
FINAL DEGREE PROJECT

TITLE: Design, planning, deployment and operation of a learning platform

DEGREE: Bachelor’s degree in Network Engineering

AUTHOR: Miguel Mateos Luque

DIRECTOR: Toni Oller Arcas

DATE: September 8, 2023



Title: Design, planning, deployment and operation of a learning platform

Author: Miguel Mateos Luque

Director: Toni Oller Arcas

Date: September 8, 2023

Overview

This work explores in depth the effective management of Odoo-based systems
in educational and business environments, with a special focus on the
experience of the aUPaEU educational project. Odoo, an open source
business management system, has proven to be an essential tool for
managing a wide range of business processes. Successful implementation of
Odoo involves sound management and appropriate approaches to critical
issues such as backup, version migration and continuous monitoring.

This work addresses these fundamental aspects of Odoo system
administration. For backups, it proposes the use of Minio, a scalable cloud
storage solution that ensures the integrity of enterprise data. Version migration
is addressed through the use of OpenUpgrade, a tool that automates this
complex process and minimises the associated risks. In terms of system
monitoring, a set of tools including Prometheus, Grafana and Loki are used,
enabling constant and effective control of the Odoo infrastructure.

In the context of aUPaEU, this work also examines how these solutions and
best practices are specifically applied to the management of Odoo systems in
education. It highlights how aUPaEU has used these tools to improve the
efficiency and reliability of its systems, resulting in a more robust user
experience and more effective management of educational resources.

The work not only presents these tools, but also highlights best practices for
their successful implementation in the Odoo environment, with a focus on how
these practices benefit aUPaEU. In addition, future directions are explored to
further improve Odoo systems management and its impact on aUPaEU,
making it a valuable resource for both working professionals and students
venturing into this ever-evolving field.

Ultimately, this work makes a contribution to the field of Odoo systems
management by providing guidance and essential tools that respond to the
evolving needs of companies and organisations using Odoo to drive their
business operations, including educational cases such as aUPaEU.



Título: Diseño, planificación, despliegue y operación de una plataforma de
aprendizaje

Autor: Miguel Mateos Luque

Director: Toni Oller Arcas

Fecha: 8 de setiembre de 2023

Resumen

Este trabajo, centrado en la gestión eficaz de sistemas basados en Odoo en
los sectores educativo y comercial, pone de relieve la experiencia del proyecto
educativo aUPaEU. El sistema de gestión empresarial de código abierto Odoo
se ha consolidado como una herramienta crucial para supervisar diversas
operaciones corporativas.

En este trabajo, se presentan facetas importantes de la administración de
sistemas Odoo, incluidas las copias de seguridad, la migración de versiones y
la supervisión continua. Para las copias de seguridad, se propone el uso de
Minio, una solución escalable de almacenamiento en la nube. La migración de
versiones se aborda mediante el empleo de OpenUpgrade, una herramienta
que automatiza este proceso complejo. En cuanto a la monitorización del
sistema, se recurre a herramientas como Prometheus, Grafana y Loki para un
control constante y eficaz de la infraestructura de Odoo.

En el contexto de aUPaEU, este trabajo examina cómo estas soluciones y
mejores prácticas se aplican específicamente a la gestión de sistemas Odoo
en el ámbito educativo, mejorando la eficiencia y confiabilidad de sus
sistemas.

El trabajo no solo presenta estas herramientas, sino que también subraya las
mejores prácticas para su implementación exitosa en el entorno Odoo, con un
enfoque en cómo benefician a la aUPaEU. Además, se exploran direcciones
futuras para mejorar aún más la gestión de sistemas Odoo y su impacto en
aUPaEU.

En última instancia, este trabajo hace una contribución al campo de la gestión
de sistemas Odoo, al proporcionar una guía y herramientas esenciales que
responden a las necesidades cambiantes de las empresas y organizaciones
que utilizan Odoo para impulsar sus operaciones comerciales, incluyendo
casos educativos como el de aUPaEU.



Table of contents

INTRODUCTION 1
CHAPTER 1. CONTEXT 3

1.1. aUPaEU 3
1.2. Odoo 4

1.2.1. OCA 4
1.3. Objectives 5

CHAPTER 2. ARCHITECTURE 6
2.1. Odoo requirements 6
2.2. aUPaEU requirements 7
2.3. Resources 8

CHAPTER 3. ODOO INSTALLATION 9
3.1. Installation 9
3.2. Docker based installation 10

3.2.1. Automation 14
3.3. Addons Installation 15

3.3.1. Automation 17
CHAPTER 4. ODOO DEPLOYMENT 20

4.1. Deployment 20
4.1.1. Reverse proxy 21
4.1.2. HTTPS 21
4.1.3. Docker networking 22

4.2. Odoo deployment 22
4.2.1. Automation 25
4.2.2. Addressing infrastructure problems 28

CHAPTER 5. ODOO BACKUP 30
5.1. Backup 30
5.2. Odoo backup 30

5.2.1. Automation 31
5.3. MinIO 32

5.3.1. Automation 34
CHAPTER 6. ODOO UPGRADE 36

6.1. Upgrade 36
6.1.1. OpenUpgrade 36

6.2. Odoo upgrade 37
6.2.1. Automation 41

CHAPTER 7. ODOO MONITORING 43
7.1. Monitoring 43

7.1.1. Metrics 44
7.1.2. Logs 49
7.1.3. Alerts 52

CHAPTER 8. CONCLUSIONS AND NEXT STEPS 57
8.1. Conclusions 57



8.2. Next steps 58
REFERENCES 59
BIBLIOGRAPHY 63



List of tables and figures

Table 2.1 Odoo hardware requirements based on active users 6
Fig. 2.1 Scenario diagram 8
Fig. 3.1 Commands for Docker installation 10
Fig. 3.2 Configuration file "odoo.conf" 11
Fig. 3.3 Environment file ".env" 11
Fig. 3.4 Docker compose file "docker-compose.yml" 12
Fig. 3.5 Commands for Docker management 13
Fig. 3.6 Odoo initial configuration screen 13
Fig. 3.7 Updated configuration file "odoo.conf" 14
Fig. 3.8 Odoo login screen 14
Fig. 3.9 Odoo Apps Screen 15
Fig. 3.10 Odoo “Developer Mode” activation button Screen 15
Fig. 3.11 Odoo “Update Apps List” button Screen 16
Fig. 3.12 Command for restart Odoo container 16
Fig. 3.13 Updated configuration file "odoo.conf" 17
Fig. 3.14 Command to recreate a container 17
Fig. 3.15 Commands for Python addon installation 17
Fig. 3.16 Execute the script from CLI 18
Fig. 4.1 Overall picture of the system 20
Fig. 4.2 Dockerfile "nginx-proxy.Dockerfile” 23
Fig. 4.3 Updated Docker compose file “docker-compose.yml” 23
Fig. 4.4 Current scenario on an unrestricted server 24
Fig. 4.5 Secure connection check screen on the server 24
Fig. 4.6 Command to recreate the acme container 25
Fig. 4.7 GitHub Actions usage example 25
Fig. 4.8 Commands to configure a runner 26
Fig. 4.9Workflow configuration file "deploy.yml" 27
Fig. 4.10 GitHub Action workflow status screen 27
Fig. 4.11 Pre-production server console screen activating runner daemon 28
Fig. 4.12 GitHub repository runner status screen 29
Fig. 5.1 Odoo database management screen 31
Fig. 5.2 Parameter configuration of "Database auto-backup" 32
Fig. 5.3 MinIO main screen 33
Fig. 5.4 Basic AWS CLI commands 34
Fig. 5.5 Parameter configuration of the modified "Database auto-backup" 34
Fig. 6.1 OpenUpgrade Flow 37
Fig. 6.2 Screen of the module coverage on the OpenUpgrade page 38
Fig. 6.3 Odoo database management screen with an error in one database 39
Fig. 6.4 Command to install openupgradelib 39
Fig. 6.5 Commands to run OpenUpgrade 39
Fig. 6.6 Commands to run OpenUpgrade 40
Fig. 6.7 Console error screen after running OpenUpgrade 40
Fig. 7.1 Display of cAdvisor graphs 41
Fig. 7.2 Configuration file "prometheus-config.yml" 45
Fig. 7.3 Display of cAdvisor exported metrics 46
Fig. 7.4 Screen of the Prometheus targets 47
Fig. 7.5 cAdvisor dashboard screen in Grafana 48
Fig. 7.6 Odoo dashboard screen in Grafana 48
Fig. 7.7 Postgres dashboard screen in Grafana 48
Fig. 7.8 Prometheus Flow 50
Fig. 7.9 Configuration file "promtail-config.yml" 50



Fig. 7.10 Display of Loki metrics 51
Fig. 7.11 Loki Explore screen in Grafana 52
Fig. 7.12 Configuration file "altertmanager-config.yml" 53
Fig. 7.13 Updated configuration file "prometheus-config.yml" 53
Fig. 7.14 Alerts configuration file "altert-rules.yml" 54
Fig. 7.15 Alertmanager main screen 54
Fig. 7.16 Alert screen received by mail 55
Fig. 7.17 Prometheus main screen 55
Fig. 7.18 Grafana altering screen 56



Introduction 1

INTRODUCTION

The successful administration of business systems has become essential for
the success of organisations of all kinds in a world that is becoming more and
more technologically oriented. From project management to accounting to
human resource management, Odoo stands out in this environment as a
flexible, open source option that covers a wide variety of corporate applications.
Due to its versatility and flexibility to different demands, this software package
has become more and more popular in both corporate and educational settings.

This work focuses on the management of Odoo systems in the context of
aUPaEU (A University Partnership for Acceleration of European Universities),
an innovative educational platform that has adopted Odoo to manage its
academic and administrative operations. Throughout the following pages, key
practices and strategies to ensure the successful deployment and efficient
maintenance of Odoo systems in education and business environments will be
explored, with a particular focus on aUPaEU.

The work is divided into eight parts:

● Context: This chapter sets the context of the work, presenting Odoo as a
key tool in the aUPaEU project, and further defines the objectives.

● Architecture: This chapter focuses on understanding the Odoo
architecture and its requirements. It mentions the hardware and software
requirements for Odoo and explores the specific needs of aUPaEU in
terms of infrastructure.

● Initial configuration and deployment: It begins by exploring the process of
initial configuration and deployment of Odoo in the aUPaEU
environment, highlighting the key design and configuration decisions that
drive the success of the system.

