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Abstract: This study undertakes a comprehensive investigation into the comparison of designs
between the acclaimed architect Antoni Gaudí and those produced by an artificial intelligence (AI)
system. We evaluated the designs using five main metrics: Authenticity, Attractiveness, Creativity,
Harmony, and overall Preference. The findings underline the superiority of Gaudí’s designs in terms
of Authenticity and Harmony, testifying to the unique aesthetic appeal of human-created designs. On
the other hand, AI-generated designs demonstrate significant potential, exhibiting competitive results
in the categories of Attractiveness and Creativity. In some cases, they even surpass Gaudí’s designs in
terms of overall Preference. However, it is clear that AI faces challenges in replicating the distinctive
aspects of human design styles, pointing to the innate subjectivity inherent to design evaluations.
These findings shed light on the role AI could play as a tool in architectural design, offering diverse
design solutions and driving innovation. Despite this, the study also emphasizes the difficulties AI
faces in capturing the unique facets of human design styles and the intrinsic subjectivity in design
evaluations.
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1. Introduction

The advent of artificial intelligence (AI) has triggered significant transformations
across various disciplines, thanks to its computational capabilities that enhance traditional
methodologies and foster innovative approaches. Architecture stands out as one of the
fields where the transformative potential of AI is being leveraged, ranging from the con-
ceptualization to the execution of designs [1]. The integration of advanced AI techniques
such as Generative Adversarial Networks (GANs) [2], Latent Diffusion Models (LDMs) [3],
and Segment Anything Models (SAMs) [4] into architectural software underscores the
scope of AI’s application in this domain. These techniques enable AI to generate a diverse
array of design alternatives, optimize structural components, and even emulate the stylistic
subtleties of esteemed architects [5].

In addition to its role in design generation, AI is progressively recognized as a transfor-
mative educational tool in architecture. Beyond traditional classroom methods, AI offers an
enriched learning experience, with its capacity to visualize unbuilt designs and understand
design principles [6,7].

The work of Antoni Gaudí, celebrated for his unique blend of originality, harmony,
and creativity, provides an intriguing case for examining the potential of AI in architectural
design and education [8–10]. This research aims to scrutinize the relationship between
Gaudí’s designs and those generated by AI, exploring not only AI’s capacity to replicate
Gaudí’s style but also its potential as a creative design and educational tool.

In this study, we first explore the role of AI as an innovative design tool in generating
alternative solutions in the field of architecture. We then discuss the potential of AI in
architectural education. Following this, we delve into the assessment of the aesthetic value
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of AI-generated architectural design. After the literature review, we perform an empirical
analysis using Gaudí’s work as a reference to assess the potential of AI in replicating his
style. In conclusion, we discuss the implications of integrating AI into architectural design
and education, highlighting the aesthetic considerations. Our research aims to contribute
to the discourse by providing a systematic exploration and evaluation of the role of AI in
architecture.

2. Literature Review

2.1. AI as a Creative Design Tool for Generating Alternatives

Artificial intelligence (AI) has progressively become a fundamental part of architectural
design, pushing the envelope of what is possible and transforming traditional design
methodologies into innovative, future-facing ones [11]. As the computational power
continues to advance, we are witnessing a paradigm shift where machine learning has
become a pivotal tool in architecture [12,13]. Previously, the integration of machine learning
into architectural design tools was limited due to the complex and creative nature of
design tasks. However, with the rise and integration of more advanced machine learning
models, such as transformer models, into design workflows, this barrier is gradually being
overcome [14].

Artificial neural networks, drawing inspiration from biological neural networks [15,16],
have been key players in transforming the design space. By training these networks
on specific examples, known as the training set, in the form of input parameters and
corresponding output values, they learn and iterate on design solutions [17]. Some cases,
which employed neural networks to generate innovative design alternatives in architectural
planning, demonstrate how AI can broaden the creative possibilities [18].

Moreover, the concept of swarm intelligence, as elucidated by Bonabeau, Dorigo,
and Theraulaz [19], has seen a transition from being a phenomenon observed in natural
systems to a technique applied in artificial systems, specifically architectural design. It
emulates collective behaviors observed in nature, such as bird flocking or insect swarming,
and has been harnessed to produce complex spatial forms [20,21]. Swarm intelligence
can be leveraged to optimize energy usage in building design, offering an approach that
harmonizes design aesthetics with sustainability.

