
Framework for the Analysis and Configuration of
Real-Time OpenMP Applications

Tiago Carvalho, Luis Miguel Pinho, Mohammad Samadi
Polytechnic Institute of Porto

Porto, Portugal
{tdc,lmp,mmasa}@isep.ipp.pt

Sara Royuela, Adrian Munera, Eduardo Quiñones
Barcelona Supercomputing Center

Barcelona, Spain
{sara.royuela,adrian.munera,eduardo.quinones}@bsc.es

Abstract—High-performance cyber-physical applications im-
pose several requirements with respect to performance, func-
tional correctness and non-functional aspects. Nowadays, the
design of these systems usually follows a model-driven approach,
where models generate executable applications, usually with an
automated approach. As these applications might execute in
different parallel environments, their behavior becomes very
hard to predict, and making the verification of non-functional
requirements complicated. In this regard, it is crucial to analyse
and understand the impact that the mapping and scheduling of
computation have on the real-time response of the applications.
In fact, different strategies in these steps of the parallel orches-
tration may produce significantly different interference, leading
to different timing behaviour.

Tuning the application parameters and the system config-
uration proves to be one of the most fitting solutions. The
design space can however be very cumbersome for a developer
to test manually all combinations of application and system
configurations. This paper presents a methodology and a toolset
to profile, analyse, and configure the timing behaviour of high-
performance cyber-physical applications and the target plat-
forms. The methodology leverages on the possibility of generating
a task dependency graph representing the parallel computation
to evaluate, through measurements, different mapping configu-
rations and select the one that minimizes response time.

Index Terms—Cyber-Physical Systems, Real-time, Timing
Analysis, Task-to-thread Mapping

I. INTRODUCTION

Developing cyber-physical systems is challenging due to the
increasing processing requirements of advanced applications
and the stringent non-functional requirements caused by the
interaction with the physical world. In this context, the AM-
PERE project [1] designed an ecosystem targeting the correct-
by-construction engineering of cyber-physical applications on
parallel heterogeneous platforms. The ecosystem generates
task-based parallel OpenMP applications from AMALTHEA
[2] models, including mechanisms to offload computation to
accelerators. This trait allows for defining function specializa-
tions based on conditions like the type of processor, e.g., CPU
or GPU, hence fostering the deployment of multiple versions
of the same application. Different combinations might cause
significant variations in the performance of the system, while
the potentially high complexity of such a hybrid environment
complicates the selection of the best combination.

This work has been co-funded by the European commission through the
AMPERE (H2020 grant agreement N° 745601) project.

The performance of the application and the guaranteed
response time depends on several factors including the com-
bination of variants, the dependencies among functionalities
and so the opportunities for parallelism, the mapping and
scheduling algorithms, and the configuration of the target
platform (e.g., CPU frequency). All these factors make it
difficult to easily provide the most suitable configuration, for
each criterion, for a given program, in a given platform.

This paper presents the component in the AMPERE frame-
work that analyses real-time OpenMP applications and pro-
vides fitting configurations to execute in a given platform with
the objective of delivering the best-guaranteed performance to
the applications. The component is integrated with the general
AMPERE workflow, but it can also be used as a stand-alone
tool to analyse any task-based OpenMP application.

II. THE AMPERE ECOSYSTEM

The AMPERE project [1] addresses the development of
cyber-physical systems (of systems) by leveraging the ca-
pabilities of parallel heterogeneous platforms to cope with
the demands of increasingly high-performance applications
like autonomous vehicles. The main goal is to provide an
ecosystem able to support the complete development flow,
from the applications’ models to the executables, as well as
the execution environment, i.e., runtimes, operating systems
and hypervisors, in the considered heterogeneous platforms.

This paper does not intend to provide a complete description
of the AMPERE ecosystem (interested readers are referred
to [1] and [3]), but rather focuses on the flow to determine
the application and platform configurations for providing the
required real-time guarantees. This section thus provides a
brief description of the AMPERE concepts and tools required
for a complete understating of this flow.

A. Nomenclature in AMPERE

The AMPERE ecosystem is composed of three different
phases: (1) the modeling phase, where use cases are described
through AMALTHEA models; (2) the parallelism phase,
where models are transformed into parallel OpenMP code;
and (3) the analysis and optimisation phase, which leverages
the task dependency graph (TDG) generated at compile-time
for multi-criteria optimisation. These phases and the different
nomenclature related to them are summarized in Table I.