● Backup Strategies: Data security is an undisputed priority in managing
Odoo systems. Backup strategies are discussed in detail, including the
implementation of Minio as a cloud storage solution.we

● Version Migration: Upgrading Odoo to newer versions is essential to take
advantage of the latest features and security fixes. A detailed approach
to version migration using OpenUpgrade is presented.

● Monitoring Tools: In an ever-changing world, constant monitoring is
essential. The use of tools such as Prometheus, Grafana and Loki to
maintain optimal performance in aUPaEU Odoo systems is explored.

● Conclusions and next steps: In this section, possible future directions for
the administration of Odoo systems in aUPaEU are discussed and the
main conclusions drawn from the work are given.



2 Design, planning, deployment and operation of a learning platform

● Bibliography and References: The list of references and bibliographic
sources utilised in the work is provided at the end.

Throughout this work, the focus has been on contributing to the continued
success of aUPaEU and other educational and business environments that
have adopted Odoo as their system of choice. With the goal of sharing best
practices and valuable insights, this work serves as a resource for practitioners
and students interested in the efficient management of Odoo systems in similar
contexts.



Context 3

CHAPTER 1. CONTEXT

This chapter lays the foundation for the work, presenting an overview of Odoo
and its importance in business environments. In addition, the contribution of the
Odoo Community (OCA) is examined, and the overall goals of the project are
established. This chapter's goal is to provide a solid understanding of the
context in which this work is situated.

1.1. aUPaEU

The EU-funded aUPaEU (A University Partnership for Acceleration of European
Universities) project [1] is based on the concept of the ancient Greek agora, a
meeting place where citizens exchanged ideas and formed alliances. Today, it
seeks to create a shared space where diverse stakeholders can offer and
receive services while sharing their knowledge.

This project involves the collaboration of two European alliances, EPiCUR and
Unite! working together to integrate and provide support services in the context
of higher education. These institutions have experience in modernising research
and innovation and wish to serve as an example for other institutions, networks
and university alliances.

European University Alliances [2] are transforming higher education in Europe
through transnational collaboration. These alliances, made up of diverse
institutions across Europe, focus on sustainability, excellence and long-term
European values. They offer joint student programmes on multiple campuses,
promoting student mobility and an interdisciplinary approach to tackling
European challenges.

The main objective of aUPaEU is to develop an acceleration space where
higher education institutions, university networks and alliances can achieve
lasting transformations in key areas of education and research. This includes
sharing resources, enhancing researchers' careers, collaborating with diverse
research actors, promoting open science, contributing to society and promoting
gender equality.

In essence, the project seeks to create an inclusive and accessible space
where all stakeholders can collaborate and benefit from each other. The
success of this agora will serve as an example for other institutions and
university alliances wishing to undertake similar initiatives.

The basis of this agora is going to be Odoo.



4 Design, planning, deployment and operation of a learning platform

1.2. Odoo

Odoo [3] is an open source software platform used for managing businesses in
a number of sectors, including e-commerce, customer relationship management
(CRM), sales, inventories, and more. Organisations of all sizes and sectors find
it to be particularly appealing because to its adaptability and versatility.

The open source edition of Odoo that is free is referred to as the community
version or Odoo Community Edition. Small and medium-sized organisations as
well as bigger organisations can benefit from its extensive set of features and
functions. The corporate edition of Odoo, which costs money and provides
greater support and capabilities, is an option for businesses as they expand and
need more sophisticated features or particular customizations.

Odoo stands out for its adaptability and flexibility in meeting the individual
demands of every business. To do this, "addons" are used, which are modules
that may be added or withdrawn to increase the capability of Odoo. These
add-ons enable significant customization and can be created by the Odoo user
community or by other developers.

In the context of aUPaEU, Odoo is used as a central tool to optimise and
manage various operations and processes. Its versatility allows aUPaEU to
tailor Odoo to its specific needs, including efficient resource management,
automation of administrative tasks and improved decision making. In addition,
Odoo's ability to manage multiple languages and adapt to country-specific
regulations makes it a suitable solution for an international organisation such as
aUPaEU.

1.2.1. OCA

The open source company management software Odoo is promoted and
developed by the OCA (Odoo Community Association) [4], a nonprofit
organisation. A diverse variety of modules and extensions are developed and
maintained by its community of users, which is made up of Odoo developers,
consultants, and fans, to increase the software's functionality in fields including
accounting, human resources, e-commerce, and logistics. The OCA focuses on
maintaining high quality standards and offers these open source resources free
of charge to benefit the Odoo community. It also serves as a meeting and
collaboration point for the community, providing forums and resources for
knowledge sharing and problem solving related to Odoo.

Odoo communities [5] around the world are organised into country and
region-specific groups to adapt and localise Odoo according to local needs,
such as legal regulations and accounting. This allows Odoo to be highly
adaptable and customisable, which is essential for use in different locations.
These groups are essential to Odoo's international growth since they make it
simpler for businesses to operate efficiently and adhere to local laws.



Context 5

1.3. Objectives

The following aims can be used to describe this document:

● The first objective is to gain an in-depth understanding of Odoo as an
open source business management platform, including its structure,
features and flexibility.

● Implement Odoo in aUPaEU: Apply the acquired knowledge to effectively
implement Odoo in the aUPaEU organisation, taking advantage of its
versatility to improve the management of educational resources and
processes.

● Automation and Efficiency: Develop automation strategies for Odoo
installation, deployment and backup, with the aim of improving
operational efficiency.

● Migration to New Versions: Establish an efficient migration process to
newer versions of Odoo using OpenUpgrade, ensuring that aUPaEU is
always up to date with the latest functionality.

● Monitoring and Control: Implement monitoring tools to capture metrics,
logs and alerts, improving visibility and control of aUPaEU's Odoo
systems.

● Community Contribution: Share acquired knowledge and developed
solutions with the Odoo community, contributing to the growth and
continuous improvement of this open source platform.

By addressing these objectives, it will contribute to the success of aUPaEU by
leveraging Odoo as an effective tool for the management and optimisation of its
educational and administrative operations.



6 Design, planning, deployment and operation of a learning platform

CHAPTER 2. ARCHITECTURE

Effective Odoo management starts with a clear understanding of its
architecture. This chapter focuses on the requirements and environments
needed to implement Odoo. It explores the current scenario, and details the
connection to the infrastructure, which is essential for a successful
implementation.

2.1. Odoo requirements

The infrastructure required to support an alliance of up to 44 alliances using
Odoo would depend on a variety of factors, such as the size of the user base,
the number of modules and applications being used, and the amount of data
being generated.

Odoo is a straightforward system [6]. A 2 CPU 2 RAM server would be
adequate for businesses with 5 employees, while for those with 20 employees,
a 4 CPU 8 RAM server would be required. For 90 employees, it is advisable to
separate application and database servers. A corporation with more than 250
employees would require load balancing (LB) of the application server. A
summary can be found in Table 2.1.

Table 2.1 Odoo hardware requirements based on active users

The size of the database and the number of modules to be installed will
determine the amount of storage required. For the program and database files,
it is often advised to have at least 10 GB of free disc space. In addition, 2-4 GB
per active user should be considered.



Architecture 7

On the software side, deploying Odoo requires careful planning of operating
systems, databases and other software components. It is essential to choose
an operating system that is compatible with Odoo and provides good
performance, such as Ubuntu, which is suggested by the business.
Furthermore, databases like PostgreSQL need to be set up and optimised to
provide effective data management and high availability.

2.2. aUPaEU requirements

What is to be implemented will be determined once some numerical
calculations are made. There is a macro-project initially consisting of two
associations, but there are many options for growth.

The basic thing to define is a Postgres instance for each Odoo instance, leaving
no room for doubt. The next step is whether to separate each alliance into a
different instance, or to somehow group them into one, which considering that
they need to be kept in sync in case of software changes, the second option is
the most viable. Now, everything is in a single set of Postgres plus Odoo, but
must be separated in some way. Here the options are to use, within the same
Postgres, different databases, or to apply a multi-company, where this option is
the winner, because although both options allow customising each alliance (in
this case), a multi-company [7] allows sharing data and configurations between
alliances, as may be the case of users belonging to several, but the most
important thing is still the fact of not having to be synchronising software
changes, since several databases are just that, different.

Even if there is only a single server for the entire project, this only serves as a
precedent for applying vertical scaling techniques, initially, and horizontal
scaling techniques, to offer greater availability.

In addition to all this, there is the need to keep backups, which should not be on
the same server. In the case of not using an external service, a dedicated
server should be added to store the backups.

So far, it has been discussed what is basically the minimum for an end-user, but
this is preceded by a series of developments. To be up to date and to include
improvements in an Odoo instance, it is not possible to work on the same
server as the users. Three environments are defined:

● Local / Development: This is the physical machine of each developer, or
failing that, an own server, which is rarely necessary. Here the
developers will create and test the new contributions they will make on
Odoo.

● Pre-production: An own server, where the changes from development will
be uploaded, and everything will be checked to make sure that
everything works as it should.

● Production: Another own server, where the final users are located. The
changes will be uploaded from pre-production, already verified, and any
errors that may arise will be followed up.



8 Design, planning, deployment and operation of a learning platform

2.3. Resources

For the realisation of this project, the local environment consists of a virtualised
installation of Ubuntu 22.04.2 LTS, to which 2 cores of a consumer CPU, 4 GB
of ram and 50GB of storage have been assigned. As for the OS, the choice is
Ubuntu Desktop 22.04 LTS.

For the rest, the infrastructure is provided by IThinkUPC [8]. The servers
currently available are virtualised, in this case using VMware ESXi. Each server
has been assigned a socket, which in turn only contains one core, which in turn
only has one thread, all coming from an Intel(R) Xeon(R) Platinum 8280 CPU
with a base frequency of 2.70GHz. 4GB of RAM and 512GB of storage space
are available. The operating system is Ubuntu Server 22.04.02 LTS.

In addition, several domains have been registered for use with these machines,
including: "aupaeu.pre.upc.edu" and "aupaeu.upc.edu".

The fact that accessing this infrastructure requires the use of a VPN. These
issues will be discussed later with a little more context on basic concepts (see
4.2.2).

The scenario is a 4-server scenario, consisting of a storage server, the two
provided servers and the developer's computer. The code exchange between
the different environments will be done through a GitHub repository. To access
the resources of the provided servers, a VPN tunnel will be established. The
resulting scheme is shown in Fig. 2.1.

