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Abstract: In this paper, the two-simultaneous-leak isolation problem in water distribution networks is
addressed. This methodology relies on optimal sensor placement together with a leak location strategy
using two well-known classifiers: k-NN and discriminant analysis. First, zone segmentation of the
water distribution network is proposed, aiming to reduce the computational cost that involves all
possible combinations of two-leak scenarios. Each zone is composed of at least two consecutive nodes,
which means that the number of zones is at most half the number of nodes. With this segmentation,
the leak identification task is to locate the zones where the pair of leaks are occurring. To quantify
the uncertainty degree, a relaxation node criterion is used. The simulation results evidenced that the
outcomes are accurate in most cases by using one-relaxation-node and two-relaxation-node criteria.

Keywords: leak diagnosis; machine learning; k-NN classification; discriminant analysis; water
distribution network

1. Introduction

In recent years, the water cycle has been unbalanced due to climate change. Moreover,
exponential growth of the population and drought have caused overuse of natural water
resources such that both superficial and underground water are more scarce. In this context,
water management companies have experienced severe complications to supply the water
demand, especially in the low-water-level season. According to a recent study carried out
by OECD [1], water losses in water distribution networks (WDN) in the worst cases reaches
up to 65% due to leaks, which can be caused by the natural aging of pipes, earthquakes,
illegal intrusion, poor quality of the pipe material, temperature and pressure, non-use of
standard pipe laying methods, geological changes and human damage, among others [2,3].
Moreover, health problems and social conflicts are part of this complex problem affecting
governments worldwide.

As mentioned above, the mismanagement of drinking water in networks is considered
a global crisis. For this reason, continuous monitoring of the WDN has became increasingly
important since quick leak detection allows timely repair, which, in turn, reduces the
water loss. In this sense, several leak diagnosis techniques have been proposed by the
scientific community. For instance, fault-sensitive-based, model-based and transient-based
techniques have been reported considering either single- or multi-leak problems [4–9] for
both single and branched pipelines. Moreover, to address the leak diagnosis problem in
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a WDN, these techniques are not generally suitable and other strategies have also been
proposed, but they are based on artificial intelligence (AI) and data-driven approaches,
as in [10–14], to mention a few recent works. Other approaches that have been used
for a long time, such as the acoustic-based approach, identify the area where the leak is
occurring on the basis of changes in the noise generated by measurements coming from the
WDN [15–17].

On the other hand, in [18], the authors proposed a model-based methodology on the
basis of a sensitivity analysis using residuals. These residuals are used to estimate the
leaky node. This methodology is applied when certain thresholds previously established
using the historical demand in the network are exceeded. This methodology has been
tested in real-life scenarios with acceptable results [19,20]; however, the dependence on
a well-calibrated model of the WDN is highlighted. Following this direction, several
strategies for control, supervision and diagnosis of pipes have been proposed to reduce
the effects produced by network leaks [11]. These strategies include methodologies for
modeling WDN using software, optimal sensor placement as well as data validation and
reconstruction of sensors and several continuous monitoring techniques of the network for
hydraulic and water quality analysis.

In addition, artificial intelligence methods have been used to solve many problems,
including leak diagnosis. In [14], the authors propose a portable application using artificial
intelligence (AI) for the automatic detection of changes in the characteristic noise of water
in the network pipelines of the network to detect leaks. However, this methodology
requires human resources that actively perform measurements throughout the network, or
equipment that generally has a high economic cost. Similarly, data-driven methodologies
have been developed to rely less on hydraulic models. On the one hand, the use of
classifiers such as those based on k-NN, Bayesian and discriminant analysis methods have
been explored in [21–24]. In [25], a statistical classifier with a finite impulse response (FIR)
filter, which was added to improve the classification results, is presented. Following this
direction, a comparison between the use of residuals with cosine distances to train a variety
of classifiers is shown in [26]. Other data-driven methodologies that have been developed
are based on artificial neural and convolutional neural networks [27–30], which, in turn,
have been improved by applying deep learning [31–33]. In [32], the use of a graph-based
neural network for leak detection and location is proposed instead of using data.

In most of the above-mentioned studies, as well as in those of other groups, the issues
of leak diagnosis in WDN have focused on the single-leak problem, leaving aside the
multiple-leak problem. Nonetheless, several studies have addressed this complex problem,
such as [12], which proposes a methodology to isolate multiple leaks caused by seismic
damage using genetic algorithms, and, similarly, in [13], a methodology based on data
analysis is proposed for the detection and isolation of possible leaks, employing a radial
base function (RBF) interpolation technique. In practice, a realistic issue is the case of
multiple leaks, and, since the extension from a single-leak case to a multiple-leak case
brings new scientific challenges, the main objective of the present work is to develop a new
methodology based on machine learning classifiers to address this multi-leak problem in
WDN as an extension of former studies for the single-leak case.

This paper is organized as follows: Section 2 presents the sensor placement strategy,
and the leak isolation strategy is described in detail to confront the two-simultaneous-leak
problem in WDN on the basis of two different classifiers: k-NN and discriminant analysis.
Section 3 describes several leak cases to illustrate the performance of the leak location
strategy, and the results are described in detail. Lastly, in Section 4, conclusions and future
perspectives are discussed.