In the more recent years, AI models such as Generative Adversarial Networks (GANs)
and Latent Diffusion Models (LDMs) have further expanded the horizon of creative possi-
bilities [22]. These generative AI models, which leverage vast databases for initial learning,
have an inherent level of decoding uncertainty. This can lead to the generation of di-
verse (see Figure 1), unconventional patterns and solutions, pushing the boundaries of
conventional design thinking.

Figure 1. Due to the characteristics of Latent Diffusion Models, it is possible to generate diverse results.

The advent of AI has laid the groundwork for a revolution in architectural design by
offering an entirely new realm of possibilities and paths for exploration. The integration
of automated design systems not only streamlines the design process but also bolsters
the role of conceptual thinking in crafting solutions [11]. Yet, the human element in
the process—the role of the architect—remains indispensable. Architects bring a critical
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perspective in selecting the most suitable solution from a multitude of scenarios generated
by AI, ensuring the blend of creativity and functionality in the final design [11].

2.2. Potential of AI in Architectural Education

The utilization of artificial intelligence (AI) in architectural design and education
has made substantial progress, transitioning from rudimentary design tools to powerful
instruments capable of generating innovative design solutions, optimizing existing designs,
and playing a pivotal role in education [23,24]. These advancements have pervaded all
facets of architectural education, including technical, theoretical, representation, and design
studio modules.

Technically, the impact of AI is manifested in the use of building information modeling
(BIM) and parametric design software, tools proficient in generating 3D spatial data to
enhance the design and construction process [25]. Meanwhile, the application of machine
learning (ML) requires customization for each project, with data collection, preprocessing,
and computational power being crucial elements [23].

In theory-based courses, the employment of AI, particularly in collecting, storing,
and analyzing massive amounts of textual data, significantly alleviates the students’ work-
load [26]. This aligns with Negroponte’s research suggesting that machines can learn
architectural design via sampling and evaluation, bypassing the need for pre-encoding
rules, offering unique opportunities for architectural education [27].

Moreover, deep learning (DL) models, with the support of big data, have demon-
strated the capacity to tackle architectural design problems [28]. Remarkably, Generative
Adversarial Networks (GANs) have been applied to create architectural layouts, generating
an abundance of architectural floor plans even without a vast quantity of image data [18,29].

In representation modules, digital technologies such as Virtual Reality (VR), Aug-
mented Reality (AR), and 3D printing have revolutionized spatial perception and design
presentations [7]. AI, employed as a creative design tool, is starting to transform the com-
munication process between architects and clients. For instance, AI image generation tools
such as DALL-E can swiftly articulate architects’ design intentions, reducing the archi-
tects’ workload, and stimulating new creative thinking. In addition, novel AI technologies
such as Generative Adversarial Networks (GANs), Latent Diffusion Models (LDMs), and
Any Segment Models (SAM) are beginning to be incorporated into specific software tools.
Tools such as Stable Diffusion V.5, Midjourney V5.1, and Photoshop 2023 (Beta) are being
integrated into design studio workflows, with some studios even starting to train their
algorithm models [30–32]. This rapid visual communication bears immense potential in
architectural education as it fosters more effective communication between students and
teachers during the design stages.

Design studios, viewed as the core of architectural education, serve as a confluence of
theoretical and technical knowledge. Here, AI assumes a crucial role in data processing,
research object indexing, environmental analysis, and suggesting design proposals through
building performance analysis tools [7]. Innovative tools such as the Nuncias chatbot have
been integrated into architectural education to aid in enhancing the verbal definition of
designs [33].

However, the application of AI in architectural design and education is not devoid
of challenges. Deep learning models and extensive datasets cannot mimic human ways
of thinking, such as “common sense”, i.e., the ability to generalize, create, and simulate
abstract information [28]. Thus, the progression of AI needs to coincide with enhancements
in educational models and strategies to adapt to the rapid technological advancements and
cultivate designers capable of effectively utilizing these tools [24].

The integration of AI in architectural design and education equips students and
designers with potent tools to explore novel design methods and optimize existing designs.
Nonetheless, to effectively incorporate AI, appropriate educational models and strategies
need to be developed to adjust to the rapid technological advancements.
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2.3. Assessment of Aesthetic Value in AI-Generated Architectural Design

The rapid application of artificial intelligence in architectural design is catalyzing
significant changes, including the rise of many innovative design approaches and practices.
Nonetheless, this progress ushers in a new challenge: how can we objectively assess
the aesthetic value of design schemes produced by AI? This challenge necessitates the
application of diverse architectural aesthetics theories and studies, which hold a crucial
role in the training of AI, particularly in reinforcement learning with human feedback
(RLHF) [34].