Fig. 2.1 Scenario diagram



Odoo Installation 9

CHAPTER 3. ODOO INSTALLATION

Installing Odoo is a critical step in the implementation. This chapter dives into
the different installation methodologies available, including installation using
Docker. It also discusses the automation of these processes to speed up the
deployment and reduce potential errors.

3.1. Installation

Odoo can be installed in various ways [9]. The choice of installation method
depends on factors like the technical expertise, infrastructure requirements,
scalability needs, and deployment preferences. Some different types of
installations for Odoo that can be considered are:

● Source: The source installation method involves downloading the Odoo
source code and manually configuring the system. This approach
provides maximum control and customization options, allowing advanced
configurations and modifications tailored to specific needs. However, it
necessitates technical proficiency and system administration skills.
Additionally, this approach might take a while, especially for complicated
settings, and managing dependencies manually can be challenging.

● Package managers: The package installation method utilizes package
managers like apt-get or yum to install Odoo directly from the
distribution's repositories. This approach simplifies the installation
process by handling dependencies and package management
automatically. It offers the advantage of easier updates and management
through the package manager. However, it is limited to supported
distributions and repositories. Furthermore, as compared to the official
version, there could be delays in getting the most recent Odoo upgrades.
Additionally, using this in production contexts is not intended.

● Docker: The Docker installation method utilizes containerization
technology to create an isolated environment for Odoo. It provides
portability and scalability, allowing deployment across different
environments with ease. Docker [10] simplifies the deployment and
management of Odoo instances, offering advantages such as isolation
and straightforward application updates. However, this method requires
familiarity with Docker and containerization concepts. It introduces
additional complexity for managing networking, data persistence, and
resource allocation.

The choice of Docker as an installation method for Odoo is justified due to its
exceptional portability, scalability and ease of management. Docker allows for
the creation of isolated Odoo containers, making it easy to deploy across
multiple environments without worrying about differences in the configuration of
the underlying system. In addition, the ability to efficiently create and delete
containers streamlines upgrades and deployments of new Odoo versions.



10 Design, planning, deployment and operation of a learning platform

Compared to other methods, such as installing from packages or from source
code, Docker offers a more efficient and versatile solution, ideal for enterprise
and development environments that require flexibility and efficiency in
managing Odoo.

3.2. Docker based installation

Everything described in this document is done, tested and working in a real
environment. The writing has been done on the basis of experience.

To start working with Docker, the first thing to do is to install it. This involves a
few commands (see Fig. 3.1):

Fig. 3.1 Commands for Docker installation

Once everything related to Docker is installed, the next step is to define the
structure. Organising the files needed for a Docker-based installation [11] [12] is
important to be able to maintain the project easily. The basic components are:

● addons: The "addons" directory serves as a repository for custom Odoo
modules or extensions. Each module can be organised within
subdirectories.

● config: Configuration files, often placed in the "config" folder, dictate how
services behave. These files encompass environment-specific settings
such as database connections, security configurations, and logging
preferences.



Odoo Installation 11

○ odoo.conf: The "odoo.conf" file [13] (see Fig. 3.2) consolidates
crucial runtime settings for the Odoo instance. It encompasses
database details, security parameters, and more.

Fig. 3.2 Configuration file "odoo.conf"

● .env: The ".env" file (see Fig. 3.3) contains environment variables
required by Docker Compose or other components. Storing sensitive
information like credentials in a separate file enhances security and
promotes ease of management across different environments.

Fig. 3.3 Environment file ".env"

For a basic example, default values have been used, but it is better to
modify these values. Note that even if they are not referenced in the
Docker composition, all containers can access them if this file is passed,
thus saving declarations.



12 Design, planning, deployment and operation of a learning platform

● docker-compose.yml: The "Docker Compose" file [14] (see Fig. 2.4) is a
core component that orchestrates Docker containers. It defines services,
networks, and volumes necessary for smooth collaboration between
different containers. This simple file, allows to easily define the
environment, without the need to use the command line.

Fig. 3.4 Docker compose file "docker-compose.yml"

This Docker Compose configuration orchestrates two services: "odoo" for
Odoo version 16.0 and "postgres" for PostgreSQL version 15. The Odoo
service, accessible at port 8069, mounts volumes for data and
configuration files, utilizing environment variables from the .env file and
depending on the PostgreSQL service. Similarly, the PostgreSQL service
uses a named volume for data storage. This setup enables containerized
deployment of Odoo and PostgreSQL instances while maintaining data
persistence and inter-service coordination.

To manage the Docker-based project, the following commands will be helpful
(see Fig. 3.5):



Odoo Installation 13

Fig. 3.5 Commands for Docker management

Finally, by accessing localhost:8069 through the browser (see Fig. 3.6), a new
database can be created for the project, or a backup can be imported.

Fig. 3.6 Odoo initial configuration screen



14 Design, planning, deployment and operation of a learning platform

3.2.1. Automation

Installing and setting up Odoo is relatively straightforward. Once Docker is
installed, the files are generated, and Docker Compose is up, it's all done. In the
case of a completely new installation, there are a series of parameters that can
be added to "odoo.conf" that can avoid a step (see Fig. 3.7):

Fig. 3.7 Updated configuration file "odoo.conf"

The first parameter is used to establish not to add test data.

Regarding credentials, on the one hand, there is the master password
(admin_passwd), which is used to manage the entire Odoo instance, which for
security reasons cannot be "admin". On the other hand, there are the user
credentials, which are specific to each database, and should not be confused
with the Postgres connection user. When the initial setup is avoided in this way,
a generic user is generated with "admin" and "admin" credentials, which are
highly recommended to change.

With "db_name", besides creating a new database, if it does not exist, it is
defining the default database, so it will not give the option to change the
database, if this parameter is set.

This leads directly to the login page (see Fig. 3.8).

Fig. 3.8 Odoo login screen



Odoo Installation 15

3.3. Addons Installation

Odoo has a section called "Apps", where one can find its "modules", base list
and the option to install them (see Fig. 3.9).

Fig. 3.9 Odoo Apps Screen

If addons (custom modules) need to be installed, a search can be done in the
Odoo Apps Store [15], GitHub, or Google itself. The result of the download
should be a folder that should be saved in the "addons" folder.

To be able to install addons, as it does not appear by default, "Developer tools"
must be activated, available at the bottom of the configuration tab (see Fig.
3.10).

Fig. 3.10 Odoo “Developer Mode” activation button Screen

This will enable, among many other options, "Refresh App List", and addons will
now be listed and can be installed in the same way as modules (see Fig. 3.11).



16 Design, planning, deployment and operation of a learning platform

Fig. 3.11 Odoo “Update Apps List” button Screen

In case of addon updates, if they only involve changes in the "XML" view, they
will be detected automatically, but if they involve changes in the functions, it will
be necessary to restart the Odoo container (see Fig. 3.12).

Fig. 3.12 Command for restart Odoo container

There is also a way to install addons, which may seem easier at first, is to install
Python packages. One thing to note here is that addons are installed in the
Odoo instance, and not in the database, so it is outside the usual flow, so they
should be treated as such.

The Python ecosystem has a package management system known as "pip",
which already comes with Odoo, since it is also based on Python, with which
the addons will be installed. "pip" consumes from a repository of Python
ecosystem software known as "PyPI", where it is also possible to search
graphically (on its website) for the addons needed. Most of the OCA modules
[16] are also found in this repository.

First, the path where these packages are installed must be added in the
"odoo.conf", so that Odoo can recognise them (see Fig. 3.13):



Odoo Installation 17

Fig. 3.13 Updated configuration file "odoo.conf"

For the changes to be applied, the Odoo container must be recreated (see Fig.
3.14):

Fig. 3.14 Command to recreate a container

Now the desired addon has to be installed, and the container has to be
restarted to reflect the changes (see Fig. 3.15):

Fig. 3.15 Commands for Python addon installation

3.3.1. Automation

Automation can already be applied at this point. A number of scripts have been
developed that will help automate many tasks that will be mentioned throughout
this document.



18 Design, planning, deployment and operation of a learning platform

These scripts are written in Bash, except for a couple that are in Python, due to
the need to use modules (Python in this case, not to be confused with Odoo's).
Given their length, only what they mainly do will be discussed. They can be
downloaded from the GitHub repository [17], and added to a new folder called
"scripts" in the root of the project.

For this occasion, there are two scripts, "update_addons_and_modules.sh"
which in turn calls "get_addons_requirements.py".

These scripts are supported by two text files that must be created inside the
"addons" folder:

● extra_modules.txt: Includes the name of the addons (PyPI packages),
one per line, that are to be installed. For OCA modules, until Odoo
version 14, in PyPI they were listed as "odooXX-...", so in important
version changes, it should be taken into account. From version 15
onwards, the version has been removed from the name, and the
package repository also includes major version changes.

● extra_requeriments.txt: Include the name of the PyPI packages, one per
line, that are needed for some reason.

The addons have a file called "__manifest__.py" [18] in which the information
about them is included, including the Odoo modules and Python modules that
they require to work. In the case of addons installed through "pip", these two
types of modules are not installed at the same time, but in the case of addons
that are in the "addons" folder and are installed in the classic way, the second
type of modules, the Python ones, must be previously installed or it will give an
error.

This script, written in the Bash scripting language, is designed to automate
several tasks for managing an Odoo instance within a Docker environment. It
can be run as shown in Fig. 3.16.

Fig. 3.16 Execute the script from CLI

See below for a breakdown of its functionality:



Odoo Installation 19

1. Through the second script, the Python one, the content of the different
"manifest" is reviewed, the requirements in terms of Python modules are
collected, and the file "addons_requirements.txt" is created in the
"addons" folder.

2. The script then proceeds to install requirements for both the addons and
the extra ones, using pip.

3. Afterwards, the script installs the extra modules, via pip. It then goes on
to use Odoo command-line interface [19] to install and update both the
addons in the folder and the base modules.

4. After successfully installing and updating addons/modules, the script
restarts the Odoo service to apply the changes.



20 Design, planning, deployment and operation of a learning platform

CHAPTER 4. ODOO DEPLOYMENT

Once installed, Odoo needs to be properly deployed. Here, the deployment of
Odoo is explored, including setting up a reverse proxy and enabling HTTPS to
improve security. Deployment automation is considered essential to maintain a
stable environment.