© Copyright 2023 IEEE - 
This is an accepted manuscript, the published version can be found at: https://ieeexplore.ieee.org/
document/10218276



TABLE I
NOMENCLATURE OF THE AMPERE ECOSYSTEM.

Phase Tool File Extension Process Functionality

Modeling AMALTHEA model.amxmi (AMALTHEA) Task Runnable
Parallelism OpenMP code.c/.cpp Parallel region (OpenMP) Task

Optimization Multi-criteria tdg.json TDG Node

In the AMPERE ecosystem, AMALTHEA tasks are trans-
formed into OpenMP parallel regions, with runnables be-
ing executed as OpenMP tasks. Data dependencies between
runnables (expressed as labels in the model) are mapped
into data dependencies between OpenMP tasks, thus effec-
tively allowing to safely parallelize the runnables within an
AMALTHEA task by avoiding race conditions. The ecosys-
tem further exploits the task dependency graph (TDG) that
represents the parallel execution of an AMALTHEA task,
where nodes are OpenMP tasks (or runnables) and edges are
dependencies among them.

B. From AMALTHEA to OpenMP: Synthetic Load Generator

The Synthetic Load Generator (SLG) [3] is a code gen-
erator capable of transforming AMALTHEA models into
OpenMP/C/C++ code. AMALTHEA tasks and runnables are
transformed into C functions. Then, the code within the tasks,
i.e., the sequence of calls to the runnables contained in the
AMALTHEA task, is parallelized using OpenMP tasks. More-
over, when runnables have defined different specializations,
the SLG can generate several applications, as much as the
Cartesian product of all sets of runnable specializations.

C. The Task Dependency Graph

The work in AMPERE considers Task Dependency Graphs
(TDGs) [4], which are a simplified form of directed acyclic
graphs (DAGs) that consider only sibling nodes (i.e., no nested
graphs) and the dependencies among them. The TDG is a
simple structure where each node (an OpenMP task) only
includes the in and out dependencies with other tasks, which
are extracted from the depend clauses defined in the directives
annotating the OpenMP tasks. This representation enables (1)
the analysis and configuration of OpenMP parallel regions,
and (2) the use of correctness analysis techniques that allow
for verifying the parallelization with respect to the model

D. Compilation with LLVM

The compilation process is performed using an extended
version of LLVM [5] developed by the Barcelona Supercom-
puting Center (BSC). The features include the generation of
OpenMP TDGs for user-/model-defined taskgraph regions
[4] 1. The support is required at three different levels, i.e.,
the Clang front-end, the LLVM compiler and the OpenMP
runtime. For the purpose of AMPERE, the TDG is generated
in two formats: (1) a ”.dot” file containing the visual rep-
resentation of TDG in the parallel region, and (2) a ”.cpp”

1The taskgraph framework for exploiting TDGs is already partially featured
in upstream LLVM [6]

file with the source code of the TDG structure to be used by
the runtime. This structure includes several parameters related
to the tasks, like the static thread parameter, which adds the
possibility of statically mapping OpenMP tasks to threads.

E. Performance analysis with Extrae

AMPERE leverages Extrae for the analysis of OpenMP
applications. Extrae [7] is a performance monitor tool devel-
oped by BSC able to monitor parallel applications and provide
performance results at the OpenMP task level. It dynamically
profiles the execution of the application and generates a set
of files representing the execution trace (i.e., .prv, .pcf, and
.row), which include the timestamps of the events captured,
like entering or exiting a task and punctual information about
performance counters. This allows for computing the execution
time of tasks and relate it to other aspects of the system. A
Python script has been developed in the context of AMPERE
to match the information coming from the DOT-formatted
TDG generated by the compiler and the CSV-like format trace
generated by Extrae. The script parses and converts the trace
generated during the execution of the application into a JSON
format (”.json” extension). The JSON object organizes the
results per OpenMP region (a TDG), and per OpenMP task in
that region (a node of the TDG), which facilitates the analysis.

III. OPTIMISATION FLOW

The AMPERE ecosystem enables an optimization flow that
targets the analysis and configuration of OpenMP parallel
applications with timing as an optimisation goal. The flow
analyses and optimises the configuration parameters of the
application and the system as to ensure a set of non-functional
requirements (defined in the model and passed to the analysis
through the TDG). Figure 1 illustrates the optimisation flow,
where the multiple cpp files and the profiling configuration
file, in blue represent the inputs required by the process, white
files are automatically generated artifacts, and green boxes
represent the stages engaged in the process.