Evaluating the aesthetic value of architectural design is a complex task encompassing
multiple dimensions. It is also important to acknowledge that architecture, although
primarily captivating through visual expression, is a multisensory experience incorporating
elements such as touch, sound, and even smell. This awareness of the multisensory nature
of architecture aligns with the Enlightenment period’s emphasis on prioritizing the senses
of sight and hearing over the senses of smell, touch, and taste [35,36]. Contemporary
theories, as proposed by Bille and Sørensen, suggest a further extension of this awareness,
highlighting the atmospheric elements, processes, and practices in architectural design [37].

Mehaffy, Gorichanaz, and Lavdas offer comprehensive discussions on architectural
form, user experience, and sociocultural aspects, which furnish invaluable insights into
understanding and evaluating the function of AI in architectural design [38,39]. Simultane-
ously, aesthetic evaluation straddles both subjectivity and objectivity. Fechner’s endeavor
to quantify aesthetics with numerical scales provides a potential approach to aesthetic
assessment. Recent studies from neuroscientists such as Sussman reveal that our judgments
about beauty are largely influenced by our perceptual mechanisms [40]. This concurs with
Christopher Alexander’s notion of “Quality Without A Name” and Buras’s “beauty scale”
theory, both stressing the importance of quick perception in aesthetic evaluation [41,42].

The efficacy of using a beauty scale for evaluation can reach 80–90% in rating consis-
tency, suggesting that it can serve as an efficient instrument to predict and comprehend
people’s aesthetic experience of architectural design, and achieve consensus in the design
and execution process [43].

Assessing the aesthetic value of AI-generated architectural design requires contem-
plating human perceptual experience, subjective feelings, memory, social and cultural
demands, and aesthetic responses from a neuroscientific perspective. Among these, human
intuitive responses and perceptual experiences play a pivotal role in the evaluation. In
assessing the architectural image generation ability of AI, subjective scales can be employed
for experimentation.

3. Methods

3.1. Preparation of Architectural Visuals
3.1.1. Selection and Preparation of Gaudí’s Manuscripts

Gaudí’s Crypt of Colonia Güell was purposefully selected as the focus of this investi-
gation, owing to its historical significance and incorporation of Gaudí’s pioneering archi-
tectural paradigms. From the available manuscripts [44], two panoramic views and two
detailed images from the south facade of the Güell Crypt were meticulously selected [45]
(see Figure 2). This choice was based on the acknowledgment that Gaudí’s later works,
such as the Güell Crypt, closely mirror the architectural style and techniques seen in his
completed buildings, facilitating a more accurate basis for comparison with authentic
images of his built works [46].

The construction of the Crypt of Colonia Güell started in 1908 under the commission of
Eusebi Güell, who provided Gaudí with unencumbered creative freedom [8]. The ambitious
plan entailed a church with two naves, distinctive towers, and a central dome reaching
40 m in height. However, due to financial constraints, only the lower nave was completed,
leading to its familiar nickname as the “crypt”. Despite its unfinished state, the Crypt of
Colonia Güell represents the zenith of Gaudí’s architectural innovations, embodying his
unique design principles and techniques [46].
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Figure 2. (a) East façade Güell Crypt (1910). (b) South façade Güell Crypt (1910). (c) Tower detail
crop from south façade Güell Crypt. (d) Window detail crop from south façade Güell Crypt.

For the digital reconstruction of Gaudí’s manuscripts, a thorough digitization process
was conducted. Recognizing the necessity for preprocessing the manuscripts for optimal
input into the Stable Diffusion algorithm, a blend of the Depth and Canny edge detection
methods was adopted [47].

3.1.2. Creation of AI-Generated Images

The creation of AI-generated images involved the application of advanced deep
learning and computer vision technologies. The process consisted of three key steps:
1—data acquisition, 2—model training, and 3—prediction (see Figure 3).

Figure 3. Text and Architectural Manuscript-Conditioned Image Generation Framework (consisting
of three key steps: (1) data acquisition, (2) model training, and (3) prediction).

In the data acquisition phase, a dataset of 3000 images was collected using Python
web scraping tools. To ensure data quality, a deduplication tool was employed to eliminate
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visually similar images. The images were then automatically cropped to a standard size
of 512 × 512 pixels by identifying their central regions. Textual tags associated with the
images were extracted using Deepbooru, and manual verification was conducted to ensure
tag accuracy.

