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Abstract 

 

The design of hydraulic structures requires knowledge of how much rain is likely to fall 

within a certain amount of time, and over a specific area. Point rainfalls are only 

representative for a very limited area, and for larger areas the areal average rainfall depth 

is likely to be much smaller than at the point of maximum observed depth. The estimation 

of areal reduction factors (ARFs) is concerned with the relationship between the point 

and areal rainfalls. This relationship has been found to vary with, for example, 

predominant weather type, season and return period. Traditionally, ARF estimates are 

based on empirical methods though, more recently, a range of analytical methods have 

been applied. The review has found that no method is unambiguously correct. However, 

the traditional data-intensive, empirical, fixed-area methods still have advantages, 

including probabilistically correct ARF estimates and applicability over a comprehensive 

range of spatial and temporal scales. Although the analytical techniques try to put ARF 

estimation on a sounder scientific basis, they tend to rely on simplified assumptions 

and/or are only applicable within limited scales. The use of radar is problematic because 

of inhomogeneities and short data records, as well as possible biases in the ARF 

estimates.  

 

Keywords: Areal rainfall, areal reduction factor, design rainfall, methodology, rainfall 

 

Corresponding author: Cecilia Svensson, csve@ceh.ac.uk 

 

 

 

Accepted for publication in Journal of Flood Risk Management (Chartered 

Institution of Water and Environmental Management, Blackwell Publishing) 

 

The definitive version is available at www.blackwell-synergy.com 

 

http://onlinelibrary.wiley.com/doi/10.1111/j.1753-318X.2010.01075.x/abstract 



 

 2

Introduction 

 

Areal reduction factors are used in the construction of design rainfall events which are 

needed for the design of hydrological structures. A design rainfall event consists of a 

specification of a set of rainfall depths varying in space as well as time. There are two 

philosophically different ways to approach this specification. Firstly, observed events can 

be transposed or entire rainfall fields can be generated by a computer model, as a 

stochastic series of space- and time-rainfalls that reproduces the observed behaviour (e.g. 

Seed et al. 1999). Secondly, a simplified representation can be used. For example, an 

observed temporal rainfall profile can be combined with a uniform spatial rainfall 

distribution to obtain a design rainfall event. This review paper is concerned with the 

derivation of the magnitude of this spatial rainfall from point rainfalls, via the concept of 

an areal reduction factor (ARF). The ARF denotes the ratio between the areal average 

rainfall and a point rainfall. There are several different ways to define this ratio, which 

can lead to ARFs with different properties. 

 

The use of ARFs is convenient because networks of raingauges with long series, which 

are needed for accurate rainfall frequency estimation, are generally sparse, and do not 

allow for an appropriate characterisation of the associated spatial rainfall patterns. Denser 

networks may be available for more recent decades, or for special study areas, and these 

datasets can be used to study spatial rainfall variability. The spatial information can 

subsequently be combined with a point rainfall frequency estimate from the long-term 

dataset, to obtain an areal rainfall frequency estimate. Methods for estimating point 

rainfall magnitudes are reviewed in Svensson and Jones (submitted). 

 

An outline of how various factors influence the ARF is given below. A description then 

follows of methods used to estimate ARFs, and suitable methods for re-examining ARFs 

in a modern context are suggested. 

 

 

Factors influencing the areal reduction factor 

 

Several different issues affect the ratio between the spatial average rainfall over an area, 

and a point rainfall in that area. These issues include factors relating to the characteristics 

of the rainfall itself, but also to the physical characteristics of the catchment, and to the 

data and methods used to derive the ARF. 

 

 

Factors relating to rainfall characteristics 

 

Different synoptic weather types produce different spatial rainfall patterns (e.g. Huff and 

Shipp 1969; Skaugen 1997; Einfalt et al. 1998). Skaugen (1997) classified daily rainfall 

events in southeast Norway into convective showers and frontal rainfall, and concluded 

that the spatial averages for large-scale frontal events do not reduce much in magnitude 

with increasing area, whereas for small-scale convective events they do. Using a more 

detailed classification, Huff and Shipp (1969) found that the decay in spatial correlation 
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is smaller in storms occurring in low pressure centres than at the fronts associated with 

midlatitude cyclones, and that it is greatest in air mass storms. 

 

Skaugen (1997) found that the difference in ARF curves (ARF plotted against area) 

between convective and frontal events in Norway becomes more pronounced for higher 

return periods (i.e. for more extreme rainfall events). ARFs for both convective and 

frontal events decrease with increasing return period, but the rate of decrease for 

convective events is considerably greater than for frontal events. Using data from North 

Carolina and New Jersey in the United States, Allen and DeGaetano (2005a) also found 

that the areal rainfall is smaller compared with the corresponding point rainfall (i.e. the 

ARF decreases) at higher return periods. Similar results were obtained for Texas by 

Asquith and Famiglietti (2000). In contrast, when analysing areal rainfall in Switzerland, 

Grebner and Roesch (1997) found that ARFs were independent of return period, at least 

for areas greater than 500 km
2
. For smaller areas there was some variation between the 

ARF curves for different return periods, but the authors thought this may be caused by 

the limited ability of the network to detect centres of convection (about 1 gauge per 100 

km
2
) and the shortness of the reference period (13 years). 

 

Allen and DeGaetano (2005a) found that the ARFs are smaller in the warm season than in 

the cold, presumably in response to increased convection in summer. Huff and Shipp 

(1969) found a similar seasonal difference, in that the decay with distance of spatial 

correlation patterns of precipitation was greater in May-September than in the cold 

season. The decrease in ARF with increasing return period may also reflect the 

importance of convection in producing very heavy point rainfalls. 

 

Skaugen (1997) noted that the point rainfall extremes associated with the convective type 

tends to occur inland, whereas the maxima of the large-scale events usually occurred 

nearer the coast. Other investigators also note that ARFs vary with geographical location 

and climate, presumably because of a difference in the predominant rainfall generating 

mechanisms. For example, Omolayo (1993) suggests that 1-day ARFs are generally 

higher in the United States than in Australia, and Zehr and Myers (1984) suggest that 

ARFs decline more rapidly in the semi-arid southwestern United States than in the rest of 

the country. The latter finding is supported by Asquith and Famiglietti (2000) who found 

that ARFs are higher in eastern United States than in Texas.  

 

ARFs reported for the United Kingdom (UK) in the Flood Studies Report (NERC 1975) 

show more sharply decreasing ARFs with increasing areas for shorter durations than for 

longer ones (Figure 1). This feature was also noted by Ramos et al. (2005) when 

investigating rainfalls of 6 to 90 minutes duration in Marseille, France. Sivapalan and 

Blöschl (1998) explain that the rationale for this is that short-duration events (i.e. 

convective) are small in areal extent. Other authors do not find much variation in ARF 

with the duration of rainfall, probably because they are not studying as wide a range of 

different durations as presented in the Flood Studies Report (which lists durations from 1 

minute to 25 days), and/or are considering comparatively long durations. Clark and 

Rakhecha (2002) investigated heavy rainfalls of one to three days’ duration in India for 

areas up to 20,000km
2
, and did not find any real difference in ARFs between these 
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durations. Huff (1995) studied shorter durations, between 3 and 24 hours, in the midwest 

of the United States, and came to the same conclusion. He attributed the similar 

behaviour to the large dependence between heavy rainfall events of different durations. In 

his study, most of the 24-hour storms were also found in the shorter-duration samples. 

