λ̂c

h and
1 − F̂ c

h(t|x). Furthermore, the strong consistency of the estimators is obtained in
Corollary 1. Under same assumptions the bias and variance of 1− F̂ c

h(t|x) is derived
in Proposition 3 while Theorem 3 establishes that asymptotically normality holds.
For further evidence of the asymptotic representation and normality, as well as the
bias and variance for the estimator Ŝc

0,h1,h2(t | x) the same assumptions are made
together with Assumptions 9-10 which consider the speed of the convergence to 0
for the bandwidth h. Theorems 1-2 in [11] provide the asymptotic representation
and the asymptotic normality, respectively. Furthermore, Proposition 1 expresses
the bias and variance of Ŝc

0,h1,h2(t | x) as functions of t and x.

An investigation on the effect of ignoring the cure status is done which compares
this estimator with the corresponding estimator proposed in Section 3.2 (Lopez et
al. 2017b). The conclusion was that it was not straightforward to evaluate the exact
gain of bias when considering the cure status information in [11].
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3. Methods for the estimation of mixture cure models

3.3 Limitations
Some limitations were made when choosing what methods to use for this project.
Firstly, only mixture cure models were considered for fitting the data, while non-
mixture cure models were not explored. Non-mixture models were mainly introduced
for cancer research and follows the pattern of survival for cancer cells. Additionally,
the concept of relative survival, discussed in Chapter 2, was not incorporated into
the methods we eventually used. This omission can be motivated to the relatively
short follow-up period of up to 138 days. Since the relative survival does not ex-
hibit significant differences across age groups within such a limited timeframe, their
inclusion would likely have a minimal impact on the results.
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4
Results

This chapter will provide a thorough description of the dataset of the Master’s
thesis as well as the models created considering the age or gender of the patients.
We refer to Appendix A for further results and Appendix B for the R code of the
implementation.

4.1 The dataset
The dataset used in this study comprises a total of 2074 hospitalized patients from
the south metropolitan area of Barcelona. The data collection took place after the
first wave of the pandemic, specifically from the months of March and April 2020. It
is important to note that the data was not collected in real-time alongside the event
of the patients. Consequently, the end of the study is given by the last recorded
time in the dataset.

4.1.1 Variable description
The dataset is organized in the form of a dataframe, consisting of eight variables.
A description of these variables is provided in the following table:

Variable Description
id The ID of the patient.
time The time in days to either death or discharge.
death 1 = Death, 0 = Discharge
sex 1 = Man, 2 = Woman
cvasc 1 = No cardiacvascular history, 0 = Cardivascular history
age The age of the patient in years
charlson The patient’s Charlson Comorbity Index
safi The patient’s SaFi ratio.

Table 4.1: Descriptions of the variables in the dataset.

Each patient in the dataset is assigned a unique identifier, referred to as the pa-
tient’s ID. The variable "time" denotes the duration, measured in days, that the
patient spent in the hospital until either being discharged or experiencing death.
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The variable "death" is an indicator, taking a value of 1 if the patient passed away
during his/her hospital stay, and 0 if they were successfully discharged.

The variable "sex" indicates the gender of the patient, where a value of 1 corresponds
to male patients and a value of 2 represents female patients. Additionally, the
variable "cvasc" provides information regarding the patient’s cardiovascular history,
with a binary value of either 0 (indicating no cardiovascular history) or 1 (indicating
that the patient has a history of cardiovascular conditions).

The patient’s age at the time of admission to the hospital is reperesented by the
variable "age". Furthermore, the variable "charlson" represents the Charlson comor-
bidity index which is a weighted measure used to predict the risk of death within
one year of hospitalization for patients with specific comorbidity conditions. It is
categorized into different levels, where lower values indicate a lower risk of mortality
and higher values indicate a higher risk.

Lastly, the variable "safi" represents the patient’s SaFi ratio. The SaFi ratio is
calculated as the ratio between the oxygen saturation (SpO2), typically ranging
from 95% to 100%, and the fraction of inhaled oxygen (FiO2) for a person, which is
0.21 at atmospheric air. The values of "safi" generally fall within the interval [300,
476] mmHg, with higher values indicating a better overall condition for the patient.

