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Abstract 12 

Hot, cold and dry meteorological extremes are often linked with severe impacts on the public 13 

health, agricultural, energy and environmental sectors. Skillful predictions of such extremes 14 

could therefore enable stakeholders to better plan and adapt to future impacts of these events. 15 

The intensity, duration and frequency of such extremes are affected by anthropogenic climate 16 

change and modulated by different modes of climate variability. Here we use a large multi-17 

model ensemble from the Coupled Model Intercomparison Project Phase 6 and constrain these 18 

simulations by sub-selecting those members whose global SST anomaly patterns are most similar 19 

to observations at a given point in time, thereby phasing in the decadal climate variability with 20 

observations. Hot and cold extremes are skillfully predicted over most of the globe, with also a 21 

widespread added value from using the constrained ensemble compared to the unconstrained full 22 

CMIP6 ensemble. On the other hand, dry extremes show skill only in some regions with results 23 

sensitive to the index used. Still, we find skillful predictions and added skill for dry extremes in 24 

some regions such as western north America, southern central and eastern Europe, southeastern 25 

Australia, southern Africa and the Arabian Peninsula. We also find that the added skill in the 26 

constrained ensemble is due to a combination of improved multi-decadal variations in phase with 27 

observed climate extremes and improved representation of long-term changes. Our results 28 

demonstrate that constraining decadal variability in climate projections can provide improved 29 

estimates of temperature extremes and drought in the next twenty years, which can inform 30 

targeted adaptation strategies to near-term climate change.  31 

 32 
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1. Introduction 41 

Hot and dry meteorological extremes are nowadays having significant impacts on societies, 42 

economies and ecosystems worldwide (Blauhut et al 2015, 2016, Brás et al 2021, Ebi et al 2021, 43 

Xu et al 2016, Wilhite et al 2007, García-León et al 2021). Such events are also projected to 44 

become stronger and more frequent in the future under anthropogenic climate change (Coumou 45 

and Robinson 2013, Cook et al 2018, Dai 2011, 2013, Fischer et al 2013, Fischer and Schär 46 

2010, Sillmann et al 2013, De Luca and Donat 2023). In addition to hot and dry also winter cold 47 

extremes over the mid-latitudes can pose significant distress to infrastructures, emergency 48 

services, agricultural and energy sectors (Cheng et al 2019, Wang et al 2010, Guirguis et al 49 

2011, Palmer 2014, Sillmann et al 2011). Given their potentially severe impacts, it is important 50 

to anticipate future changes of hot, cold and dry extremes with skillful climate predictions, so 51 

that their occurrence probabilities are correctly anticipated and suitable adaptation strategies can 52 

be implemented by governments and stakeholders. Information about near-term climate change 53 

(e.g. the next 10-30 years) is particularly important to inform strategic decisions to plan 54 

adaptation. 55 

 56 

Anthropogenic climate change is expected to continue in the next decades as greenhouse gas 57 

concentrations are projected to rise due to continued emissions (Masson-Delmotte et al 2021) 58 

and is expected to drive further increases in hot and dry extremes (e.g. Sillmann et al 2013, De 59 

Luca and Donat 2023). On the other hand, the internal variability of the climate system plays a 60 

crucial role in shaping the climate on inter-annual to multi-decadal timescales (Dai et al 2015, 61 

Mann et al 2014, Meehl et al 2013). In fact, internal variability is the dominating source of 62 

uncertainty for projections of regional climate in the first few decades (Hawkins and Sutton 63 

2009, Lehner et al 2020). For assessing future near-term climate change therefore both forced 64 

warming and climate variability need to be taken into account in order to provide the most 65 

accurate estimates of changes on these time scales. 66 

 67 

Initialised climate predictions aim at reducing uncertainty from internal variability by 68 

synchronising the phasing of variability modes between the model simulations and the 69 

observations (Meehl et al 2021, Merryfield et al 2020, Meehl et al 2009). Initialised predictions 70 

show regionally improved skill when compared to uninitialised climate projections over some 71 

land regions for mean values of climatic variables (Smith et al 2019, Delgado-Torres et al 2022) 72 

and extreme indices in multi-annual predictions (Delgado-Torres et al 2023). However, because 73 

they are very computationally-expensive, especially if initialised every year, the time-span of 74 

these predictions is typically limited to ten years after initialization as in the Coupled Model 75 