2. Materials and Methods

From a general point of view, the leak isolation problem in water distribution networks
is addressed by performing two essential steps: optimal sensor placement and leak location.
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Usually, a reduced number of sensors are available and they must be placed in a way that
most leaks can be isolated with accuracy.

In practice, the instrumentation of a WDN is not easy to perform. On the one hand,
the accessibility is a constraint since pipes are often buried, and, on the other hand, the cost
of devices is high. The philosophy of the isolation algorithms is to locate leaks as accurately
as possible by using the least amount of sensors considering that an increased number of
sensors does not imply an improved performance of a leak isolation methodology.

Since our proposal is mainly focused on the development of a leak isolation method-
ology, and good sensor placement is important to improve results, we use a previously
established sensor placement methodology that has proven to provide reliable results. The
sensor placement methodology used in this work is based on the net coverage calcula-
tion approach proposed in [34]. This method involves the use of residuals to assess the
effectiveness of a candidate sensor placement in detecting leaks in all nodes.

On the other hand, to diagnose two simultaneous leaks, the proposed methodology is
based on the use of classifiers. Particularly, the performances of a k-NN-based classifier
and a discriminant-analysis-based classifier are compared. It should be noted that this leak
problem is complex since it is a combinatorial problem in itself. To address this situation,
a zone-based analysis of the WDN is proposed. To make the leak isolation more reliable,
the leak location task is performed over an extended period of time using recursivity. Both
the sensor placement methodology and the leak location methodology are summarized
hereinafter.

2.1. Sensor Placement

The sensor placement methodology is based on the leak location using the correlation
between pressure measurements in the presence of a leak and all possible leak scenarios
(one at each node), as presented in [34]. For a network with n nodes and Ns sensors, a
residual vector r is obtained as follows:

r =


p1 − p̂1
p2 − p̂2

...
pNs − p̂Ns

 (1)

where each element is computed as the difference between the pressure measurements (in
the presence of leak) pi, and the estimated pressure in a scenario without leak p̂i. Note
that there is an element of the residual vector for every available measurement on the
network. Here, the number of sensors Ns is chosen considering the following criteria:
sensor availability, physical constraints limiting accessibility to certain areas of the network
and feasibility, which means that the installation of a large number of sensors does not
necessarily mean an improvement in the leak diagnosis performance, as discussed in [34,35].
To correlate the residuals, a sensitivity matrix must be obtained to determine the possible
effects of the various leakage scenarios on the pressure measurements. The sensitivity
matrix is then defined as follows:

s =


p

f1
1 − p̂1

f1
· · · p fn

1 − p̂1
fn

...
. . .

...
p

f1
Ns− p̂Ns

f1
· · · p fn

Ns− p̂Ns
fn

 (2)

where p f j
i is the pressure measured on the node i under the presence of the leak f j in the

node j, p̂i is the pressure measured on the node i on the free-leak scenario and f j is the
leakage flow at the node j. Note that, for the estimation of the sensitivities, n possible leaks
locations were used, one per each node, and the leakage flow rate f j used for the sensitivity
calculation may be different from the leak flow presented in the residuals computation.
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Once the residuals and sensitivities have been obtained, the following step is to
estimate the correlation between the residual vector with each column of the sensitivity
matrix; this is completed using normalized projection between the residual and column j
defined as

ψj =
rTsj

‖r‖
∥∥sj
∥∥ (3)

where r is the residual vector and sj is the column j of the sensitivity matrix s. So, as result
of obtaining all the possible correlations, a vector ψ = [ψ1 ψ2 · · · ψn], which indicates the
correlation of the flow rate with each of the n nodes of the network so that the candidate
node k presenting the leak is the element with the highest correlation

ψk = max(ψ1, · · · , ψn) (4)

Using the above procedure, the sensor placement methodology is developed; initially,
it will be considered that the pressure of all the nodes that make up the network are moni-
tored and that a leakage scenario is simulated in each of the nodes to obtain n residuals, so
that, using Equations (1) and (2), the residual matrix and the sensitivity matrix are obtained.

R =
[
r1 r2 · · · rn

]
(5)

S =
[
S1 S2 · · · Sn

]
(6)

The next step is to calculate a binary matrix L of all the possible combinations of sensor
placements for Ns sensors in a network consisting of n nodes, which is defined as

L =
[
L1 L2 · · · Ld

]
(7)

where Li and d are defined as

Li =


l1
l2
...

ln

 and d =
n!

Ns!(n− Ns)!
,

such that li = 1 if there is a sensor that measures the pressure of node i or li = 0; otherwise,
Ns is the number of sensors to be placed and n is the number of network nodes. Thus,
L ∈ Rn×d.

Finally, depending on a given sensor configuration Li, the projection between a column
of the matrix R (5) and a column of the matrix S (6) can be computed as follows:

ψkj(i) =
rT

k diag(Li)Sj

|diag(Li)rk|
∣∣diag(Li)Sj

∣∣ (8)

Based on Equation (8), a projection matrix of all the columns of R (5) and all the
columns of S (6) can be obtained as

Ψ(i) =

ψ(i)11 · · · ψ(i)1n
...

. . .
...

ψ(i)n1 · · · ψ(i)nn

, (9)

where Ψ(i) is the projection matrix for the Li sensor configuration nodes, ψ(i)ab is the
projection between the column ra of the residual matrix (5) and the Sb column of the sensi-
tivities matrix (6) and each row a of Ψ contains the correlations obtained when simulating
a leak at node a.