Fig. 1. The real-time optimization flow.



The approach should guarantee that all tasks:
1) execute within their specified deadline (are schedulable),
2) have a more predictable execution, and
3) have an optimized response time (better performance).
The real-time optimization process is divided into four

stages: (1) code generation, (2) profiling, (3) timing analysis,
and (4) response-time optimization. Two input files are given
during the process: an AMALTHEA model and a ”base con-
figuration” file. The former defines the structure and variability
of the application while the latter provides the configuration
that controls the process. Interestingly, the approach has been
developed so that it can be used to optimize any OpenMP
application for which the taskgraph is applicable. In this
sense, the required input of the optimization tool is the actual
OpenMP source code. Therefore, in the context of AMPERE
the process starts with code generation, but it can start at the
profiling phase if used directly with available OpenMP code.

Most of the communication occurring between the stages
of the optimization flow, specifically after the profiling stage,
are based on the generated TDG and configuration files. The
dashed lines in Figure 1 represent the data moved from
the artifacts to the base configuration file, i.e., information
concerning chains, periods, and deadlines is propagated from
the AMALTHEA model (the .amxmi file), and the generated
executable and TDG files from the compilation phase.

The profiling, analysis and optimization artifacts are uti-
lized in a fully automated fashion, not requiring any human
interaction. The ”config” file, which is generated during the
profiling phase based on the profiling information and the
deadline constraints imposed by the application, contains all
the necessary data for the automation and it is updated during
the analysis and optimization phases. In the end, the process
produces a single TDG.json file containing the optimized
TDGs and the configuration of the system.

IV. THE PROFILING PHASE

The profiling stage is responsible for providing profiling
data from the application (e.g., task execution time, L2 cache
misses, instructions per cycle) in different execution scenarios
(e.g., clock frequency or energy budget). The profiler deals
with multiple versions of the same application, i.e. different
combinations of the function specializations, by executing
(or simulating) the application a specified number of times
(defined in the configuration), with different system config-
urations. In terms of structure, the multiple versions share
the same TDG. The only difference among them is the
specialization represented by a given node, more specifically,
if the functionality is to be executed in the CPU or the GPU.

A. Profiling Configuration File

The information regarding the version of each specialized
functionality in the application and the instructions to setup
the target system are defined in the profiling configuration file.
Figure 2 illustrates the structure of this file, which is essentially
divided into three sections of properties: Application, platform,
and optimization.

1 {
2 "app": {
3 "tdgs": [{
4 "id": 1,
5 "constraints": {
6 "deadline": 60000000
7 }
8 },...],
9 "variants": [{

10 "dir": "./var1",
11 "build": {
12 "dynamic_mapping": "make",
13 "static_mapping": "make static_map"
14 }
15 "uses_gpu": false, ,
16 "iterations": 100
17 },...]
18 },
19 "platform": {
20 "cpu": {
21 "cmd": [
22 "setup_cpu_frequency {frequency}",
23 {"OMP_NUM_THREADS": "{threads}"}
24 ],
25 "args": {
26 "frequency": [729600, 1190400, 2265600],
27 "threads": [4,8]
28 },
29 },
30 "gpu": {
31 "cmd": "setup_gpu_frequency {frequency}",
32 "args": {
33 "frequency":{
34 "start": 624750,
35 "stop": 1377000,
36 "step": 100000,
37 }
38 }
39 }
40 },
41 "optimization": { ... }
42 }

Fig. 2. Sample profiling configuration file with some of the basic properties.

The application section includes information regarding:
– the TDGs, i.e., a list of identifiers (to match it with the

traces) and corresponding deadlines (from the represented
AMALTHEA task); and

– the variants, i.e., the code version location, if it uses
an accelerator device or not, and how a code version is
compiled.

For the target system (platform), the configuration specifies
how is it possible to reconfigure the system with different
parameters. More specifically, this section defines the com-
mands to reconfigure both CPU (line 20 of Figure 2) and GPU
(line 30) via the cmd attribute, where it is possible to define
multiple commands as necessary, to obtain the desired configu-
ration. The most relevant commands are those that reconfigure
the system and that affect considerably the performance of the
functionalities and, subsequently, the response time of tasks,
and include the following aspects:

– the frequency, defined through the script named
setup cpu frequency (for the CPU) or that named
setup gpu frequency (for the GPU) using as argument
the value of frequency; and

– the number of OpenMP threads (in the CPU sec-
tion, lines 22 and 23), defined through setting the



OMP NUM TRHEADS environment variable using as
argument the value of thread.