 

 

 
Figure 1.  Areal reduction factors for precipitation in the United Kingdom presented 

in the Flood Studies Report (diagram derived from tabulated values in 

NERC (1975)). 

 

 

Factors relating to catchment characteristics 

 

So far, research suggests that the effect of catchment characteristics, such as catchment 

shape, topography and urbanisation, on ARFs is small. 

 

An elongated catchment shape would result in different ARFs depending on whether the 

typical rainfall isohyets (resulting from the shape of the typical rainfall system and/or its 

direction of movement) were aligned along the catchment or perpendicular to it. 

However, when investigating rainfall fields and ARFs from a theoretical multifractal 

perspective, Veneziano and Langousis (2005) conclude that the effect of catchment shape 

is generally small, and also notes that very highly elongated catchments are rare. 

 

Leeward and windward effects of hills and mountains on rainfall may affect the ARFs. 

Thiessen polygon and inverse distance weighting methods used to compute areal 

precipitation do not directly account for topography. Because raingauge networks tend to 

be sparser at higher elevations (e.g. Prudhomme and Reed 1999) they may not adequately 

represent areal precipitation at high altitudes. Allen and DeGaetano (2005a) suggested 

adjusting for this when spatially interpolating rainfall amounts. However, they found that 

topographical rainfall biases appear to be insignificant for the estimation of ARFs.  

 

Huff (1995) noted that there may be a difference in the reduction factor between urban 

areas and the surrounding rural areas. Eight storms in Chicago were found to have a 

slower rate of decrease in the reduction factor within 500 km2 of the urban storm centre 
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compared with 67 rural storms. For larger areas, the rate of decrease for urban storms 

exceeded that for the rural storms. However, this sample of storms is rather small, and 

natural variability in spatial rainfall characteristics is large, so Huff concluded that this 

anomaly could also be due to natural variation rather than an urban rainfall effect. 

 

 

Factors relating to data and methodology 

 

Because of the temporal variability in rainfall, the periods of data collection may 

influence the ARF estimates (e.g. Asquith and Famiglietti 2000). Asquith and Famiglietti 

(2000) also noted that three overlapping raingauge networks around Houston, Texas, did 

not give the same ARFs, and concluded that differing precipitation-monitoring networks 

cannot be indiscriminately combined. However, as far as only station density is 

concerned, Allen and DeGaetano (2005a) conclude that for North Carolina and New 

Jersey the influence of differences in station density and interpolation method appear to 

be insignificant.  

 

The use of different methodologies to estimate ARFs is likely to result in different ARF 

estimates. The next section comprises a review of ARF estimation methods, including the 

use of radar data. 

Methods for ARF estimation 

 

Methods for estimation of areal reduction factors include empirical and analytical 

methods. In many countries the current design guidelines are based on empirical 

methods, including in the UK where they were issued in 1975 (NERC 1975). However, 

since then several new analytical methods have been proposed. These include methods 

based on correlation analysis, crossing properties, scaling relationships and storm 

movement. Radar rainfall data have also become available in many parts of the world, 

and at improving spatial and temporal resolutions. Empirical and analytical methods for 

ARF estimation, as well as the potential for use of radar rainfall data, are discussed in this 

section. Notations have sometimes been changed compared with the original source 

documents in order to keep them reasonably consistent within this review. 

 

 

Empirical methods 

 

Empirical methods are generally data intensive and computationally laborious, but they 

largely don’t rely heavily on distributional or other assumptions about the rainfall 

process.  

 

Geographically fixed versus storm-centred approaches 

 

Empirical ARF estimation can be divided into two categories, “geographically fixed” or 

“fixed-area” approaches on the one hand, and “storm-centred” approaches on the other 

hand (e.g. Omolayo, 1993).  
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In the storm centred approach, the region over which the areal rainfall is estimated is not 

fixed, but changes for each storm. The centre point for the approach is the point 

observing the maximum rainfall, which also changes for each storm. The areal reduction 

factor is given by  

 

ARF = Parea / Ppoint,          (Eq. 1)       

 

where Parea is the areal storm rainfall enclosed by a selected isohyet (the rainfall in the 

enclosure is everywhere at least as large as the value of the isohyet), and Ppoint is the 

maximum point rainfall at the storm centre. 

 

Asquith and Famiglietti (2000) note that storm-centred approaches have not seen 

widespread application, partly because of difficult implementation on multi-centred 

storms. In contrast, the fixed-area approach takes an extreme value of the areal average 

rainfall over a geographically fixed area (such as a catchment) and divides it by a 

corresponding value of the point rainfall that is typical for the area. 

 

Omolayo (1993) also points out that storm-centred approaches are not correct for 

estimating areal rainfall of a particular frequency from point rainfalls. This is because 

extreme point rainfalls and extreme areal rainfalls are unlikely to be produced by the 

same storm, or storm type. For example, localised convective events may produce very 

heavy point rainfalls, but may not result in a large areal rainfall. Omolayo (1993) 

suggests that to obtain the probabilistically correct ARF for a duration D, the T-year areal 

rainfall over a region, Parea, of size A should be divided by the (wi-weighted) average T-

year point rainfall, Pi, of all the gauges i in the same region: 
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Thus, this necessitates a fixed-area approach. Note that the ARF defined in this way (Eq. 

2) is radically different from that for the storm-centred approach (Eq. 1). 

 

A variant of the fixed-area approach is described by Yoo et al. (2007), who apply a 

mixed distribution based on the concept of rainfall intermittency (wet and dry periods, 

with a continuous Gamma distribution fitted to the wet periods) for estimating rainfall 

return periods, T. This method uses all the daily data available, rather than the traditional 

way of fitting an extreme value distribution to the annual maxima series. For ARF 

purposes, only the 1-day duration is studied, and subsequently a function is fitted to the 

empirically estimated ARFs for various areas A, as 

 
1)(0.1),(

−−−=
bAa

eMTAARF . 

 

The parameters M, a and b are estimated for each return period considered. 
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Storm-centred approaches may be used for probable maximum precipitation (PMP) 

purposes, because PMP does not have an associated frequency estimate. However, the 

storm-centred approach does generally not result in a conservative ARF estimate. 

Sivapalan and Blöschl (1998) note that storm-centred ARFs are usually somewhat 

smaller than geographically fixed ARFs. There are probably at least two reasons for this. 

If the ARFs are derived from storms with a heavy point rainfall, then these storms may be 

dominated by convective events with a limited areal extent. Also, the heaviest point 

rainfall of a storm may often be located outside the boundaries used for a fixed-area 

approach.  