Table 4.2 presents descriptive statistics for the minimum, maximum, and median
values based on age quantiles. The age quantiles are generated using the 25%, 50%,
and 75% quartiles to ensure an equal number of observations in each category. The
table considers the group of individuals who died. Similarly, Table 4.3 provides the
same descriptive statistics, but for the group of patients who were discharged.

Quantile Time Gender Age
Min Max Median Man Woman Min Max Median

1 4 46 15 6 2 34 49 44
2 1 55 16.5 21 5 50 59 57
3 1 58 16.5 41 19 60 69 65
4 1 74 9 74 50 70 96 77

Table 4.2: Summary of the survival time, gender and age distribution for the
death group per age quantile.

Quantile Time Gender Age
Min Max Median Man Woman Min Max Median

1 1 131 7 318 208 19 49 42
2 1 120 8 303 180 50 59 55
3 1 110 9 348 214 60 69 54
4 1 138 19 210 177 70 96 74

Table 4.3: Summary of survival time, gender and age distribution for the
discharge group per age quantile.
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4.1.2 Preparation of the data
The method for estimation of the cure fraction for data with known cures is based
on three groups; the uncensored which experienced the event, the known to be
cured and the censored patients which has neither died nor been cured before the
follow-up-time. Recall that the observations are denoted

{(Ti, δi, X i, ξiνi) : i = 1, ..., n},

where δi the indicator of death, νi the indicator of cure and ξi the indicator of known
cure status. Due to the specific format of our data where the data is collected after
the patients observation period ended, the dataset described in Table 4.1 consists
solely of two groups; the patients that were discharged and the patients who died.
The death group will be modeled as the uncensored group while the discharged will
be modeled as the known cures. Hence, the two groups present in the data are
represented as:

1. (Ti, δi = 1, X i, ξiνi = 0) - The subjects who died (uncensored).

2. (Ti, δi = 0, X i, ξiνi = 1) - The subjects who were discharged (known cures).

In order to apply the methodology presented in Section 3.2.4 for constructing models
to predict the cure rate, we needed to incorporate an artificial follow-up time. This
involved assuming that the study concluded after a specified duration of k days.
Consequently, observations within the timeframe of k days retained their respec-
tive outcomes, while observations beyond this threshold were treated as censored
individuals. Regardless of the previous outcome, all individuals who surpassed the
follow-up time of k were treated as censored. Applying this artificial follow-up time
we end up with the third group the method requests:

3. (Ti, δi = 0, X i, ξiνi = 0) - The subjects who neither died or was discharged
before follow-up time k (censored).

A vector of follow-up times was used in the analysis which consisted of thirteen
distinct time points. Hence k ∈ {20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80}, where
the chosen follow-up times were chosen to examine the effect of varying time intervals
on the results.

4.2 The models
This section includes three different models, two incorporating only the covariate age
and one the covariate gender. They were built by applying the methods explained
in Section 3.2.4 with the an extension of the npcure package. Models created for
the cardiovascular history, Charlson comorbidity index and for the SaFi ratio are
presented in Appendix A.

4.2.1 A model incorporating gender as a covariate
First of all, we present a model that takes into account the gender of the patients.
Figure 4.1 displays the estimated cure rates for women and men at thirteen different
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follow-up times. Additionally, the true cure rates for each gender are provided to
facilitate result evaluation. An initial conclusion from the plot is that the women
have a higher cure rate than the men. Moreover, we see that the larger follow-up
time the closer the estimate gets to the true cure rate since the model has been
provided more information from the data. The estimated cure rate converges to the
true cure rate at follow-up time of 45 days for the women and 60 days for the men.

Figure 4.1: Estimated cure rates for men and women with respect to the
follow-up times.

(a) (b)

Figure 4.2: Estimated latencies and mixture cure survival functions for men and
women at a follow-up time of 80 days.

Furthermore, the latency for the genders are presented in Figure 4.2a. It is crucial
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to note that the latency, which is displayed in Figure 4.2a, represents the survival
pattern exclusively for the susceptible individuals. In this context, the term "suscep-
tible" refers to individuals who are at risk of experiencing the event of interest, hence
the proportion of the population who eventually will die in the hospital. Further-
more, the latency curve shows a clear difference between the genders, with the curve
for women consistently positioned below that of men. This disparity suggests that
the survival probabilities for females are slightly lower compared to males within
the susceptible population.

