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In semiarid regions, vegetated ecosystems can display abrupt and unexpected changes,
i.e., transitions to different states, due to drifting or time-varying parameters, with
severe consequences for the ecosystem and the communities depending on it. Despite
intensive research, the early identification of an approaching critical point from
observations is still an open challenge. Many data analysis techniques have been
proposed, but their performance depends on the system and on the characteristics of the
observed data (the resolution, the level of noise, the existence of unobserved variables,
etc.). Here, we propose an entropy-based approach to identify an upcoming transition
in spatiotemporal data. We apply this approach to observational vegetation data and
simulations from two models of vegetation dynamics to infer the arrival of an abrupt
shift to an arid state. We show that the permutation entropy (PE) computed from
the probabilities of two-dimensional ordinal patterns may provide an early warning
indicator of an approaching tipping point, as it may display a maximum (or minimum)
before decreasing (or increasing) as the transition approaches. Like other spatial early
warning indicators, the spatial permutation entropy does not need a time series of the
system dynamics, and it is suited for spatially extended systems evolving on long time
scales, like vegetation plots. We quantify its performance and show that, depending
on the system and data, the performance can be better, similar or worse than the
spatial correlation. Hence, we propose the spatial PE as an additional indicator to try
to anticipate regime shifts in vegetated ecosystems.

tipping-points | permutation-entropy | vegetation dynamics

Ecological systems are known to display abrupt transitions between different states.
Examples of dangerous transitions include population extinctions (1, 2), plankton
blooms (3), algae blooms (4), and desertification (5–7), among others. In particular,
due to their high ecological and social impact, tipping points in semiarid ecosystems,
such as forest/savanna transitions and desertification, have gained much attention in the
past years, and a lot of effort has been devoted to finding reliable early warning indicators
for such abrupt shifts.

From a dynamical systems perspective, a transition to a different state is often modeled
as a bifurcation that destroys a stable solution (e.g., a fixed point, a limit cycle, or an
attractor) or changes its stability and may generate new solutions. Dynamical systems
close to a bifurcation exhibit what is known as “critical slowing down” (CSD) (8): as
the system approaches the tipping point, its dynamics become slower, and the relaxation
time to equilibrium increases.

Several indicators have been designed to detect CSD, such as significant changes in
variance or autocorrelation (9, 10), which found successful application in several real-
world systems (11, 12). However, they may fail to predict transitions early enough to
reverse them or mitigate their effects (13, 14). Additionally, CSD is often measured
by employing time series analysis. Time series acquisition can be problematic for
those systems where the characteristic timescale is particularly long, such as vegetation
dynamics. Hence, there have been several attempts to link the CSD to spatial properties
that can be easier to measure (15–18), for example, through satellite imaging or drone
surveys. An example is the spatial correlation, which found application for detecting CSD
in simulated vegetation plots close to an abrupt transition to desertification (15). Other
examples are the spatial variance (15, 19), the spatial skewness (15), and variations in
the two dimensional (2D) Fourier spectrum (17). Nevertheless, studies involving spatial
indicators have mainly employed synthetic datasets, with only few exceptions (5, 20).

In this work, we use two observational vegetation datasets recorded in different
geographical regions with different resolutions and simulations of two vegetation
dynamics models to test a possible indicator of an approaching transition. We use the
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permutation entropy (PE) (21) to characterize the statistical
properties of the spatial fields composing our datasets and link
them to the presence of an upcoming tipping point. Although
PE is a well-known tool for time series characterization, used
in fields as diverse as photonics, biomedicine, sports science,
and climatology (22), it has not yet been tested for the analysis
of variations of a spatial field when a regime transition is
approaching. The PE computed from spatial ordinal patterns
is a measure of the disorder of the spatial field, and we show
that it may capture relevant changes as a transition approaches.
We quantify the performance of the spatial PE in relation to
the spatial correlation, that is a classical indicator, and find that,
depending on the dataset analyzed, the PE indicator outperforms
or underperforms the classical one.

Data

High-Resolution Vegetation Data. High-resolution vegetation
data from ref. 23 correspond to ground-truth vegetation transects

for the Serengeti–Mara ecosystem in northern Tanzania and
southern Kenya. The transects have a resolution of 30 m × 30
m and have been binarized in ref. 20 assigning to each cell
only two classes, woodland or grassland, and finally paired with
mean annual rainfall data. The datasets are available through the
original articles (20, 23).

