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Abstract

Marine dynamics largely affects the phytoplankton community com-
position. The distribution characteristics of phytoplankton can reflect
spatio-temporal variability in the marine ecosystem, on the other way
around. In this work, we study the relation between remote sensing
satellite observations, environmental factors and phytoplankton com-
munities.
First, we employ network-based unsupervised clustering approaches
to identify representative communities using metabarcoding data that
has been collected both across depth and surface. Next, we investigate
the relation between the detected phytoplankton communities and the
environmental parameters (e.g., temperature, salinity, nutrients and so
on). Our results show that phytoplankton communities are segregated
based on the depth and basin. Additionally, for communities where the
majority of samples are gathered from the Atlantic ocean, the nutrient
levels are much higher than other communities.
To extend this analysis to other years, a scientific ship should collect
water samples in different years. This would be very costly and even
infeasible for many applications such as analyzing the seasonal changes
in plankton communities. Therefore, in the second part of our work,
we utilize the fact that the reflected light from the ocean’s surface that
is captured by a remote sensing satellite has a specific relationship with
the plankton composition.
To this end, we first cluster the samples that are collected at the surface
of the ocean. Next, we apply several machine learning algorithms to
classify these representative communities from satellite data. Our top
performing classifier reached 0.94 accuracy in leave-one-out cross vali-
dation setting. The results show three top important features in predict-
ing communities are surface temperature, chlorophyll and particulate
organic carbon.
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Chapter 1

Introduction

1.1 overview

Phytoplankton are microscopic organisms that live in the sea. They are bases of
aquatic food webs and play a critical role in maintaining the health and balance of
the ocean and its complex food web. Biological production by phytoplankton fa-
cilitates the slow movement of carbon dioxide from the atmosphere into the deep
ocean Lindsey (2010). Therefore, phytoplanktons have an important role in the
earth’s carbon cycle. Distinct phytoplankton taxa impact these essential ecosystem
processes in a different way. Thus, to model the role of phytoplankton in the earth
system, it is necessary to model the distribution and abundance of phytoplankton
communities in the ocean.

Historically, scientific cruises travel in the ocean and collect and analyze water
samples to infer the composition of phytoplankton. This is called in-situ mea-
surement which provides precise information about abundance of different Phy-
toplankton taxonomies in different depths and locations. Additionally, the envi-
ronment features, such as salinity, nutrient level, temperature and so on have been
gathered as well. We should notice to the importance of different environmental
features or physical barrier in the sea on distribution of phytoplanktons.

However, because of high expenses of research ships and expanse of the ocean
it is not possible to collect the considerable amount of samples from different parts
of the ocean in various time intervals. Additionally, we know that phytoplank-
ton’s characteristics such as size, pigment composition and distinct morphology
along with their physiological state impact on how much sunlight they absorb and
scatter. Therefore, satellite ocean color at hyperspectral resolution is expected to
provide estimates of phytoplankton community composition from the space.

1



1.2. AIMS AND OBJECTIVES 2

1.2 Aims and objectives

The initial objective of this study is finding communities of phytoplanktons in ver-
tical and horizontal scales of the sea. Subsequently, we will determine the specific
environmental features or barriers that are associated with each phytoplankton
community.
The second goal is finding correlation between common features in in-situ and re-
mote sensing satellite data.
The third goal is analyzing the samples that collected from surface water and de-
tect communities of phytoplanktons in surface water. Then, we will find the phy-
toplancton composition for each community.
The fourth goal is mapping satellite observation to representative phytoplankton
communities. In another word, we want to determine which satellite features play
a crucial role in accurately identifying different phytoplankton communities.

1.3 Thesis outline

To reach the goals of this project, first we need to take a look at previous works in
this field. In the Chapter 2 literature survey about related articles have been pro-
vided. After gaining insight about what other researchers did in this field, we can
identify appropriate methodology to achieve project goals.
Before describing methods, we need to dig deeper about our dataset. In the Chap-
ter 3, detail about each part of dataset and preprocessing strategies have been pro-
vided. In the section 4 and 5, method and implementation on all-depth samples
and surface samples have been presented respectively. Finally, in the chapter 6,
summary of this project and future work have been provided.