Intercomparison Project Phase 6 (CMIP6) (Eyring et al 2016) Decadal Climate Prediction 76 

Project (DCPP) (Boer et al 2016). Moreover, decadal predictions are affected by initialization 77 

shocks and by their drift towards the model’s preferred climate state which can negatively affect 78 

their skill (e.g. Bilbao et al 2021). Recently, several approaches have been developed that allow 79 

to obtain skillful climate prediction by constraining internal climate variability from large 80 
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ensembles of climate projections (Befort et al 2020, Mahmood et al 2021, 2022). Such methods 81 

select those ensemble members from large ensembles of transient climate simulations that are in 82 

closest agreement with for example a climate prediction (Befort et al 2020, Mahmood et al 2021) 83 

or observational (Mahmood et al 2022) reference dataset. This selection procedure is 84 

conceptually similar to initialisation of climate predictions (Meehl et al 2021) and has the main 85 

advantage to exploit initialisation information beyond the 10 years of decadal prediction, without 86 

much computational cost since it uses existing climate projections, and which in addition can 87 

provide seamless information until the end of the century. These constrained climate projections 88 

are consistent with the model-specific climate attractors and are therefore not affected by shock, 89 

drift and related artefacts (Hazeleger et al 2013, Bilbao et al 2021, Smith et al 2013).  90 

     91 

Here we follow the approach of Mahmood et al (2022) for constraining decadal climate 92 

variability in a large multi-model ensemble, and we assess the prediction skill of hot, cold and 93 

dry extremes in these constrained projections over global land areas. With this method, we 94 

constrain climate variability based on the similarities, at a given point in time, between a large 95 

CMIP6 multi-model ensemble (MME) and multi-annual averages of observed sea surface 96 

temperature (SST) anomaly patterns. The method, for each year, sub-selects only those ensemble 97 

members which are most in agreement with the observed SST patterns. For the skill assessment 98 

we focus on the next 20-year period after applying the constraint, which is a time-scale where a 99 

previous study (Mahmood et al 2022) showed added value for some annual mean variables and 100 

where the role of internal variability is still large. 101 

 102 

2. Data 103 

We use 149 ensemble members coming from a MME of 19 CMIP6 models (Table S1). From this 104 

MME we consider data of the historical simulations from 1960 to 2014 and concatenate them 105 

with the Shared Socioeconomic Pathway (SSP) 2-4.5 (O’Neill et al 2016) up to 2019 included. 106 

The data we analyse for calculating the extreme indices are monthly total precipitation (mm), 107 

daily and monthly minimum and maximum surface temperatures (°C). By the time of the 108 

analysis, these 149 members were all available members from the MME used in Mahmood et al 109 

(2022) that provided daily data required for computing the extremes indices. We evaluate these 110 

simulated extremes against observations-based datasets; to address sensitivity to the choice of 111 

reference dataset we use one observational and one reanalysis dataset for temperatures and two 112 

observational datasets for precipitation. The reference datasets we use are the gridded Berkeley 113 

Earth Surface Temperatures (BEST, https://climatedataguide.ucar.edu/climate-data/global-114 

surface-temperatures-best-berkeley-earth-surface-temperatures) from which we obtain daily and 115 

monthly minimum and maximum surface temperatures, and the Global Precipitation 116 

Climatology Center (GPCC) (Becker et al 2013) from which we use monthly total precipitation. 117 

To test the robustness of the results related to the choice of the reference datasets we also 118 

replicate all the analyses using ERA5 reanalysis (Hersbach et al 2020) from where, similarly to 119 

BEST, we obtain minimum and maximum temperatures and Rainfall Estimates on a Gridded 120 
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Network (REGEN; Contractor et al (2020)) dataset from which, similarly as GPCC, we extract 121 

monthly total precipitation. We choose BEST and GPCC as the main reference for the 122 

retrospective predictions because they are both observational datasets and their combination 123 

allows us to end our hindcast evaluation in 2019, since this is the last year available for GPCC. 124 

On the other hand, ERA5 and REGEN represent our second reference because ERA5 is a 125 

reanalysis and REGEN ends in 2016. We combine the temperature and precipitation 126 

observational/reanalysis datasets to compute one of the two drought indices which is based on 127 

precipitation and potential evapotranspiration (mm) (see section 3.1). Since the dry extreme 128 

indices are computed from accumulated periods, we remove the year 1960 and base all our 129 

results within the 1961-2019 period. 130 

 131 

To better understand some characteristics of how the variability constraint can improve near-132 

term projections regionally, we also focus our analysis on four different regions located on four 133 

different continents. These regions are western north America (WN America, 25°N-45°N, 134 