Commands can be parameterized through the
{param_name} notation, which can be specified as: A
scalar value, an array of values (lines 26 and 27), or a
range (line 33). The profiler is responsible for testing all
possible combinations of parameter values (a configuration)
and execute the program in the different setups.

Finally, the optimization section contains information for
the optimization phase, which is discussed in Section VI.

B. Running the Profiler

The profiling phase is composed of one main script and
depends on a set of monitoring tools included in the AMPERE
ecosystem to provide measurements from executions. The
main script starts by compiling each provided version with the
compilation commands specified as ”dynamic mapping”. This
will build an executable that runs using the default dynamic
task to thread mapping algorithm of OpenMP [8]. In a nutshell,
the thread instantiating tasks places the ready ones in its own
queue. When work is available, the rest of threads will start
stealing tasks from that queue and all threads with tasks in their
queues start executing. When a task is finished, the executing
thread places any successors with met dependencies in its own
queue and continues executing tasks from its queue, if there
are, or steals work from other threads, otherwise.

Next, the script iterates over the possible system config-
urations, which are combinations built from the CPU and
GPU parameters. For each system configuration, the script first
executes the system configuration commands to reconfigure
both CPU and GPU (the latter only for the code variants that
use the GPU), and then iterates over each executable a certain
number of runs, defined in the configuration as iterations.

During the execution of each configuration, the moni-
toring tool gathers performance data through the execu-
tion of the Extrae profiling infrastructure [7]. Extrae col-
lects run-time information regarding execution time and per-
formance counter measurements, and generates the profil-
ing results. The TDG instrumentation script (described in
Section II-E) uses these profiling results and the TDGs
generated by the compiler (which initially only include
OpenMP tasks defined by their ids and their dependen-
cies) to generate a JSON file for the current configu-
ration ⟨code version,CPU config,GPU config⟩, anno-
tated with performance results and metadata regarding the
configuration data (as seen in Figure 3). This file contains
the results of the executions organized per OpenMP parallel
region (ergo AMALTHEA task).

As previously stated, one application can have multiple
TDGs. All of those TDGs will be present in the TDG.json
file. Each TDG (an OpenMP parallel region) contains a list of
nodes, or (OpenMP) tasks. Each task of the TDG contains a list
of results, where each result represents an iteration/execution
of that task. Figure 3 shows an annotated task of a TDG,
with one result represented in the image. Each result provides
several components, where the most important ones for the

1 {
2 "my_app": [
3 {
4 "taskgraph_id": 1,
5 "nodes": {
6 "0": {
7 "ins": [],
8 "outs": ["1","2"],
9 "results": [

10 {
11 "execution_total_time": 1297925,
12 "L1D_CACHE": 24999522,
13 "L1D_CACHE_REFILL": 5852
14 }, ...
15 ]
16 }, ...
17 },
18 "metadata": {
19 "cpu": {
20 "frequency": 2265600,
21 "num_threads": 8
22 },
23 "gpu": {}
24 }
25 }
26 ]
27 }

Fig. 3. Example of a TDG.json file, showing one TDG specification and one
of the tasks of that TDG. The task contains a list of results when executed
in the profiling phase. The file also contains information about the system
configuration.

timing analysis are the total execution time of the task (e.g.
line 11), and the performance counters results during that
execution (e.g. cache accesses and refills as in lines 12 and 13
respectively).

At the end of the profiling execution, the tool generates
several TDG.json files, one per possible code version and sys-
tem configuration. These files, together with an intermediate
configuration file, are the inputs for the analysis process, which
analyses each TDG file to extract metrics, and the optimization
phase, which provides the best application and system con-
figuration based on the extracted metrics. The intermediate
configuration file is used to control the following stages of
the optimization flow. It includes the path to the generated
TDG files, and their corresponding platform configuration,
and inherits most of the information present in the profiler
configuration file, more importantly, the optimization section.

V. TIMING ANALYSIS

Following the profiling phase, the flow includes a timing
analysis. This analysis is performed over the TDG.json files,
providing information at two levels: a per-task analysis and a
per TDG analysis.