To evaluate the Ln placement of sensors, a leak localization error index is defined
as follows
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e(Ln) =
n

∑
i=1

ei(Ln)

n
(10)

where

ei(Ln) =

{
0 if ψii(i) = max(ψi1(i), · · · , ψim(i))
1 otherwise,

(11)

meaning that ei(Ln) = 0 if the leak is correctly located and ei(Ln) = 1 otherwise.
The best configuration for sensor placement is the one with the lowest error index.

For large WDNs, instead of checking all possible sensor configurations, an optimization
procedure based on a genetic algorithm could be used to find the sensor placement that
produces the minimum error index. In Appendix A, an algorithm based on the previously
described optimal sensor placement methodology is presented.

2.2. Leak Isolation Strategy

Once an optimal sensor placement process has been implemented in the WDN, the
leak location task can be performed. The leak location methodology is based on the use
of classifiers. To perform the classification process, the stages described in Figure 1 are
required.

Figure 1. Leak location methodology diagram.

2.2.1. Dataset Generation

Let us consider a two-simultaneous-leak case in a WDN with n number of nodes. The
number of all possible leak scenarios that can occur simultaneously is computed as follows:

Cn =

(
n
2

)
=

n!
2!(n− 2)!

(12)

It should be noted that a large number of combinations can be obtained, which, in turn,
results in a complex problem to analyze. To face this issue, the n nodes of the WDN are
arranged in p number of zones. Each zone is created with a predefined number of adjacent
nodes with a minimum of two nodes; that is, p ≤ n

2 . Notice that a two-simultaneous-leak
case can occur in two different situations: (a) in two different zones and (b) in the same
zone (since a zone is formed with at least two nodes). Now, considering the zones zi with
i = 1, 2, 3, ..., p, a new set of zone classes can be generated as follows:
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Cp = Cp1 + Cp2 =

(
p
2

)
+ p (13)

where Cp1 denotes the total number of leak scenarios when each leak occurs in different
zones, i.e., zi, zj with i 6= j, whereas Cp2 denotes the cases in which the two leaks occur in
the same zone zi, respectively.

On the other hand, let us also consider that the leak flow rate q can be different in a
pair of nodes qni 6= qnj , and, in turn, each leak flow rate can vary in a predefined range,
which can be described as follows:

qni ∈
(
qnimin, qnimax

)
(14)

qnj ∈
(

qnjmin, qnjmax

)
(15)

the upper and lower limits could be known from the historical records of flow rate mea-
surements usually available upstream. In practice, both leak magnitudes can be different
and several combinations could be obtained. Thus, each flow rate range is divided into r
flow sections of the same size as follows:

qnj i =
qnjmax − qnjmin

r
i = 1, 2, ..., r (16)

such that the corresponding range is as follows:

qnj = [qnj1 qnj2 . . . qnjr ] (17)

If each leak flow rate range is divided in r flow sections. The number of all possible
combinations of both ranges is obtained by using the Cartesian product:

qni × qnj = {(qnia , qnib) : qnia ∈ qni ; qnib ∈ qnj} ∈ R1×r2
(18)

Considering that a WDN is divided into a p number of zones that produces a Cp
number of zone classes and, on the other hand, there is an r2 number of leak-flow-rate
scenarios, the total of different leak scenarios are

Lsp = Cpr2. (19)

Finally, a residual matrix of the pressure head can be computed between a free-leak
scenario and those Lsp leaky scenarios:

R =


p1 − p f1

1 p1 − p f2
1 . . . p1 − p

fLsp
1

p2 − p f1
2 p2 − p f2

2 . . . p2 − p
fLsp
2

...
...

. . .
...

pNs − p f1
Ns

pNs − p f2
Ns

. . . pNs − p
fLsp
Ns

 ∈ RNs×Lsp . (20)

where superscript f stands for the pressure head computed in the nodes with a sensor
under effect of the i-th leak scenario. In addition, since the water demand varies throughout
the day, the computation of matrix (20) is performed hourly:

RD =
[
R1 R2 · · · R24

]
(21)

where R1 stands for the residual vector computed at 1:00 with data obtained from 00:00 up
to 1:00 at a predefined sampling rate Ts, and so on. Here, the pressure data of each hour
are computed as an average of the samples obtained in this period of time. Appendix B
presents an algorithm based on the methodology for the generation of the training database.



Water 2023, 15, 3090 7 of 26

2.2.2. Leak Classification

The proposed idea is to identify the pair of leaky zones (where the leaks are located)
by means of a classifier from a prior probability previously established (here considered
the same for all classes). Then, the K-NN and the discriminant analysis (DA) classifiers are
tested and compared. Both are described hereinafter.

2.2.3. k-NN Classifier

The k-NN classifier is a supervised machine-learning-based algorithm used to address
both classification and regression problems, which is considered simple but effective in
many applications [36]. One of the principal advantages of this method is that it can achieve
high classification accuracy in problems with non-normal and unknown distributions [37].
In the context of the leak location problem, the purpose of the k-NN classifier is to find,
among different groups of known leak scenarios, which zone class is more consistent with
the direction of a given new residual. The criteria to determine a considerable similarity
between a residual and a leak scenario are by means of the smallest cosine distance. This
classification has two stages: training and prediction.