In Figure 4.2b, we explore the mixture cure survival functions for both genders.
Notably, the curves exhibit a plateau around 50 days, indicating the estimated cure
rate for respective gender. Moreover, we notice that the female curve is steadily
above the male curve, implying that the overall survival is higher amongst the
women.

4.2.2 A model incorporating age as covariate
Secondly, a model incorporating age as a covariate was developed. To account for the
continuity of the age variable and to have enough values to construct an accurate
model, the values were categorized into quantiles as explained earlier. The table
below presents the values for each respective quantile:

Quantile Min Max
1 19 49
2 50 59
3 60 69
4 70 96

Table 4.4: The age of values for each quantile.

Figure 4.3 presents the resulting plot of the estimated cure rates along with the
true values of the respective cure rate. The analysis reveals that the first quantile
exhibits a true cure rate close to 1, while the fourth quantile shows a rate around
0.75. Similar to the gender-based model, this pattern indicates that the estimated
cure rates approach the true values as the follow-up period becomes sufficiently long.
Notably, all four groups converge to the cure rate within the range of 50 to 60 days
of follow-up time.

Furthermore, a plot depicting the latency for the different age quantiles was gener-
ated and is presented in Figure 4.4a. The latencies appear to be quite similar for the
groups with the fourth quantile almost constantly staying below the other curves.
However, an observation is that the latency function for the first quantile appears
less smooth compared to the other three. It exhibits a staircase-like pattern with
fewer and larger steps, indicating a lower number of deceased individuals in the first
quantile group. This conclusion agrees with the high cure rate exhibited in Figure
4.3.

Next, we examine the mixture cure survival functions associated with the quantiles
illustrated in Figure 4.4b. All the curves exhibit characteristics of improper survival
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Figure 4.3: Estimated cure rates per age quantile with respect to the follow-up
times.

(a) (b)

Figure 4.4: Estimated latencies and mixture cure survival functions per age
quantile at a follow-up time of 80 days.

functions, with each curve gradually reaching a plateau, indicating a potential cure
around 50 days. This finding aligns with our earlier observation of convergence in
follow-up time, as depicted in Figure 4.3. Notably, the fourth quantile displays a
notably lower curve, ultimately converging to a value of 0.75. This figure serves as
evidence that the age of the patients influences the resulting survival outcomes in
the study.

Additionally, we conducted a model to evaluate the cure rate for the specific ages 39,
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59, 64, and 76 years. Here we estimate the conditional survival curve for the fixed
ages using the estimator in Equation (3.12) together with the bootstrap bandwidths
explained in Section 3.2.4.1. Due to the complexity of this algorithm this simulation
were very computationally heavy.

These particular ages were selected based on their frequency in the dataset, in order
to achieve the most accurate result. However, as depicted in Figure 4.5, the model
does not exhibit as good of a fit as the model incorporating the four age quantiles.
For example, while the true cure rate for patients at age 39 was 1, the estimated
cure rate falls slightly short at approximately 0.95. Similarly, the estimated cure
rate for age 76 is underestimated, while the resulting cure rate for age 64 is the only
estimate that converges to the true value after a sufficient follow-up time.

Figure 4.5: Estimated cure rates for the ages of 39, 59, 64 and 76 years with
respect to the follow-up times.

Furthermore, when examining the latency plot shown in Figure 4.6a, we observe a
similarity to the corresponding plot for the quantiles in Figure 4.4a for most ages.
However, there is a noticeable difference in the latency pattern for the age of 39. This
deviation can likely be attributed to the limited number of observations available
before 80 days for this age group.

Lastly, the mixture cure survival functions plotted in Figure 4.6b all appear as
improper functions, similar to the previous models. One possible reason for this
outcome, when previous plots in this model has shown inaccurate results, is that it
also incorporate patients from the discharged group making the sample size larger
than for the latency. This discrepancy raises the question of why the estimates of
the cure rates were bad, considering that the discharged group is taken into account
in Figure 4.3 as well. The investigation and analysis of this issue will be discussed
in detail in Section 5.
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(a) (b)

Figure 4.6: Estimated latencies and mixture cure survival functions for the ages
of 39, 59, 64 and 76 years at a follow-up time of 80 days.

4.2.3 Model predictions for follow-up time 30 days
In this section, we present the estimates for a follow-up time of 30 days to assess
the feasibility of predicting patient outcomes with a commonly used follow-up time
of a month. To evaluate the accuracy of these predictions, the estimated cure rates
are compared with the true cure rates for each quantile. The differences between
the estimated and the true cure rates are summarized in Table 4.5 for the gender-
based model and Table 4.6 for the age-based model. We see that the differences in
cure rates between genders are relatively consistent, while there is more variation
observed across the different age quantiles.