Chapter 2

Literature Review

Related works in this field can be categorized into two parts: analysing all-depth
and surface samples. One of the most relevant works that has been done in all-
depth samples is Sebastián et al. (2021). Authors in this study, tried to find which
environmental features or physical barrier lead to changes in community structure
of prokaryote. They found that physical barrier in Mediterranean Sea, Sicily and
Gibraltar strait, have considerable effect on creating different prokaryote commu-
nities.
For surface samples, most of recent works focus not only on the information that
gathered from water but also, consider satellite data and they demonstrated that
many satellite-derived optical variables has strong correlation with phytoplank-
ton composition. For example, satellite signals at regions with high phytoplankton
abundance reduce light absorption coefficient, at 670 nm close to the pure water
absorption coefficient. The study presented at Magnuson et al. (2004), has shown
that the diatom, dominant phytoplankton type, has significantly lower absorption
coefficient per unit [Chl a] compared with non-diatom species because of differ-
ences in their pigment packaging effect and intra-cellular pigment composition. In
Zheng and DiGiacomo (2018), the authors have shown that the red-to-blue band
can have a linear relation with the diatom fraction in Chesapeake Bay. The drive
linear regression is used to assess the monthly changes in satellite-derived diatom
fraction for the upper, middle, and lower Chesapeake Bay.
Kramer et al. (2022) modeled the global open ocean phytoplankton pigment com-
position from concurrent in-situ HPLC pigments and hyperspectral remote sens-
ing reflectance, Rrs(λ), datasets. HPLC or high performance liquid chromatogra-
phy is a well established approach to measure Chlorophyll a and photosynthetic
accessory pigments in water samples to determine phytoplankton composition
and biomass of different algal groups.

3



Literature Review 4

The authors in Kramer et al. (2022) employed optimized principal components re-
gression modeling to reconstruct phytoplankton pigments from Rrs(λ). This study
demonstrated that thirteen phytoplankton pigments that represents five phyto-
plankton pigments group (e.g., diatoms, dinoflagellates, haptophytes, green algae,
and cyanobacteria) can be modeled from hyperspectral Rrs(λ).

Although, it is very important to predict the size or taxonomic groups of phy-
toplanktons, understanding the global plankton network that includes both zoo-
plankton and phytoplankton is getting more attention in recent years. In Kaneko
et al. (2022), six plankton communities were identified from a global co-occurance
network. Then a supervised classifier model was trained to predict these repre-
sentative communities from satellite data. The trained model then used to predict
the global distribution of these six representative communities over 19-years to
understand seasonal changes at different geographical locations.



Chapter 3

Dataset and preprocessing

3.1 Datasets

To study the composition and diversity of phytoplankton communities, we study
and analyze two different datasets. In this section, each of these datasets have been
explained.

3.1.1 In-situ sample collection

To collect this kind of dataset, scientific cruises travel in the ocean and gather wa-
ter samples at different depths. These samples will be analyzed at laboratories to
specify the abundance of phytoplankton taxonomies in each sample. DNA meta-
barcoding and high-performance liquid chromatography (HPLC) pigment are two
widely used methods for assessing phytoplankton composition. In this study we
use the dataset that has been analyzed via the meta-barcoding approach.
Metabarcoding refers to the process of sequencing specific regions of DNA to iden-
tify the abundance of different taxonomies within the sample Cristescu (2014). The
term ”meta” refers to the comprehensive analysis of multiple genetic sequences
to understand the broader species community rather than focusing on individual
species or organisms.

Our in-situ dataset includes data collected from 29 stations during the period
of April 29th to May 28th, 2014. These stations have been displayed in the figure
3.1. These stations started from east of Mediterranean sea to adjacent subtropical
northeast (NE) Atlantic ocean near to the Canary Islands. At each station, sample
of water collected at different depths, for example minimum depth in most of sta-
tions is 3 meters and maximum depth is 10 m above the seafloor.

5



3.1. DATASETS 6

The depth measurements, taken at various stations, show that the smallest maxi-
mum depth recorded is 300 meters, while the largest maximum depth recorded is
4539 meters. In total we have 188 samples collected at various depths and stations.
In-situ dataset has been divided to three tables that are described in below.

