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Abstract: Synchronization is a collective behaviour in a complex dynamical network by which the
trajectories of all its agents converge to a common state due to the inherent coupling between them
plus, in some cases, the existence of external inputs. Due to obvious difficulty reasons, networks
of chaotic systems have often been taken as benchmark examples where to apply synchronization
techniques. In turn, complex-valued dynamical networks are gaining research interest because of
the variety of physical magnitudes that allow a complex-variable representation. In this article, syn-
chronization in complex-valued chaotic systems is firstly induced by feedback and adaptive control
techniques, and then, a complex-valued sliding mode control strategy is tested for the same pur-
pose. Numerical validations carried out using Matlab show that the complex sliding mode controller
outperforms both the feedback and the adaptive controllers.

I. INTRODUCTION

Networks of coupled dynamical systems have arisen
general interest by their ability to represent large-scale
and complex physical systems. In these systems the
nodes denote the individual dynamical system and the
edges denote the several interaction between them. An
interesting feature of these systems is the emergence of
collective behaviours, such as synchronization. This is
particularly relevant in chaotic systems, as they defy syn-
chronization.

In order to induce this outcome many control schemes
can be used, such as feedback control, adaptive control,
intermittent control, pinning control...

On the other hand, many physical problems require the
implementation of complex variables such as Lorenz sys-
tems or rotating fluids. Therefore, many differences and
aspects about stability and dynamical analysis should be
taken into account.

Driven by the above discussions, this paper considers
the synchronization of network-coupled complex-variable
chaotic systems with complex couplings. Based on the
Lyapunov stability theory, sufficient conditions for syn-
chronization of the network via feedback control are de-
rived in [1]. Furthermore, adaptive technique and sliding
mode control (also with hysteresis and boundary layer)
are designed for more practical applications.

This paper is organized as follows. In Section II a
brief description of the target system and the control
techniques is provided. Section III gathers the numer-
ical simulations. A comparison of the performance of the
different control approaches is carried out in Section IV.
Finally, conclusions are drawn in Section V.
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II. MATHEMATICAL ASPECTS

The complex-variable dynamical network with com-
plex coupling can be described by the following equa-
tions:

ẏk(t) = g (yk(t), zk(t)) + ε

N∑
l=1

cklΓ1yl(t) (1a)

żk(t) = h (yk(t), zk(t)) + ε

N∑
l=1

dklΓ2zl(t), (1b)

where ε > 0 is the coupling strength, Γ1 =
diag(γ1

1 , ..., γ
m
1 ) and Γ2 = diag(γ1

2 , ..., γ
n
2 ) are the inner

coupling matrices, and Cckl and Ddkl are the zero-row-
sum outer coupling matrices.
Let xk(t) = (yTk (t), z

T
k (t))

T and f(xk(t)) =
(gT (yk, zk), h

T (yk, zk))
T , then the controlled network can

be written as

ẋk(t) =f (xk(t)) + ε

N∑
l=1

cklΓ̃1xl(t)+

+ ε

N∑
l=1

dklΓ̃2xl(t) + uk(t), (2)

where Γ̃1 = diag(γ1
1 , . . . , γ

m
1︸ ︷︷ ︸

m

, 0, . . . , 0︸ ︷︷ ︸
n

) and Γ̃2 =

diag(0, . . . , 0︸ ︷︷ ︸
m

, γ1
2 , . . . , γ

n
2︸ ︷︷ ︸

n

) are now the inner coupling ma-

trices.
Let the error be: ek(t) = xk(t)− sk(t), with s(t) being

a solution of an isolated node satisfying ṡ(t) = f(s(t)).
Then error dynamics is:

ėk(t) =f (xk(t))− f (sk(t)) + ε

N∑
l=1

cklΓ̃1el(t)+

+ ε

N∑
l=1

dklΓ̃2el(t) + uk(t). (3)
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Therefore, synchronization is achieved if
limt→∞ ||ek(t)|| = 0. The following controllers will
be tested:

1. A linear feedback controller [1]:

uk(t) = −εθkΓ̃ek(t), k = 1, 2, . . . , N, (4)

where Γ̃ = Γ̃1 + Γ̃2, θk > 0 are constants.

2. An adaptive controller [1]:

uk(t) = −εθkΓ̃ek(t),

θ̇k(t) = ηke
T
k (t)Γ̃

sek(t), k = 1, 2, . . . , N,
(5)

where ηk > 0 are the adaptive gains and Γ̃s =

Γ̃T + Γ̃.

3. A sliding mode controller [2]:

uk(t) = −κsign(ek(t)) = −κ
ek(t)

||ek(t)||
, κ ∈ C. (6)

Sufficient conditions to guarantee synchronization are de-
rived in [1] for the linear and adaptive controllers, and
follow straightforwardly from [2] for the sliding mode con-
troller.