Gender (1 − π̂) (1 − π) Difference
Women 0.922 0.911 1.273 %

Men 0.903 0.884 2.215 %

Table 4.5: Estimated cure rates for men and women at a follow-up time of 30
days.

Quantile (1 − π̂) (1 − π) Difference
1 0.985 0.987 0.19 %
2 0.949 0.963 1.42 %
3 0.885 0.908 2.51 %
4 0.757 0.786 3.68 %

Table 4.6: Estimated cure rates per age quantile at a follow-up time of 30 days.

The latencies depicted in Figure 4.7a and 4.8a exhibit a noticeable difference com-
pared to the previously analyzed latencies as they lack the tail of the curves. Sim-
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ilarly, in the mixture cure survival functions shown in Figure 4.7b and 4.8b, it is
challenging to identify a clear plateau in any curve, which makes it difficult to deter-
mine the presence of a cured proportion in the data. A detailed discussion of these
results will be presented in the subsequent chapter.

(a) (b)

Figure 4.7: Estimated latencies and mixture cure survival functions for men and
women at a follow-up time of 30 days.

(a) (b)

Figure 4.8: Estimated latencies and mixture cure survival functions per age
quantile at a follow-up time of 30 days.
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5
Discussion

In this chapter, we will perform a comprehensive analysis of the methods and results
presented in this report. Our examination will begin by discussing the outcomes
outlined in Chapter 4. This will be followed with an explanation of the limitations
identified in Chapter 3 and possible future applications.

5.1 Discussion of the results
Due to the specific format of the dataset of the study, several of the mentioned
estimation methods in Chapter 3 did not provide any accurate results. This limi-
tation arose because these methods were not designed to handle cases where cure
was observed. Instead, individuals who were discharged from the study had to be
treated as right-censored, even though the true outcome was already known. This
introduced some bias to the estimation since these models treat them as observations
who could either die or get discharged when this was not actually a possibility.

However, thanks to the recently presented methods (Safari et al. 2023) described
in Section 3.2.4 a method more suitable for our kind of data was available. As
explained in Chapter 4 an artificial follow-up time was set to investigate whether
the model could predict the cure rate at different values of the follow-up time. The
model presented estimates quite close to the true cure rate. For a larger follow-up
time more information is available since more people either experienced the event
or was cured (discharged), implying a more accurate estimate.

It is worth noting that as the cure rate decreases, meaning a higher number of
deaths, the precision of the estimate reduces. This raises the question of whether
the method performs worse when there are fewer known cases of cure. In the dataset
analyzed for this thesis, the number of individuals who were cured is relatively large,
with the lowest observed cure rate being approximately 75 %. An idea of a future
work is to see how the estimator changes with the amount of known cures in the
dataset.

We compare the estimated latency plots for the age quantiles at two follow-up times:
80 days (Figure 4.4a) and 30 days (Figure 4.8a). It is important to note that these
plots only consider subjects who have died and not the cured individuals, resulting
in a significantly smaller number of observations at the follow-up time of 30 days.
Specifically, there were 218 individuals who died before 81 days, whereas only 188

35



5. Discussion

individuals died before the 31st day. It is also interesting to compare the two mixture
cure survival functions of the two follow-up times. In the plot in Figure 4.4b the
plateau that follows from the cured individuals are obvious and clearly converges
to the true cure rate. However, it is challenging to determine whether the survival
curves in Figure 4.8b will eventually reach plateaus, indicating the presence of cured
individuals. Therefore, it is not appropriate to draw conclusions about the existence
of cured individuals in the data only based on these graphs.

After examining Table 4.5 and 4.6, it can be concluded that the accuracy of the
estimated cure rate appears to be remarkably high. This leads us to believe that de-
spite the absence of visibly cured individuals in the mixture cure survival functions,
a reliable estimation of the cure rate after 30 days can still be obtained. However,
determining whether this is sufficient evidence to assert that the models are already
effective after just 30 days is difficult to determine.