1. The training of the k-NN classifier is an offline process. In this process, a set of residual
samples corresponding to leaks of available classes given by (21) is stored and each
residual is assigned to its class label. The dataset used to train the classifier is obtained
by performing all possible leak scenarios according to the procedure described in
Section 2.2.1.

2. Leak class prediction is an online process. Here, a continuous comparison of the most
recent residual is performed with the labeled residuals from the training dataset (21). If
the leak class is denoted by Cp according to (13), and P

(
Cp = Cpi | r

)
is the probability

that the leak location corresponds to the Cpi class given the residual r, the k-NN
classifier assumes that

P
(
Cp = Cpi | r

)
=

ki
k

, (22)

where ki is the number of residuals in the i-th class among the k nearest neighbors to
the residual r. The class with the highest probability is chosen as the output of the
classifier:

zKNN = arg max
i

P
(
Cp = Cpi | r

)
(23)

The effectiveness of the k-NN classifier is evaluated by using a test dataset calculating
the percentage of correctly classified leaks.

2.2.4. Discriminant Analysis Classifier

Discriminant analysis (DA) is a multivariate technique used to separate two or more
groups of observations (individuals) based on k number of measured variables aiming to
find the contribution of each variable in the group separation [38]. In short, all leak scenarios
are arranged in several classes as follows: the variance value between the elements within
a class is as minimum as possible, whereas the variance value of any couple of elements
of different classes is as large as possible. The classification is then performed by means
of a predictive model composed of a set of discriminant functions created from linear
combinations of the predictor variables [39]. Similarly, this DA-based classifier performs
two stages: training and prediction.

1. The training of the DA classifier is an offline process where a set of residual samples
corresponding to all possible leakage scenarios are assigned to the corresponding class
by means of (21), this stage being when the discriminant functions are generated. In
the same way, the dataset to train this classifier is obtained by simulating the leakage
scenarios according to the procedure described in Section 2.2.1.

2. Leak class prediction is an online process. In this process, predictions are made using
the actual residual and the predictive model obtained in the training stage. If the leak
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class is denoted by Cp according to (13), then P
(
Cp = Cpi | r

)
is the probability that the

leak corresponds to the Cpi class given the residual r, and the DA classifier computes

P
(
Cp = Cpi | r

)
=

P
(
Cp = Cpi

)
P
(
r | Cp = Cpi

)
P(r)

(24)

where P
(
Cp = Cpi

)
is the prior probability that the residual r corresponds to the i-

th class, P(r) is the unconditional probability of r and P
(
r | Cp = Cpi

)
is the per se

probability computed as probability density function of r in class Cpi considering that
every density within each class is a Gaussian distribution computed as follows:

P
(
r | Cp = Cpi

)
=

e−d/2

(2π)p/2
√
|S|

(25)

where d is the Mahalanobis distance from the residual r to the class centroid, and S is
the covariance matrix of the class.
The class with the highest probability is chosen as the output of the classifier:

ZDA = arg max
i

P
(
Cp = Cpi | r

)
(26)

Figure 2 presents an illustrative example of linear discriminant analysis classification
involving three different classes. The figure displays the two discriminant functions that
allow for the differentiation between the classes.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

X

0

1

2

3

4

5

6

7

8

9

10

Y

 Linear Discriminant Classification

Class 1

Class 2

Class 3

Boundary between Class 2 & Class 3

Boundary between Class 1 & Class 2

Figure 2. Discriminant analysis classification between three classes.

Remark 1. To provide a reliable result, a recursive analysis for an extended period of time is
considered. This analysis is implemented in both classifiers by using the posterior probability of
each class computed at the current hour, which will be used as the prior probability for the following
hour. It should be noted that a possible drawback is that, if any of the possible leakage scenarios
(classes) take a posterior probability value of 1 and the remaining classes have a probability value
of 0, the classification tasks will not be performed. This can be overcome by forcing the maximum
probability value of a class as 0.99, such that, when a class has a probability P(i) > 0.99, it is forced
to be P(i) = 0.99, and, for the remaining classes, the probability is forced as P(n) = 1−0.99

m−1 , where
n = 1, 2, ..., m, n 6= i.
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Appendix C introduces an algorithm for leak isolation, employing the classification
models detailed earlier. The results obtained with the proposed methodology are pre-
sented hereinafter.

3. Results
3.1. Hanoi WDN Case Study

To evaluate the performance of the proposed multi-leak isolation strategy, Hanoi’s
WDN is considered since it is a widely used benchmark. This network is built with thirty-
one junction nodes, one reservoir and thirty-four pipelines, whose diameters vary between
300 and 1000 mm in diameter; see Figure 3.

Reservoirs

Junctions

Pipes

Figure 3. Hanoi’s water distribution network.

This WDN is simulated by using the well-known EPANET-MATLAB Toolkit [40]. It
is assumed that the model of the WDN has been calibrated previously on the basis of
recorded measurements.

On the other hand, the sensor placement procedure described in Section 2.1 is per-
formed considering the availability of two and three pressure head sensors, respectively.
Table 1 presents nodes where the sensors are installed for the two considered sensor config-
urations.

Table 1. Optimal sensor placement.