 

 

The US Weather Bureau method 

 

Many “traditional” empirical methods disregard any effect of return period on the ARF, 

although such effects are now acknowledged. The method developed by the US Weather 

Bureau in Technichal Paper No. 29 (U. S. Weather Bureau 1957-1958) remains the most 

commonly used method in the US (Allen and DeGaetano 2005a) although alternative 

methods have been proposed in the intervening years (see below). The US Weather 

Bureau method has the advantage of being intuitive to apply, although it is somewhat 

laborious. It does not take return period into account, as only short rainfall series from 

dense networks were available at the time the method was developed. The gauges in the 

study were nearly uniformly spaced, but weighted rainfall estimates could be 

recommended for uneven networks. The method relates the mean of the annual maximum 

areal rainfall series to the mean of the annual maximum point measurements at all 

stations, i, and in all years, j. With the annual maximum point rainfalls denoted Pij, and 

the point measurements making up the annual maximum areal event denoted P’ij , the 

ARF is calculated as: 

 

∑∑

∑∑
=

j i

ij

j i

iji

TP29
P

Pw

ARF

'

.        (Eq. 3) 

 

 

Small-scale study 

 

A three-year experimental monitoring program in France focused on ARF estimation 

using a dense network of 9 gauges covering up to 4 km
2
 for durations from 5 minutes to 4 

hours (Desbordes et al. 1984). The 58 largest events, as measured by resulting discharge 

at the urban catchment outlet, were studied using two methodologies. These methods 

resemble, but do not quite conform to, the above concepts of storm-centred and fixed-

area methods. For the “storm-centred” approach the largest point rainfall recorded in the 

study area for each event and duration was noted, and the concurrent areal rainfall 

(calculated using Thiessen polygons) was divided by it. The authors note that the actual 

centre of the storm would probably in most cases be located outside of the study area, and 

the areal reduction factors would thus most likely recede more quickly than those 
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estimated from the available data. The ARFs for each duration were averaged separately 

before being analysed. 

 

For the “fixed-area” approach the largest point rainfall of a given duration at each gauge 

for each event was selected, and the concurrent areal rainfall of the same duration was 

divided by it (the “storm-centred” ARFs are a subset of the fixed-area set). Some of these 

ARFs are therefore greater than 1. The ARFs for the individual events and gauges were 

subsequently averaged for each duration. These averaged ARF estimates are greater than 

the “storm-centred” ones, but it is not clear how they would compare with those of more 

standard methodologies like, say, the US Weather Bureau method. One may speculate 

that they would be larger because all the point rainfalls have been used, and because of 

the frequent occurrence of the selected events (on average 19 per year). The large number 

of selected events makes good use of the data collected during the short experiment, but it 

is at the expense of events not being representative of extreme rainfalls. It seems unlikely 

that the ARFs would be strictly probabilistically correct (i.e. relating an areal rainfall of a 

certain return period to a point rainfall of the same return period), but the magnitude of 

the difference is unknown. 

 

The initial selection of the 58 events based on discharge most likely captures the largest 

areal rainfalls, and because of the small size and high gauge density of the study area 

probably also the largest point rainfalls. However, in a larger area it would be safer to 

select rainfall events based on the rainfall rather than the discharge, as isolated heavy 

rainfalls may not have caused extreme runoff.  

 

Methods used in the United Kingdom 

 

The fixed-area method currently used in the UK, presented in the Flood Studies Report 

(NERC 1975), does not take return period into account, as the effect was assumed to be 

small. In this method, the annual maximum areal rainfall over a particular region is 

found, and the point measurements, P’ij, at station i and year j of these areal events are 

noted. Independently, the annual maximum point rainfalls, Pij, at each station i for year j, 

in the region are noted. For each region of area A and for each duration D, the ARF is 

calculated as 

 

∑∑=
j i ij

ij

FSR
P

P

IJ
ARF

'1
 

 

where I is the total number of stations in the region, and J is the record length (years). 

This is a simplification of the US Weather Bureau method described above, and was 

adopted for computational convenience. It makes the assumption that “an average of 

ratios” can safely approximate “a ratio of averages” (NERC 1977), which may be 

considered as somewhat unorthodox.  

 

Bell (1976) re-examined the ARFs in the Flood Studies Report with regard to, among 

other things, the assumption that ARFs are independent of return period. He did so by 

fitting frequency distributions to the areal and point annual maximum rainfall series, and 
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then calculating the ARF as the ratio between the areal and point rainfall estimates of the 

same return period. The method involves ranking the annual maximum (Thiessen-

weighted) areal rainfall series, and then also ranking the annual maximum point rainfall 

series at each individual station in the area. To obtain a single point rainfall frequency 

curve that is representative for the area, the Thiessen-weighted mean of annual maximum 

point rainfalls of the same rank were computed. Frequency distributions were then fitted 

to the areal and point rainfall series and the ARFs calculated for different return periods. 

Bell (1976) found evidence for more rapidly decreasing ARFs with increasing return 

period, but concluded that using the ARFs calculated according to the Flood Studies 

Report (NERC 1975) resulted in conservative ARF estimates. 

 

Essentially following Bell’s (1976) method, Stewart (1989) re-evaluated the ARFs for an 

upland area in northwest England. Stewart introduced a standardisation of the rainfall 

through division by the mean annual maximum rainfall, so that the ARF’s were derived 

using rainfall growth curves rather than actual rainfall frequency curves. This has the 

effect of allowing locational variations to be represented by differences in the mean 

annual maximum values, while return period effects are represented through the growth 

factors. For this particular region, the ARFs for daily durations, derived using raingauge 

data, are lower than those presented in NERC (1975). Similarly to Bell’s study, ARFs 

were found to decrease with increasing return period, and this rate of decrease increases 

with area. ARFs were shown to be weakly correlated with latitude and showed a stronger 

relationship with Standard Average Annual Rainfall (SAAR). 

 

Variations of Bell’s method have also been applied to rainfall in Australia by Siriwardena 

and Weinmann (1996) and Porter and Ladson (1993). However, the current Australian 

design guidelines (ARR 2001), suggests using ARFs derived by the United States 

Weather Service for Chicago (Myers and Zehr 1980) or Arizona (Zehr and Myers 1984), 

depending on which Australian climatic zone the ARFs will be applied to. This method is 

discussed below. 

 

 

National Weather Service method 

 

The current national United States approach to ARF estimation is outlined in NOAA 

Technical Report NWS 24 (Myers and Zehr 1980). It is based on frequency analysis of 

annual maximum rainfall at pairs of stations, and the distance between them. The 

definition of the ARF, taking into account the return period of the rainfall, is a 

restatement of Eq. (2) as 

 

)0,,(

),,(
),,(

tfX

AtfX
AtfARF

A

A

NWS
∆

∆
=∆ , 

 

where XA(f, ∆t, A) is the areal average rainfall of frequency f and duration ∆t over area A, 

and XA(f, ∆t, 0) represents point rainfall of frequency f and duration ∆t. The precipitation 

magnitudes X at frequency f are estimated using Chow’s (1951, 1964) general equation 

for frequency analysis,  
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σµ )(K)( ffX += , 

 

where µ  is the mean and σ  is the standard deviation of the population of X’s, and K(f) is 

the frequency factor for the Gumbel fitting of a Fisher-Tippet type I distribution.  