Figure 3.1: Stations in the map Sebastián et al. (2021)

• Environmental information
The first table refers to the environmental information for each of the col-
lected samples. Environmental features consist of Temperature, Salinity, Flu-
orescence, chlorophyll, NO3, PO4 and SiO3. As mentioned before, samples
collected in different depths, each depth categorised based on this article
Junger et al. (2023). In the table 3.1 range of depths related to each category
have been provided. The first part which refers to Epipelagic divided to two
parts: surface of the water (SRF) and deep chlorophyll maxima (DCM).

Depth category Range
Epipelagic (SRF) less than 50 m

Epipelagic (DCM) between 50 m and 200 m
Mesopelagic (MES) between 200m and 1000 m
Bathypelagic (BAT) higher than 1000 m

Table 3.1: Range of depth for each category

On the other side, stations that samples have been collected categorised based
on various basins. In the table 3.2, these basins and their geographic locations
have been presented.
In the figure 3.2 distribution of samples based on different basins and depth
categories provided. As we can see, the number of samples collected from
east of Mediterranean are more than other basins. While, we have less num-
ber of samples from Atlantic ocean.
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Basin name Stations Geographic area
East of med sea stations from 1 to 13 from east to Sicily island
West of med sea stations from 14 to 24 from sicily island to Gibraltar

Atlantic stations from 25 to 29 Atlantic ocean

Table 3.2: Range of basin

Figure 3.2: Sample distribution

• Prokaryote
This dataset refers to metabarcoding of prokaryote and provides information
on the diversity and abundance of bacteria in samples. The statistics related
to prokaryotes have been derived through the sequencing of the 16S rRNA
gene. The output of this analysis typically is a table that amplicon sequence
variants (ASVs)1 exist in rows and samples are in columns. Additionally,
the dataset provides taxonomic classifications of each ASVs based on their
sequence similarity. The output consists 50,762 ASVs and their abundance in
188 samples.

• Eukaryote
Eukaryotes refers to the microbes in the sea. This is another in-situ dataset
that has been obtained via metabarcoding on 18s rRNA gene. Eukaryote

1ASVs are derived from the sequencing of individual DNA molecules
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abundance table is similar to prokaryote table and it gives us abundance of
ASVs in different samples. In the eukaryote table, 103,421 ASVs for 179 sam-
ples have been considered.

3.1.2 Satellite data

With respect to latitude and longitude of each station and the date that samples
have been collected, we can download the remote sensing satellite data.
Since, satellites can give us information of surface 2 water, we should consider
samples that collected in shallower part of the sea. In this study, the maximum
depth that satellite can capture is 20 meters. Satellite data has been downloaded
from Copernicus website. Copernicus is one of the satellites that is launched by
the European Space Agency (ESA).
To retrieve satellite features, a python script has been prepared which product id,
service id, the desired features in specific latitudes, longitudes and dates defined
in this script. After running this script the desired features will be downloaded.
The features that will study in this project are listed in below.

• Remote sensing reflectance (Rrs (λ )) from 5 visible light wavelength 412, 555,
443, 670 and 490 website (reflectance Atlantic) website (reflectance Med sea).

• chlorophyll-a (CHL) website (poc chl product).

• concentration of particulate organic matter expressed as carbon in sea water
(poc) website (poc chl product).

• Sea surface temprature (SST) website (SST product).

• Volume attenuation coefficient of downwelling radiative flux in sea water
(KD490) website (KD490 Atlantic ocean) website (KD490 Med sea).

• Amount of chlorophyll in the taxonomies such as Diatom, Dino, Crypto,
Hapto, Prokar and Green website (Plankton Med sea)

3.2 Preprocessing

In his section, the strategies that utilized to deal with missing values and some fil-
tration that should be applied on the aforementioned dataset have been described.

2In the environment information the surface water refers to the depth lower than 50 m, while
when we are considering satellite dataset the surface water related to depth lower than 20 m.
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3.2.1 Environment dataset

There are NaN values in some columns of environment dataset. We have eight
samples which have missing values in some features such as SiO3, PO4, NO3,
temperature and salinity. Based on the knowledge of experts in this domain, miss-
ing values imputed by mean of nearest neighbors. These neighbors should have
two features:

• Their stations should be near to the station that has sample with missing
values. For example, we should not use information of Atlantic ocean to
impute missing values from east of Mediterranean sea.

• Their depth should be in the same range, with regard to the depth table 3.1.