4.1. Deployment

Throughout this document, starting with the basics, the different points will be
studied in order to finally obtain and understand the complete system presented
in Fig. 4.1.

Fig. 4.1 Overall picture of the system



Odoo Deployment 21

So far, it has simply been shown how to install Odoo in a local environment.
Moving on to production environments, it is advisable to avoid exposing ports
directly on a Docker Compose for security and scalability reasons. Instead, it is
recommended to use internal networks and load balancers to control access
and traffic distribution to containers. This protects against threats and simplifies
management in large-scale, changing environments.

4.1.1. Reverse proxy

A reverse proxy is a server that acts as a middleman, receiving requests from
clients and forwarding them to a single or more backend servers, managing
routing, security, and traffic optimisation. This allows hiding the infrastructure
behind the proxy, improving performance by distributing the load and adding
layers of security, such as SSL encryption and authentication, before requests
reach the end servers.

Different software solutions are available on the market for this purpose. Nginx
is known for its stability and performance, Traefik is ideal for container
environments and Caddy stands out for its ease of configuration and security.
The choice depends on the needs of the project. Although the Traefik option is
very tempting and some Odoo-based projects use it, the tried and trusted Nginx
will be used.

For this implementation, "jwilder/nginx-proxy" [20], a Docker container that
provides an automated reverse proxy solution, will be used. This container
automatically detects other containers that expose ports and configures an
Nginx proxy server to route traffic to those containers based on hostnames or
Docker tags. It simplifies the configuration of multiple web services by providing
automatic routing based on hostnames and facilitates the implementation of
SSL/TLS automatically through solutions such as Let's Encrypt.

4.1.2. HTTPS

The "nginxproxy/acme-companion" [21] container will be added, which is used
as part of a reverse proxy solution with automatic TLS certificate support. To
obtain and renew TLS (Transport Layer Security) certificates securely and
automatically, it works with a web server such as Nginx and the ACME
(Automated Certificate Management Environment) client. This container acts as
an intermediary, taking care of the acquisition and renewal of SSL/TLS
certificates via the ACME protocol (e.g. Let's Encrypt [22]), and redirecting
secure requests to the backend web server, such as Nginx. Online discussions
can now be automatically configured for end-to-end encryption without the need
for lengthy or costly configuration.



22 Design, planning, deployment and operation of a learning platform

4.1.3. Docker networking

When utilising Docker Compose, the services defined in the same
docker-compose.yml file are automatically connected through a bridge network.
In this way, the "odoo" and "postgres" services are automatically linked to the
same bridge network, allowing them to talk to each other.

Based on its container name, Docker generates a distinct DNS name for each
service. In this case, the "postgres" service will be reachable from the "odoo"
service using the hostname "postgres". This DNS resolution is done
automatically within the Docker network [23].

Building a good foundation will involve segmenting the communication between
the different containers, using Docker networks.

Docker internal networks are isolated environments where containers can
communicate with each other without direct exposure to the external network.
These networks allow for the segmentation and protection of communications
between containers, providing greater security. Containers on the same internal
network can communicate via host names and ports, as if they were on a
private local network, facilitating the development and deployment of complex
applications.

It should be noted that this is a separate functionality from the above-mentioned
with respect to nginx, not to be confused.

4.2. Odoo deployment

The containers are added and the relevant configurations are made. The
complete configurations can be found in the GitHub repository, because once
the base has been set up, it is only interesting to comment on a few points.

Basically, two new services have been added. It is important to note that it is
necessary to name, not just declare (anonymous) a new volume for the
certificates, otherwise new certificates will be generated again if the containers
are deleted or recreated, reaching the free quota of Let's Encrypt.

It will be necessary to make some modifications to the nginx-proxy. This can be
done in several ways, such as mounting configuration files on the service, which
has already been done with Odoo, or creating a custom image. The latter
requires a "Dockerfile" [24], which is a text document containing instructions for
building a Docker container image, describing how to set up a container
environment, which applications or services to include and how to configure
them. This file has been saved as "nginx-proxy.Dockerfile" (see Fig. 4.2), in the
new "dockerfiles" folder.



Odoo Deployment 23

Fig. 4.2 Dockerfile "nginx-proxy.Dockerfile”

There are four environment variables for these two new services. The port to
which incoming HTTP traffic should be directed, the domain to which the traffic
should be directed and the SSL certificate generated, and an email address
required to be able to use Let's Encryt. The environment file ".env" shall be
used, so that it can have different domains depending on the environment.

If the networks required by the Odoo service, "extern" (proxy) and "postgres",
are added, the updated configuration is shown in Fig. 4.3.

Fig. 4.3 Updated Docker compose file “docker-compose.yml”

Assuming a server without technical limitations, although this is not the case,
the scenario would be as follows (see Fig. 4.4):



24 Design, planning, deployment and operation of a learning platform

Fig. 4.4 Current scenario on an unrestricted server

Now, the page can be accessed from the browser and the connection can be
checked for security (see Fig. 4.5).

Fig. 4.5 Secure connection check screen on the server

It is possible that, in the event of changes to the domains covered by
acme-companion, no new certificates are generated. This can be solved with a
new container, for example with "docker-gen", which is a tool that automatically
generates configuration files for reverse proxy servers, such as Nginx, based on
Docker container events, thus facilitating the administration and routing of traffic
in Docker container environments. For this project, it has not been
implemented, as the recreation of the acme-companion container has the same
effect (see Fig. 4.6):



Odoo Deployment 25

Fig. 4.6 Command to recreate the acme container

4.2.1. Automation

It is assumed, at this point, that the project is already being managed with Git
and uploaded to GitHub.

GitHub Actions [25] is a tool that allows automating workflows and actions in
projects maintained on GitHub. Certain events, such as code changes, build
pull requests or releases, can be configured to trigger certain actions. These
actions simplify development automation and CI/CD (continuous
integration/continuous delivery) operations from a GitHub repository. These
actions can do things like build, test, deploy and more. "Actions" are defined
through "Workflows", which are automation scripts that define specific tasks and
workflows in a GitHub repository.

In the following example (see Fig. 4.7), there is a typical use case. Upon a push
to the repository, an action is initiated to deploy the new changes to PRE, and
upon a successful pull request from PRE to PRO, the changes are deployed to
PRO.

Fig. 4.7 GitHub Actions usage example

In addition, "secrets" can be set up, which are confidential values, such as
passwords or API keys, that are stored securely and can be used in GitHub
Actions workflows without exposing sensitive information. They help maintain
security and privacy in CI/CD development and automation on GitHub.



26 Design, planning, deployment and operation of a learning platform

A runner is an instance or agent that runs automated tasks in GitHub Actions. It
can be provided by GitHub (self-hosted runner) or configured and hosted by the
user (self-hosted runner). Its function is to execute specific workflows and tasks
in response to events in a GitHub repository.

GitHub Actions' own runner is provided by GitHub and runs on GitHub's
infrastructure, while a self-hosted runner is a runner that is configured and
hosted by the user on its infrastructure (such as a server or local machine). The
main difference is control and customisation: GitHub's own runner is easier to
use, but the self-hosted runner gives more control and can execute actions on
an own infrastructure.

For specific cases, such as performing testbeds on the code or repetitive
creation of custom Docker images, it is advisable to use a GitHub runner, since
the resources of the production machines will not be used.

A connection is established via SSH to the root user of one's own server.
Docker must be installed with the aforementioned commands. To create a
self-hosted runner, from the GitHub repository, "Configuration" - "Actions" -
"Runners" - "New self-hosted runner". Then (see Fig. 4.8) the base commands
are modified to configure the runner as a service.

Fig. 4.8 Commands to configure a runner

The options offered by GitHub actions are endless, but this time, the focus is on
the automatic deployment of a Docker-based project on one's own server. It is
necessary to create the following file and folders in the root of the project:
".github/workflows/deploy.yml" (see Fig. 4.9).



Odoo Deployment 27

Fig. 4.9Workflow configuration file "deploy.yml"

With the second action, a console is available on the server, in order to be able
to execute the scripts that will be mentioned later, in an automated way.

In case of a push, the workflow will be executed, and the status can be
consulted in the "Actions" section of the GitHub repository (see Fig. 4.10) or in
the e-mail that will be sent to an specified mailbox.

Fig. 4.10 GitHub Action workflow status screen



28 Design, planning, deployment and operation of a learning platform

Upon updates to the project, services will be updated and added. Updates to
addons have already been discussed above, so the script in question could be
added.

The question arises whether it could be cost-effective to create a customised
Odoo image that already incorporates the addons, via a Dockerfile. This could
also be applied to the rest of the services. It would consist of an action that
generates the images in a GitHub server and uploads them to a private
repository in Docker Hub, and another action that takes them out of that
repository.

Since the updated Docker Compose would still need to be copied to the
production server, it is complicating things more than they already are. Also, it
would require restarting containers that often don't need to be restarted to apply
the changes, as mentioned above, so although uploads to production should
take place during peak service usage hours, this would add more downtime.

4.2.2. Addressing infrastructure problems

Although the machines are exposed on ports 80 and 443 to serve the content,
in this case, to access the servers, a VPN connection must be established.

The developers use the “FortiClient VPN” client [26] for this purpose. The
system is very similar to the one recently implemented at the university itself,
with credentials, to which a 2FA is followed, to add an extra layer of security.

Self-hosted runners use HTTPS long poll with a 50 second connection timeout
that when it times out, a new connection is opened. This means that there is no
need to allow GitHub to establish incoming connections to the runner. Runners
connect back to GitHub, no need for holes in the inbound firewall, outbound
HTTPS 443 is all that is needed.

In the following example of the pre-production machine, the connection has
been established by bypassing the VPN and without the need to open ports
(see Fig. 4.11 and Fig. 4.12).

Fig. 4.11 Pre-production server console screen activating runner daemon



Odoo Deployment 29

Fig. 4.12 GitHub repository runner status screen

The given environment is limited, as is to be expected for security reasons. The
reverse proxy is provided by the provider and routes the traffic to the virtual
machine through port 8000, the internal port of the virtual machine, which is the
one they have opened and consume in the virtualisation management.

Actually, ports 80 and 443 leave the physical machine, through its reverse
proxy, which may or may not be virtualised. In this way, they are also managing
the ACME through Let's Encrypt.

In the case of needing to open more ports, internal to the virtualised machine, it
is necessary to contact the provider, but even if it has not been considered so
far, there is an easy solution.