In this work, we use transect 5 (Fig. 1) because it presents a
sharp transition between the two regions when varying the rainfall
level. It also has a good density of points along the upper branch,
which is of particular interest for understanding the transition
from forest to savanna states (20). The transect covers an area
of 7.53 km × 122.46 km corresponding to 251 × 4,082 cells.
Zooming on the transition region reveals a small hysteresis loop
(Fig. 1).

Low-Resolution Satellite Data. High-resolution ground truth
data are extremely valuable but difficult to collect. Remote sensing
offers a convenient alternative, with the drawbacks of a lower
resolution and elaborate postprocessing and calibration.

A

B

C

D

Fig. 1. (A) Serengeti–Mara Transect 5. Dark green represents woodland, while light green stands for grassland. (B) Average tree cover computed using a sliding
7.53-km-wide window and a 2.49-km step. (C) Mean annual rainfall along the transect. (D) Average tree coverage vs. mean annual rainfall. In the inset, a small
hysteresis cycle is visible in the transition region.
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For this study, we use satellite tree cover data from the
Moderate Resolution Imaging Spectroradiometer (MODIS) at
250-m resolution (MOD44B) (24). Contrarily to the high-
resolution dataset, here, each pixel represents a continuous
variable: the proportion of tree coverage in a 250-m ×

250-m patch. The transects have 200 × 4, 800 pixels; pixels

occupied by rivers or water bodies have been disregarded in the
calculations.

We combined the vegetation data with data from the Tropical
Rainfall Measuring Mission (TRMM). Specifically, we used
TRMM 3B43 mean annual rainfall data at 0.25-degree resolution
(25), which we linearly interpolated at the vegetation grid level

A

B

C

Fig. 2. (A) Locations of the six satellite-derived transects analyzed in this study. (B) Transect 1 tree cover as shades of green. (C) Average tree cover dependency
on rainfall for the six transects. Abrupt transitions are visible for different rainfall thresholds.

PNAS 2023 Vol. 120 No. 1 e2215667120 https://doi.org/10.1073/pnas.2215667120 3 of 8

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 1
76

.8
5.

40
.1

45
 o

n 
Se

pt
em

be
r 

22
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

17
6.

85
.4

0.
14

5.



to assign, to each vegetation pixel, a value of mean annual
precipitation.

Regions of tree cover bistability in this dataset have been
known for a long time, and they have been characterized and
analyzed in several works (see e.g., refs. 26–28). We focus
on regions of tropical forest–grassland transitions and analyze
six transects in Central Africa and South America that show
bistability and a relatively abrupt transition from one branch to
the other (Fig. 2).

Models. Vegetation models are usually of the type of reaction–
diffusion models or cellular automata (29, 30). Given that the
empirical data we are considering is formed either by continuous
or discrete pixel values, we studied one model of each category.
Specifically, we simulated the local positive feedback (LPF) model
describing the interaction between biomass and soil water in a
2D region (15, 31) and the local facilitation cellular automata
(LFCA) model (32). The models’ equations and parameters
employed are presented in SI Appendix.

In the LPF model, a reaction–diffusion system presents
bistability between an arid state (almost null biomass) and a
vegetated branch. A transcritical bifurcation and a saddle-node
delimitate the region of coexistence, the latter causing an abrupt
collapse from the vegetated branch to the arid state as the rainfall
decreases under a certain threshold.

The LFCA model, instead, describes the evolution of vege-
tation patches as a function of a wetness parameter, denoted
as b in ref. 32. Each patch can either be occupied by trees or
bare soil, and the probability of tree occupancy depends on
different parameters, among which there is the mean state of
the neighboring cells, which provides a form of local interaction.
The model predicts a progressive degradation of the patches as the
wetness parameter decreases, up to the point in which vegetation
cannot self-sustain, and an abrupt transition to the arid state
occurs (5).

Methodology

PE is a popular complexity measure for time series analy-
sis (21, 22), as it is very simple to implement and robust to
noise. It has also been adapted to the analysis of 2D images
by defining 2D ordinal patterns (2D-OPs) (33), a technique

that is useful to characterize the complexity of simulated cardiac
arrhythmia data (34) as well as statistical properties of textures in
images (35).