125°W-95°W), southern central and eastern Europe (SCE Europe, 35°N-55°N, 5°E-35°E), 135 

southeastern China (SE China, 20°N-40°N, 95°E-125°E) and southeastern Australia (SE 136 

Australia, 45°S-25°S, 135°E-155°E) (Figure S1). For all the regions we mask the oceans and 137 

consider only land grid-points. We choose these regions because they are the ones where the 138 

constraining method shows added skill over the raw CMIP6 ensemble, and to understand time-139 

series characteristics that contribute to the skill in the constrained ensemble. 140 

 141 

3. Methods 142 

3.1 Extreme indices 143 

We compute six extreme indices as measures for global hot, cold and dry extremes over land 144 

areas similarly to De Luca and Donat (2023). For hot extremes we calculate two ETCCDI 145 

indices (Zhang et al 2011), namely the percentage of days when daily maximum temperature 146 

exceeds the 90th percentile (TX90p) and the annual maximum value of daily maximum 147 

temperature (TXx). For cold extremes we also use two ETCCDI indices: the percentage of days 148 

when daily minimum temperature is below the 10th percentile (TN10p) and the annual minimum 149 

value of daily minimum temperature (TNn). These ETCCDI indices are computed using the R 150 

package “climdex.pcic.ncdf” (https://github.com/ARCCSS-extremes/climdex.pcic.ncdf). To 151 

quantify dry extremes we use the Standardized Precipitation Index (SPI, McKee et al (1993)) 152 

and the Standardized Precipitation Evapotranspiration Index (SPEI, Vicente-Serrano et al 153 

(2010)) with accumulation periods of 3-, 6- and 12-months.  154 

 155 

The SPI is computed solely from monthly total precipitation and it is often used to measure 156 

meteorological drought, with lack of precipitation indicated by negative values. On the other 157 

hand, the SPEI is computed from monthly total precipitation and monthly mean of daily 158 

maximum and minimum temperatures , the last two used to compute potential evapotranspiration 159 

following the Hargreaves (1994) approximation; SPEI therefore represents drought in terms of 160 
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lack of water availability. We use the entire investigation period as baseline for the estimation of 161 

the distribution parameters (De Luca and Donat 2023, Vicente-Serrano et al 2020), i.e. 60 years 162 

(1960-2019) for the CMIP6 MME and BEST-GPCC datasets, and 57 years (1960-2016) for 163 

ERA5-REGEN. Since the SPI and SPEI indices do not directly indicate drought occurrences, we 164 

select from these indices only monthly values ≤ -1 which represent moderately dry conditions. 165 

We use -1 as threshold to make sure that a sufficient number of monthly values in the SPI and 166 

SPEI drought datasets are available. Our drought indices count the number of dry months per 167 

year and we named them SPIn_dry and SPEIn_dry, where n stands for the accumulation period 168 

of the index (i.e. 3, 6 and 12 months) (De Luca and Donat 2023). The SPI and SPEI indices are 169 

computed using the R package “SPEI” (Beguería et al 2014, Vicente-Serrano et al 2010). 170 

 171 

We calculate all the indices on the native CMIP6 model, BEST, GPCC, ERA5 and REGEN grids 172 

and then re-grid them to a common latitude-longitude grid of 2.8°x2.8° (the resolution of the 173 

model with the coarsest resolution included in this study, CanESM5) to facilitate multi-model 174 

analysis. We then remove the ocean grid-points with a land-sea mask so that only land values are 175 

retained and exclude Antarctica. 176 

 177 

3.2 Constraining internal climate variability 178 

We follow the approach introduced by Mahmood et al (2022) to constrain the large MME of 179 

CMIP6 simulations. For this we used observational SST data from the Extended Reconstructed 180 

Sea Surface Temperature version 5 dataset (ERSSTv5; Huang et al (2017)) from the National 181 