Based on the Docker compose generated so far, the one currently used in the
ERP environment is simpler, but fully compatible with the one seen.

Without going into details, one might tend more towards one configuration or
the other, the most important thing is to keep the name of the volumes already
in use. All references to ACME or certificates are removed, and all exposed
ports are also removed, except for nginx. Port 443 will not be used, and the
container's internal port 80 should be exposed to the virtualised machine's
internal 8000, which is the one that is enabled. The environment variables of
ports and virtual hosts must also be configured for the containers that must go
outside. This way it is possible to host several services accessible from the
internet in a machine with limitations.

To access the Postgres, although it has an internally exposed port, which in
itself is not a good practice, the VPN limits access from the outside, fortunately.
It would not be advisable to make it publicly accessible, although it is always
password protected. It can be understood that in pre-production environments,
having a SQL client such as DBeaver can make development tasks easier.



30 Design, planning, deployment and operation of a learning platform

CHAPTER 5. ODOO BACKUP

Data loss can be catastrophic, so this chapter focuses on the importance of
Odoo backups. Automated backup methods and the configuration of Minio, a
cloud storage system for backups, are covered.

5.1. Backup

One of a project's most crucial components is the security copies. The ability to
restore data and systems in the event of loss, damage, or errors ensures
service continuity, protects sensitive data, and shortens downtime, all of which
are reasons why security backups are essential.

The "3-2-1" rule, which should be kept in mind, refers to maintaining three
copies of the data, at two different locations, with at least one of them outside
the primary site, to ensure the availability and recovery of the data in a variety of
circumstances.

Data online archiving may become reliable and scalable with the use of cloud
storage services like Amazon S3, Google Cloud Storage, Microsoft Azure Blob
Storage, and IBM Cloud Object Storage. Each of them offers unique benefits
including competitive prices, options for long-term data storage, connectivity
with certain platforms, and services. The choice between these services
depends on the specific requirements of an organisation, such as the desired
cloud platform, the amount of storage required, and the demand for a particular
function.

Using the "Simple Storage Service" (S3) [27] as an example, it is a cloud
storage service from Amazon Web Services (AWS) that offers a location to
store and retrieve data safely and flexibly online. It provides an affordable
solution to store and manage a range of data, from basic files to backups and
media assets, and is incredibly reliable. S3 is organised into "buckets"
(containers) and "objects" (files), and is widely used in web applications, data
backup and static content storage.

5.2. Odoo backup

Odoo has a backup management tool (see Fig. 5.1), which can be accessed by
clicking on the "Manage databases" button on the login page.



Odoo Backup 31

Fig. 5.1 Odoo database management screen

Current databases can be managed (backup, duplicate or delete), new
databases can be created or a database can be restored from a backup.

The backups are downloaded as a .zip file, which includes:

● filestore: This folder contains the attachments and documents stored in
an Odoo instance.

● dump.sql: This file contains a copy of the Odoo database in SQL format,
which is essential to restore data in case of need.

● manifest.json: This file contains information about the configuration and
modules installed on the Odoo instance.

These files are essential for full backups and allow to restore an Odoo instance
in case of data loss or technical problems.

Once a backup is made, it should be stored in a safe place.

5.2.1. Automation

The Odoo App Store has a lot of add-ons that cover backups. Possibly the most
prominent is "Database auto-backup" [28].

Once installed, "Configuration" - "Technical" - "Backup" - "Configure backups".
The previously configured parameters must be filled in. To be able to easily
access the backups from the host machine, the "backups" folder must be
created in the root of the project. Then, Docker compose must be modified to
mount that folder in "/var/lib/odoo/odoo/backups" of the container, which is a
very recognisable directory.



32 Design, planning, deployment and operation of a learning platform

Fig. 5.2 Parameter configuration of "Database auto-backup"

Then, from "Configuration" - "Technique" - "Automation" - "Scheduled actions" -
"Backup scheduler", it is possible to activate and define how often this task will
be performed.

In addition, a small script, "backup.sh", has been created, which asks Odoo for
a backup through a POST, and saves it in the backups folder. In case the
parameters it needs are not available, it asks for them, but ideally they should
be added, if they are not already, in the environment file, so that by calling the
script through a cronjob or the same workflow seen previously, it could be
executed periodically. Unlike the addon, the script is run from the client
machine, so it opens up a lot of options.

5.3. MinIO

Since there is currently no S3 available to store backups also in the cloud, one
option is to set up one.

Similar to Amazon S3, Minio [29] is an open source object storage server that
enables the creation of a secure cloud storage system for unstructured data and
files.

Although it doesn't make much sense to have both the Odoo instance and Minio
on the same server, for the purpose of this project it has been done that way. A
Minio could be deployed on another server, or a real S3 could be used, the only
thing that will change is the URL to attack.

For this new part, two new services have been added to the Docker compose.



Odoo Backup 33

The first service refers to Minio itself, where it should be noted that it runs on
two ports. On 9000, it gives access to an API that simulates an S3, to the extent
that it can be used from S3 clients. On 9001, it gives access to the "console" or
web interface. Here it should be noted that, if accessed from the browser, on
port 9000 if it is directly exposed, or with the reverse proxy, but also pointing to
9000, it will redirect to 9001, provided it is open, to provide the web interface.

To illustrate the "console", 9001 can be temporarily exposed, but in the
production version, neither port will be exposed, the reverse proxy will only point
to 9000, which is the important thing, as using two virtual ports for the same
container would mean modifying the reverse proxy.

Fig. 5.3 MinIO main screen

The second service is used to, through a temporary Minio client called “mc”
[30], although it could be any S3 client, create a bucket called "bucket", in order
to start using it.

Now that the bucket is in place, an S3 client can be installed on the host
machine, and any file can be copied to the bucket. That said, any S3 client will
do, as the endpoint that Minio generates simulates an S3. From the official
Minio client, "mc", to an alternative such as "S3cmd", or the official Amazon
client, "AWS CLI" [31]. Each of these has been tested, but the most relevant
thing is to see it working with the Amazon client. A small drawback is that the
endpoint has to be added to the command, as it is non-standard (see Fig. 5.4).
For this, root is used, although it can also be installed by pip, but "mc" without
root has also been contemplated, more on that later.



34 Design, planning, deployment and operation of a learning platform

Fig. 5.4 Basic AWS CLI commands

5.3.1. Automation

Following the thread of using an addon to make recurring backups, it seemed
that for the latest version of Odoo, version 16, there was no free module, and
this is important, available. Migrating addons to newer versions of Odoo will be
discussed later, as "Database Auto-Backup to S3" [32] is available for Odoo
version 12.

In this situation, using "Database auto-backup" as a base, which in addition to
making local copies, allows the use of an FTP server, the code has been
modified to attack an S3. Here it is necessary to modify, on the one hand, the
model (file.py), in which the "Boto3" package [33], which is official from AWS,
has been used, and on the other hand, the view (file.xml), which here is to
change the name of the variables.

In the same menu above, the S3 references can now be seen. In this case, the
endpoint is using Docker's internal DNS, but it could point to another server.

Fig. 5.5 Parameter configuration of the modified "Database auto-backup"



Odoo Backup 35

In addition, another small script has been created, "s3_backup.sh", which is
based on the previous one to upload backups to an S3, in this case, using "mc",
installing it if it is not already available. Like the previous one, it can be run
manually, or by adding it, for example, to a GitHub Actions workflow. As a note,
the "mc" package in the Ubuntu repositories does not refer to the package in
question.

Add that, although it is not directly related, there are also several addons, such
as "Storage Backend S3" [34] from the OCA, which allows the use, as its name
suggests, an S3 as storage backend, so the storage of the Odoo volume would
be pleasantly reduced. This is a good practice if users are used to attach very
large files, instead of saving them in the Odoo volume, they will be linked from
S3.



36 Design, planning, deployment and operation of a learning platform

CHAPTER 6. ODOO UPGRADE

Keeping Odoo up to date is crucial to benefit from the latest features and fixes.
This chapter introduces OpenUpgrade as a tool for smooth upgrades.
Automation of this process is also included to simplify upgrades.

6.1. Upgrade

Keeping Odoo up to date it is important due to several key factors. Firstly,
updates often include critical security fixes that protect data and systems from
potential threats. In addition, new versions of Odoo often offer performance
improvements and additional features that can increase the efficiency and
functionality of the business system. Keeping up to date also facilitates
integration with other applications and services, which is essential for a
constantly evolving business environment.

To ensure that Odoo images are using the most recent releases, updates are
made often, a new release of each version of Odoo is created every night.

Upgrading from an old release to the latest one provided of the same major
version is a straightforward process. In contrast, upgrading from a major version
to another is a much more complex process, requiring elaborated migration
scripts.

At the time, Odoo Community Edition (CE) included a series of scripts to
migrate an instance to the new version. In reality, these scripts have not
disappeared, they have simply been moved to the Enterprise version, and the
migration is being managed by Odoo's own technical team.

An alternative is to export the data from the old instance, install the new version
of Odoo, and import the data into the new version. Please note that in this case
not all data will be recovered, e.g. history and links between data will be lost.

6.1.1. OpenUpgrade

For this case, appeal is made to the Open Source community, and when it
comes to migrating Odoo, it is OpenUpgrade [35], which is also under the
umbrella of the OCA. As mentioned, Odoo CE has the option to upgrade within
the same major version, what it cannot do is make the jump. OpenUpgrade
uses this feature of Odoo as a base.

The OpenUpgrade project is hosted as two separate GitHub projects:

● OpenUpgrade contains:

● the framework which is a set of a few Odoo patches to ensure that
upgrading to a major version can be performed



Odoo Upgrade 37

● The database analysis which lists the differences between one
version of Odoo and the next

● The migration scripts which contains database transformation
scripts for each installed Odoo module.

● openupgradelib contains a library with helper functions. It can be used in
the migration of any Odoo module

In Fig. 6.1 [35], the flow according to the official documentation can be seen:

Fig. 6.1 OpenUpgrade Flow

6.2. Odoo upgrade

When migrating an instance with an active mail server, it is advisable to
deactivate it during the process. Remember, this can be done in "Configuration"
- "Technical" - "Incoming/outgoing mail servers".

Before touching anything, it is important to make sure that the modules in use
have migration scripts for the version to which the migration is to be done.