Formally, spatial PE is defined as the normalized Shannon
entropy:

H = −
1

logM

M∑
i

pi log pi, [1]

where pi are the probabilities of the 2D-OPs, and M is the
number of possible 2D-OPs. In the case of a continuous field, if
the 2D-OPs are calculated with rectangles of X×Y pixels, then
we have M = (XY )! In the case of binary fields, instead, we
have M = 2XY . To examine properties at different spatial scales,
one can use a lag and, in this case, the 2D-OPs are formed by
nonneighboring data points (SI Appendix for further details).

The results presented in this study have been obtained using
2D-OPs formed with 2× 2 neighboring data points. The effects
of a lag and different choices for X and Y are discussed in SI
Appendix.

As a reference, we compare the variation of the spatial PE with
that of the spatial correlation. For a bidimensional spatial field uij,
we calculated the spatial correlation as Moran’s I coefficient (36):

I =
N∑

i
∑

j wij

∑
i
∑

j wij(ui − ū)(uj − ū)∑
i(ui − ū)2 , [2]

where the coefficients wij are 1 if the points i and j are first
neighbors and 0 otherwise, ū is the average value of uij, and N is
the total number of points.

Results

Fig. 3 displays the results of the analysis of the high-resolution
vegetation data. It can be seen that the transition from the lower
to the upper vegetation branch is characterized by a monotonous
rise of the spatial PE (empty red symbols). The desertification
transition (from the upper vegetation branch to the lower arid
branch, filled red symbols) is also characterized by the increase of
the spatial PE, although the increase is not as pronounced as in
the transition from the lower to the upper branch.

A

B

Fig. 3. Analysis of high-resolution vegetation data. (A) Average tree cover as a function of the mean annual rainfall; solid and empty symbols are used to
differentiate the Upper and Lower branches. (B) Spatial permutation entropy (Eq. 1, red) and spatial correlation (Eq. 2, blue) of the tree cover field as a function
of the mean annual rainfall. These quantities have been computed using a 7.5-km-wide window and a 1.23-km step.
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Moran’s I coefficient (shown with blue symbols) also provides
a good early warning indicator of the transitions as in both
branches, it rises when approaching the transition, as was already
reported in ref. 20. In contrast to the spatial PE, the variation of
the spatial correlation is more pronounced in the upper branch
than in the lower one.

Therefore, the spatial PE and the spatial correlation provide
complementary early indications of the approaching transition,
as they both grow when the system moves toward the vegetation
cover tipping point.

Fig. 4 displays the results of the analysis of transect 1 of the low-
resolution vegetation data (the results obtained from the other
transects are presented in SI Appendix). The average tree cover
shows two clearly different states that overlap in a bistability
region, where the rainfall ranges from 2,900 to 3,100 mm/y.
Starting in the upper branch, when the mean annual rainfall
decreases, both entropy and spatial correlation decrease, with the
entropy rising back right before the transition. The rise of the
entropy before the transition seems to be a robust indicator of
the approaching tipping point as it occurs in the six transects
studied. In contrast, the increase in spatial correlation before the
transition is observed in 4 of 6 transects. (No increase is observed
in transects 1 and 5.)

Interestingly, whenever the entropy reaches a minimum before
the transition, this minimum is located at or near the beginning
of the bistability region. We observe this in five of the six transects
analyzed, with the exception of transect 2, in which no minimum
is observed.

In the transition from the low to the high branch (i.e., from
the arid to the vegetated state), the behavior of the two indicators
is inconsistent across the different transects. In particular, the
spatial PE is almost constant in transects 1, 5, and 6; grows in
transects 2 and 3; and decreases in transect 4, while the spatial
correlation increases in transect 6; decreases in transects 2, 3, and
4; and remains constant in transects 1 and 6.

Figs. 5 and 6 display the results obtained from the simulated
data, with the LPF model and the LFCA model, respectively. In
both cases, the entropy decreases before the transition to the
desert state, while the spatial correlation increases. The only
notable difference between the results obtained with the two
models is seen in the behavior of the entropy far from the
transition. In the case of the cellular automata, the entropy

decreases with increasing wetness. Indeed, if the wetness is high
enough, the simulated area will be filled with vegetated patches.
Once the trees occupy the whole space, the entropy is zero.
Hence, for high-enough wetness (far from the transition) the
entropy is anticorrelated with the average tree cover, with a peak
at 50% average tree cover. On the other side of the transition, if
the wetness is low enough, the average tree cover tends to zero,
as also the entropy.