Oceanic and Atmospheric Administration (NOAA). The monthly mean model and observed SST 182 

data were regridded to a common 3°x3° grid and the climatological mean (1981-2010) was 183 

removed to compute the anomalies.  184 

 185 

Internal climate variability is constrained by comparing spatial distributions of global SST 186 

anomaly patterns between each of the 149 CMIP6 ensemble members and the observed anomaly 187 

averaged over a 9-year period preceding the start of the prediction. Such comparison is 188 

performed via area-weighted spatial pattern correlation. Similar to Mahmood et al (2022), we 189 

choose the top ranking 30 members (referred to as “Best30”) for hindcasting up to 20 years after 190 

the initialization. The unconstrained ensemble consists of all 149 members (referred to as “All 191 

ensemble”). 192 

 193 

We use 9-year averages of SST anomalies since constraining based on this period showed high 194 

skill in constrained projections as shown by Mahmood et al (2022), who also tested sensitivity to 195 

using other averaging periods. To start a constrained prediction from January 1961, we use the 9-196 

year mean SST anomalies from January 1952 to December 1960 to select the Best30 members. 197 

Such a procedure is repeated every year and the Best30 members selected based on SST anomaly 198 

comparison from 1953 to 1961 are used for predictions starting in 1962, 1954-1962 for 199 

predictions starting in 1963, etc. Here we focus on the hindcast period of 1 to 20 years after the 200 
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initialization. To evaluate the 20-year mean hindcasts against observational data sets, the final 201 

constraining period considered goes from January 1991 to December 1999 for predicting January 202 

2000 to December 2019. Therefore, we use a total of 40 start dates for the retrospective 203 

predictions. 204 

 205 

3.3 Evaluation metrics 206 

We use a set of metrics that evaluate different aspects of the degree of agreement between the 207 

simulations and observations (e.g. Donat et al 2023, Mahmood et al 2021, 2022, Delgado-Torres 208 

et al 2022, 2023). 209 

 210 

The Spearman Correlation Coefficient (Spearman 1904) estimates the linear relationship 211 

between the observational reference and the CMIP6 MME mean. It ranges between -1 (worst 212 

agreement) and 1 (best agreement). We use the Spearman rank correlation to avoid assumptions 213 

about distributional properties (e.g. normality). The Spearman correlation coefficient is defined 214 

as: 215 

 216 

𝑟 =
6 ∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛(𝑛2 − 1)
                (𝑒𝑞. 1) 217 

 218 

where i corresponds to each time step (from 1 to n), and di is the difference between the ranks of 219 

xi and oi (simulated and observed value, respectively, for time step i). 220 

 221 

In order to assess whether the Best30 ensemble captures more observed variability than the All 222 

ensemble, we use the residual correlation (Smith et al 2019, Mahmood et al 2022) using the 223 

Spearman’s test (Corder and Foreman 2014). The residual correlation measures to what extent 224 

we can predict the variations around the forced signal and it therefore quantifies the added skill 225 

from aligning variability phases or “initialising” the predictions. We therefore remove the forced 226 

signal (using the All ensemble mean as best estimate of the forcing response) from the observed 227 

and Best30 mean time-series by subtracting their corresponding linear fits with the All ensemble 228 

mean (Smith et al 2019). This results in time-series of observed and Best30 residuals. The 229 

residual correlation is the correlation between the observed and Best30 residuals. Positive values 230 

of the residual correlation indicate that the Best30 ensemble captures some observed variability 231 

around the forced signal derived from the All ensemble mean, and negative values indicate the 232 

that the observed and predicted residuals are not in phase. The Spearman’s correlations and 233 

residual correlations are computed from a total of forty 20-year averages, starting each year from 234 

1961 to 2000. 235 

 236 

The Root Mean Squared Skill Score (RMSSS; Murphy (1988)) is also a deterministic skill 237 

measure computed from the MME mean and is used to assess whether the Best30 ensemble is 238 

more skillful than a reference hindcast. The RMSSS is based on the Root Mean Squared Error 239 
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(RMSE), which quantifies the agreement in terms of the error magnitude between the ensemble 240 

mean and the observational reference. For quantifying the RMSSS we compute the RMSE for 241 

the Best30 ensemble and the reference hindcast using 20-year averages with starting years 242 

ranging from 1961 to 2000. The reference hindcasts used to compute the RMSSS are the 243 

climatological hindcasts (i.e. no anomaly) for assessing the Best30 skill, and the All ensemble 244 

mean hindcasts for quantifying the added value in Best30 over the All ensemble. Positive 245 