Based on the Righetti et al. (2019), stations that their sea floor is less than 200
meters considered as coastal area and the samples that collected from these sta-
tions should be removed. In the environmental table, smallest maximum depth
is 300 meters. Therefore, none of the samples classified as coastal area and all of
them have been kept.

3.2.2 Meta-barcoding dataset

Based on the goals that defined in the section 1.2, we need to find communities in
whole samples and in surface samples. Steps to prepare metabarcoding dataset for
each of these analysis are different and will be described in below.

3.2.2.1 Analyse on all-depth samples

Metabarcoding tables are very sparse and there are some ASVs that their abun-
dances are zero in most of samples. Such ASVs will bring noise to the analysis and
make it hard to explain variation and pattern in the data Pedro (2021).
Based on the Kaneko et al. (2022), to remove ASVs that have zero abundance in
most of samples, we can apply filtration on abundance of ASVs. The filtration that
has been applied in the prokaryote and eukaryote metabarcoding has some minor
changes with each other. In the Prokaryote dataset, ASVs with minimum occur-
rence larger than 5 (5% reads) in at least 10% of samples (19 samples) were consid-
ered. Therefore, number of ASVs in prokaroytes reduced from 50762 to 1241. In
the figure 3.3 accumulate abundance of top 100 ASVs has been presented. Based
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on this plot, number of ASVs that have very high accumulate abundance are sig-
nificantly lower than the number of ASVs with small accumulate abundance. It is
a reason for sharp decline in y axis. Additionally, most of accumulate abundances
for ASVs are less than 1000. It is a reason for long tail in this plot.

Figure 3.3: Accumulate abundance for different rank

In the eukaryotes metabarcoding dataset, there are eight missing samples. In
total, we have 179 samples instead of 188 samples in this table.

In this dataset, ASVs with a minimum occurrence larger than 5 (5% reads) in
at least 5% of samples (8 samples) are considered. Therefore, number of ASVs
reduced from 103421 to 1760 ASVs.

3.2.2.2 Analyse on surface samples

To generate a metabarcoding dataset for the purpose of identifying communities in
surface water, several steps need to be followed. First, the samples that collected in
surface water (depth lower than 20 m) should be filtered. Second, metabarcoding
for prokaroyte and eukaroyte should be combined in one table. Third, we need to
filter ASVs that do photosynthesis for living. If a taxonomy do photosynthesis, it
has chlorophyll (chl) to capture sunlight and then in the photosynthesis procedure
the sunlight turn into chemical energy Lindsey (2010). Therefore, for metabarcod-
ing dataset we consider the taxonomies that have chl and can be observed from
space due to their chl content.
After applying these three steps, we will have 23 columns that are pointing to the
number of samples and 3036 rows or ASVs that fulfilling the above condition.
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3.2.3 Satellite dataset

There are some nan values for satellite dataset as well. For example, for specific
latitude and longitude or specific dates there were not data.

Based on the El Hourany et al. (2022), we can apply two approaches to deal with
missing values. First, we can consider a box around the location that sample has
been collected. Second, considering temporal window. In this approach instead
of considering exact day that sample has been collected, a period of n days before
and after that specific date will be taken into account. Indeed, we want to estimate
missing data by nearest spatial and temporal data.

In this study, the matchups between satellite observations and in-situ samples
selected by considering 5x5 pixel boxes3 around the in-situ coordinates and ∓2

days around the day of the in-situ measurement.

31 pixel is equal to 1 km.



Chapter 4

Phytoplankton communities in
all-depth samples

4.1 Methodology

In this section, we will focus on the all-depth samples and try to find commu-
nities for prokaryotes and eukaryotes separately. In the first step, we will build
a network of ASVs that will show ecological connections between ASVs. Second,
different community detection algorithms will be run on the network to find which
one of ASVs have stronger connection and will be in the same community. After
finding communities, we need to know the dominant community for each sample.
Therefore, the Edge satisfaction (ES) formula has been used to assign a sample to
a community based on the highest ES value . In the final step, we will analyse and
compare environmental features in each community.

4.1.1 Constructing ASV network

In the first step, ecological network1 of ASVs has been created based on co-occurrence
or co-abundance patterns. This network created with FlashWeave package that is
implemented in Julia Programming Language Git. FlashWeave is based on local-
to-global learning (LGL) framework and tries to estimate pairwise association be-
tween nodes. In the first step, it tries to derive all directly associated neighbors
of a target node and then connect these nodes by a combinator strategy to create
global association graph . This strategy will connect two nodes when one of them
is in the derived directly associated neighborhood of another one Tackmann et al.