For each task, the metrics are focused on the execution time
and the association of performance counters information. For
the execution time, the tool calculates the worst-case execution
time (WCET) and the average time.

Regarding performance counters, the ones extracted are
specified by the user in the profiling configuration. The perfor-
mance counters are converted into a set of predefined metrics:
average, maximum, minimum, and number of occurrences.



1
2 {
3 "taskgraph_id": 1,
4 "nodes": {
5 "0": {
6 "ins": [],
7 "outs": ["1","2"],
8 "metrics": {
9 "wcet": 1413985,

10 "avg_time": 1016365,
11 "L1D_CACHE": {
12 "avg": 33451818.15,
13 "max": 43257956,
14 "min": 15015617,
15 ...
16 },
17 }
18 },...
19 }
20 ...
21 "metrics": {
22 "volume": 3445520,
23 "avg_makespan": 2798390,
24 "worst_makespan": 4289395,
25 "max_parallelism": 2
26 }
27 }

Fig. 4. Example of annotating metrics in the TDG of Figure 3, and its tasks.

Metrics related to a TDG use both existing information
on the TDG and the new metrics calculated per task, more
specifically the WCET of each task. A set of metrics can be
obtained from the analysis. Since the analysis tool can be used
in different stages of the project development, different metrics
might be outputted. The set of metrics outputted for the multi-
criteria optimization flow is:

• volume
• critical path length
• potential maximum parallelism
• average makespan
• worst-case makespan
The volume is the sum of WCETs of all tasks in the TDG.

The critical path length of a task represents the total cost of
a path in the TDG that provides the longest path from the
source task to the sink task, inclusive.

The potential maximum parallelism is a metric that provides
the theoretical maximum parallelism possible in a TDG, disre-
garding the costs. From all possible, non-dependent siblings, it
provides the maximum number of tasks that, in theory, could
work in parallel, even if in practice they are not excepted to
be executed at the same time.

The makespan provides the actual execution time of a
TDG, from the start of execution to its end. This is a relevant
metric when considering a specific task-to-thread mapping,
providing the execution time of the TDG when considering the
WCET of all tasks, for a given number of available threads.
The critical path length of a TDG can be seen as the lower
bound of the makespan the TDG can take.

At the end, the timing analysis annotates the TDG.json file
with the calculated metrics, in both the TDGs and their tasks.
Figure 4 shows the output of the static timing analysis when
Figure 3 was given as input. Task 0 was annotated with its

config

TDG
TDG

.cpp

static
mapping
DSE

profiling analysis selection Optimized
TDG

Fig. 5. The optimization flow.

WCET (line 9), the L1 data cache accesses (line 11), and other
metrics. The complete TDG was annotated with makespan,
volume, and maximum potential parallelism (lines 23 to 25).

The TDG is now annotated with metrics that will be used
in the optimization phase. The tool is also used later in
the process to reevaluate the TDGs, taking into account the
additional information the optimization phase adds to the
graph.

VI. OPTIMIZATION

The optimization consists of 4 phases: an exploration of the
task to thread static mapping algorithms, a reprofiling, a timing
analysis, and finally a selection of the best configurations. This
flow is represented in Figure 5.

A. Design-Space Exploration of Static Mapping

Most of OpenMP implementations support two scheduling
algorithms: BFS and WFS. BFS puts a new task into a pool of
tasks, so the thread is encountered to continue the execution
of the parent task. In contrast, WFS tends to execute new tasks
immediately after they are created by the parent’s thread, in
which the execution of the parent task is suspended.

The use of these default mapping algorithms has some
drawbacks, such as: (i) they do not use temporal conditions
of the system (e.g., the execution time of parallel tasks) in
each phase of the mapping process, they rely on pessimistic
analytical techniques for mapping tasks to threads, and the
dynamic mapping decision is a problem for having a more
predictable execution. The framework uses an approach that
takes advantage of temporal information of the application,
and a set of mapping algorithms, to define a static mapping
for each TDG.

Two concepts are important to define here. The first one is
the specification of mapping mechanisms able to outperform
the predefined OpenMP algorithms. These can take advantage
of the highlighted parameters to provide more fitting map-
pings. As the mapping algorithms might perform differently
for different applications, the second concept is a mechanism
to automatically explore different algorithms, select the most
fitting one, and annotate the TDGs to statically map tasks
to threads. This approach aims to automate the mapping
selection, enhance the predictability and robustness of the
mapping, minimize the response time of the application, and
reduce the running time overhead of the mapping process.