The subsequent model training phase was divided into two distinct methods for more
effective learning. The first method involved training the Dreambooth AI model [48] on the
initially collected and processed dataset of 3000 images. The training was performed over
30,000 steps, with a meticulously set learning rate of 0.00005 to ensure a balance between
learning speed and performance. The loss function, which is an indicator of how well the
model’s prediction aligns with the actual result, gradually converged from an initial value
of 0.168 to 0.078, indicating successful learning. However, after experimentation, it was
determined that the model checkpoint at the 12,000th step, named Model A, yielded results
superior to those at the final step.

In addition to the general training method, a targeted approach was also utilized. This
method trained specific architectural elements, such as towers and windows, individually
using the LoRA (low-rank adaptation of large language) model [49]. This method aimed to
capture unique styles with a smaller set of representative images. Ten images were used for
each element, and the training was carried out over 10 epochs, with each epoch consisting
of 20 iterations. This resulted in a total of 2000 steps. The learning rate for this process was
set to a lower value of 0.00001 to accommodate for the detailed and specific nature of the
learning. The performance and weight variations of the LoRA models were monitored and
evaluated using an XY-axis graph, allowing for the selection of the most suitable model,
named Model B, based on the specific requirements (see Figure 4).

Figure 4. Model Performance and Weight Variation during LoRa Training (Epoch’ (X-axis, 1–10) denotes
training times. ’Model Weight’ (Y-axis, 0.1–1) indicates feature importance).
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During the prediction phase, the trained Model A and Model B were integrated into
the Stable Diffusion (LDMs Algorithms) platform. The weights of Model B were adjusted as
needed. In this phase, the preprocessed canny and depth images from Gaudí’s manuscripts
were fed into the model, along with the corresponding textual prompts. The output
generated a set of AI-generated images that accurately represented Gaudí’s architectural
designs. Multiple runs were conducted to account for the unpredictable nature of denoising
outcomes, ensuring the generation of consistent and sensible predictions.

3.2. Design and Execution of the Comparative Study
3.2.1. Participant Selection and Recruitment

We involved participants aged 19 to 40 years in the study, all of whom were university
students from various academic fields. The majority of the participants (62%) were from
non-architectural fields, while the remaining 38% were studying architecture. This demo-
graphic was chosen because of their significant engagement with technology and potential
to influence the future of architecture and AI applications. We intentionally did not limit
participants to those studying architectural or design-related fields, aiming to encapsulate
diverse aesthetic preferences and emotional responses across the broader public. Regarding
gender identification, we adhered to the Sex and Gender Equity in Research (SAGER)
guidelines, which recommend against the collection of such information unless necessary
for the research, recognizing that gender is not binary and its disclosure may be sensitive
for some individuals—such as those transitioning. This decision reflects our commitment
to fostering an inclusive, respectful, and ethical research environment. This approach
helped ensure our findings are not influenced by potential gender biases and reflect a
gender-neutral assessment of emotional responses and aesthetic preferences. Our research
focuses on individual experiences and perspectives, aligning with current understanding
in research that seeks to avoid overgeneralization or assumptions based on demographic
categories, such as gender [50].

Upon a thorough screening process for completeness and consistency, we included
a total of 990 responses in our final analysis. Through this methodology, we sought to
capture a broad and comprehensive understanding of public perceptions and emotional
responses to AI-generated architectural designs.

3.2.2. Image Presentation

In our perception-focused study, we utilized a set of carefully curated images for eval-
uation purposes. This set comprised four authentic representations of Gaudí’s architectural
works and four AI-generated counterparts, which were selected based on their stylistic
resemblance to Gaudí’s signature design aesthetics. The principal aim of this selection
strategy was to ensure the validity and fairness of the subsequent comparative analysis.

For ease of reference during the evaluation process, the selected images were assigned
unique identifiers: (a) Gaudí Façade View (GFV) image 1, (b) AI Façade View (AFV) image
1, (c) Gaudí Detail View (GDV) image 2, (d) AI Detail View (ADV) image 2, (e) Gaudí
Façade View (GFV) image 3, (f) AI Façade View (AFV) image 3, (g) Gaudí Detail View
(GDV) image 4, and (h) AI Detail View (ADV) image 4 (see Figure 5).