1When we have enough number of samples it does make sense to create a network of ASVs

12
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(2019). The setting that used for creating a network is based on the below parame-
ters:
“heterogeneous=False”, “sensitive=True”, “alpha=0.05”.
When heterogeneous selected as false, means that the selected mode is homoge-
neous. This mode is selected when we have moderate2 number of samples. There-
fore, because we have thousand number of ASVs in each group this mode has been
selected. For the sensitive parameter the True value has been selected and it means
the network created based on the fine grained association that focus on localize re-
lationship between nodes. On the other side, when the False value assigned to
this parameter, the algorithm will run faster but in the coarse grained associations.
Another parameter that is defined is alpha, it is a threshold which is used to deter-
mine statistical significance.
At the end, FlashWeave will give us a table that consists source and destination
node and the edge weight that connect these two nodes. Weights are in the range
between -1 and +1 and considered as an attribute for an edge that connect two
ASVs.
If FlashWeave assigns positive weight to an edge, it means that if abundance of one
of ASVs increases, abundance of another ASV will increase as well. This situation
will happen when one of below relations exists between ASVs:

• Commensalism: It is a form of symbiosis that involves a long-term biological
interaction where one species obtains benefits from another species, while the
other species neither benefits nor suffers any harm through another speciesWilson
(1975).

• Mutualism: It refers to an ecological interaction involving two or more species,
where each species derives a net benefit from relation that has with another
species Bronstein (2015).

On the other side, if the weight between two ASVs is negative, it means that their
abundance have negative correlation to each other. In another word, with increas-
ing abundance of one of them, the abundance of other one will decrease. This
situation will happen when one of below relations exists between ASVs:

• Competition: It is a biological interaction between species or organisms that
share a limited resource, such as water, food, or other necessities and they are
living in the same place Haslett (1997).

2In this case moderate means hundreds or thousands of samples
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• Predation: Where one organism, the predator, kills and eats another organ-
ism.

4.1.2 Community detection algorithms

Based on the output of flashweave, we have some negative weights. In the study
Kaneko et al. (2022), authors removed negative weights. The reason behind re-
moving negative edges is related to the Edge Satisfaction (ES) formula that will be
used in the 4.1.3. If we consider negative edges, the summation over weight of
edges in a community can be equal or less than zero. In the case that summation
is equal to zero, the denominator will be zero and the fraction will be undefined.
Moreover, removing negative edged does not affect on the main purpose, because
we want to consider nodes that have strong connection together in one commu-
nity. Strong connection means that the edge that connects two nodes has posi-
tive weight. If the edge between two nodes has negative weight, these two nodes
should not be in a same community.

In the next step, the community detection algorithms should be applied. A key
characteristic of a community is the dense interconnectedness among its internal
nodes. In another word, nodes in one community should have strong connection
with each other.

One of the measurements for the quality of a network partition is modular-
ity index Newman and Girvan (2004). Modularity index will help us to measure
how nodes in each community, connected together or how partition could separate
nodes and assign them to a suitable community Clauset et al. (2004). The question
that arises is how to achieve a high modularity index. When nodes with strong
connection assigned to one community and nodes with poor connection assigned
into different communities.

Tow different type of algorithms have been applied on the network and the best
one selected based on modularity index value. In the below, formula for modular-
ity index has been provided:

Q =
1

2m

∑
u,v

[
σ(u, v)− kukv

2m

]
δ(cu, cv) (4.1)

Q is the modularity index.
σ(u, v) is an edge weight between node u and v
k is the degree of the nodes in the network
m is the total number of edges in the network
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δ(cu, cv) is the Kronecker delta function, which equals 1 if nodes u and v belong to
the same community (c) and 0 otherwise.

In below a short description of algorithms that applied on our dataset provided.