1 {
2 "task2thread": "Best-fit",
3 "queue": "FIFO",
4 "queue_per_thread": true
5 }
6

Fig. 6. Example of a mapping algorithm specification.

This phase uses a simulation approach to explore different
mapping algorithms, using the heuristic-based mapping ap-
proach designed by Gharajeh et al. [9]. This approach sepa-
rates the mapping into two phases: scheduling and allocation.
The scheduling phase maps discovered tasks into OpenMP
thread queues, while the allocation phase relates to how a
thread decides which tasks to execute next from its queue.
Each of these phases has an heuristic associated. From the
existing heuristics, the following are highlighted.

For the scheduling phase, the thread queue is selected:

• First-fit: containing the minimum number of tasks;
• Best-fit: with the minimum (accumulated) execution time;
• Recent-fit: with the most recent idle time of threads;
• Optimum-fit: including the maximum response time.

For the allocation phase, the thread selects the task:

• FIFO: that arrived first in the queue;
• Best-fit: having the minimum execution time;
• Optimum-fit: with the maximum response time;
• Multi-criteria: including the shortest execution time and

the longest response time.

These algorithms are initially specified in the profiling
configuration file and are migrated to the intermediate con-
figuration. The algorithm configuration has three essential
properties: a task-to-thread algorithm, the type of queue (i.e.
the algorithm that organizes tasks in a queue), and boolean
indicating if one queue per thread shall be used. Figure 6
exemplifies the structure of the algorithm specification. The
boolean queue_per_thread can be used to use different
implementations of the algorithm that can deal with a single
thread or a queue-per-thread environment. One example of this
difference is the different implementations within GOMP and
LLVM runtimes [10].

The mapping exploration requires these algorithms, the
annotated TDG, the number of threads, and the task deadline.
This tool provides an exploration mechanism that iterates the
listed algorithms and simulates their execution, based on the
TDG structure and WCET of the tasks. It searches for the
mapping that provides the best makespan for that TDG. Upon
exhausting the algorithms, the tool annotates the TDG with
the best mapping and the makespan of that mapping. If the
exploration is not able to provide a mapping with a makespan
lower than the deadline, then the tool does not annotate the
TDG and returns only the lowest makespan possible.

The exploration algorithm is specified in Figure 7. It is com-
posed of a mapping algorithm iterator and a simulator. From
the TDG, the simulator uses the task data, its dependencies,

1 input: TDG, algorithms, num_threads, deadline
2 output: TDG
3 min_alg = NULL
4 min_t = deadline
5 for each alg in algorithms
6 map = simulate(TDG, alg, num_threads)
7 if map.makespan < min_t
8 min_alg = map
9 min_t = map.makespan

10
11 if min_alg == NULL
12 exit(-1)
13
14 apply_map(TDG,map)

Fig. 7. Algorithm that simulates the TDG execution with each available
algorithm. The result is the TDG annotated with a static mapping.

1 {
2 "1": {
3 "ins": ["0"],
4 "outs": ["3", "4"],
5 "metrics": {
6 "WCET": 566201,
7 },
8 "static_thread": 1
9 },

10 }
11

Fig. 8. Example of a task annotated with a static thread.

and the cost of the task (i.e. the WCET), calculated in the
previous step.

The exploration of the algorithms is a traditional loop that
iterates all the available algorithms and performs a simulation2

with that algorithm. The formula used to measure the static
mapping is the makespan work of the TDG, which can be
calculated by the longest path of the TDG with the provided
mapping. Lines 7 and 9 of Figure 7 show the makespan
being used to see if the mapping provides an execution time
within the deadline, and if it is less than the deadline (and
consequently less than the previous algorithm) the selected
algorithm is updated. Line 4 contains a simple optimization
in the algorithm, that immediately sets the current minimum
time to the deadline, reducing the number of comparisons to
be done per mapping algorithm.

Statically mapping tasks to threads is done by annotating
each task in the TDG with the property static_thread
with the corresponding thread id, depicted in the mapping
provided in the previous steps. Figure 8 shows an example
of a task annotated with two properties not present at the
first version of the TDG: WCET and static_thread. This
information will be passed on to the following step of the
optimization phase.