To ensure an unbiased evaluation, the presentation of the images was randomized
and devoid of any contextual information. This strategy aimed at eliminating potential
influences of background knowledge on participants’ judgments, enabling them to focus
exclusively on the architectural aesthetics depicted in the images.

The evaluative task required participants to assess and compare Gaudí’s real archi-
tectural designs against their AI-generated counterparts. This facilitated an in-depth
examination of participants’ aesthetic preferences, as well as their perceptions of the AI’s
proficiency in emulating Gaudí’s distinctive style.
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Figure 5. (a) Gaudí Façade View (GFV) image 1. (b) AI Façade View (AFV) image 1. (c) Gaudí Detail
View (GDV) image 2. (d) AI Detail View (ADV) image 2. (e) Gaudí Façade View (GFV) image 3.
(f) AI Façade View (AFV) image 3. (g) Gaudí Detail View (GDV) image 4. (h) AI Detail View (ADV)
image 4.

3.2.3. Theoretical Framework and Methodology

The theoretical framework for this study builds upon a multidisciplinary perspective
integrating insights from the neuroscience of aesthetics, artificial intelligence (AI), and
architectural design. We employ the model proposed by Chatterjee and Vartanian [51],
which includes perceptual processing, cognitive processing, and emotional responses,
and extends it with an assessment of creativity—an essential aspect of AI’s application in
architectural design [52,53].

Our methodology involves a rating scale to measure these four dimensions in relation
to AI-generated architectural designs:

1. Perceptual Processing:Participants’ assessment of the designs’ authenticity and attrac-
tiveness [54,55].

2. Cognitive Processing: Evaluation of the designs’ harmony or cohesion [56].
3. Emotional Responses: Participants’ emotional responses to the designs [57].
4. Creativity: Participants’ assessment of the novelty and innovativeness of the de-

signs [52,53].

This framework and methodology aim to quantitatively assess the aesthetic value of
AI-generated designs, highlighting the interplay of perceptual, cognitive, emotional, and
creative aspects in appreciating architectural aesthetics.

By quantifying each dimension, we could conduct a comprehensive analysis of partici-
pants’ emotional responses, providing a more precise evaluation of the effectiveness of AI
in emulating Gaudí’s architectural style, meeting aesthetic preferences, and replicating key
design elements.

3.2.4. Data Analysis

In this study, a comprehensive assessment of the data distribution for each dimension’s
ratings was conducted through normality tests. These tests are critical for determining the
appropriate statistical analyses to apply and are widely used in the field of data science [58].
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In the context of our data, the determination of the data distribution informs the choice
of statistical tests. For dimensions with data following a normal distribution, we leveraged
parametric tests, specifically independent t-tests. These tests, commonly used in hypothesis
testing, are designed to compare mean ratings between different conditions or groups [59].
This strategy enabled us to ascertain the statistical significance of the observed differences
and to estimate the corresponding effect sizes.

However, for data that violated the assumptions of normality, non-parametric tests
were employed, such as the Mann–Whitney U test. Non-parametric tests have been shown
to be robust against deviations from normality, making them a reliable alternative for
evaluating significance and effect sizes when data deviate from normal distribution [60].

The selection of the most suitable statistical methods based on the data distribution
helped to ensure the robustness and validity of the p-values and effect sizes generated.
This, in turn, provided a solid foundation for drawing conclusions from the data analysis.

4. Results

In our thorough analysis of Gaudí and AI design evaluations across various views,
we have meticulously calculated the mean, standard deviation, and median values for
each metric (see Table 1). Our findings, outlined below, provide valuable insights into the
comparative performances and perceptions of Gaudí’s and AI’s designs.

1. Analysis of Means: The mean scores, representing the average evaluation for each
view, exhibit notable variability. Interestingly, ‘Gaudí Attractiveness’ and ‘Gaudí
Preference’ consistently score higher on average, suggesting a potential preference for
Gaudí’s designs or their perceived attractiveness. Conversely, ‘AI Authenticity’ ex-
hibits lower mean scores, indicating a less favorable perception of the AI’s authenticity
in its designs.

2. Standard Deviations Insight: The relatively high standard deviations across all cat-
egories signify a substantial diversity in scores. This considerable range of values
points towards diverse opinions among evaluators, indicating a rich spectrum of
perspectives on both Gaudí’s and AI’s designs.

3. Medians and Their Interpretation: Noteworthy is the higher median values compared
to mean values in numerous categories. This discrepancy suggests the presence
of a skew in the distribution of scores, possibly influenced by a number of lower-
end values.