• Louvain
The Louvain algorithm is an unsupervised, agglomerative (or bottom-up)
clustering algorithm that does not require the number of communities as a
priori information. In the first phase, each node represent as a community.
Therefore, number of communities is equal to number of nodes. Then, the
algorithm iteratively merges communities to improve the modularity score.
This phase will run until the merging communities do not increase the mod-
ularity score.
In the second phase, the communities found in the first phase are treated
as nodes in a new network, where the edge weight between two communi-
ties is the sum of the weights of the edges between their constituent nodes
in the original network. The first phase is repeated on this new network
and the resulting communities are considered as the final partition. Blondel
et al. (2008). One of the advantages of the Louvain algorithm is its efficiency
and relatively low time complexity, which is O(n.logn), n refers to number of
nodes.

• Girvan-newman algorithm
The Girvan-Newman algorithm, like the Louvain algorithm, is an unsuper-
vised approach that does not rely on prior knowledge of the number of com-
munities. However, it follows a divisive (top down) strategy instead of an
agglomerative one. It considers whole network as a single community and
iteratively removes edges that have highest betweenness centrality. Between-
ness centrality quantifies how often an edge lies on the shortest path between
pairs of nodes.
In each iteration, modularity index has been calculated and when it does
not improve compare to previous modularities, the algorithm will stop. The
time complexity of this algorithm is much higher than Louvain algorithm, it
is o(m2.n), m and n are referring to the number of edges and nodes respec-
tively. Watson (2022).
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4.1.3 Edge satisfaction

Edge satisfaction index introduced in Kaneko et al. (2022) and determined which
community dominated in each sample. In below, formula for edge satisfaction has
been provided.

ESc,i =

∑
u,v∈C σ(u, v)min(pi(u), pi(v))∑

u,v∈c σ(u, v)
(4.2)

c is representative of a community and i is representative of a sample.
σ(u, v) is an edge weight between node u and v (u and v refer to ASVs)
pi(u) is sigmoid transformation of centered log-ratio (clr) transformation of node u
in sample i.
The question can be arose is that why we need to apply log-ratio transformation?
First, we want to capture relation between features. Then, we will take the log-
arithm of these ratios. At the end, log-ratio makes the data symmetric and lin-
early related. Additionally, we should mention that the clr formula introduced
by Aitchison (1986) and it presented in below. After applying clr transformation,
we need to map retrieved values in a range between 0 and 1, therefore sigmoid
transformation has been used.

xclr = (ln(x1/G(x)), ln(x2/G(x)), . . . , ln(xD/G(x))) (4.3)

G(x) = D
√
x1x2 · · ·xD (4.4)

G(x) is geometric mean of vector x = [x1, x2, ..., xD]. Vector x refers to the sample
and each element of this vector, x1, x2, .., xD, refers to the abundance of different
taxonomies in this sample. In this case, imagine we have D taxonomies or ASVs.
As previously mentioned, in some samples, the abundance of certain ASVs is zero.
This leads to the geometric mean of this sample being zero. To deal with this prob-
lem, zero abundances replaced with very small value.
Briefly, the Edge satisfaction index measures the ratio of the number of edges be-
tween existing nodes or ASVs in a given sample and the number of all the edges
within a given community. This index will give us value between 0 and 1. If the
ESc,i is equal to 1 means that the cluster c is dominant in sample i. On the other
side, if this index is equal to 0, means that the sample i does not belong to cluster
c. Es index should be calculated for all samples(s) and communities(c). Therefore,
we will have s*c values for edge satisfaction. For each sample the ES with highest
value should be selected and it shows that which community is dominant for that
sample.
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4.1.4 Dimension reduction technique

To find relation between samples and how they are close to each other, dimension
reduction technique on the metabarcoding table or abundance of ASVs in differ-
ent samples has been implemented. One of the techniques that is widely used
to reduce dimensions in ecological dataset is Non-metric Multidimensional Scal-
ing (NMDS). This technique is particularly useful when dealing with sparse abun-
dance data Sebastián et al. (2021).
There are two popular dissimilarity functions in NMDS, Jaccard and Bray-Curtis.
The Jaccard distance is based on presence/absence of taxonomies and it does not
consider abundance of taxonomies. While, Bray-Curtis considers not only pres-
ence or absence of specific taxonomies, but also consider relative abundance of
them in a sample. Therefore, this feature makes Bray-Curtis more accurate com-
pare to Jaccard dissimilarity ZACH (2022). In the 4.5, formula for Bray-Curtis dis-
similarity has been provided.