 

Rather than estimating µ  and σ  from samples of point and areal rainfalls directly, the 

method was developed to take advantage of series of annual maximum two-station 

average rainfall, and from certain other statistics derived for station-pairs. The µ  and σ  

are estimated for station-pairs at various distances and for various durations, and a 

smoothing surface is then fitted to each parameter in the distance-duration-space. From 

these statistics, upper and lower bounds of the moments µ  and σ  of the “true” areal 

average rainfall are estimated by (a rather involved) theory developed for the purpose. 

The positions of the areal moments between these bounds are then set by a calibration 

with the moments of a limited number of annual maximum multi-station averages. 

 

This method explicitly takes into account the variation of ARF with return period. It uses 

statistics of station-pairs and small five-station networks, which reduces the need for 

large, dense networks with concurrent data observations. Because the station-pairs and 

five-station networks are located at random locations within an area, there is an 

assumption of isotropy in the spatial rainfall field. Hence, the case of elongated 

catchments with rainfalls typically aligned in one direction or other is not considered (a 

feature not unique to this method). However, it is questionable whether the complicated 

methodology used is justified as precipitation observations become more plentiful with 

time. 

 

 

Annual-maxima centred method 

 

Asquith and Famiglietti (2000) present an annual-maxima centred approach to ARF 

estimation and apply it to study areas in Texas, United States. It uses the concurrent 

rainfall measurements surrounding a point annual maximum, and does a pair-wise 

calculation of the ratio of rainfall between each surrounding gauge and the target (annual 

maximum) gauge. The ratios are then plotted against the distance between the gauge-

pairs, and a function is fitted. This is done separately for each return period, i.e. those 

ratios surrounding, say, five-year or greater annual point maxima are plotted together. 

ARFs can be estimated from the function by spatially integrating the ratios for a user-

specified area. It is labour-saving as it does not require prior spatial averaging of 

precipitation, explicit determination of spatial correlation coefficients or explicit 

definition of a representative area of a particular storm in the analysis. However, its 

application requires a dense network of gauges in the study area. The method results in 

more rapidly decreasing ARFs than the US method presented in Technical Paper No. 29 

(U. S. Weather Bureau 1957-1958). This seems reasonable for two reasons. Firstly, other 

authors have found faster declining ARFs in the drier southwestern United States than in 

the eastern areas for which the Weather Bureau based their estimates (e.g. Zehr and 

Myers 1984). Second, the storms are selected based on heavy point rainfalls, which 
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means that the largest areal rainfall events may not be represented at all. The population 

of events selected will not be as focussed on heavy point rainfalls as a storm-centred 

approach, but is still likely to result in more rapidly decreasing ARFs than fixed-area 

estimates, as discussed previously. Thus it seems questionable that the method will result 

in a “probabilistically correct” ARF, as this ARF multiplied by the point rainfall of a 

particular return period may not result in an areal rainfall of the same return period, but 

more likely in a less extreme one. However, the size of the discrepancy is unknown, and, 

for any method, a small difference may be acceptable when considered in conjunction 

with a method’s other advantages. 

 

 

Spatial correlation structure 

 

This collection of methods that are based on estimates of the spatial correlation of the 

rainfall field are perhaps more elegantly formulated than the traditional empirical 

methods. However, they rely on assumptions such as isotropy and particular statistical 

distributions of the rainfall process. They still require a reasonable amount of data to 

estimate the model parameters, and hence the ARF. 

 

Rodriguez-Iturbe and Mejía method 

 

Rodriguez-Iturbe and Mejía (1974) introduced a method of estimating ARFs using the 

correlation, ρd, between two gauges separated by a “characteristic correlation distance” in 

the study area. The characteristic correlation distance, d, measures the mean separation 

between two points randomly chosen in the area, and thus depends on the size and shape 

of the area. The ARF depends only on the correlation, and is calculated as 

 

dRIMARF ρ= . 

 

The method assumes a particular spatial correlation structure, either an exponentially 

decaying function or a Bessel-type correlation structure. Other assumptions include the 

point precipitation being both isotropic and Gaussian with a zero mean. This distribution 

is not a typical characteristic of extreme, shorter-duration precipitation. When the 

precipitation is non-Gaussian, there will not be an exact correspondence between the 

frequency factors of the point and areal precipitation extremes. That is, the method will 

have a problem associated with it that is similar to that of storm-centred approaches. 

However, whereas typical storm-centred approaches generally result in more quickly 

receding ARFs, this may not be the case for the Rodriguez-Iturbe and Mejía method. 

Because this method uses all precipitation data, rather than just extreme events, it is not 

certain that the likely result will be an un-conservative ARF estimate, as less extreme 

events may be spatially more evenly distributed than heavier events.  
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Sivapalan and Blöschl method 

 

Sivapalan and Blöschl (1998) point out that in the Rodriguez-Iturbe and Mejía method 

the mean of the areally averaged rainfall does not change with the averaging area. 

Sivapalan and Blöschl (1998) consider this feature to be more appropriate for the parent 

rainfall process rather than to the extreme value process, and therefore propose an 

extension to the Rodriguez-Iturbe and Mejía method. The new method makes use of the 

spatial correlation structure while looking at the extreme value distributions rather than 

the parent distributions only. The authors consider it appropriate for rainfall systems 

which are large relative to catchment area, because it cannot handle finite storm extent or 

partial coverage of the catchment. 

 

The parent distribution of rainfall intensity at a point is assumed to be exponential. The 

spatial correlation, ρp, of point rainfall intensity is assumed to be isotropic and of the 

exponential type: 

 

( ) 







−=

λ
ρ

r
rp exp , 

 

where r is the distance between two points and λ is the spatial correlation length 

(interpreted as a measure of the spatial extent of the rainfall field). When the point 

rainfall process is exponentially distributed, the areally averaged rainfall process is 

approximately gamma distributed. To the upper tail of the cumulative gamma distribution 

of areally averaged rainfall intensity, the authors then fit an exponential function. 

Through the Gumbel (1958) theory of extremes, the parameters of this exponential 

function are also the parameters of the Gumbel distribution of areally averaged extreme 

rainfall intensity. The parameters are also functions of the scaled catchment area, A/λ2
, 

and this dependence is used to show how catchment intensity-duration-frequency (IDF) 

curves change with catchment area. The parameters of the catchment IDF curves for the 

particular case of zero catchment area (A = 0), are matched with the parameters of 

observed point IDF curves, resulting in absolute values (rather than functions) of the 

parameters for the catchment IDF curves. For this particular case, this is only possible if 

the observed point rainfall extremes also follow a Gumbel distribution. Hence, this 

particular formulation of the method does not cater for the many cases where extreme 

point rainfall is better fitted by other distributions. Similar to the Rodriguez-Iturbe and 

Mejía method, there is also an assumption that the correlation structure of the extreme 

rainfall is the same as for the parent (“average”) rainfall process, which seems unlikely. 