III. NUMERICAL SIMULATIONS

Simulations are conducted on the complex-variable
Chen system of the form (1): ẏk1

= µ (yk2
− yk1

)
ẏk2

= (ω − µ)yk1
− yk1

zk + ωyk2

żk = (ȳk1
yk2

+ yk1
ȳk2

) /2− νzk,
(7)

where yk1
and yk2

are complex variables and zk is real.
In order to show its chaotic behavior one chooses µ = 27,
ν = 1, ω = 23, and yk1(0) = 2 + j, yk2(0) = 2 + j and
zk(0) = 2 + j as initial conditions.

The chaotic attractor behaviour of the network is seen
in Fig. 1, while orbits are portrayed in Fig. 2.

Once the individual dynamics is shown, different con-
trol methods are used in the interest of achieving synchro-
nization of a network with five coupled complex-variable
Chen systems (7).

The complex inner coupling matrices in (2),(3) are

Γ̃1 =diag(1 + j, 1 − j, 0) and Γ̃2 =diag(0, 0, 1), and the
outer couplings, also complex, are the following:

C =


−4− 5j 3 + 3j 0 1 + 2j 0
1− 3j −2− j 1 + 4j 0 0

0 3 + 4j −3 + j −2j −3j
2j 0 2− 2j −6− 3j 4 + 3j
0 0 1 + 3j 1− j −2− 2j



FIG. 1. Chaotic attractor of the complex-variable Chen sys-
tem.

FIG. 2. Orbits of z(t) and modules ρyj (t), j=1,2.

D =


−5 3 0 2 0
−3 −1 4 0 0
0 4 1 −2 −3
2 0 −2 −3 3
0 0 3 −1 −2

 .

Moreover, the coupling strength is chosen as ϵ = 2, and
the initial conditions as xk(0) = (k+ kj, k− kj, k)T , k =
1, . . . , 5.
The performance of the linear feedback controller (4)

with θk = 11 is illustrated in Fig. 3, while that of the
adaptive controller (5) with νk = 0.01 and θk(0) = 11 is
portrayed in Fig. 4. In both cases the errors tend to 0
and the controllers are stabilized.
In turn, it can be clearly seen in Fig. 5 that synchro-

nization is also achieved with the sliding mode controller

(6) with gain κ = 398e
iπ
20 .

It is well known that practical implementations of slid-
ing mode controllers do not allow an infinite switching
frequency of the control signal. Instead, regularization
techniques have to be applied in a neighborhood of the
switching surface to make it feasible. In this paper we
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FIG. 3. Error dynamics using linear feedback control.

FIG. 4. Error dynamics using adaptive controllers.

select, and compare, hysteric and boundary layer imple-
mentations [2]. In both cases, which also use the con-
trol gain of the ideal implementation, the chattering phe-
nomenon is observed.

Sliding mode control-based hysteric controllers are im-
plemented as:

u =

{
−κ e

|ϵ| if |e| > ϵh
uk−1 if |e| ≤ ϵh,

(8)

where ϵh = 0.1 has been chosen. The results are in Fig.
6.

The amplitude of the chattering depends on ϵh and on
|κ| if the integration step is smaller than ϵh, which is the
case.

Instead, boundary layer implementations use:

u =

{ −κ e
|e| if |e| > ϵb

−κ e
ϵb

if |e| ≤ ϵb,
(9)

with ϵh = 0.1. The results are now in Fig. 7. Again,
the amplitude of the chattering in this case depends on

FIG. 5. Error dynamics using sliding mode control.

FIG. 6. Error dynamics using sliding mode control with a
hysteretic implementation.

ϵb and on |κ| if the integration step is smaller than ϵb,
which is the case.

IV. COMPARISON OF THE PERFORMANCE

In order to conduct a fair comparison between the dif-
ferent control systems, they have to be tested on a level
playing field. The feature that has been equalised in
this case is the ∞-norm of the control input (||u||∞(t) =
maxi|ui(t)|) around 398, as it can be seen in Fig. 8. In
order to achieve this condition, several parameters such
as gains and boundaries have been adjusted.
Under these conditions, the average error of each net-

work has been computed and the results are seen in Fig.
9. One can easily see how linear and adaptive controllers
have a similar behaviour achieving synchronization in 5
tenths of a second. In contrast, the controllers related to
sliding mode control achieve it much earlier, in less than
one tenth of a second.
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FIG. 7. Error dynamics using sliding mode control with a
boundary layer implementation.

FIG. 8. Control strength of the different controllers.

These results could be foreseen, as the figures shown in
the numerical simulations section have been carried with
the parameters we have adjusted to equalize ||u||∞.

V. CONCLUSION

Different control approaches have been discussed in or-
der to achieve synchronization in complex valued chaotic
system. It has been showed that through all of them syn-
chronization can be achieved, however, there are better
approaches than others.
By imposing equal initial control strength, it has been

concluded that the best system, in terms of fastest set-
tling time, is the complex sliding control. This control
technique, in terms of implementation, may be achieved
by means of hysteresis or boundary layer control, which
offer a similar response.

FIG. 9. Average error using the same initial control strength.
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