RMSSS values indicate that the Best30 ensemble is more skillful than the reference hindcast and 246 

negative values indicate it is less skillful than the reference hindcast. The RMSSS is defined as: 247 

 248 

𝑅𝑀𝑆𝑆𝑆 = 1 −
𝑅𝑀𝑆𝑒𝑥𝑝

𝑅𝑀𝑆𝑟𝑒𝑓
                (𝑒𝑞. 2) 249 

 250 

where RMSexp and RMSref correspond to the Root Mean Square (RMS) difference of the hindcasts 251 

and reference hindcast, respectively, from the observed value oi, which is computed as: 252 

 253 

𝑅𝑀𝑆 = √∑
(𝑥𝑖 − 𝑜𝑖)2

𝑛

𝑛

𝑖=1

                (𝑒𝑞. 3) 254 

 255 

The Ranked Probability Skill Score (RPSS; Wilks (2011)) is used to estimate the skill of 256 

probabilistic products from all members of the MME. The RPSS is based on the Ranked 257 

Probability Score (RPS) which evaluates the skill in terms of probabilities (computed as the 258 

percentage of members that fall into each equiprobable tercile category, with the three categories 259 

indicating below average, approximately average and above average conditions). For computing 260 

the RPSS, we first compute the RPS for each 20-year average with starting years from 1961 to 261 

2000 and then quantify the temporal mean of these averages. As with the RMSSS, positive RPSS 262 

values indicate that the Best30 ensemble outperforms the reference hindcast, while negative 263 

RPSS values indicate that the reference hindcast is more skillful. The probabilistic climatological 264 

hindcast (defined as the same probability for all tercile categories, i.e., 33.3%) and the All 265 

ensemble are used as reference hindcasts. The RPSS is defined as: 266 

 267 

𝑅𝑃𝑆𝑆 = 1 −
𝑚𝑒𝑎𝑛(𝑅𝑃𝑆𝑒𝑥𝑝)

𝑚𝑒𝑎𝑛(𝑅𝑃𝑆𝑟𝑒𝑓)
                (𝑒𝑞. 4) 268 

 269 

where RPSexp and RPSref correspond to the RPS for each time step of the hindcasts and reference 270 

hindcast, respectively, which is computed as: 271 

 272 
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𝑅𝑃𝑆 = ∑ [(∑ 𝑝𝑥𝑗

𝑚

𝑗=1

) − (∑ 𝑝𝑜𝑗

𝑚

𝑗=1

)]

2𝐽

𝑚=1

                (𝑒𝑞. 5) 273 

 274 

where j corresponds to the probabilistic category (from 1 to J=3), and pxj and poj are the 275 

hindcasted and observed probabilities, respectively, for the probabilistic category j. 276 

 277 

We estimate the statistical significance of the correlation and residual correlation with a two-278 

sided t-test (Wilks 2011) accounting for the time-series auto-correlation following (Zwiers and 279 

von Storch 1995) to assess whether the skill values are significantly different from zero. To 280 

assess the statistical significance of the RMSSS and RPSS, we apply a two-sided Random Walk 281 

test (DelSole and Tippett 2016) to the RMSE and RPSS time-series to assess whether the number 282 

of times that the Best30 ensemble is better or worse than the reference hindcast is statistically 283 

significant. To the p-values obtained with the two-sided t-test and Random Walk test we apply 284 

the False Detection Rate (FDR; Wilks (2016)) procedure using alpha_FDR = 0.1 to control the 285 

type I errors (or false positives).  286 

 287 

4. Results 288 

4.1 Hot and cold extremes 289 

Best30 TX90p shows high skill in most global land regions, with correlations exceeding 0.9 in 290 

the majority of grid cells, and RMSSS > 0.8 and RPSS > 0.6 in large areas, respectively (Figure 291 

1(a)-(c)). Improved skill from the constraint in Best30 in comparison to All ensemble as 292 

measured by positive residual correlations is found in the western USA, South and eastern North 293 

America, Africa, the Arabian Peninsula, Europe, most of Asia and northern Australia (Figure 294 

1(d)), meaning that in these regions observed variability is captured better by Best30 than by All 295 

ensemble. Improved skill based on the RMSSS is found over central and northern South 296 

America, Greenland, most of the African continent, southeastern Europe, the Arabic Peninsula 297 

and most of central and southern Asia (Figure 1e), pointing out a good agreement between 298 