The method proposed in [11] offered two kinds of estimations: one for the estima-
tion of the unconditional survival (from Equation (3.13)), which we applied for all
categorical variables, and one for the conditional survival function. The conditional
survival curve (from Equation (3.12)) was estimated for four specific ages within
the continuous variable, with a sufficiently large sample size. Both methods were
applied to analyze the effects of age on the outcome. The result from the uncon-
ditional estimation of the cure rate was presented in Figure 4.5. The estimate for
the specific ages was not as accurate compared to the estimation based on the age
quantiles. Specifically, the estimated cure rate for the age of 39 years significantly
deviated from the true value, a cure rate of one which implied that 100 % of the
patients got discharged. For the age of 59 years, the estimate remained close to
the true value across all follow-up times and the estimate for the age of 64 years
converged to the true value after approximately 50 days. At last, for the age of 76
years the estimate was notably inaccurate with a strange behavior of the curve for
the cure rate. This discrepancy in estimation accuracy for the youngest and oldest
age groups can likely be assigned to the limited sample size, which may not have
provided sufficient data for an accurate estimation in these cases.

The behavior of the conditional estimator regarding the estimated cure rate is not
consistently decreasing, unlike the cure rates from the unconditional method. The
reason behind this behavior remains uncertain. It is worth noting that the model
is presented with a larger amount of data for longer follow-up times which could
potentially influence the estimated cure rate. However, further investigation is re-
quired to fully understand the factors contributing to this deviation. Hence, another
question that came up was how the conditional estimator of the ages would behave
if a larger sample-size was given. Would the estimates be more accurate or would
the unconditional estimation still provide a better result?

5.2 Limitations and future work
After doing a thorough scope review within the broad area of cure models some lim-
itations were made. The primary focus of this thesis is to examine the suitability of
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mixture cure models for estimating the cure rate and understanding the population
dynamics in the Covid-19 dataset. In Chapter 2, an extension of the mixture cure
models was introduced, incorporating background survival. However, due to the
short survival times observed in the dataset, this aspect was not taken into account
during model development. This could have been a factor to consider if the dataset
consisted of for instance long-term Covid patients and the objective was to estimate
the cure rate for these patients.

Similar reasoning applies to the theory presented regarding non-mixture cure models.
These models are specifically designed for modeling cancer and are customized to
capture the biological features of cancer cell growth. Nevertheless, a potential topic
for future research would be to explore whether these models can provide insights
in understanding the complex nature of the Covid-19 disease.

The parametric and semiparametric estimation methods for both the incidence and
latency were presented in Chapter 3. However, these also only consider the two
groups; the susceptible subpopulation and the people not experiencing the event.
Thus, for a dataset where a cured proportion is suspected, but not known, due to
the large amount of right-censored observations these estimation methods could be
considered.
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6
Conclusion

The main goal of this Master’s thesis was to explore whether cure models could
help hospitals plan and manage resources during similar crises as the recent pan-
demic. There is an abundance of data after the last pandemic which can be used to
apply appropriate models and analyze the respective outcome. Hence, these inves-
tigations could lead to a better preparedness and broader knowledge with several
areas concerning pandemic crises. In response to the question posed in the intro-
duction on how statistical models derived from Covid-19 data can provide valuable
knowledge to prevent shortages of critical resources in potential future pandemics
or similar situations, the results obtained from fitting Covid-19 data to cure models
offer insightful answers.

First of all, we can conduct that the cure rate can be estimated with a high degree
of accuracy, if the follow-up time is sufficiently large. This enables us to predict the
percentage of the patients discharged from the hospital. Additionally, the estimation
of latency, or the predicted time until death given that the patient eventually will
die, provides information about the behavior of progress of the disease as well as it
provides a prediction of time to death for the uncured population.

Therefore, we can conclude that Covid-19 data can be effectively fitted to cure
models. This thesis has examined models incorporating individuals which are known
to be cured, applying methodologies that have recently been introduced. Given
that the known cures in this context were represented by discharged individuals,
distinguishing a cure was straightforward. However, it is crucial to note that the
conclusion regarding the applicability of these models to Covid-19 data does not
imply that individuals are actually cured from Covid-19.

The topic of cure models is extensive and continuously evolving, with ongoing re-
search in this field. This thesis provides evidence for the applicability of cure models
in analyzing Covid-19 data, opening up for several questions and a large curiosity
about modeling different types of Covid-19 data using various cure models. The
findings presented here pave the way for future investigations and advancements in
understanding and modeling the dynamics of Covid-19 and its potential implica-
tions.
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A
Further results

Figure A.1: Estimated cure rates per SaFi quantile with respect to the follow-up
times.