 

Even after some simplification the final expression of ARF is complex, but shows 

dependence on catchment area, spatial correlation length, duration and return period. 

There is only a weak dependence on duration, whereas in empirical methods this is 

generally a major control on the ARF. Instead, it is the spatial correlation length, λ, that is 

critical in the proposed method, and the authors note that λ and duration are often closely 

related to each other and to storm type. For very large return periods, the ARF is a 

function of catchment area and correlation structure only. The authors argue that the 

correlation length is a more direct and pertinent measure of storm type and governing 
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precipitation processes than duration is, and that correlation length is therefore more 

relevant to the estimation of ARFs. However, for hydrological applications the 

concentration (response) time of the catchment, and hence the rainfall duration, as well as 

its spatial extent, is the design criterion. The concentration time does not only vary with 

catchment area, but also with other catchment characteristics, such as geology, and 

density and configuration of the drainage network. 

 

Although the authors refer to the method as “fixed area” rather than “storm-centred”, they 

use two individual storm events to verify their model, rather than using long and spatially 

dense data sets which would be required for an empirical estimate of fixed area ARFs, 

particularly if variation with return period is to be shown. The spatial correlation length, 

λ, is estimated visually from isohyetal patterns of the two storms, one small-scale 

convective event (λ = 1-2 km, duration ~ 4 hours) and one large-scale frontal event (λ = 

60-120 km, duration ~ 96 hours). The suggested ranges of correlation lengths result in 

ARF curves that partly envelope the empirically derived storm-centred ARFs.  

 

 

Omolayo’s method 

 

Omolayo (1989, referenced in Srikanthan 1995) assumes that rainfall depths are log-

normally distributed in space, and uses the average spatial correlation coefficient, ρ, to 

estimate the ARF as: 
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where KT is a frequency factor corresponding to return period T, σ is the standard 

deviation of rainfall depth in the log domain, and n is the number of rainfall stations. This 

ARF varies directly with spatial correlation coefficient and inversely with return period, 

standard deviation and the number of raingauges. The ARF depends on the number of 

stations used, and on the area because ρ will depend on the area. The ARF has a lower 

bound which is reached for ρ = 0. Tabulated values of these lower bounds given in 

Srikanthan (1995) for typical values of T, n and σ seem high.  

 

For an assumption of normal distribution, the expression of the ARF is 

 

n

n
ARFOmolayo

ρ)1(1
2,

−+
=  , 

 

which for large n reduces to 

 

ρ=3,OmolayoARF . 
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This is similar to the expression derived by Rodriguez-Iturbe and Mejía, except that in 

this case the correlation coefficient is averaged over the raingauges rather than 

representing the value at a particular separation distance. 

 

 

Crossing properties 

 

The method described in this section takes a completely different approach to the 

estimation of ARFs compared with the empirical and correlation methods. An elaborate 

statistical framework for describing the spatio-temporal behaviour of rainfall is used, 

which involves several idealised assumptions. However, the calibration of the model 

requires less data than is needed for ARF estimation using the previously described 

methods. 

 

The method of Bacchi and Ranzi (1996) is based on an underlying probabilistic model 

involving the crossing properties of extreme rainfall and on spatial and temporal integrals 

of this field. “Crossing properties” here refers to the local behaviour, in terms of spatial 

and temporal derivatives, of the fields at points where a given threshold is crossed. The 

rainfall field is considered in space (two dimensions) and time, and a type of peaks-over-

threshold approach is applied in these three dimensions. As the threshold, b, increases, 

the average number, µb, of local rainfall maxima above the threshold per unit “volume” in 

the space-time domain is proportional to the rate of crossings of the threshold. The 

authors assume that the process of crossings converges to a Poisson process: however, 

while they do concede that corrections would be needed if clustering of local maxima 

occurs, they do not include any in their analysis. The ARF is calculated as 
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TDAARF RB ==       

 

where P is the rainfall of duration D over the area A or A1 which has return period T. Here 

A1 denotes the area of a “point” approximated by a 1 km square radar pixel. The notation 

using b in the second form corresponds to using b for the threshold in the underlying 

theory. 

 

Let ),,(,, tyxXX DADA = denote the rainfall field accumulated locally over a duration D 

and over an area A. If the Poisson counting of exceedances holds, the probability that the 

maxima do not exceed the threshold b within an overall time-period D0 and within an 

overall spatial domain A0 is given by the following exponential relationship: 

 

( )00,, exp) exceeds  noPr()( DAbXbF bDADA µ−== . 

 

Here the dependence of bµ  on the area A and duration D of the accumulated rainfall field 

is suppressed from the notation. The function ),,( TDAb  is found by solving  
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( ) 1

, )(
−

= KTbF DA  or ( )KTDAb log00 =µ , 

 

 

for b, where K is the constant to convert the time-units to years. After some further 

development of the theory, and some data analysis, a formula of the following type is 

derived: 
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where d, γ , δ  and DA,β  are data-fitted constants obtained using observed values of DAX ,  

from a given data set, and where DA,β  varies with A and D.  

 

In order to arrive at their expression for the ARF, Bacchi and Ranzi (1996) needed to 

make a number of assumptions (apparently unjustified in strict terms although the 

assumptions hold for Gaussian fields). These relate to crossing-properties taking each of 

the x-, y- and t-directions separately and include assumptions about statistical 

independence between statistics for these directions. The assumptions used are in 

addition to the assumption inherent in the use of a Poisson model for the occurrence of 

large rainfalls.  

 

The data analysis is limited to a single storm event in a period covering 4 days, which 

seems to be a very small amount of data from which to derive estimates of extreme 

rainfall frequencies. Nevertheless, the functional form of the relationship of 

),,(& TDAARF RB  is of some interest. In particular the results suggest that ARF is 

proportional to a power (close to zero) of ( )KTlog , which would imply a fairly slowly-

changing function: the parameter values found by Bacchi and Ranzi (1996) imply a slow 

decay (i.e. a small negative power). 

 

The model is calibrated using radar images of an occluded front passing over the eastern 

Po Valley, Italy. That is, the model is calibrated using images from a single, large-scale 

storm. The authors consider the method to be applicable for small urban catchments no 

greater than a few square kilometres and with durations up to a few hours. These limited 

scales are presumably necessary for the maxima to be assumed independent in time and 

space, i.e. for the Poisson assumption. The authors note that the local maxima in the 

storm used for calibration showed clustering features. They conclude that a more 

extensive analysis of observed rainfall fields is needed to investigate the dependence of 

the reduction factor on different meteorological regimes and to improve the statistical 

soundness of the relationships presented. The use of radar data is discussed in a separate 

section below. 
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Scaling relationships 

 

It has been noted that empirical ARF curves often display scale-invariant (scaling) 

behaviour in space and time within particular limits, the scaling regime, which indicates 

that a multifractal analysis may be successful (e.g. Veneziano and Langousis 2005). The 

attractive feature of a multifractal approach is that statistical properties of complex 

geophysical data can be characterised over a wide range of scales in terms of a few 

parameters (e.g. Davis et al. 1994). Scaling relationships therefore seem to hold some 

promise for the development of a theoretical framework for ARF estimation. 