B. Reprofiling

The objective of this phase is to have measurements more
specific to the static mapping defined for each TDG. Since
each task is statically mapped to a thread, the obtained

2A simulation is performed instead of actual execution since it is intended
to use existing measurements to provide a static mapping of tasks to threads.



performance results are much more accurate, considering the
expected execution of each task. The reprofiling phase uses the
same profiler as defined in Section IV, but instead of using
the ”dynamic mapping” compilation, the ”static mapping”
compilation is used (see line 13 of Figure 2).

In this phase, each TDG has information about the static
mapping and the system configuration in which it was executed
previously. The reprofiling phase is then a loop iterating each
TDG that:

1) recompiles the corresponding code variant with the pro-
vided static mapping;

2) reconfigures the system with the provided configuration;
3) measures the execution of the compiled version;
4) and redefines the TDG with the new results.

C. Final Analysis and Selection

After reprofiling all the TDGs, the timing analysis tool
is executed, as in Section V, and once again obtain timing
metrics for each task and for each TDG.

The selection phase starts by first filtering the cases of
TDG.json files that do not respect all the deadline constraints.
If a single TDG does not respect the deadline, then that
configuration (the TDG.json file) is not acceptable and so
it is removed from the equation. Then, the framework will
provide at the end a performance table, describing the re-
sponse time (makespan) for each code version in each system
configuration. Then, the selection method between all possible
configurations is based on looking at the calculated makespans.
The selected TDG.json file is the one providing the lowest
cumulative value of makespans.

VII. EXAMPLE USE CASE

This section shows an example of using the described
approach over a target application. To show that the approach
can deal with any application besides the use of AMALTHEA
and the auto-generated code, the ”heat equation” benchmark is
used as the target application. This benchmark is an iterative
Gauss-Seidel method that calculates the heat equation.

Figure 9 shows a code parcel of an OpenMP parallel version
of the heat benchmark. This method is parallelized per blocks
of iterations, taking into account the dependencies between
iterations. The parallelized version divides the work of the
iterations between blocks. Each OpenMP task executes a block
of iterations, and their execution order is controlled by the ”in”
and ”inout” dependencies of the task.

To ease the understanding of the interdependencies between
tasks, Figure 10 presents the TDG that is automatically gen-
erated by the omp task_graph pragma, when considering
a block size of 4 by 4, for a spacial resolution of 4096*4096
points. In this graph it is possible to see that the example
considers 16 working blocks (NB=4), each one with more
than 1 million points to work with, to easily illustrate the TDG
format. However, the experiments use NB=8, which provides
for 64 blocks.

This use case has only one TDG and only one version of
the code (i.e. there are no variants with tasks running in the

1 int bx,by; bx = by = NP/NB;
2 #pragma omp taskgraph tdg_type(static)
3 for (int ii=0; ii<NB; ii++) {
4 for (int jj=0; jj<NB; jj++) {
5 int inf_i = 1 + ii * bx; int sup_i = inf_i + bx;
6 int inf_j = 1 + jj * by; int sup_j = inf_j + by;
7 #pragma omp task
8 depend(in: u[inf_i-bx][inf_j], u[sup_i][inf_j],
9 u[inf_i][inf_j-by], u[inf_i][sup_j])

10 depend(inout: u[inf_i][inf_j])
11 {
12 for (int i = inf_i; i < sup_i; ++i) {
13 for (int j = inf_j; j < sup_j; ++j) {
14 u[i][j] = 0.25 * (u[i][j-1] + u[i][j+1]
15 + u[i-1][j] + u[i+1][j]);
16 }
17 }
18 }
19 }
20 }

Fig. 9. OpenMP version of the heat benchmark. NP*NP is the spacial
resolution (number of points) and NB*NB is the number of blocks. The code
is divided into NB*NB tasks, where each task has a block of bx*by iterations.

Fig. 10. The TDG for heat, when considering a block size of 4*4.

GPU), which means that it will test only different system con-
figurations related to the CPU. The focus is on reconfiguring
the frequency of the CPU and evaluate a different number of
OpenMP threads.

The target platform was an NVIDIA Jetson AGX Xavier
with an 8-core NVIDIA Carmel Armv8.2 64-bit CPU up to
2.5GHz and 32GB 256-bit RAM. The following were the
system parameters decided for the experiments:

• frequencies: 729.6, 1190.4 and 2265.4 frequencies;
• num threads: 4 and 8
Running the proposed approach with a configuration reflect-

ing the specified setup will build six TDG files, where all of
them have the same code version (no variants) and each one
reflects executions with a specific frequency and number of
threads. The result of executing the approach is a table of
results as the one shown in Table II. This table is an output of
the optimization flow and shows the behavior of each program
version in the different environment setups.