SaFi ratio (1 − π̂) (1 − π) Difference
100 0.688 1 31.2 %
200 0.734 1 26.6 %
300 0.653 0.6 8.83 %
400 0.863 0.842 2.43 %

Table A.1: Estimated cure rates for the SaFi ratios of 100, 200, 300 and 400 at a
follow-up time of 30 days.
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A. Further results

(a) (b)

Figure A.2: Estimated latencies and mixture cure survival functions per SaFi
quantile at a follow-up time of 80 days.

Figure A.3: Estimated cure rates per cardiovascular history group with respect
to the follow-up times.
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A. Further results

(a) (b)

Figure A.4: Estimated latencies and mixture cure survival functions per
cardiovascular history group at a follow-up time of 80 days.

Figure A.5: Estimated cure rates per Charlson index group with respect to the
follow-up times.
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A. Further results

(a) (b)

Figure A.6: Estimated latencies and mixture cure survival functions per
Charlson index group at a follow-up time of 80 days.

(a) (b)

Figure A.7: Description of distribution of the variables cardiovascular history
and SaFi ration.
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B
R code

B.1 Packages
library ( survival )
library (dplyr)
library ( npcure )
library (tidyr)
library ( plotrix )
library (jpeg)
library (data.table)
library ( DescTools )
library (MASS)
library ( microbenchmark )
library ( foreach )
library ( doParallel )
library (doRNG)
library ( doSNOW )
library (readr)

B.2 Data preparation
load(’CureModelDataCovs .RData ’)
dataCMod <- dataCMod %>% mutate _if(is.character , as. factor )

data_ noCnans <-dataCMod %>% drop_na(cvasc)

dataCMod $ charlson _group <- cut( dataCMod $charlson , breaks = c
(0 ,2 ,4 ,13) , include . lowest = TRUE , right = FALSE)

levels ( dataCMod $ charlson _group) <- c("0-1", "2-3", " >3")

data_ noSnans <-dataCMod %>% drop_na(safi)
data_ noSnans $safi_cut <- cut(data_ noSnans $safi ,

breaks =c( quantile (data_ noSnans $safi ,
probs = seq (0, 1, by = 0.25))),

labels =c(’1st’, ’2nd’, ’3rd’, ’4th’),
include . lowest = TRUE)

dataCMod $age_group <- cut( dataCMod $age ,
breaks =c( quantile ( dataCMod $age , probs =

seq (0, 1, by = 0.25))),
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B. R code

labels =c(’1st’, ’2nd’, ’3rd’, ’4th’),
include . lowest = TRUE)

# Calculating true cure rate
true_cure_rate_men= sum( dataCMod $sex == "Man" & dataCMod $death ==

0)/sum( dataCMod $sex == "Man")
true_cure_rate_women = sum( dataCMod $sex == "Woman" & dataCMod $death

== 0)/sum( dataCMod $sex == "Woman")
true_cure_rate_cvasc= sum(data_ noCnans $cvasc == "Yes" & data_

noCnans $death == 0)/sum(data_ noCnans $cvasc == "Yes")
true_cure_rate_ nocvasc = sum(data_ noCnans $cvasc == "No" & data_

noCnans $death == 0)/sum(data_ noCnans $cvasc == "No")
true_cure_rate_1 = sum( dataCMod $ charlson _group == "0-1" & dataCMod $

death == 0)/sum( dataCMod $ charlson _group == "0-1")
true_cure_rate_2 = sum( dataCMod $ charlson _group == "2-3" & dataCMod $

death == 0)/sum( dataCMod $ charlson _group == "2-3")
true_cure_rate_3 = sum( dataCMod $ charlson _group == " >3" & dataCMod $

death == 0)/sum( dataCMod $ charlson _group == " >3")

true_cure_rate_1q = sum(data_ noSnans $safi_cut == "1st" & data_
noSnans $death == 0)/sum(data_ noSnans $safi_cut == "1st")

true_cure_rate_2q = sum(data_ noSnans $safi_cut == "2nd" & data_
noSnans $death == 0)/sum(data_ noSnans $safi_cut == "2nd")