 

In a review paper, Veneziano et al. (2006) discuss different definitions of multifractality 

and outline the theory for deriving ARFs based on counting rainfall exceedances above a 

threshold in “tiles” making up a unit “cube” in two spatial dimensions plus a time 

dimension. They suggest that if the ARF is insensitive to climate, season, etc., then it can 

be robustly estimated from just one or very few space-time data sets. However, when the 

models are fitted to empirically derived ARFs they need the same amount of data as these 

methods (while not necessarily spanning as large range of spatial and temporal scales). 

By being based on a counting exercise, these methods superficially have similarities with 

empirical methods, but the elaborate multifractal framework encompassing the counts 

sets them apart from these. The concept of exceedances was also used in the crossing 

properties method (Bacchi and Ranzi 1996), but again the theoretical framework here is 

different. 

 

Reflecting the scaling properties of rainfall in space and time, de Michele et al. (2001) 

present a simple model that is calibrated using empirically derived ARFs for Milan, Italy 

(empirical ARFs are derived as the mean of annual maximum areal rainfalls divided by 

the mean of annual maximum point rainfalls). 
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where A* is the (catchment) area minus the area of the raingauge, D is the duration of the 

rainfall, and ϖ , z, b and υ are fitted parameters. Because only eight years of data were 

available, the authors did not attempt to develop a model that incorporates the return 

period of the rainfall. The model was fitted to durations between 20 minutes and 6 hours, 

and areas between 0.25 and 300 km
2
. A plot of expected rainfall intensities versus A* 

shows that the model fits the data well for the 1- and 3-hour durations, but slightly less 

well for the 20 minute and 6-hour durations. The fit also becomes worse for increasing 

sizes of area. The systematic manner in which the model results deviate from the 

observed data is a worrying feature, suggesting that the scaling regime might be rather 

limited. However, the authors also fit a model to UK ARFs presented in the Flood Studies 

Report (NERC 1975), with durations ranging from 1 minute to 25 days and areas from 1 

to 18,000 km2. Although the explained variance of the fitted model is very high, at 

R2=0.96, it is not clear from the scatter plot of modelled and observed ARFs which points 
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relate to particular durations and areas, and hence it is difficult to judge whether or not 

there are any systematic biases. 

 

Also using ARF values presented for the UK in NERC (1975), Veneziano and Langousis 

(2005) deduce that ARFs are scale-invariant with regard to area and duration for 

(roughly) areas, A, between 1000 and 10,000 km2 and durations, D, between 15 minutes 

and several hours. Specifically, the ARF is constant for AD ∝ . Outside these spatial 

and temporal ranges, rainfall increasingly deviates from perfect multifractality, consistent 

with local intensity fluctuations being smaller than required for scale invariance. 

Veneziano and Langousis (2005) argue further that under perfect multifractality ARFs 

show asymptotic scaling behaviour with return period. However, they note that this may 

not apply in reality, or may occur for return periods that are too large to be of practical 

interest.  

 

 

Storm movement 

 

In contrast to previous methods which were empirically or statistically based, Bengtsson 

and Niemczynowicz (1986) take a simplified conceptual physics approach to ARF 

estimation by moving an idealised storm across an area. The resulting ARFs should 

therefore be more similar to ARFs derived using storm-centred rather than fixed-area 

approaches. The data requirements are limited as the method is applicable to small areas 

and is representative of frequent events. It makes assumptions about the shape and 

movement of convective rainfalls resulting in a fairly simple ARF calculation. 

 

The method is intended for urban catchments, up to about 30 km
2
 in size, and for short 

durations up to 40 minutes. It is referred to as the moving storm derived areal reduction 

factor, M-ARF, and was developed using 12 recording raingauges in the city of Lund, 

Sweden. The method is based on the movement of convective storms, and ARFs are 

calculated from rainfall observations at a fixed point (point hyetograph) and storm speed. 

 

The assumption is made that the shape of the hyetograph and its velocity of movement do 

not change during the storm’s passage over the area. Since urban areas are limited in 

areal extent, rainfall intensities are not expected to change drastically. Further, the lateral 

rainfall intensity (transverse to the storm’s direction of movement) is assumed to decay 

exponentially, such that 

 
ky

ceii
−=  

 

where i is the rainfall intensity at a lateral distance y from the centre, which has rainfall 

intensity ic, and k is a distribution coefficient. The storm speed is derived using a 

regression relationship with concurrent wind velocity at 600 mb height, which is 

generally available from nearby airports. The areal rainfall is calculated by integrating the 

rainfall field as it moves across the catchment. This is divided by the point rainfall to 

obtain the ARF estimate. The areal reduction factor turns out not to depend much on 

which raingauge hyetograph is used, but average ARFs derived from hyetographs at any 
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three raingauges give a very stable estimate. The results are reported to agree well with 

empirical ARF estimates of 0.5 years return period. Where hyetographs are not available, 

synthetic storms such as a block rainfall derived from an intensity-duration-frequency 

curve may be simulated to move across the catchment. The authors note that ARFs have 

been found to depend on return period, and suggest that for design storms this can be 

taken into account by varying the storm speed and/or the lateral rainfall intensity 

distribution.  

 

The method assumes a laterally decaying rainfall intensity that is appropriate only for 

small convective storms, and the main area of application is in urban hydrology. Hence, it 

is not suitable for application to large catchment areas, or for long durations.  

 

 

Radar data 

 

Traditional ARF estimation has been carried out using dense networks of raingauges. 

More recently radar data have become available and several authors have investigated its 

use as an alternative to using ground observations (e.g. Durrans et al. 2002; Allen and 

DeGaetano 2005b; Lombardo et al. 2006). Radar data provide a much improved spatial 

coverage compared with even the more dense raingauge networks, resulting in good 

indications of the spatial patterns of rainfall. However, radar records are short, 

particularly for the finest spatial resolutions. The quantitative measurements are also poor 

compared with raingauge data, although this might be overcome by using raingauge-

calibrated radar data. 

 

Durrans et al. (2002) evaluated the potential of radar-rainfall data for development of 

geographically-fixed depth-area relationships that vary with return period (compare 

Eq. (2)). They used data on a (roughly) 4 km grid covering a rectangular area from 

eastern Colorado to western Arkansas, and from northeastern Texas to central Kansas, 

United States. Durations of 1, 2 and 4 hours were investigated during a 7.5-year study 

period, May 1993 to September 2000. This study found the following issues: the short 

period of record is a limitation for the application of frequency analysis to obtain the 

point and areal rainfalls of a particular return period when calculating the ARF. 