Best30 and the reference dataset. Improved skill measured by the RPSS is widespread and 299 

similar to the one of residual correlation (Figure 1(f)) and indicates that Best30 is more skillful 300 

than All ensemble when evaluating the skill in terms of probabilities.  301 

 302 

Best30 TXx shows often weaker skill compared to TX90p, as also found for multi-annual 303 

predictions by Delgado-Torres et al (2023), but 20-year projections are still skillful over large 304 

areas of the globe for the three metrics. Lack of skill is found in some parts of North and South 305 

America, Scandinavia, western and southern Africa, central parts of Asia and northern Australia 306 

(Figure 1(g)-(i)). Improved skill as measured by residual correlation is found over Alaska, 307 

Canada, eastern North America, southwestern USA, Mexico, northern South America, eastern 308 

Europe, India, eastern Russia, southeastern Asia and western Australia (Figure 1(j)). RMSSS 309 

shows improved skill mainly over central Africa (Figure 1(k)), whereas the negative RMSSS 310 
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values in other regions (such as large parts of North and South America) are indicative of an 311 

increased mean bias in Best30 compared to All ensemble. RPSS improved skill is found in 312 

western North America, South America, central and eastern Europe, central Africa and in some 313 

localised parts of Asia (Figure 1(l)). 314 

 315 

Similarly to hot extremes, we find high hindcast skill also for indices of cold extremes (Figure 316 

S2). TN10p and TNn show high Best30 skill over most of the globe, with the former having 317 

larger areas with significant skill than the latter (Figure S2(a)-(c), (g)-(i)). For both indices, we 318 

find added skill compared to All ensemble over southeastern North America, eastern Brazil, 319 

equatorial Africa, southeastern China and northern Australia (Figure S2(d)-(f), (j)-(l)). When 320 

using ERA5 as reference datasets we find similar spatial patterns for hot and cold extremes in 321 

both the Best30 skill and skill improvement (Figures S3-S4).   322 

 323 

 324 

 325 
Figure 1 Skill measures obtained with the Best30 ensemble for TX90p (first row) and TXx (third row), 326 
and added skill of the Best30 ensemble in comparison to the All ensemble for TX90p (second row) and 327 
TXx (fourth row). The first column shows the correlation between the Best30 ensemble mean and 328 
observations (a, g) and the correlation between the residuals of the Best30 ensemble mean and 329 
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observations calculated by linearly regressing out the All ensemble mean (d, j). The second column shows 330 
the RMSSS of Best30 using the climatological hindcast (b, h) and the All ensemble (e, k) as the reference 331 
hindcast. The third column is similar to the second column, but for the RPSS. Stippling indicates grid 332 
points where the skill measures are statistically significant controlling the FDR with alpha_FDR = 0.1. 333 
The observational reference dataset is BEST. 334 
 335 

We next inspect the regional average time series for three regions in which the Best30 ensemble 336 

shows improved skill over the All ensemble, namely western North America, southern central 337 

and eastern Europe, and southeastern China (Figure 2). We use these time series plots to 338 

illustrate some of the characteristics that help explain the improved skill in Best30 compared to 339 

the unconstrained ensemble. While all time series indicate a long-term warming over the analysis 340 

period for both TX90p and TXx in all three regions, there are also some noteworthy differences.  341 

 342 

In SCE Europe and SE China (Figure S1) the Best30 ensemble mean has lower values than the 343 

All ensemble mean for both TX90p and TXx in the first two decades of the investigation period. 344 

These values are closer to the observed temperature values, contributing to the improved skill. 345 

Overall this leads to a stronger long-term warming of hot extremes in these regions in Best30 346 

compared to All, and more similar to observations. In addition, The Best30 ensemble also 347 

captures some of the observed decadal-scale variations with accelerated warming in the 1980s 348 

and early 1990s and reduced warming rates from the mid 1990s, whereas the All ensemble mean 349 

features temporally more homogeneous increases. In WN America (Figure S1) the Best30 350 

ensemble mean also has lower values than the All ensemble mean during the first two decades of 351 

the investigation period. In this case this makes it more different to the observed time series, as 352 

also reflected by the negative RMSSS values when using the All ensemble as reference. 353 