Sensor’s Number Optimal Placement

2 sensors 12, 21

3 sensors 12, 15, 21

Figures 4 and 5 present the exact location of the sensors in the network graph.
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Reservoirs

Junctions

Pipes

Sensors

Figure 4. Sensor placement at nodes 12 and 21.

Reservoirs

Junctions

Pipes

Sensors

Figure 5. Sensor placement at nodes 12, 15 and 21.

Similar optimal sensor placement has been obtained for Hanoi’s WDN in [41,42].
Following the procedure presented in Section 2.2.1, for the case of Hanoi’s network

n = 31, a division in p = 11 zones is considered, as shown in Table 2:
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Table 2. Zones of the Hanoi network

Zone Node Set

z1 1, 2, 3

z2 4, 5, 6

z3 7, 8, 9

z4 10, 11, 12

z5 13, 14

z6 16, 17, 18

z7 19, 20, 21

z8 22, 23, 24

z9 15, 25, 26

z10 27, 28

z11 29, 30, 31

Those p zones are depicted in Figure 6.

1

23

4

5

6

7

8

9101112 13 14
15

16

17

18

19 20 21

22

23

24
25

26

27

28

29

30

31

32

Figure 6. Hanoi network divided in 11 zones.

The number of classes of zones is computed by Equation (13) as follows:

Cp = Cp1 + Cp2 =

(
11
2

)
+ 11 = 66 (27)

Notice that this segmentation is not unique; it depends on the designer criteria. On
the other hand, it is considered that both leak flow rates can be different qni 6= qnj and
can vary in a range of (8, 80) [L/s], which corresponds (0.27, 2.7)%, in terms of nominal
flow 2, 890 [L/s]. In this case, each leak flow rate range is divided in r = 10 flow sections;
the number of all possible combinations of both ranges is obtained by using the Cartesian
product through Equation (18), providing r2 = 100. Moreover, the total number of different
leak scenarios is computed considering Equation (19) as follows:

Lsp = Cpr2 = (66)(100) = 6600. (28)
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The resulting residual vector of pressure heads can be computed from a free-leak
scenario and those Lsp leaky scenarios as described by Equation (20), such that R ∈ R3×6600.
It is possible to construct a 24 h residual as in Equation (21). This is the amount of data used
for the training of the network. To assess the performance of both classifiers, 200 test cases
were created, with leak flow rates ranging from 0.27% to 2.7% of the nominal network flow
rate. It is important to note that these magnitudes differ from those in the training database.
In addition, these magnitudes vary by 10% over the hours of analysis. Furthermore, these
tests also took into account uncertainties in the pressure measurements, which are affected
by Gaussian noise in a range of 5% relative to the average measured pressure. In the
following, three different leak scenarios of two-simultaneous-leak cases are presented.

3.1.1. Leak Scenario A
For this case A, two simultaneous leaks occur at nodes 4 and 21, respectively. See

Figure 7, whose leakage flow rates are 48 and 11 [L/s], respectively.

Reservoirs

Junctions

Pipes

Leak nodes

Figure 7. Leaks at nodes 4, 21.

This case presented is part of the 200 test cases in which the pressure measurements
are corrupted by some noise and also that the leakage rate does not exactly match the
values contained in the vector (17). In other words, there are uncertainties, such as pressure
head measurements or leak flow rates. In this case, both the k-NN and the DA algorithms
estimate exactly the zones in which the pair of leaks are occurring; in other words, z2 and z7
have been correctly identified. It should be noted that this identification does not provide
the exact leaky nodes. However, the uncertainty is considered, in the worst case, two
consecutive nodes far at most. Figures 8 and 9 show the identified zones provided by both
algorithms, respectively.
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Figure 8. k-NN-based leak isolation. Zones 2, 7.
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7

Figure 9. DA-based leak isolation. Zones 2, 7.

Note that these results are obtained when the analysis of a daily residual is completed,
in other words, when the residual vector (21) has been fully analyzed.

3.1.2. Leak Scenario B
For the second case B, a pair of leaks was simulated at nodes 18 and 28, whose leakage

flow rates are 24 and 39 [L/s], respectively, as shown in Figure 10.
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Reservoirs

Junctions

Pipes

Leak nodes

Figure 10. Leaks at nodes 18, 28.

As can be seen in Figures 11 and 12, the result obtained by means of the discriminant
analysis classifier was better compared to that of the k-NN classifier since the latter failed
to identify the area where the node 28 leak is located.

Reservoirs

Junctions

Pipes

Leak zone Z
6

Leak zone Z
11

Figure 11. k-NN-based leak isolation. Zones 6, 11.
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Reservoirs

Junctions

Pipes

Leak zone Z
6

Leak zone Z
10

Figure 12. DA-based leak isolation. Zones 6, 10.

3.1.3. Leak Scenario C
Finally, in the last case, leakage was simulated at node 15 with a 59 [L/s] leak flow and

at node 11 with a 46 [L/s] leak flow as can be seen in Figure 13, obtaining candidate zones
z6 and z11 by means of the k-NN classification (shown in Figure 14), while the candidate
zones obtained by the DA classifier are presented in Figure 15.

Reservoirs

Junctions

Pipes

Leak nodes

Figure 13. Leaks at nodes 11, 15.