The list of installed modules in the "Apps" section. In the OpenUpgrade
github.io it must be checked whether the migration is possible or not. This has
to be checked for each version upgrade desired, as it is done one at a time.

In the event that a module is not supported, one can choose to do without it by
uninstalling it, or one can try to correct the errors that may arise, which is not a
very recommendable option. The OCA encourages users to contribute the
missing migration scripts, a process that is very well documented.



38 Design, planning, deployment and operation of a learning platform

Fig. 6.2 Screen of the module coverage on the OpenUpgrade page

Now addons (custom modules) come into play, but in this case there is no list.
In the same way, the user can either do without them, or investigate how to
migrate them, which, except for a specific version jump, sometimes it is not
necessary to do anything at all.

Once OpenUpgrade is started, if something goes wrong, the error must be
corrected, otherwise the database becomes unusable, so be sure of what is
being done.

If this is the way to go, the first thing to do is to make a backup. Next, one
should make a copy of the root folder of the project, where the Odoo version will
be modified in the Docker compose, the project needs to be started, so the
backup can be imported, although Odoo will show a warning, if something is not
right. If there are several version jumps, the process will have to be repeated
several times.



Odoo Upgrade 39

Fig. 6.3 Odoo database management screen with an error in one database

Installation of openupgradelib is done directly from PyPI, since the package
exists (see Fig. 6.4).

Fig. 6.4 Command to install openupgradelib

Now, depending on the version to migrate to, the files needed are different:

● From Openupgrade 5.0 to Openupgrade 13.0, the OpenUpgrade
repository branches contain copies of the main Odoo project, but with
extra commits that include the framework, and the analysis and migration
scripts for each module. In fact, the migration will be executed using a
modified version of Odoo (see Fig. 6.5).

Fig. 6.5 Commands to run OpenUpgrade

● Since Openupgrade 14.0, the branches contain an
openupgrade_framework module that gathers all the odoo patches, and
a module called openupgrade_scripts that contains the analysis and
migration scripts.



40 Design, planning, deployment and operation of a learning platform

As they are addons, one could download the two folders in the addons
folder, and it is not necessary to install them, they just have to be
available through the addons-path. There is also the option of the
packages in PyPI, but they are intended for testing, and don't work as
they should. The quickest option is to clone the branch from the
repository (see Fig. 6.6).

Fig. 6.6 Commands to run OpenUpgrade

After countless operations, if all has gone well, the danger symbol will have
disappeared, and the migrated database will be accessible.

It is advisable to restart the Odoo container once the migration has been
successfully completed, as sometimes, the danger symbol disappears, but
when entering the database, errors appear that may suggest otherwise.

If a critical error has occurred (see Fig. 6.7), action must be taken.

Fig. 6.7 Console error screen after running OpenUpgrade

To put it in context, this error has occurred in the migration attempt from Odoo
12 to 13, an instance that included the "Database Auto-Backup to S3" addon
that was produced previously. A Google search for the error "AttributeError:
module 'odoo.api' has no attribute 'multi'", shows that in the Odoo 13 version the



Odoo Upgrade 41

attribute "@api.multi" has been removed, so removing the references in all the
files where it is, paths indicated above the error, and re-running OpenUpgrade,
the result should be satisfactory. Subsequently, the migration has been
continued up to version 16 without any problems, so the addons are really easy
to migrate.

There is a module called "database_cleanup", hosted in the OCA server-tools
project, which makes it easy to remove unnecessary traces after migration.

6.2.1. Automation

Automating this process is a very helpful addition that makes the job much
easier. A script, "upgrade.sh", has been created that follows the following flow:

1. A function is defined, so that in case of an error the original state of the
project is restored.

2. The directory to work on is defined, independently of where the script is
called from.

3. The environment variables are defined and queried.

4. Ask for the availability of an S3 bucket and runs "s3_backup.sh" or
"backup.sh", as appropriate.

5. Two copies of the project folder are made, one as a backup and one to
work with. It is necessary to be careful with the volumes, because if the
project folder has the same name, even if it is in another directory, the
volumes are the same. Also, if the services have the same name as
others that are already running, it will not allow the services to be
created.

6. “restore_backup.sh" is executed, which, as its name indicates, imports a
database through a POST.

7. It asks if all addons (custom modules) are to be migrated, and if so, it
returns the name across folders, or it asks for the addons in question.

8. "check_modules_coverge.sh" is executed, which in turn relies on
"get_modules_coverage.py". The second, import "BeautifulSoup4" [36] to
pull the modules with coverage from the table on the OpenUpgrade
page. The first one, pulls the list of installed modules directly from the
database, and compares it with the coverage.

9. "migrate_addons.sh" is executed , which uses the PyPI package
"odoo-module-migrator" [37] from the OCA, to migrate the addons. This
package is not mentioned in the official OpenUpgrade guide.

10.As explained in the manual process, it installs openupgradelib, clones
the OpenUpgrade repository and runs OpenUpgrade differently



42 Design, planning, deployment and operation of a learning platform

depending on the version. In case of errors in the process, there is the
option to correct them and try again without losing the process.

11. If more than one is needed, the checks are repeated. If the process is
successful, the previous step is repeated for the new version. If not, the
upgrade will be to the version that has already been successfully
migrated in the previous step.

12.The resulting database is backed up locally or in an S3, based on the
initial question.

13.The migration folder is cut and pasted over the original folder.

14. It asks if the Postgres version is also to be upgraded, and if so, to the
version lower than the Odoo version, as Postgres is one version number
behind.

15.Based on the previous answer, either the original database is previously
deleted through a POST with "drop_database.sh", or the new one is
restored directly, to avoid error when repeating the name.

16.Finally, the original updated project is available as well as a backup, in
case anything happens.

All the scripts it supports can be run independently, and in case they don't have
the parameters it needs, they ask for them, but ideally they should be added, if
they are not already, in the environment file.

The main script is interactive, since it asks several questions, but it is very easy
to adapt it so that no intervention is required. In that case, it is recommended to
check the output for possible errors, which has been taken into account, and the
outputs that do not really contribute anything have been removed.

With this script, any instance of Odoo version 5.0 can be easily migrated.
Actually, there are only a few conflicting versions, which have incorporated
more changes. However, the more version jumps, the more chances for errors.



Odoo Monitoring 43

CHAPTER 7. ODOO MONITORING

Constant monitoring is essential to ensure optimal performance. Metrics, logs,
and alerts are addressed here to detect and resolve problems efficiently.

7.1. Monitoring
Monitoring Odoo is essential to ensure its smooth operation and optimal
performance. Proper monitoring helps identify issues, improve system
efficiency, and provide a better user experience.

The classical point in monitoring is metrics, which is critical to maintaining the
performance and health of an Odoo system. There are some key areas of
monitoring:

● Server Monitoring: This aspect of monitoring is concerned with keeping
track of server resources including CPU, RAM, disc space, and network
activities within reasonable bounds.

● Uptime Monitoring: Odoo's uptime is monitored by a system,
guaranteeing that the instance is always reachable and functioning
correctly.

● Container Monitoring: When using Docker containers to deploy Odoo, it
is crucial to monitor their performance and resources to ensure efficient
operation.

● Application Monitoring: This area focuses on monitoring Odoo
processes, response times and transaction rates to assess and optimise
application performance.

● Database Monitoring: The underlying database, typically PostgreSQL, is
critical to Odoo. Monitoring its health and performance, including
database size, query execution times and connection counts, is essential
for optimal performance.

All this must be accompanied by log monitoring, which involves regularly
reviewing Odoo's log files for errors, warnings, and other relevant information.
This makes it possible to identify and solve potential problems.

All this can be improved through alerts and notifications, which are configured
for critical events or abnormal behaviour in the system. These alerts can be
sent through a variety of channels, such as email, SMS, or collaboration
platforms.

All this can be improved through, it is essential to regularly monitor and verify
the success of backup processes to ensure data integrity. Automating backup
monitoring and notifications in case of failures are important steps to keep data
safe and recoverable in case of loss.



44 Design, planning, deployment and operation of a learning platform

After all this introduction to monitoring, since the backup part is already covered
by addons and scripts, three main blocks are defined: metrics, logs and alerts.
Together, these three elements provide a complete picture of the performance
and health of a system. Priority has been given to the use of open source
technologies.

7.1.1. Metrics

Metrics are numerical statistics that are used to assess a system's state and
performance. This data is gathered periodically and offers details on resource
utilisation, application behaviour, and other pertinent system characteristics.
CPU use, RAM that is accessible, network traffic, application response times,
and other metrics are examples of metrics. Metrics are necessary to
comprehend a system's performance and health both in the present and over
time.

The easiest method to obtain certain metrics in a Docker-based project is to
utilise cAdvisor (Container Advisor) [38]. This Google open source tool is used
to track metrics from Docker containers and other container systems. It offers
details on the functionality and resource usage of containers, including CPU,
memory, storage, and networking. For real-time monitoring and the production
of metrics that help with decision-making and the identification of issues with
containerized applications and services, cAdvisor is frequently used in container
settings.

The configuration of this service is relatively simple, but it should be noted that
for maximum compatibility, a community-modified image has been used, and
that reading kernel messages will probably not work at first. If port 8080 is
exposed temporarily, as there are other ways to display the information, its web
interface can be seen (see Fig. 7.1).

Fig. 7.1 Display of cAdvisor graphs



Odoo Monitoring 45

As it is also desirable to have the metrics of the applications, of which there may
be many, an attempt will be made to centralise everything in one place.

An open source platform called Prometheus [39] is used to track and notify
services and systems. Operations and development teams are able to rapidly
monitor and diagnose systems because to its expertise in the gathering and
storage of performance indicators. Prometheus is ideal for real-time monitoring
of applications and systems as well as for the production of alerts based on
specific criteria since it is extremely scalable and has a flexible query
mechanism.

For the example case (see Fig. 7.2), only three sources are consumed, one of
which has not yet been mentioned.

Fig. 7.2 Configuration file "prometheus-config.yml"

Node Exporter [40] is a popular exporter used in the Prometheus ecosystem. Its
primary function is to collect metrics from a machine's operating system and
hardware and expose them in a format that Prometheus can collect and store.
Some of the metrics that the Node Exporter can collect include CPU usage,
memory, disk space, network performance and file system statistics.