4. Comparing Gaudí and AI: When we juxtapose the mean scores for Gaudí and AI, the
former tends to outperform the latter in most categories. This could be indicative of a
broader appreciation or regard for Gaudí’s work over AI’s within our sample.

5. Comparison Across Views: Furthermore, different views reveal distinct patterns in
scores. ‘Façade View 1’ and ‘Façade View 3’ garner higher mean scores in general,
while ‘Detail View 4’ lags behind. This discrepancy may suggest a more favorable
reception or better performance of facade views over detailed views.

In the following sections, we delve deeper into these intriguing findings and conduct
a comprehensive difference analysis on each of the five evaluation metrics: Authenticity,
Attractiveness, Creativity, Harmony, and Preference. This rigorous analysis aims to better
understand the nuanced differences and implications of Gaudí’s and AI’s performance
on these metrics. As we proceed with this exploration and comparative study, we will
uncover more intricate details regarding the design evaluations of Gaudí’s and AI’s work
(see Figure 6).
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Table 1. Statistical Analysis of Gaudí and AI Views.

View Metric
Gaudí

Authenticity Attractiveness Creativity Harmony Preference

Façade View 1 Mean 7.20 6.77 6.65 6.66 6.63
Standard Deviation 1.97 2.04 2.11 2.11 2.25
Median 7.50 7.05 7.05 7.00 7.10

Detail View 2 Mean 5.92 7.61 7.35 6.45 7.33
Standard Deviation 2.59 1.96 1.98 2.20 2.10
Median 6.60 8.10 7.80 6.90 7.90

Façade View 3 Mean 7.03 7.50 7.48 7.10 7.51
Standard Deviation 2.18 1.83 1.90 2.03 1.97
Median 7.50 7.80 7.80 7.50 8.00

Detail View 4 Mean 6.62 6.21 5.71 5.86 5.64
Standard Deviation 2.29 2.27 2.43 2.35 2.57
Median 7.10 6.60 6.00 6.20 5.95

View Metric
AI

Authenticity Attractiveness Creativity Harmony Preference

Façade View 1 Mean 6.01 7.24 6.66 6.20 6.55
Standard Deviation 2.33 1.92 2.17 2.24 2.39
Median 6.50 7.60 7.00 6.55 7.00

Detail View 2 Mean 6.15 7.13 6.57 6.01 6.35
Standard Deviation 2.41 2.05 2.26 2.33 2.45
Median 6.75 7.60 7.00 6.40 7.00

Façade View 3 Mean 5.78 6.96 6.55 6.27 6.55
Standard Deviation 2.48 2.07 2.32 2.33 2.44
Median 6.40 7.40 7.00 6.70 7.00

Detail View 4 Mean 6.22 6.50 5.80 5.85 5.74
Standard Deviation 2.34 2.21 2.43 2.42 2.63
Median 6.80 7.00 6.20 6.30 6.20

Figure 6. (a) Gaudí Full View (GFV) image 1 vs. AI Full View (AFV) image 1: Comparative Analysis of
Five Metrics. (b) Gaudí Detail View (GDV) image 2 vs. AI Detail View (ADV) image 2: Comparative
Analysis of Five Metrics. (c) Gaudí Full View (GFV) image 3 vs. AI Full View (AFV) image 3:
Comparative Analysis of Five Metrics. (d) Gaudí Detail View (GDV) image 4 vs. AI Detail View
(ADV) image 4: Comparative Analysis of Five Metrics.
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This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

4.1. Authenticity

The analysis of Authenticity scores for various Gaudí and AI design views reveals
statistically significant differences (see Figure 7). The disparity between Gaudí’s and AI’s
Façade View 1 is statistically significant (p-value: 5.12 × 10−33) with a negligible effect size
(3.61 × 10−4), implying that while the difference is statistically meaningful, its practical
impact is minimal. A similar pattern is observed in Façade View 3 (p-value: 3.66 × 10−31,
effect size: 3.82 × 10−4) and Detail View 4 (p-value: 3.64 × 10−5, effect size: 1.77 × 10−4).
In contrast, Detail View 2 exhibits no significant difference (p-value: 0.082, effect size:
−6.08 × 10−5). Therefore, despite statistical differences in Authenticity scores between
Gaudí’s and AI’s designs across most views, these differences are not practically substantial.

Figure 7. Comparative Analysis of Authenticity: Violin Plot and Box Plot for Gaudí vs. AI Images.
***, p Value < 0.001; ns, not significant.