However, the positive Residual Correlation (and positive RPSS for the TXx index) indicate some 354 

added skill in Best30 over the All ensemble, and this is indicative of correctly predicting some 355 

aspects of the decadal-scale variations in the warming rates (such as the reduced warming rates 356 

in the 1990s). Similar time-series are also found when using the ERA5 reference datasets as 357 

shown in Figure S5. 358 

 359 

 360 
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361 
Figure 2 Regional 20-year average time-series of hot extreme indices from 1961 to 2000 initialised years 362 
for Best30 (red), All ensemble (blue) and observational (black) datasets. Regions are western North 363 
America (WN America), southern central and eastern Europe (SCE Europe) and southeastern China (SE 364 
China). Shaded coloured bands represent the interquartile range (25th and 75th percentiles) of the Best30 365 
and All ensemble. We also show the evaluation metrics averaged over each single region, in the same 366 
order as Figure 1(a)-(f). Asterisks indicate metrics statistically significant. The observational reference 367 
dataset used is BEST. 368 
 369 

 370 

4.2 Dry extremes 371 

Skill for dry extremes is overall spatially more limited when compared to the skill for hot 372 

extremes. However, there are some areas where near-term projections of dry extremes are 373 

skillful, and where our constraint adds skill. 374 

 375 

Best30 SPI3_dry correlations are locally significant over the southwestern USA, central and 376 

southern South America, Greenland, northern Europe, central Africa, parts of Asia and 377 

southeastern Australia (Figure 3(a)). Whereas RMSSS and RPSS show similar patterns of 378 

positive skill over central South America, northern Europe, central Africa and central and 379 

northern Asia (Figure 3(b),(c)). Residual correlations indicate skill improvements from the 380 

constraint for SPI3_dry in a few regions, e.g. over the southern USA, central Africa and in other 381 

localised areas of the globe (Figure 3(d)). Also RMSSS and RPSS indicate some added value for 382 

the constrained ensemble in similar regions, e.g. the southern USA, some scattered areas in 383 

South America, the Arabian Peninsula and southern Australia (Figure 3(e)-(f)). 384 

 385 
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Best30 SPEI3_dry shows significant skill based on the three metrics over southwestern USA, 386 

central and northern Mexico, central and southern South America, northern and southern Africa, 387 

the Iberian peninsula, southeastern Europe, the Middle East, western and central Asia and 388 

southeastern Australia (Figure 3(g)-(i)). Residual correlations indicate improved skill over the 389 

western USA, northern South America, the Balkans, parts of central and southern Africa, the 390 

Arabian Peninsula and southeastern Australia (Figure 3(j)). Also here RMSSS and RPSS indicate 391 

some skill improvements for SPEI3_dry in the southwestern USA and northern Mexico, parts of 392 

South America and Africa, the Arabian Peninsula and in a few areas of central Asia (Figure 3(k)-393 

(l)).  394 

 395 

Overall similar results are obtained when considering the drought indices with longer 396 

accumulation periods, such as SPI6_dry, SPEI6_dry (Figure S6), SPI12_dry and SPEI12_dry 397 

(Figure S7) and different reference datasets (i.e. ERA5-REGEN, Figures S8-S10).  398 

 399 

 400 

 401 
Figure 3 Same as Figure 1 but for SPI3_dry and SPEI3_dry. The observational reference datasets used 402 
are GPCC (precipitation) and BEST (to compute potential evapotranspiration). 403 
 404 
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 405 

In the following, we focus on regional timeseries of the drought measures in three regions where 406 

the constraint adds skill (i.e. WN America, SCE Europe and SE Australia), to better understand 407 

the characteristics of the improved hindcasts (Figure 4). Here, Best30 and All ensemble correctly 408 

capture both the stationarity (Figure 4(a),(c)) and long-term changes in the observations (Figure 409 

4(b),(d)-(f)) for both indices. There is also added value in Best30 compared to All, especially for 410 

WN America where Best30 captures some of the observed decadal-scale variations around the 411 

CMIP6 (All) mean, although with smaller magnitude. We obtain similar results with SPI6_dry, 412 