Node Exporter is a further service added to Docker Compose. "Exporters" in the
context of Prometheus are applications or services that collect system,
application or component specific metrics and expose them in a format that
Prometheus can collect and store. These exporters are essential to enable
monitoring of custom metrics in a variety of environments. A collection of the
most commonly used exporters is available on the official Prometheus website
[41].



46 Design, planning, deployment and operation of a learning platform

Prometheus uses a specific metrics format known as the Prometheus Metric
Format or Prometheus Exposition Format. This format is quite simple and is
designed to be readable by both humans and machines.

There are some services that directly export in this format, just like the three
sources previously defined. For example, cAdvisor exports a large number of
parameters (see Fig. 7.3).

Fig. 7.3 Display of cAdvisor exported metrics

But this is not always the case:

● Ngnix: Requires an exporter [42] in addition to enabling metrics, which
can be done using a modified image, and since one is already in use, the
process is simplified.

● Oddo: Requires the "Prometheus Exporter" addon [43] to be installed.

● Postgres: Requires an exporter [44].

● Minio: Requires enabling the metrics [45], being easy if it is indicated with
an environment variable that is made public and adding a specific path in
the Prometheus configuration.

Temporarily, as there is no authentication, port 9090 will be exposed to see the
Prometheus interface. Under "Status" - "Targets", all configured sources are
listed, and if they are active (see Fig. 7.4).



Odoo Monitoring 47

Fig. 7.4 Screen of the Prometheus targets

All available parameters, including graphics, can be consulted here, but that is
not what Prometheus was designed for.

Grafana [46] is an open-source platform that allows the monitoring and
visualisation of data. It enables the creation of dashboards, which include
interactive panels and command grids that display data from a variety of
sources, such as databases, online services, monitoring systems, etc. Grafana
is widely used in IT operations and software development to create
personalised data visualisations and make data-based decision-making easier.

Once started and port 3000 is exposed, or via the reverse proxy, the Grafana
web interface can be accessed, where login with "admin" - "admin" is required.

A big option to add a data source will be displayed, but Prometheus will be
selected. It is enough to enter the URL "http://prometheus:9090", the rest is left
as default.

All that remains is to visualise the data. On the Grafana website there is a
"Dashboards" section [47], where the community publishes its creations. They
can be easily imported through an ID. The most interesting ones for this project
are listed below:

● Node Exporter: 315

● cAdvisor: 10619 (see Fig. 7.5)



48 Design, planning, deployment and operation of a learning platform

Fig. 7.5 cAdvisor dashboard screen in Grafana

● Prometheus: 3662

● Nginx: 12708

● Odoo: There are none, and there aren't many metrics either, but it's very
easy to do (see Fig. 7.6):

Fig. 7.6 Odoo dashboard screen in Grafana

● Postgres: 9628 (see Fig. 7.7)

Fig. 7.7 Postgres dashboard screen in Grafana



Odoo Monitoring 49

● MinIO: 13502

With all this information available, it is useful to remix it all, creating a dashboard
with the information needed.

To monitor several machines at the same time, as a more realistic environment,
one would simply be consuming exporters on the different machines from a
single Prometheus, or one Prometheus per machine, depending on the user's
choice. The advantage is that with a single Grafana, all metrics could be
centralised, even in a single Dashboard, depending on the configuration.

7.1.2. Logs

Logs are detailed records of events and activities occurring on a system. These
logs can contain information about errors, transactions, user activities,
configuration changes and much more. Logs are essential for diagnosing
problems and tracking events in complex systems. They are often stored in text
files or databases and can be searched, filtered and analysed for useful
information.

Until recently, the industry standard for these issues was the ELK Stack [48], a
toolset consisting of Elasticsearch, Logstash and Kibana, which focuses on the
collection, indexing and visualisation of logs and log data, making it ideal for log
analysis and troubleshooting. It covers a lot, but that does not detract from the
fact that it is one of the best options when it comes to indexing content.

A relatively new stack is the Grafana Loki stack [49], consisting of, by way of
comparison, Promtail, Loki and Grafana. Loki is the distributed log storage and
query system, which is like Prometheus for logs, while Promtail [50] is the agent
used to collect and send logs to Loki. Since an environment with Grafana is
already available, it is advisable to take advantage of it.

To set up Loki, simply use the template they provide, there is not much
provided, there is not much to explain. The file will be called "loki-config.yml".

Promtail has a configuration file with a very similar structure to Prometheus,
little more than defining the targets. Here it should be noted that unlike
Promehteus who pulls the different targets, here it is Promtail who pushes Loki.
This is visible in the configuration (see Fig. 7.8).



50 Design, planning, deployment and operation of a learning platform

Fig. 7.8 Configuration file "promtail-config.yml"

With this configuration, the logs of the local machine and the Docker logs are
being consumed, but for that second point, some extra steps are required. A
Docker Driver will have to be configured, so that the logs reach Loki (see Fig.
7.9).

Fig. 7.9 Docker driver configuration



Odoo Monitoring 51

The use of this driver, depending on the version, breaks the "docker-compose"
command, so this must be taken into account.

Looking at port 3100, it can be seen that Loki metrics are also being exported
(see Fig. 7.10).

Fig. 7.10 Display of Loki metrics

The Grafana web interface will be accessed and a data source of type "Loki"
will be added. It is sufficient to enter the URL "http://loki:3100", the rest is left as
default.

With this, all that remains is to query the logs from the "Explore" section,
selecting "Loki" as the source (see Fig. 7.11). Loki is a relatively complex query
language, LogQL. However, Grafana has an interactive search where
parameters can be added and filled in with the values proposed by a drop-down
menu. For example, it is possible to query all the logs of the Docker compose. It
can also be integrated with other Dashboards.



52 Design, planning, deployment and operation of a learning platform

Fig. 7.11 Loki Explore screen in Grafana

7.1.3. Alerts

Alerts are automatic notifications that are generated when anomalous
conditions or events are detected in a system. These abnormal conditions are
usually based on predefined thresholds or business rules. When a threshold is
exceeded or a rule is met, an alert is generated to inform managers or
operations staff. Alerts are crucial for early detection of problems and taking
corrective action before they significantly affect the performance or availability
of a system.

To continue within the ecosystem, Prometheus Alertmanager will be used, an
essential part of the Prometheus ecosystem, designed to handle and manage
alerts generated by Prometheus and other sources. Its main function is to take
the generated alerts, apply deduplication, muting and enhancement rules, and
then route them to specific notification channels, such as email, messaging



Odoo Monitoring 53

systems, chat services, among others. Integration with Grafana is also
available.

Alertmanager has a configuration file (see Fig. 7.12) that is quite easy to
understand. In it one can define intervals, and where one wants to send the
alerts, either by email or Slack, among others.

Fig. 7.12 Configuration file "altertmanager-config.yml"

In addition, the configuration of Prometheus (see Fig. 7.13) will have to be
modified, so that it sends alerts, and uses some rules.

Fig. 7.13 Updated configuration file "prometheus-config.yml"

Next, a file with the rules under which the alerts will be sent must be created
(see Fig. 7.14). Note that this file must be mounted in the Prometheus service,
and not in the Alertmanager service.



54 Design, planning, deployment and operation of a learning platform

Fig. 7.14 Alerts configuration file "altert-rules.yml"

If it is desired to touch other configuration parameters, such as adding mutes,
port 9093 can be exported (see Fig. 7.15).

Fig. 7.15 Alertmanager main screen

In the following example, the MinIO container has been intentionally stopped, so
that in less than a minute, an alert has been received in the mail (see Fig. 7.16).



Odoo Monitoring 55

Fig. 7.16 Alert screen received by mail

Accessing Prometheus (see Fig. 7.17), the rules can also be viewed.

Fig. 7.17 Prometheus main screen

If Altermanager is added as a data source in Grafana, in the same way as
before, through "Alerting" it will have read permissions on the Alertmanager
configuration (see Fig. 7.18). If it were managed by a Mimir [52], another
Grafana service, the configuration could be modified. It should be noted here
that Grafana also allows the creation of its own alerts, but these are
independent of the rest.



56 Design, planning, deployment and operation of a learning platform

Fig. 7.18 Grafana altering screen



Conclusions and Next steps 57

CHAPTER 8. CONCLUSIONS AND NEXT STEPS

In this final chapter, the conclusions drawn from the work are presented and
possible future directions for the management of Odoo systems in educational
and business environments are considered.

8.1. Conclusions

This work has provided a comprehensive overview of Odoo system
management, focusing on critical aspects such as backup, version migration
and monitoring. Key findings include:

● Importance of Upgrading: The importance of keeping Odoo systems
up-to-date to take advantage of the latest features and security fixes has
been highlighted. Regular updates ensure optimal performance and data
security.

● Effective Data Backup: Implementing a robust backup strategy is
essential. Minio, as a cloud storage solution, provides an effective and
scalable way to back up critical Odoo data.

● Version Migration with OpenUpgrade: A detailed approach has been
developed to migrate Odoo instances to new versions using
OpenUpgrade. The ability to fix bugs in the process is critical to the
success of the migration.

● Constant Monitoring: Continuous monitoring of an Odoo system is
essential to detect and resolve problems efficiently. The collection of
metrics, logs and alerts provides a complete picture of the performance
and health of the system.

● Monitoring Tools: Prometheus, Grafana and Loki have been presented
as valuable tools for monitoring. Alertmanager is used to manage and
direct alerts to specific notification channels.

This work has contributed to the field of Odoo systems management in the
aUPaEU educational environment by providing guidance and key tools to
address common challenges. Specific contributions include:

● A detailed approach to version migration using OpenUpgrade, which
facilitates the upgrade of Odoo instances in aUPaEU.

● The implementation of monitoring tools such as Prometheus, Grafana
and Loki to improve visibility and efficiency in the management of Odoo
systems in the context of aUPaEU.

● The presentation of best practices in Odoo data backup, with a focus on
scalability and security for the aUPaEU educational platform.



58 Design, planning, deployment and operation of a learning platform

Importantly, some of these contributions have been successfully incorporated
into the project, demonstrating their relevance and value in improving the
management of Odoo systems in the aUPaEU educational environment.

8.2. Next steps

The field of Odoo systems management is constantly evolving, and there are
several promising directions for future research and improvements in the
management of Odoo systems in educational and enterprise environments.
Some possible future directions include:

● Improving Migration Methods: Investigating new tools and approaches
that further facilitate Odoo version upgrades in the context of aUPaEU,
especially in environments with extensive customisation.