Discussion

We have found, both in real and simulated vegetation data, that
the behavior of the spatial permutation entropy as a function of
the stress parameter is quite diverse. Taken together, our results
show that the entropy changes when approaching a bifurcation,
but the variation depends on the particular system under
analysis.

In the simulated data, the variation of the entropy can be
understood in terms of processes whose influence on the fields’
spatial structure is known. In the LPF model, the spatial structure
is determined by only two processes: the uncorrelated noise,
which will produce a high spatial entropy, and the diffusion,
which induces a first-neighbors coupling that reduces the entropy.
In relative terms, the coupling will be strong when the system is
close to the transition point. In Fig. 5B, we indeed observe this
effect: as the rainfall parameter decreases, the entropy diminishes,
even though its variation is small in absolute terms. This suggests
that the entropy may be able to detect the increasing importance
of spatial coupling, in spite of the fact that the field dynamics
remain dominated by noisy fluctuations. This is consistent with
the variation of the spatial correlation: as reported in refs.
15, 16, 23, 37, and 38, the spatial correlation increases as the
transition approaches and constitutes the classic spatial indicator
of critical slowing down. However, at least for the simulated
data analyzed here, the variation of both indicators is rather
modest.

In the LFCA model, similar findings can be interpreted as
follows: as the state of each cell is either 1 (occupied by a tree)
or 0 (unoccupied), the fully vegetated state and the desert state
will both have zero entropy, as only one spatial ordinal pattern
will be present.Therefore, before the transition, the entropy will
likely go through one or more maximum values, as in Fig. 6B.

A

B

Fig. 4. Analysis of satellite vegetation data (transect 1). (A) Average tree cover as a function of the mean annual rainfall; solid and empty symbols are used to
differentiate the Upper and Lower branches. (B) Spatial entropy (red) and spatial correlation (blue) of the tree cover field. These quantities have been computed
using a 50-km-wide window and a 12.5-km step.
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A

B

Fig. 5. Analysis of vegetation data simulated with the LPF model. (A) Average biomass as a function of the rainfall parameter, R. (B) Spatial PE (red) and spatial
correlation (blue).

The moment when the entropy starts decreasing can be used
as a precursor of the upcoming transition. A nonmonotonic
indicator like the spatial PE has pros and cons when compared to
an indicator as the spatial correlation, that varies monotonically
when approaching the transition: on the one hand, the inflection
point provides information of the closeness to the tipping point,
but on the other hand, the existence of more than one extreme
point will lead to false alarms. In contrast, an indicator that
varies monotonically when approaching the transition does not
provide any false alarm, but it does not provide information
regarding the closeness to the tipping point.

For the two models and for the transects, we estimated the
power of the spatial PE and of the spatial correlation following
(39) and found that the spatial PE outperforms the spatial
correlation for the LFCA model and the vegetation transects,
while it underperforms for the LPF model (the comparison is
presented in SI Appendix).

In the real data, the behavior of the spatial entropy and the
spatial correlation differs from that found in simulated data and is
harder to interpret. In the case of the high-resolution vegetation
transect, as we see in Fig. 3, both the entropy and the spatial
correlation increase when approaching the transition, and this
occurs in both transition directions. This is in contrast with

the LFCA model, which was proposed to explain the binary
distribution of tree/grassland patches (32). Also, the values of
entropy and spatial correlation are quite different in the real
data and in the LFCA model simulations. In particular, the
real data have lower entropy and higher correlation, indicating
a higher spatial coherence. We speculate that this might be
because the LFCA model, despite explaining relevant properties
of the data—such as the rising spatial correlation approaching
the transition from vegetated to arid state—does not fully
reproduce the statistical spatial structure of the real tree cover
distribution.

In the satellite transect data, the behavior of the entropy and
the spatial correlation is different from those found in the high-
resolution transect data. When moving toward the transition
along the vegetated branch, the entropy decreases, and the spatial
correlation also decreases monotonically, albeit irregularly (Fig.
4), which is opposite to the behavior expected before a tipping
point.