SPEI6_dry, SPI12_dry and SPEI12_dry (Figure S11), or when using the ERA5-REGEN 413 

reference datasets (Figures S12-S13). In summary, these results illustrate how the constraint can 414 

improve near-term projections of drought, by enhancing the representation of both decadal-scale 415 

variations and long-term changes in WN America, SCE Europe and SE Australia. 416 

 417 

When comparing the skill for these drought indices (i.e. SPIn_dry or SPEIn_dry) against the skill 418 

in predicting the entire distributions of SPI or SPEI (i.e. including dry and wet conditions), we 419 

note some interesting differences (Figure S14). While for most regions the patterns of skill are 420 

reasonably similar between predicting SPI/SPEI and the corresponding drought indices, in 421 

particular in SE Australia (where both SPI3_dry and SPEI3_dry had skill and added skill), there 422 

is no skill (nor added skill) for SPI3 or SPEI3. This indicates some asymmetry in the 423 

predictability of accumulated precipitation (SPI) or water availability (SPEI), with dry conditions 424 

being more predictable than wet conditions. 425 

 426 

 427 

 428 
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Figure 4 As Figure 2 but for SPI3_dry and SPEI3_dry and southeastern Australia (SE Australia) instead 429 
of southeastern China (SE China). 430 
 431 

 432 

5. Discussion and Conclusions 433 

In this work we presented the first evaluation of multi-decadal prediction skill of CMIP6 434 

projections of hot, cold and dry extremes in global land regions with decadal variability 435 

constrained based on observations. We performed our analysis within the 1961-2019 period with 436 

20-year predictions started each year from 1961 to 2000 (i.e. generating retrospective predictions 437 

of 20-year windows ranging from 1961-1980 to 2000-2019). We showed that the constrained 438 

ensemble (Best30) has high skill for hot and cold extremes over large parts of the globe, with 439 

also added value compared to the unconstrained ensemble (All) in several regions. Dry extremes, 440 

on the other hand, showed lower skill compared to temperature extremes but drought predictions 441 

are skillful in some regions. These regions include e.g. western North America, Southeastern 442 

Europe and Southeastern Australia, which were affected by prominent dry and hot extremes in 443 

recent decades.  444 

 445 

This work builds on recent studies, which investigated the predictability of extremes in multi-446 

annual predictions from the DCPP MME against observations for temperature extremes 447 

(Delgado-Torres et al 2023) and on recent work developing the methods to constrain variability 448 

in large projection ensembles with the goal to provide multi-decadal climate predictions 449 

(Mahmood et al 2022). The former study showed high skill in predicting average and extreme 450 

temperatures with DCPP when compared to observations, and added value when compared to an 451 

historical CMIP6 MME. The latter investigation, on the other hand, showed high skill in average 452 

temperature for Best30 compared to observations and added value when this is compared to the 453 

All ensemble. These studies reflect our findings, but their geographical patterns of DCPP and 454 

Best30 added value against the Historical and unconstrained ensemble respectively do not 455 

necessarily reflect our maps, since for example we obtained more positive and significant skill in 456 

TX90p and TXx than Delgado-Torres et al (2023), especially in western north America, central 457 

south America, central Africa, southern central and eastern Europe, India and southeastern 458 

China. Similarly to our results, Delgado-Torres et al (2023) found higher skill for TX90p than 459 

TXx. This is because the former is a more moderate extreme occurring several days in a year and 460 

for which modulation related to climate variability modes more detectable, whereas the latter 461 

represents only the one most extreme day per year whose is intensity is affected by different 462 

processes (e.g. specific atmospheric circulation patterns on that day), which may not be 463 

predictable with our method.  464 

 465 

We envisage future work on assessing the multi-decadal prediction skill of other impact-relevant 466 

climate phenomena, such as compound hot-dry (e.g. De Luca and Donat 2023, Bevacqua et al 467 

2022) and wet-windy (e.g. De Luca et al 2020, Martius et al 2016) extremes derived from a large 468 

MME of CMIP6 models. In addition, identifying the sources of predictability driving good skill 469 
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in selected regions of the globe, as done for example by Patricola et al (2020) and Imada and 470 

Kawase (2021), can further extend the understanding of the physical processes at play and 471 

improve the prediction. In particular, applying the constraint only to specific ocean regions can 472 

help to attribute the predictability to specific modes of variability or climate system components 473 

(e.g. Mahmood et al 2022). 474 

 475 

Our work demonstrates that constraining internal climate variability with observations, leads to 476 

more trustworthy predictions of hot and dry extremes on multi-decadal time-scales, and we 477 

believe that such predictions can be useful for stakeholders to develop targeted adaptation 478 

strategies to climate change over the next 20 years. 479 

 480 
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