Once again, it is evident that the k-NN classifier shows inferior performance compared
to the discriminant analysis classifier. The k-NN classifier has difficulty in accurately
classifying either leakage since its predictions are found to be a maximum of two nodes
away from the actual leakage location. The rest of the 200 studies are presented in more
detail in the following section, where the relaxation node criterion is also defined to define
the usefulness of the results obtained.
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Figure 14. k-NN-based leak isolation. Zones 3, 5.
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5

Figure 15. DA-based leak isolation. Zones 4, 5.

3.1.4. Relaxation Node Analysis

As has been shown, sometimes, the leaky zones are not identified with accuracy and
an issue arises regarding the obtained result. In other words, to asses how good a result is,
a relaxation-node-based criterion is used as in [21]. The one-node relaxation criterion is
when the leaky zone is not the correct one. However, the leaky node is just at the left hand
side or right hand side of the identified zone; see Figure 16. In the same way, the two-node
relaxation criterion is when the leaky node is two nodes far either to the left hand side or
the right hand side of the identified leaky zone; see Figure 16.

For both classifiers, in addition to the three leakage cases described in detail, a total of
200 scenarios mentioned above were analyzed using an analysis from a single hour up to
24 h, corresponding to an entire day. From this, it can be noted that the use of recursivity
in the classifiers significantly improves their performance compared to tests performed
using a single-hour analysis. This analysis allows a more in-depth conclusion about the
performance of the proposed multi-leak isolation strategy.
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Figure 16. Relaxation node criteria.

Figure 17 shows the performance of the k-NN-based algorithm. Firstly, it should be
noted that the analysis is performed hourly during 24 h. It is highlighted that the accuracy
rate improves over time. The exact zone criteria before 12 h show that the accuracy rate
is not greater than 40%, whereas this limit is crossed after that hour and reaches up to
50% approximately. Moreover, by considering the one node of relaxation criterion, such
a rate becomes 60% and up to 70% for the same period of time. Finally, if the two nodes
of relaxation criterion is considered, the accuracy rate increases from approximately 75%
and up to 80%, respectively. For the above, these results are considered a good outcome
since the leaky node is often close to the leaky identified zone, except in about 20% of
the experiments.

[h]
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1 relaxation node6

2 relaxation nodes
?

Figure 17. k-NN algorithm performance for Hanoi WDN.

Similarly, the performance of the DA-based algorithm is depicted in Figure 18. It can
be seen that, in this case, the accuracy rate is approximately 62% at 12 h and, after that,
it reaches up to 70% for the exact zone criteria. By considering the one relaxation node
criterion, the accuracy rate reaches 80% at 8 h and remains similar up to the end. Finally,
with the two relaxation node criterion, the accuracy rate is 90% at 6 h, and, as before, it
remains similar up to the end.
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Figure 18. DA algorithm performance for Hanoi WDN.

3.2. Madrid’s DMA Case Study

To evaluate the performance of the proposed leak diagnosis methodology, a district
metered area (DMA) of a WDN located in Madrid, Spain is considered; see Figure 19. This
DMA has one reservoir and three-hundred-twelve nodes, which are interconnected by a
network of pipelines of approximately 14 km in length and whose diameters vary between
80 and 350 mm, respectively.

Reservoirs

Junctions

Pipes

Figure 19. DMA in Madrid WDN.

In the same way as before, as a first step, a sensor placement procedure must be
performed considering that 11 sensors are available. In this case, due to a large amount of
nodes (312), exhaustive testing for an optimal sensor placement is not feasible; a sensor



Water 2023, 15, 3090 19 of 26

placement as illustrated in Figure 20 is adopted instead, which has been obtained by using
techniques based on information theory and genetic algorithms just as in [42].

Reservoirs

Junctions

Pipes

Leak nodes

Figure 20. Eleven sensorplacement in Madrid’s DMA.

Once the sensor placement procedure has been performed, the following step is to
divide the DMA in a reasonable number of zones considering a tradeoff between accuracy
and simplicity. On the one hand, a large number of zones leads to a large number of
combinations, which, in turn, produces a significant computational cost. On the other hand,
due to the computational effort being the main limitation, the reduction in accuracy could
be a good election to address large-scale systems. In particular, Madrid’s DMA has been
divided into 13 zones as illustrated in Figure 21. It should be noted that the design of zones
is not unique.

Reservoirs

Junctions

Pipes

Zone 1

Zone 2

Zone 3

Zone 4

Zone 5

Zone 6

Zone 7

Zone 8

Zone 9

Zone 10

Zone 11

Zone 12

Zone 13

Figure 21. Thirteen-zone division of Madrid’s DMA.

Following a similar procedure as for the Hanoi WDN, for training purposes, 24-h
simulation databases of possible leakage scenarios are generated and stored. To accomplish
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that, the leak flow rate of each leak can vary in a predefined range; in this case, the lower
limit is 0.3 and the upper limit is 1.5 [L/s] for both leaks. Following Equations (14)–(18) with
r = 7, the number of all possible combinations of both ranges is 49 with steps of 0.2 [L/s]
and, in terms of nominal flow, this corresponds to 1.6% and up to 10%, respectively. On the
other hand, to quantify the performance of both classifiers, in this case study, 200 random
leakage cases were generated for testing. Those cases have leakage magnitudes within a
range of 0.3 to 1.5 [L/s], including an uncertainty of 10%. In addition, the pressure head
measurements are corrupted by a Gaussian noise of 5% to evaluate the robustness of the
classifiers under this situation.