We remark that tree cover is determined not only by the
average rainfall but also by a multiplicity of other factors, such as
soil type, altitude, and terrain slope, among others. If the decrease
of the tree cover is governed by the variation of a different,
unobserved parameter, it is possible that reordering the indicators

A

B

Fig. 6. Analysis of vegetation data simulated with the LFCA model. (A) Average tree cover as a function of the wetness parameter. The vegetation collapses
into a desert state under a critical wetness level. (B) Spatial PE and spatial correlation.
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according to this hidden variable will show the expected trend,
i.e., the rise of spatial correlation.

We note that in all the low-resolution transects analyzed, the
spatial entropy displays a smoother behavior than the spatial
correlation, which is convenient because a smoother behavior
can be expected to be less prone to false alarms once an early
warning criterion is established.

Another interesting feature of the spatial entropy trend seen
in the low-resolution vegetation data is that in the transition
from the vegetated to the arid state, the minimum seems to
coincide with the start of the bistability region, and this occurs
in the five transects where there the entropy reaches a minimum
value before the transition. This is a remarkable feature because
it suggests that the spatial entropy detects a global change in
the system’s phase space (the appearance of a different state).
However, further studies are needed to understand the physical
mechanisms underlying this feature.

We are currently working to develop a model of tree cover
bistability to more accurately reproduce the transect data we have
analyzed to investigate the physical mechanisms that originate
the minimum of the entropy. For example, some fire feedback
models can produce flat savanna/forest branches separate by an
abrupt transition (40), which seem well suited to reproduce phase
diagrams as Fig. 4A.

Ecosystems can be expected to exhibit quite different spatial
organizations when examined at different scales. In the high-
resolution dataset, spanning roughly 100 km, we found that the
system entropy is rather small, rising only in the transition zone.
On the contrary, in the six low-resolution transects analyzed, the
entropy of the arid branch is high, almost 1, while in the high-
resolution data it is lower. Taken together, our results suggest
that vegetated areas have, at a small spatial scale, a spatially
organized tree cover (Fig. 3), which becomes more irregular
at a large scale (Fig. 4), especially in regions of scarce tree
cover.

Another possible explanation could be due to the fact that the
spatial coupling of the patches of vegetation is too small at the
250-m × 250-m length-scale, to overcome the effect of noise.
This is consistent with the observation that spatially coupled
dynamical systems present bistability and hysteresis only if the
spatial coupling is small enough (27).

Modeling tree cover bistability as a pair of saddle-nodes
bifurcations has been shown useful for extracting information,

from satellite tree cover data, about the forest/savanna coexistence
(26). However, our results suggest that additional mechanisms
are needed to fully understand the transition between the two
states.

Conclusion

Using observational vegetation data and simulated data from two
dynamical models, we have shown that the permutation entropy
computed from the probabilities of spatial ordinal patterns can be
a useful indicator of a forthcoming tipping point, complementing
the information provided by a classical indicator such as the
spatial correlation.

For the satellite transects, the permutation entropy has the
advantage that it displays smaller relative fluctuations than the
spatial correlation. Another interesting feature found is that, in
the transition from the vegetated to the arid state, the minimum
of the spatial permutation entropy seems to coincide with the start
of the bistability region. Further studies are needed to understand
the origin of this behavior.

We believe that the spatial PE can be able to provide an early
warning indicator for other systems displaying CSD, and it will
be interesting to test its potential in real-world systems aside
from spatial vegetation fields. Both these directions of research
are currently being pursued.

It is important to note that, as other indicators, the spatial
PE has limitations: its variation can depend on the system and
the data under study, and it is necessary to establish adequate
criteria for detecting significant variations, which in turn could
depend on the characteristics of the data, such as temporal or
spatial resolution. Hence, we do not propose replacing existing
spatial indicators with spatial PE but rather using spatial PE in
conjunction with existing indicators or model-based approaches.

Our results suggest that the spatial PE can be a good indicator
of an abrupt shift in vegetation, and we believe that it has
promising applications in the remote monitoring of ecosystems.

Data, Materials, and Software Availability. The code used for the analysis
is freely available via GitHub at https://github.com/giuliotirabassiupc/SPEV.
Previously published data were used for this work (20, 25).
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