Heterogeneities in the radar data occurring because of continual improvements to the data 

processing algorithm is another difficulty. The sampling variation due to short records 

and heterogeneities can give rise to unexpected results, such as ARFs greater than 1 for 

some averaging areas and return periods. This mainly occurred because of edge effects in 

the spatial smoothing algorithm. Record lengths and poor homogeneity should improve 

with the passage of time. 

 

Durrans et al. (2002) also report a concern about possible biases in the radar estimates of 

extreme rainfall. Precipitation estimates for the 100-year return period were found to be 

at least 20-35% smaller than gauge-based estimates published in Hershfield (1961) and 

Frederick et al. (1977). This may be due to short radar records and natural climate 

variability. The ARFs are less affected, because the biases cancel out to some extent 

when calculating the area to point rainfall ratio. Hence, composite ARFs developed using 
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radar data (averaging ARFs calculated for several sub-areas, and avoiding edge areas) are 

considered reasonably consistent with earlier gauge-based studies presented in U. S. 

Weather Bureau (1958). However, they do not decrease with area as rapidly as gauge-

based estimates do. There is not a pronounced difference between the curves for different 

return periods, but the ARFs for larger return periods recede somewhat quicker than for 

smaller return periods. Radar data are expected to become more reliable as the technique 

develops in the future.  

 

In contrast to the study by Durrans et al. (2002), Allen and DeGaetano (2005b) found that 

ARFs derived from radar data decay at a faster rate with increasing area than ARFs 

calculated from raingauge data. This more recent study uses five years, 1996-2000, of 

daily radar data on a 2 km grid over two areas in the eastern United States (New Jersey 

and North Carolina). The ARFs are calculated according to Eq. (3). For a basin size of 

20,000 km
2
 the difference between ARFs from radar and gauge data ranges from 11 to 

32%. Between-station variance of same-day extreme precipitation, as well as the 

coefficient of variation, tends to be larger for the radar-derived areal extreme events, 

favouring a smaller radar areal precipitation. Smaller radar ARFs are also favoured 

because, on average, a larger percentage of gauges have coincident annual maxima than 

do the radar pixels that correspond to these gauges. The authors conclude that the 

accuracy of the calibrated radar data for extreme events is suspect. When radar areal 

precipitation amounts were calculated and compared with gauged areal precipitation, the 

results varied from region to region as to which were the largest. 

 

 

Discussion and recommendations 

 

The relationship between the point and areal rainfalls has been found to vary with, for 

example, predominant weather type, season, return period and estimation method. This 

section discusses the methods reviewed in detail earlier in the paper. A summary of the 

key characteristics of each method and its advantanges and limitations is given in 

Table 1. Two distinct groups of methods can be recognised; the generally data intensive 

and computationally laborious traditional empirical methods and the often more elegantly 

formulated and recently developed analytical methods. 

 

The analytical methods (correlation by Rodriguez-Iturbe and Mejía 1974, Sivapalan and 

Blöschl 1998 and Omolayo 1989; crossing properties by Bacchi and Ranzi 1996; scaling 

methods by de Michele et al. 2001 and Veneziano and Langousis 2005; and storm 

movement by Bengtsson and Niemczynowicz 1986) attempt to put areal reduction factor 

(ARF) estimation on a sounder scientific basis. However, they are generally based on 

assumptions that are not entirely true descriptions of the real rainfall process, which is a 

cause for concern and uncertainty regarding the results. This concern is compounded by 

the often limited amount of actual rainfall data that so far has been used to verify them. 

However, with further verification, some of these methods may prove to provide 

perfectly adequate ARF estimates with a much smaller amount of computational effort 

and data requirements than the traditional methods. Results from methods based on 

scaling relationships seem to agree with empirical estimates within a limited scaling 



 

 20

regime, but similarly to methods developed for short durations and small areas (e.g. the 

empirical small-scale study and the analytical crossing properties and storm movement 

methods), they may not be appropriate for application to a comprehensive set of temporal 

and space scales. 

 

A number of both the empirical and analytical methods, such as storm-centred methods, 

some correlation-based methods and the annual maxima-centred method, may not result 

in probabilistically correct areal rainfall estimates. That is, when multiplying the ARF 

with a T-year point rainfall, the resulting areal rainfall may not necessarily have the same 

T-year return period. However, the question is how large the discrepancy is, as, for any 

method, a small difference may be acceptable when considered in conjunction with a 

method’s other advantages. Until the magnitudes of the discrepancies have been assessed, 

it seems prudent not to recommend these methods for use with rainfall frequency 

estimates. Instead, a fixed-area approach can be used to obtain probabilistically correct 

areal rainfall estimates. But for any method it should be borne in mind that the results will 

not be better than the underlying data. A fixed-area approach may not give 

probabilistically correct results, for example, if there are biases in the areal rainfall 

estimates, say, because of underrepresentation of gauges in upland parts of a catchment.  

 

The use of radar data is at present problematic. Differences can be expected between 

successive time periods for the same area because of heterogeneities in the data, as 

resolution and radar data processing improves with time. Other problems are short 

records and possible biases in the ARF estimates. Although this type of data holds much 

promise for the future, it seems too early to apply it for ARF estimation at national levels.  

 

There is no quick and unambiguously correct way of updating the current ARF estimates, 

which in most parts of the world have probably been derived using traditional empirical 

fixed-area methods. Although being data-intensive and laborious, these traditional 

methods still have advantages over the newer analytical methods, mainly because of the 

limitations of the latter as discussed above (i.e. assumptions not strictly met by the real 

rainfall process; limited range in space and time; not probabilistically correct). Some 

empirical fixed-area methods have the advantage also over empirical storm-centred 

approaches in that they can provide probabilistically correct ARFs. 

 

With modern database systems for data storage and powerful computers for data 

processing, the application of empirical fixed-area methods should not be problematic. 

For example, in the UK more than 30 years of rainfall data have been collected since the 

ARF estimates in the Flood Studies Report (NERC 1975) were presented. The UK has a 

relatively dense network of daily gauges, and over the past decades the digital rainfall 

records from the network of gauges with a sub-daily resolution have become more 

plentiful. Data availability in many other countries has probably followed a similar 

pattern, and this increase in available data would provide improved ARF estimates if new 

studies were undertaken. For example, a version of Bell’s fixed-area method (Bell 1976), 

which varies with return period, may be suggested perhaps in conjunction with a 

regionalisation scheme taking into account the differing rainfall characteristics of 

different climatic regions.  Bell’s method offers specific advantages over other empirical 
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methods.  In particular, compared to the US Weather Bureau (1957-1958), NERC (1975) 

and the Desbordes et al. (1984) methods, it has the advantage of incorporating return 

period, and it has the additional advantage over the last of these in that it encompasses a 

wider range of time and space scales. It is simpler than the National Weather Service 

method (Myers and Zehr 1980). Finally, it is intuitively more probabilistically correct 

than the annual-maxima centred method (Asquith and Famiglietti 2000). 
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Figure caption 

 

Figure 1.  Areal reduction factors for precipitation in the United Kingdom presented 

in the Flood Studies Report (diagram derived from tabulated values in 

NERC (1975)). 