true_cure_rate_3q = sum(data_ noSnans $safi_cut == "3rd" & data_
noSnans $death == 0)/sum(data_ noSnans $safi_cut == "3rd")

true_cure_rate_4q = sum(data_ noSnans $safi_cut == "4th" & data_
noSnans $death == 0)/sum(data_ noSnans $safi_cut == "4th")

true_cure_rate_1qa = sum( dataCMod $age_group == "1st" & dataCMod $
death == 0)/sum( dataCMod $age_group == "1st")

true_cure_rate_2qa = sum( dataCMod $age_group == "2nd" & dataCMod $
death == 0)/sum( dataCMod $age_group == "2nd")

true_cure_rate_3qa = sum( dataCMod $age_group == "3rd" & dataCMod $
death == 0)/sum( dataCMod $age_group == "3rd")

true_cure_rate_4qa = sum( dataCMod $age_group == "4th" & dataCMod $
death == 0)/sum( dataCMod $age_group == "4th")

B.3 Function for computing cure rate, survival
functions, and latency

compute _cure_ survival <- function (variable , follow _up , data) {
S_list <- vector (mode = ’list ’, length = length ( levels (data [[

variable ]])))
p_list <- time_list <- S0_list <- vector (mode = ’list ’, length

= length ( levels (data [[ variable ]])))
cure_rate_list <- vector (mode = ’list ’, length = length ( levels (

data [[ variable ]])))
count <- 0

for (i in follow _up) {
count <- count + 1
temp_data <- data
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B. R code

temp_data$death[temp_data$death == 1 & temp_data$ futime > (
i -1)] <- 0

temp_data$ futime [temp_data$ futime > (i -1)] <- i
temp_data$ knowncure <- with(temp_data , ifelse (death == 0 &

futime <= (i -1) , 1, 0))

# Extract the dataframe for the unconditional estimation
dfr1 <- temp_data[, c(variable , " futime ", "death", " knowncure ")

]
for (j in 1: length ( levels (temp_data [[ variable ]]))) {

S_list [[j]] <- survfitcurePK _un( dataset = dfr1[dfr1 [[
variable ]] == levels (temp_data [[ variable ]])[j], 2:4])

# p: probability of experiencing the final outcome
p_list [[j]] <- S_list [[j ]][[2]]
# Time
time_list [[j]] <- S_list [[j ]][[3]]

# S0(t): Survival function of the individuals experiencing
the event

S0_list [[j]] <- ((S_list [[j ]][[1]] - (1 - p_list [[j]])) / p
_list [[j]])

cure_rate_list [[j]][ count] <- 1 - p_list [[j]][1]
}

}

return (list(time_list = time_list , p_list = p_list , S_list = S_
list , S0_list = S0_list , cure_rate_list = cure_rate_list))

}

B.4 Function for generating plots
generate _plots <- function ( variable _name , cure_rate_list , true_cure

_rates , S_list , S0_list) {

legend _ labels <- switch ( variable _name ,
age_group = c("First", " Second ", "Third", " Fourth ")

,
sex = c("Men", "Women"),
charlson _group = c("0-1", "2-3", " >3"),
cvasc = c("No", "Yes"),
safi_cut = c("First", " Second ", "Third", " Fourth ")

)

title <- switch ( variable _name ,
age_group = " Estimated cure rate per age quantile ",
sex = " Estimated cure rate for men and women",
charlson _group = " Estimated cure rate per Charlson

index group",
cvasc = " Estimated cure rate per cvasc group",
safi_cut = " Estimated cure rate per SaFi quantile "

)

# Plot cure rate
jpeg( paste0 ( variable _name , "_cure.jpeg"))
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plot( follow _up , cure_rate_list [[1]] , type = "o", main = title ,
ylab = "Cure rate", xlab = "Follow -up time [Days]", ylim =

c(0.75 , 1), cex =1, lwd = 2, xaxt = "n")
abline (h = true_cure_rates [1], col = "red")
axis (1, at = follow _up , labels = follow _up)
for (i in 2: length (cure_rate_list)) {

lines( follow _up , cure_rate_list [[i]], col = i, type = "o",
lwd = 2)

abline (h = true_cure_rates[i], col = "red")
}
legend (70 ,0.83 , legend = legend _labels , bty = "n",

col = 1: length (cure_rate_list), lty = 1, cex = 1, lwd = 2)
axis.break(axis = 2, breakpos = 0.75 , style = " zigzag ")
dev.off ()

title2 <- switch ( variable _name ,
age_group = " Estimated latency function per age

quantile ",
sex = " Estimated latency function for men and

women",
charlson _group = " Estimated latency function per

Charlson index group",
cvasc = " Estimated latency function per cvasc

group",
safi_cut = " Estimated latency function per SaFi

quantile "
)
# Plot latency
jpeg( paste0 ( variable _name , "_ latency .jpeg"))
par(mar = c(5, 5, 4, 3))
plot(S_list [[1]][[3]] , S0_list [[1]] , type = "l", xlab = "Time [