4.2. Attractiveness

In examining the Attractiveness metric across various views, significant differences
emerge in certain cases (see Figure 8). The comparison between Gaudí’s and AI’s Façade
View 1 shows no significant difference (p-value: 0.835, effect size: −4.44 × 10−5), implying
near-equivalent attractiveness ratings for both designs. On the contrary, Detail View 2
and Façade View 3 reveal statistically significant differences (p-values: 1.01 × 10−16 and
5.32 × 10−20, respectively) with small effect sizes (2.56 × 10−4 and 2.79 × 10−4, respectively),
indicating that while these differences are statistically valid, their real-world influence might
be minor. Finally, in Detail View 4, no substantial difference in attractiveness is detected
(p-value: 0.362, effect size: 3.10 × 10−6). Thus, for Attractiveness, statistically significant
differences between Gaudí’s and AI’s designs only occur in certain views and their practical
implications remain marginal.
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Figure 8. Comparative Analysis of Attractiveness: Violin Plot and Box Plot for Gaudí vs. AI Images.
***, p Value < 0.001; ns, not significant.

4.3. Creativity

For the Creativity metric, significant differences are observed in all views when
comparing Gaudí’s and AI’s designs (see Figure 9). The Gaudí and AI Façade View 1
and Detail View 4 demonstrate a significant difference (p-values: 4.97 × 10−8 and 0.0034,
respectively), with negative effect sizes (−2.25 × 10−4 and −9.81 × 10−5, respectively),
suggesting that the AI’s design was rated less creative in these views. Contrastingly,
in Detail View 2 and Façade View 3, the data reveals a significant difference (p-values:
1.79 × 10−9 and 5.72 × 10−9, respectively), with positive effect sizes (2.40 × 10−4 and
2.15 × 10−4, respectively), implying that the evaluators rated Gaudí’s designs as more
creative. In summary, for Creativity, there are statistically significant differences across all
views, with the degree of impact varying based on the specific view.

Figure 9. Comparative Analysis of Creativity: Violin Plot and Box Plot for Gaudí vs. AI Images. **, p
Value < 0.01; ***, p Value < 0.001.
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4.4. Harmony

For the Harmony metric, the analysis indicates significant differences across all views,
with varying degrees of impact when comparing Gaudí’s designs and those generated by
the AI (see Figure 10). The Façade View 1, Detail View 2, and Façade View 3 demonstrate
significant differences between Gaudí and AI, with p-values of 2.46 × 10−6, 2.44 × 10−5,
and 2.47 × 10−16, respectively. The effect sizes in these cases are 1.27 × 10−4, 1.36 × 10−4,
and 2.55 × 10−4, respectively, suggesting that Gaudí’s designs were rated more harmonious
in these views. In contrast, Detail View 4 shows no significant difference (p-value: 0.8972)
with a small effect size (4.13 × 10−5), indicating that the evaluators did not perceive a
substantial difference in terms of harmony between Gaudí’s and the AI’s design for this
view. Therefore, in terms of Harmony, there are significant differences across the majority
of views, but the impact depends on the specific view.

Figure 10. Comparative Analysis of Harmony: Violin Plot and Box Plot for Gaudí vs. AI Images. ***,
p Value < 0.001; ns, not significant.

4.5. Preference

The Preference metric exhibits varied results across the different views (see Figure 11).
For Façade View 1, no significant difference was discernible between Gaudí’s and AI’s
designs (p-value: 0.7467) with an almost negligible effect size (1.14 × 10−5), suggesting
a similar preference for both. Conversely, Detail View 2 and Façade View 3 show highly
significant differences with p-values of 1.63 × 10−21 and 3.56 × 10−19, respectively. Their
effect sizes are 3.14 × 10−4 and 2.92 × 10−4, respectively, indicating a stronger preference for
Gaudí’s designs. Detail View 4, however, does not exhibit a significant difference (p-value:
0.3416), with a small negative effect size (−3.51 × 10−5), suggesting an approximately equal
preference for both Gaudí’s and AI’s designs in this view. Thus, in terms of Preference,
results vary depending on the specific view, with Gaudí’s designs generally favored in
Detail View 2 and Façade View 3.
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Figure 11. Comparative Analysis of Preference: Violin Plot and Box Plot for Gaudí vs. AI Images. ***,
p Value < 0.001; ns, not significant.