 

Table caption 

 

Table 1.  Summary of methods for areal reduction factor (ratio of areal to point 

rainfall) estimation. 
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Table 1.  Summary of methods for areal reduction factor (ratio of areal to point 

rainfall) estimation. 

 

Type Method name 

and/or 

reference 

Characteristics Comments 

    

G
en

er
al

 e
m

p
ir

ic
al

 m
et

h
o

d
s 

Fixed-area (e.g. 

Omolayo 1993) 

Geographically fixed area, 

such as a catchment; the 

point rainfall used is 

representative for the 

whole catchment  

The ARF can be (but does not 

have to be) defined as an areal 

rainfall of a particular return 

period divided by the point 

rainfall of the same return period 

resulting in a probabilistically 

correct ARF estimate; data 

intensive  

Storm-centred 

(e.g. Omolayo 

1993) 

The area changes for each 

storm, and is outlined by a 

selected isohyet; the point 

rainfall used is the highest 

within each storm. 

Typically used for PMP 

estimates, which are not 

associated with a particular return 

period 

    

S
p
ec

if
ic

 e
m

p
ir

ic
al

 m
et

h
o

d
s 

US Weather 

Bureau (1957-

1958) 

Fixed-area; relates mean 

annual max areal rain to 

mean annual max point 

rain (for all stations and 

years)  

The most commonly used method 

in the US; intuitive to apply but 

laborious; does not take into 

account return period 

Small-scale 

study – “fixed-

area” 

(Desbordes et 

al. 1984) 

Largest point rainfall of a 

given duration at each 

gauge for each event in the 

area is noted and the 

concurrent Thiessen-

weighted areal rainfall is 

divided by it; ARFs are 

then averaged to get a final 

estimate; events selected 

based on discharge 

Applicable to small space and 

time scales; unclear how results 

compare with more standard 

methods, but makes good use of 

data collected during a short 

experiment; may not be 

representative of extreme 

rainfalls as area small and period 

of record short; does not take into 

account return period; 

intermediate ARFs may be > 1 

Small-scale 

study – “storm-

centred” 

(Desbordes et 

al. 1984) 

A subset of the above, 

using only the largest point 

rainfall in the study area 

(but not necessarily for the 

entire storm area) for each 

event 

All intermediate ARFs ≤ 1, but 

otherwise similar comments to 

above; ARFs recede more 

quickly than for the above 

method 

   

NERC (1975) Fixed area; assumes that 

“an average of ratios” can 

A simplification of the US 

Weather Bureau method; 
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approximate “a ratio of 

averages” 

unorthodox assumption makes 

computations convenient; does 

not take return period into 

account 

Bell (1976) Fixed area; fits frequency 

distributions to point and 

Thiessen-weighted areal 

annual max rainfalls and 

calculates ARFs for 

specified return periods 

These ARFs recede more quickly 

than those of the NERC method; 

takes return period into account; 

following Bell’s method Stewart 

(1989) introduced a 

standardisation taking into 

account local variation in the 

mean annual max rainfall 

National 

Weather 

Service (Myers 

and Zehr 1980) 

Based on frequency 

analysis of annual max 

rainfall at pairs of stations 

and the distance between 

them; uses small five-

station networks 

Some of the theory developed is 

rather involved; takes return 

period into account; does not 

require large, dense networks of 

concurrent observations 

Annual-maxima 

centred method 

(Asquith and 

Famiglietti 

2000) 

Concurrent rainfalls 

surrounding a point annual 

max are used for 

calculation of ratios 

between gauge-pairs (the 

max is always one of the 

pair), which are then 

plotted against distance; a 

curve is fitted and ARFs 

integrated; stratification on 

return period at annual max 

gauge 

Takes return period into account, 

but may not be “probabilistically 

correct”; labour-saving as it does 

not require spatial averaging of 

rainfall, explicit calculation of 

correlation coefficient, or 

definition of representative area; 

requires a dense network of 

gauges 

    

S
p

at
ia

l 
co

rr
el

at
io

n
 s

tr
u
ct

u
re

 

Rodriguez-

Iturbe and 

Mejía (1974) 

Relates the ARF to the 

correlation between two 

gauges separated by a 

“characteristic correlation 

distance”; assumes a 

particular spatial 

correlation structure and 

Gaussian point 

precipitation 

Straight-forward, but requires 

estimation of mean distance 

between two random points in the 

area; does not take return period 

into account; assumption of 

Gaussian point rainfall not likely 

met 

Sivapalan and 

Blöschl (1998) 

Extension to the 

Rodriquez-Iturbe and 

Mejía method; point 

rainfall is assumed to 

follow an exponential 

distribution 

Expression of ARF is more 

complex than for the above 

method, depending on area, 

“spatial correlation length”, 

duration and return period; 

method is verified using 
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individual storm events rather 

than a traditional fixed-area 

approach 

Omolayo 

(1989) 

The ARF is calculated 

using the average spatial 

correlation and the number 

of gauges in the area  

Depends on return period; if 

Gaussian rainfall is assumed 

rather than log-normal, the ARF 

reduces to a measure similar to 

that of Rodriguez-Iturbe and 

Mejía 

    

C
ro

ss
in

g
 p

ro
p
er

ti
es

 Bacchi and 

Ranzi (1996) 

Applies a peak-over-

threshold approach to the 

spatial rainfall field; relies 

on assumptions of 

independence in the rainfall 

field in the two spatial 

directions and in time, in 

addition to distributional 

assumptions 

Suitable for small areas and short 

durations; takes return period into 

account; relies on many 

assumptions about the rainfall 

field that may not be met 

    

S
ca

li
n

g
 

re
la

ti
o

n
sh

ip
s 

de Michele et 

al. (2001), 

Veneziano and 

Langousis 

(2005) 

Based on scale-invariant 

(scaling) behaviour of 

rainfall; statistical 

properties can be 

characterised over a range 

of scales in terms of a few 

parameters 

The range of spatial and temporal 

scales for which the derived 

relationships are valid is in 

practice limited; could take return 

period into account 

    

S
to

rm
 m

o
v

em
en

t Bengtsson and 

Niemczynowicz 

(1986) 

Approach based on the 

movement of convective 

storms; uses point 

hyetograph and storm 

speed; assumes exponential 

decay transverse to the 

direction of movement 

Applicable to small areas and 

short durations; example used 

agrees with empirically derived 

ARF estimate of 0.5 years return 

period 

    

R
ad

ar
 d

at
a 

Durrans et al. 

(2002), Allen 

and DeGaetano 

(2005b), 

Lombardo et al. 

(2006) 

Various methods described 

above can be applied to this 

type of data 

Improved spatial coverage 

compared with raingauge 

networks, but short 

inhomogeneous records and poor 

quantitative rainfall 

measurements cause uncertainties 

in the ARF estimates 
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