Hereinafter, the obtained results are presented considering both one and two relaxation
node criteria.

Relaxation Node Analysis

Similar as before, the relaxation node criteria shown in Figure 16 are used. On the
one hand, the k-NN classifier had an accuracy rate less than 40% during the 24 h period
of analysis when neither relaxation node criteria are considered. For the one relaxation
criterion, this classifier increased its accuracy rate from 30% and it reaches up to 45% at
the end of the analysis. Finally, for the two relaxation node criterion, the accuracy rate
begins with 38% and reaches up to 50% at 15 h and remains at this level up to the end of
the analysis; see Figure 22.
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Figure 22. k-NN algorithm performance for Madrid’s DMA.

On the other hand, from Figure 23, it can be observed that the DA-based classifier had
an accuracy rate of 65% at the beginning and it reaches up to 75% at the end of the analysis
when the one relaxation node criterion is considered. Moreover, when the two relaxation
node criterion is used, the accuracy rate reaches up to 80%, respectively. Furthermore,
when no relaxation nodes are used, the accuracy rate reaches a value of 79% at 6 h, which
is relatively maintained until 20 h when it declines in the last four hours of the analysis,
decreasing up to 77% at 24 h.

3.3. Discussion

The proposed methodology is focused on identifying the leaky zones rather than the
leaky nodes. This criterion makes a good tradeoff between accuracy and simplicity due
to the complexity that this two-simultaneous-leak problem represents by itself. In spite of
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this, the solution of this complex leak localization problem can be considered as a good
outcome since the leak search area is reduced to a limited set of neighbor nodes.

Comparing both case studies, it can be observed that, as the complexity of the net-
work increases (number of nodes), the accuracy rate of the k-NN algorithm decreases
significantly. Conversely, the DA-based algorithm maintains a similar accuracy rate no
matter the network complexity. In Table 3, a comparison of the performance of both classi-
fiers is summarized. Here, Nh stands for the number of hours in which the analysis has
been performed.
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Figure 23. DA algorithm performance for Madrid’s DMA.

Table 3. Classification results comparison.

Relaxation
Nodes

Hanoi WDN Madrid DMA

k-NN DA k-NN DA

Nh = 1 Nh = 24 Nh = 1 Nh = 24 Nh = 1 Nh = 24 Nh = 1 Nh = 24

0 25.5% 48.0% 53.5% 70.0% 23.5% 36.0% 65.0% 77.0%

1 40.5% 73.5% 65.0% 82.5% 29.0% 46.0% 75.5% 85.5%

2 64.0% 82.5% 81.0% 90.5% 35.0% 53.5% 79.0% 89.5%

It should be noted that the accuracy rate varies significantly when the relaxation node
criteria are used, but it depends on the number of nodes that belong to the same zone
(accuracy level). However, this is a direct consequence of using a segmentation of the
WDN, especially for large-scale systems. This can be observed in the Table 3, where, for
both classifiers in the Hanoi network, there is a higher increase in accuracy using relaxation
node criteria compared to the accuracy obtained in the Madrid DMA.

The decrement in the classification of the k-NN algorithm results can be attributed
to factors like not having a wide separation between the data that make up each class so
that, for several cases, deficient classification results are obtained. A possible alternative to
enhance this outcome is to adapt the number of k-nearest neighbors based on each case
study and the amount of data for training; however, this does not guarantee a significant
improvement in the results of the classifier.

Finally, although the linear discriminant analysis classifier seems to yield more consis-
tent accuracy rates in Madrid’s DMA case study, this does not necessarily imply a better
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performance compared to the classification performed in the Hanoi network model since it
should be considered that, in the Hanoi network, there are zones with fewer nodes.

4. Conclusions

The proposed methodology demonstrated to be an efficient tool to address the two-
simultaneous-leak problem in water distribution networks. The segmentation of the
network in zones reduced significantly the computational cost by maintaining a good
tradeoff between simplicity and accuracy. Although exact leaky node identification is
hard to achieve, the decision to identify a zone rather than a node keeps the uncertainty
of the actual location of the leak under control. In other words, the leak node is often in
the identified zone, which allows a significant reduction in the final leak search. When
Madrid’s DMA case study is considered, the performance of the DA-based classifier is still
robust regardless of the network’s size. This is possible because such a network is divided
into a reasonable number of zones.

It should be noted that, in each case study, the proposed segmentation in zones causes a
reduction in the size of the residual vector that would be generated by all possible scenarios
of two simultaneous leaks in the network. For the Hanoi case study, there is a reduction from
46,500 leak scenarios to 6600, which, in turn, represents a reduction in the computational cost.

It has also been highlighted that, although in some cases both classifiers fail to identify
the exact zone where the leak is occurring, the leaky node is close, and the relaxation node
criteria allow to somehow define the uncertainty of the obtained result. In particular, the
k-NN classifier showed an overall lower performance compared to the DA-based classifier.
Hence, as a future work, it would be of interest to conduct an analysis using other classifiers
to assess their performance.

In addition, it should be noted that, in this work, the initial prior probability of
both classifiers was set equal to each class, which means that the occurrence of leaks is
equally probable for any area of the network. However, in practice, there may be certain
zones where the occurrence of leaks is higher due to factors such as pipe aging, greater
susceptibility to seismic damage, historical records of failures in the network, etc. Therefore,
as a future work, an analysis taking into account some of those factors to establish the
initial prior probabilities is of particular interest.