● Automation and Machine Learning: Explore the implementation of
artificial intelligence solutions for early problem detection and response
automation in the management of Odoo systems in aUPaEU.

● High Availability and Scalability: Investigate high availability and
scalability solutions to ensure uninterrupted performance in high demand
aUPaEU educational environments.

● Advanced Security: Dive into security best practices and tools to ensure
the protection of critical data on Odoo systems used in aUPaEU.

● Detailed Documentation: Create detailed guides and documentation for
managing Odoo systems in aUPaEU, which can serve as resources for
other professionals and students in the field.

● DevOps and Continuous Delivery: Explore the implementation of
DevOps and continuous delivery practices to streamline the
administration and maintenance of Odoo systems in aUPaEU.

These future tracks offer exciting opportunities to further advance the
management of Odoo systems in aUPaEU and to address the evolving
challenges faced by educational organisations in their implementation and
maintenance of Odoo-based solutions.



References 59

REFERENCES

[1] AUPAEU - University Association for the Promotion of Education in Europe.
Official website. Available at: https://aupaeu.widening.eu

[2] European Universities Initiative. European Commission - Education and
Training. Available at:
https://education.ec.europa.eu/education-levels/higher-education/european-univ
ersities-initiative

[3] Odoo. Official website. Available at: https://www.odoo.com

[4] Odoo Community Association (OCA). Official website. Available at:
https://odoo-community.org

[5] OpenERP Spain Users Group. OpenERP users group in Spain. Available at:
https://groups.google.com/g/openerp-spain-users

[6] Odoo. "Hardware Requirements for Odoo 11". Odoo Forum. Available at:
https://www.odoo.com/forum/help-1/hardware-requirements-for-odoo-11-138936

[7] Odoo. "Multi-Company". Odoo Slides. Available at:
https://www.odoo.com/slides/slide/multi-company-1005

[8] IthinkUPC. Official website. Available at: https://www.ithinkupc.com

[9] Odoo. "Odoo Installation Guide". Official documentation. Available at:
https://www.odoo.com/documentation/16.0/administration/install.html

[10] Docker. Official website. Available at: https://www.docker.com

[11] Docker. Official Odoo image on Docker Hub. Available at:
https://hub.docker.com/_/odoo

[12] Docker. Official PostgreSQL image on Docker Hub. Available at:
https://hub.docker.com/_/postgres

[13] GitHub. "Docker Compose for Odoo". GitHub Gist. Available at:
https://gist.github.com/Guidoom/d5db0a76ce669b139271a528a8a2a27f

[14] Docker. "Docker Compose". Official documentation. Available at:
https://docs.docker.com/compose

[15] Odoo App Store. Odoo App Store. Available at: https://apps.odoo.com/apps

[16] Odoo Community Association (OCA) on PyPI. OCA's page on Python
Package Index. Available at: https://pypi.org/user/OCA

https://aupaeu.widening.eu
https://education.ec.europa.eu/education-levels/higher-education/european-universities-initiative
https://education.ec.europa.eu/education-levels/higher-education/european-universities-initiative
https://www.odoo.com
https://odoo-community.org
https://groups.google.com/g/openerp-spain-users
https://www.odoo.com/forum/help-1/hardware-requirements-for-odoo-11-138936
https://www.odoo.com/slides/slide/multi-company-1005
https://www.ithinkupc.com
https://www.odoo.com/documentation/16.0/administration/install.html
https://www.docker.com
https://hub.docker.com/_/odoo
https://hub.docker.com/_/postgres
https://gist.github.com/Guidoom/d5db0a76ce669b139271a528a8a2a27f
https://docs.docker.com/compose
https://apps.odoo.com/apps
https://pypi.org/user/OCA


60 Design, planning, deployment and operation of a learning platform

[17] GitHub. "Odoo Docker". GitHub repository. Available at:
https://github.com/miguelmalu/odoo-docker

[18] Odoo. "Backend Module Reference". Official documentation. Available at:
https://www.odoo.com/documentation/16.0/developer/reference/backend/modul
e.html

[19] Odoo. "Command Line Interface (CLI)". Official documentation. Available
at: https://www.odoo.com/documentation/16.0/developer/reference/cli.html

[20] Docker. Nginx Proxy image on Docker Hub. Available at:
https://hub.docker.com/r/jwilder/nginx-proxy

[21] Docker. Nginx Proxy Companion image on Docker Hub. Available at:
https://hub.docker.com/r/nginxproxy/acme-companion

[22] Let's Encrypt. Official website. Available at: https://letsencrypt.org

[23] Docker. "Networking Overview". Official documentation. Available at:
https://docs.docker.com/network

[24] Docker. "Dockerfile reference". Official documentation. Available at:
https://docs.docker.com/engine/reference/builder

[25] GitHub Actions. GitHub Actions documentation. Available at:
https://docs.github.com/en/actions

[26] Fortinet. Product Support and Downloads. Available at:
https://www.fortinet.com/support/product-downloads

[27] Amazon S3. Amazon Simple Storage Service. Available at:
https://aws.amazon.com/s3

[28] GitHub. "Odoo Automatic Backup". GitHub repository. Available at:
https://github.com/Yenthe666/auto_backup

[29] Docker. MinIO image on Docker Hub. Available at:
https://hub.docker.com/r/minio/minio

[30] Docker. MinIO Client (mc) image on Docker Hub. Available at:
https://hub.docker.com/r/minio/mc

[31] AWS CLI. Amazon Web Services Command Line Interface. Available at:
https://aws.amazon.com/cli

[32] Odoo App Store. "Auto Backup to AWS S3". Available at:
https://apps.odoo.com/apps/modules/12.0/auto_backup_aws_s3

[33] Boto3 Documentation. Boto3 - The AWS SDK for Python. Available at:
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

https://github.com/miguelmalu/odoo-docker
https://www.odoo.com/documentation/16.0/developer/reference/backend/module.html
https://www.odoo.com/documentation/16.0/developer/reference/backend/module.html
https://www.odoo.com/documentation/16.0/developer/reference/cli.html
https://hub.docker.com/r/jwilder/nginx-proxy
https://hub.docker.com/r/nginxproxy/acme-companion
https://letsencrypt.org
https://docs.docker.com/network
https://docs.docker.com/engine/reference/builder
https://docs.github.com/en/actions
https://www.fortinet.com/support/product-downloads
https://aws.amazon.com/s3
https://github.com/Yenthe666/auto_backup
https://hub.docker.com/r/minio/minio
https://hub.docker.com/r/minio/mc
https://aws.amazon.com/cli
https://apps.odoo.com/apps/modules/12.0/auto_backup_aws_s3
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html


References 61

[34] Odoo App Store. "Storage Backend S3". Available at:
https://apps.odoo.com/apps/modules/15.0/storage_backend_s3

[35] OpenUpgrade. Official OpenUpgrade documentation. Available at:
https://oca.github.io/OpenUpgrade

[36] Python Package Index (PyPI). BeautifulSoup4. Available at:
https://pypi.org/project/beautifulsoup4

[37] Python Package Index (PyPI). Odoo Module Migrator. Available at:
https://pypi.org/project/odoo-module-migrator

[38] Docker. Google cAdvisor image on Docker Hub. Available at:
https://hub.docker.com/r/google/cadvisor

[39] Docker. Prometheus image on Docker Hub. Available at:
https://hub.docker.com/r/prom/prometheus

[40] Docker. Node Exporter image on Docker Hub. Available at:
https://hub.docker.com/r/prom/node-exporter

[41] Prometheus. "Exporters and Integrations". Available at:
https://prometheus.io/docs/instrumenting/exporters

[42] GitHub. "Nginx Prometheus Exporter". GitHub repository. Available at:
https://github.com/nginxinc/nginx-prometheus-exporter

[43] Odoo App Store. "Prometheus Exporter". Available at:
https://apps.odoo.com/apps/modules/16.0/prometheus_exporter

[44] Docker. PostgreSQL Exporter image on Docker Hub. Available at:
https://hub.docker.com/r/prometheuscommunity/postgres-exporter

[45] MinIO. "Collect MinIO Metrics Using Prometheus". MinIO documentation.
Available at:
https://min.io/docs/minio/linux/operations/monitoring/collect-minio-metrics-using-
prometheus.html

[46] Docker. Grafana image on Docker Hub. Available at:
https://hub.docker.com/r/grafana/grafana

[47] Grafana. Grafana Dashboards. Available at:
https://grafana.com/grafana/dashboards

[48] Elastic. Elastic Stack. Available at: https://elastic.co/elastic-stack

[49] Docker. Loki image on Docker Hub. Available at:
https://hub.docker.com/r/grafana/loki

https://apps.odoo.com/apps/modules/15.0/storage_backend_s3
https://oca.github.io/OpenUpgrade
https://pypi.org/project/beautifulsoup4
https://pypi.org/project/odoo-module-migrator
https://hub.docker.com/r/google/cadvisor
https://hub.docker.com/r/prom/prometheus
https://hub.docker.com/r/prom/node-exporter
https://prometheus.io/docs/instrumenting/exporters
https://github.com/nginxinc/nginx-prometheus-exporter
https://apps.odoo.com/apps/modules/16.0/prometheus_exporter
https://hub.docker.com/r/prometheuscommunity/postgres-exporter
https://min.io/docs/minio/linux/operations/monitoring/collect-minio-metrics-using-prometheus.html
https://min.io/docs/minio/linux/operations/monitoring/collect-minio-metrics-using-prometheus.html
https://hub.docker.com/r/grafana/grafana
https://grafana.com/grafana/dashboards
https://elastic.co/elastic-stack
https://hub.docker.com/r/grafana/loki


62 Design, planning, deployment and operation of a learning platform

[50] Docker. Promtail image on Docker Hub. Available at:
https://hub.docker.com/r/grafana/promtail

[51] Docker. Alertmanager image on Docker Hub. Available at:
https://hub.docker.com/r/prom/alertmanager

[52] Grafana. "Mimir Documentation". Available at:
https://grafana.com/docs/mimir/latest

https://hub.docker.com/r/grafana/promtail
https://hub.docker.com/r/prom/alertmanager
https://grafana.com/docs/mimir/latest


References 63

BIBLIOGRAPHY

Greg Moss,Working with Odoo, Packt Publishing, 2015

Parth Gajjar, Alexandre Fayolle, Holger Brunn, Daniel Reis, Odoo 14
Development Cookbook, Packt Publishing, Fourth Edition, 2020