In this case, the lowest frequency did not provide an



TABLE II
RESPONSE TIME RESULTS FOR THE HEAT BENCHMARK WHEN USING THE

PROPOSED APPROACH. THE DEADLINE WAS DEFINED AS 60MS IN THE
CONFIGURATION FILE.

CPU frequency Number of response respects
(MHz) threads time (ms) deadline
729.60 4 128.79

1190.40 4 85.48 ✓
2265.60 4 47.55 ✓
729.60 8 77.97

1190.40 8 53.31 ✓
2265.60 8 26.71 ✓

acceptable response time and so it is filtered out by the
selection (the system will never have an acceptable execution
with this low frequency). In the end, the selected version will
be the TDG.json file that was executed in a CPU frequency
of 2265.6MHz and using eigth OpenMP threads. Furthermore,
the TDG.json is also annotated with the recommended static
thread mapping.

VIII. CONCLUSIONS

This paper presented an important asset for the optimiza-
tion of task-based OpenMP parallel applications, especially
for applications in the context of the AMPERE project. It
eases the process for the developer to explore and analyse
different program variations (with tasks being able to execute
either in CPU or an accelerator) and different system setup
configurations in which the application might have to execute.

The framework provides a recommendation of the ideal
static thread mapping for the application for each of the
possible program variations and system configurations. This
mapping not only aims to provide execution time efficiency
but also a more predictable execution. The framework allows
the use of any type of system parameters and automatically
explores the combination of those parameters with all the
possible variations of the application.

While the framework is already able to provide efficient
and predictable static mappings, there are other constraints
to be considered in the analysis, such as energy efficiency.
The work in AMPERE intends to add energy efficiency as
both an optimization criterion and as a constraint, therefore
providing an analysis and optimization considering multiple
simultaneous criteria.

REFERENCES

[1] E. Quiñones, S. Royuela, C. Scordino, P. Gai, L. M. Pinho, L. Nogueira,
J. Rollo, T. Cucinotta, A. Biondi, A. Hamann, et al., “The ampere
project:: A model-driven development framework for highly parallel
and energy-efficient computation supporting multi-criteria optimization,”
in 2020 IEEE 23rd International Symposium on Real-Time Distributed
Computing (ISORC), pp. 201–206, IEEE, 2020.

[2] C. Wolff, L. Krawczyk, R. Höttger, C. Brink, U. Lauschner, D. Fruhner,
E. Kamsties, and B. Igel, “Amalthea—tailoring tools to projects in
automotive software development,” in 2015 IEEE 8th International
Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications (IDAACS), vol. 2, pp. 515–520,
IEEE, 2015.

[3] AMPERE Consortium, “Deliverable D2.2, First release of the meta
parallel programming abstraction and the single-criterion performance-
aware component,” 2021.

[4] C. Yu, S. Royuela, and E. Quiñones, “Taskgraph: A low contention
openmp tasking framework,” arXiv preprint arXiv:2212.04771, 2022.

[5] B. S. Center, “Bsc extended llvm 16.0.” url=http://gitlab.bsc.es/ampere-
sw/wp2/llvm, 2023.

[6] B. S. Center, “Task record and replay mech-
anism in llvm.” url=https://github.com/llvm/llvm-
project/commit/36d4e4c9b5f6cd0577b6029055b825caaec2dd11, 2023.

[7] B. P. Tools, “Extrae,” 2019.
[8] A. Marongiu, G. Tagliavini, and E. Quiñones, “Openmp runtime,” in

High Performance Embedded Computing, pp. 145–172, River Publish-
ers, 2022.

[9] M. S. Gharajeh, S. Royuela, L. M. Pinho, T. Carvalho, and E. Quiñones,
“Heuristic-based task-to-thread mapping in multi-core processors,” in
2022 IEEE 27th International Conference on Emerging Technologies
and Factory Automation (ETFA), pp. 1–4, IEEE, 2022.

[10] T. Jammer, C. Iwainsky, and C. Bischof, “A comparison of the scalability
of openmp implementations,” in Euro-Par 2020: Parallel Processing
(M. Malawski and K. Rzadca, eds.), (Cham), pp. 83–97, Springer
International Publishing, 2020.