Days]", ylab = " Latency ", main = title2 , col = "
black", lwd = 2, xlim = c(0, 80))

for (i in 2: length (S_list)) {
lines(S_list [[i]][[3]] , S0_list [[i]], type = "l", col = i,

lwd = 2)
}
legend (" topright ", legend = legend _labels , bty = "n",

col = 1: length (cure_rate_list), lty = 1, cex = 1, lwd = 2)
dev.off ()

title3 <- switch ( variable _name ,
age_group = " Estimated mixture cure survival

functions per age quantile ",
sex = " Estimated mixture cure survival functions

for men and women",
charlson _group = " Estimated mixture cure survival

functions per Charlson index group",
cvasc = " Estimated mixture cure survival

functions per cvasc group",
safi_cut = " Estimated mixture cure survival

functions per SaFi quantile "
)

# Plot mixture cure survival
jpeg( paste0 ( variable _name , "_ mixsurv .jpeg"))
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par(mar = c(5, 5, 4, 3))
plot(S_list [[1]][[3]] , S_list [[1]][[1]] , type = "l", ylim = c

(0.75 , 1), ylab = " Survival ", xlab = "Time [Days]",
main = title3 , col = "black", lwd = 2)

for (i in 2: length (S_list)) {
lines(S_list [[i]][[3]] , S_list [[i]][[1]] , col = i, lwd = 2)

}
legend _pos <- c(" topright ", " topright ", " bottomright ", "

bottomright ")
legend (60 ,0.825 , legend = legend _labels , bty = "n",

col = 1: length (cure_rate_list), lty = 1, cex = 1, lwd = 2)
axis.break(axis = 2, breakpos = 0.75 , style = " zigzag ")
dev.off ()

}

B.5 Retrieve results
variables <- c("age_group", "sex", " charlson _group", "cvasc", "safi

_cut")
follow _up <- c(20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80)

# Results for each variable
results <- vector (mode = "list", length = length ( variables ))
datavec <- list(dataCMod , dataCMod , dataCMod , data_noCnans , data_

noSnans )
# Iterate over variables
results _list <- list ()
for (i in seq_along( variables )) {

variable <- variables [i]
data <- datavec [[i]]

# Compute cure rate , survival functions , and latency for the
variable

temp_ results <- compute _cure_ survival (variable , follow _up , data)
time_list <- temp_ results $time_list
p_list <- temp_ results $p_list
S_list <- temp_ results $S_list
S0_list <- temp_ results $S0_list
cure_rate_list <- temp_ results $cure_rate_list

# Assign the components individually to results
variable _lists <- list(

time_list = time_list ,
p_list = p_list ,
S_list = S_list ,
S0_list = S0_list ,
cure_rate_list = cure_rate_list

)

results _list [[ variable ]] <- variable _lists

# Access the corresponding results for the variable
variable _ results <- results _list [[ variable ]]
cure_rate_list <- variable _ results $cure_rate_list
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S_list <- variable _ results $S_list
S0_list <- variable _ results $S0_list

# Determine the true cure rate based on the variable
true_cure_rate <- switch (variable ,

age_group = c(true_cure_rate_1qa , true_cure_rate_2qa , true_
cure_rate_3qa , true_cure_rate_4qa),

sex = c(true_cure_rate_men , true_cure_rate_women),
charlson _group = c(true_cure_rate_1, true_cure_rate_2, true

_cure_rate_3),
cvasc = c(true_cure_rate_nocvasc , true_cure_rate_cvasc),
safi_cut = c(true_cure_rate_1q, true_cure_rate_2q, true_

cure_rate_3q, true_cure_rate_4q)
)

# Call the function to generate plots for the variable
generate _plots(variable , cure_rate_list , true_cure_rate , S_list , S0

_list)
}
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