The sensor placement methodology here adopted was designed for a single-leak sce-
nario. Therefore, the development of a sensor placement methodology specifically designed
to address multiple simultaneous leaks scenarios could enhance the obtained results.

Finally, a more-in-depth analysis on the zone segmentation of a WDN by using more
complex criteria is required to establish an optimal tradeoff between simplicity and accuracy.
On the other hand, a study about the variation in the sampling rate is also needed since, in
practice, the devices are not able to provide measurements with a high sampling rate. Both
issues will be part of future developments.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
WDN Water Distribution Network
OECD Organization for Economic Cooperation and Development
FIR Finite Impulse Response
RBF Radial Base Function
DA Discriminant Analysis
k-NN k Nearest Neighbors
h Hour
L/s Liters per second
fR Leak flow rate used for estimation of residuals
fS Leak flow rate used for estimation of sensitivities
R Set of real numbers
diag Diagonal matrix
max Maximum Value
arg max Maximum argument

Appendix A. Sensor-Placement-Methodology-Based Algorithm

Algorithm A1 Sensor-placement-methodology-based algorithm.

Require: The number of sensors to place Ns, the number of nodes n, the leak flow for
residuals fR, the leak flow for the sensitivity matrix fS, the matrix L ∈ Rn×d containing
all the possible locations of the sensors, where d is computed as

(
n

Ns

)
.

Ensure: Lopt as the optimal sensor placement
1: Load the model file of the water distribution network model.
2: Get p̂ the pressure of every node in a free-leak scenario.
3: Calculate Matrices S and R using the leak flows fS and fR for sensibility and residuals

Equations (5) and (6).
4: emin ← n
5: for i = 1 : d do
6: Li ← diag(L(i, :))
7: SL← Li · S
8: RL← Li · R
9: e← 0

10: for a = 1 : n do
11: ψaa ← RLT

a ·SLa
‖RLa‖‖SLa‖ Equation (8).

12: for b = 1 : n do
13: ψab = RLT

a ·SLb
‖RLa‖‖SLb‖

Equation (8).
14: if ψab > ψaa then
15: e← e + 1
16: break for
17: end if
18: end for
19: if e > emin then
20: break for
21: end if
22: end for
23: if e ≤ emin then
24: emin ← e
25: Lopt ← Li
26: end if
27: end for print Lopt



Water 2023, 15, 3090 24 of 26

Appendix B. Dataset-Generation-Methodology-Based Algorithm

Algorithm A2 Dataset-generation-methodology-based algorithm

Require: A network model, the number of zones into which the network is divided p, and
the nodes that conform each zone, a set of Ns nodes where the pressure sensors are
located, the leakage flow rate for the two leaky nodes qni and qnj having a previously
defined range r.

1: Load the model file of the water distribution network model.
2: Get p̂ the pressure of sensor in a free-leak scenario during 24 h.

3: Cp ← C
(

p
2

)
+ p Equation (13)

4: Create Class labels with the zone combinations for each of the Cp classes.
5: Q← qni × qnj Equation (18)
6: Lsp ← Cpr2 Equation (19)

7: Create A zeros matrix R ∈ RNs×Lsp

8: for a = 1 : Cp do
9: for b = 1 : r2 do

10: i← (a− 1)r2 + b
11: L← a set of two nodes belonging to each of the zones of the class a.
12: Compute Residual vector δ using nodes L and Q(b) flow rates, δ ∈ RNs×1.
13: R(:, i)← δ
14: end for
15: end for
16: Assign the columns of R to their corresponding classes.
17: Output The Cp class labels, Training dataset R.

Appendix C. Leak-Localization-Strategy-Based Algorithm

Algorithm A3 Leak-localization-strategy-based algorithm

Require: A set of residuals per hour r starting from the time the presence of leaks is
detected, the training dataset R, whose columns are ordered from the hour the leaks are
detected for a 24 h analysis, The class labels Y of the Cp classes and the prior probability
Pprior of each class to be the leaky zones.

1: PKNNpr ← Pprior.
2: PDApr ← Pprior.
3: for h = 1 : 24 do
4: Set xr ← As the r residual vector of the h-th hour of analysis.
5: Set X ← As the column of R at the analysis hour h.
6: Train k-NN model with X and Y
7: Set k-NN model prior probability as PKNNpr
8: Train DA model with X and Y
9: Set DA Model prior probability as PDApr

10: ZKNN ← k-NN model Predict of xr
11: ZDA ← DA model Predict of xr
12: PKNNpt ←k-NN model post probabilities
13: PDApt ← DA model post probabilities
14: if Max(PKNNpt) == 1 then
15: Set Max(PKNNpt)← 0.99
16: Set the other elements of PKNNpt ← 0.01

(Cp−1)
17: end if
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Algorithm A3 Cont.

18: if Max(PDApt) == 1 then
19: Set Max(PDApt)← 0.99
20: Set the other elements of PDApt ← 0.01

(Cp−1)
21: end if
22: PKNNpr ← PKNNpt .
23: PDApr ← PDApt .
24: end for
25: Output The candidate ZKNN of the k-NN model, the candidate zone ZDA of the DA model.
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