5. Discussion

The in-depth analysis of the evaluation metrics in this study provides a complex
understanding of the comparative effectiveness of Gaudí’s designs and AI-generated
designs. The results contribute significantly to existing research, revealing implications for
architectural education and AI’s design capabilities [38].

Gaudí’s designs exhibited superior scores in Authenticity and Harmony across various
images. This outcome aligns with the existing literature that emphasizes the importance
of a distinctive stylistic signature and the coherence of an artistic vision in architectural
works [61]. This bolsters the argument for a stronger focus on cultivating personal design
languages in architectural education, and also illustrates the challenges AI systems face in
replicating these complex, human-centric elements of design [62].

Interestingly, AI-generated designs demonstrated competitive performance in At-
tractiveness, Creativity, and Preference for certain images. This echoes recent research
underscoring AI’s potential for aesthetic and creative applications. However, the con-
siderable standard deviations in evaluations highlight the subjectivity inherent in design
evaluations and the diversity in individual aesthetic preferences. Understanding what
underpins these individual differences is an intriguing avenue for future research and can
inform efforts to personalize AI design algorithms.

This study underscores the promising potential of AI in the architectural domain,
serving both as an educational tool and a creative design tool. In an educational context,
AI can present a unique avenue for visualizing incomplete architectural masterpieces,
thereby enhancing students’ understanding of architectural design principles and history.
The system’s ability to generate a variety of designs and styles could stimulate students’
exploration of diverse architectural concepts, fostering creativity, critical thinking, and
innovative problem-solving.

Despite these potential benefits, we recognize that our study did not directly test
these AI tools within an educational setting. Furthermore, we acknowledge the potential
limitations associated with focusing primarily on visual aesthetics in our study due to the
nature of the AI system’s designs and Gaudí’s works being presented in a visual medium.
This focus, while essential for initial impressions and broad aesthetic appeal, may overlook
other sensory experiences integral to a comprehensive architectural experience. Future
studies could consider incorporating additional sensory modalities for a more holistic un-
derstanding. Therefore, we advocate for further research to apply these tools in educational
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environments and rigorously assess their impacts on student learning and engagement.
Our propositions are based on the capabilities of the AI system, and we envision that the
integration of AI in architectural education can open up new, exciting avenues for teaching
and learning. Moreover, acknowledging the limitations in our study is essential. One
limitation is the use of the Likert scale survey, which measures attitudes explicitly. This
method may not fully capture implicit biases or influences, such as cultural influences on
emotional evaluation. As the literature suggests, implicit biases can significantly influ-
ence the evaluation of aesthetic and creative outputs, often subtly shaping the results [63].
To mitigate such influences, researchers could consider adopting indirect measurement
methods such as the Implicit Association Test (IAT), which has been found effective in
identifying implicit biases in various fields [64].

The risk of reductionism is indeed present if there is a lack of investigation into the so-
cial class cultural influence in emotional evaluation since culture teaches us how to feel. This
shortcoming limits our understanding of whether this method would produce consistent
results across diverse audiences. Future research should consider incorporating cultural
context into the evaluation process, as has been suggested by cultural sociologists [65].

Moreover, our study involved participants who were university students, but not
specifically students of architecture. This limitation may affect the depth and specificity of
responses, particularly in aspects related to architectural understanding and appreciation.
However, the inclusion of a more diverse student population can provide a broader per-
spective on the aesthetic appreciation of architectural designs. Nonetheless, future research
could benefit from including both architecture students and non-students to gain a more
comprehensive understanding of AI’s potential in architectural design and education.

6. Conclusions

In conclusion, this study highlights the significant potential of AI as a design tool in the
field of architectural design. AI exhibits competitive performance in terms of Attractiveness
and Creativity and in some instances surpasses human designs in overall Preference.
Nevertheless, our study also underlines the existing limitations of AI in replicating the
unique attributes of human designs, specifically in terms of Authenticity and Harmony.

The results of our study underscore the subjectivity inherent in design evaluations,
suggesting that individual aesthetic preferences play a significant role in the perception of
designs. This stresses the need for a more personalized approach in the development and
utilization of AI design tools to cater to diverse aesthetic tastes.

Future research, therefore, should focus on exploring individual differences in percep-
tion and on adapting AI design algorithms accordingly. Through this approach, AI can
truly become a beneficial tool in architectural design, capable of generating diverse and
innovative design solutions. Despite its current limitations, the potential for AI in the field
of architectural design is substantial and its exploration is worthwhile.
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