BCij = 1− 2cij
si + sj

(4.5)

BCij : Bary-Curtis dissimilarity between sample i and j.
Cij : Sum of the smaller abundances in sample i and j.
Si, Sj : Accumulative abundance for sample i and j respectively.

To measure the goodness of the NMDS technique, we can calculate the stress
value. It will give us intuition that how much the NMDS preserves the similar-
ity between samples in reduced dimensions. The lower stress we get, the original
distance and projected distance are closer together. In the Clarke (1993) a guide-
line for acceptable stress value has been suggested. According to this guideline,
strees ⩽ 0.05 provides excellent preservation in NMDS dimension, strees ⩽ 0.1

indicates good representation, strees ⩽ 0.2 falls into the category of usable repre-
sentation and strees ≥ 0.2 provides poor representation.

4.2 Implementation on Prokaroyote

4.2.1 Network of Prokaroyote

After running FlashWeave on prokaryote metabarcoding dataset with 1241 ASVs,
we will have a table of source, destination nodes and edge weight that connect
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source to destination nodes. Before creating a graph, we should remove edges
with negative weight, therefore we will have 4595 edges instead of 4685 edges. To
build a graph from output table, the networkx package in python has been used.

We applied two community detection algorithms, Louvain and Girvan-newman.
Among these algorithms, Louvain selected because its result was so close to Girvan-
newman algorithm and it runs much faster than it. We could reach to modularity
index equal to 0.64.

Based on the Figure 4.1, Louvain algorithm, clustered prokaroyote dataset into
7 communities. Nodes or ASVs that belong to one community have same color
and shape. Therefore, various communities have different shapes and colors. In
the right hand side of this figure, we have community 1 and 5 that are close to each
other and separated from left hand side communities.
After community 5, we have community 2 that spreads in a wide range and has
some overlapping with community 6. Then, we have community 0 and 4 that are
very close to each other and separated from other communities. At the end, we
have community 3 that has few members compare to other communities. Some of
its members are close to community 4 and some of them are near to community 5.

Figure 4.1: Prokaryote communities
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After creating the network of ASVs, edge satisfaction formula that introduced
in the section 4.2 has been calculated3 for all samples and communities. For each
sample we have 7 possible communities or 7 Edge satisfaction. Between these val-
ues the community with the maximum ES will be selected as dominant community
for that sample. In the figure 4.2, number of samples that belong to each commu-
nity or cluster have been presented. Based on this figure, we have more than 50
samples that community 1 is dominant on them. On the other side, we have lowest
member of samples in community 4.

Figure 4.2: Number of samples in each cluster of prokaryote

4.2.2 Analyse environmental parameters

In this section, we will try to answer this question, what environmental features
are driving the formation of specific communities within a network? Based on the
environmental features for the samples that belong to a specific community, we
draw a box plot. Then, we will compare these features for different communities.

Depth: In the figure 4.3, distribution of depth of all samples that assigned to
each cluster has been provided. As we can see, cluster 1 and 5 are representative
for samples in shallower part of the sea. When we are moving to the right hand
side of the plot, the mean of depth will increase. Highest depth that sample have
been collected belong to cluster 3. Additionally, this cluster has wider range of
depths compare to other clusters. As a result, if two communities were close in the
figure 4.1, the depth that their samples collected is in the same range.

3Edge satisfaction formula has been implemented in the python
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Temperature: In the figure 4.4, we can observe that temperature is decreasing
when we are moving from cluster 1 to the cluster 3. This agree with our previous
plot, because the temperature of surface water is higher than deeper part of the sea.
It does worth to mention that in cluster 3 we have 2 outliers that are representing
the samples that collected from shallower part and their temperature are higher
than other points in this cluster.

Figure 4.3: Depth for prokaryote Figure 4.4: Temperature for prokaryote

Fluorescence: In the figure 4.5, fluorescence range in each cluster has been
shown. Based on our observation from the previous figures, cluster 1 and 5 are
representing for shallower part of the sea. In this figure, these two clusters show
higher range of fluorescence, which makes sense due to the presence of sunlight
in the surface water. Consequently, we observe more fluorescence. On the other
side, other clusters that are representative for deeper part of the sea have near zero
fluorescence.
Salinity: In the figure 4.6, salinity of different clusters show that for cluster 1, 5,
2, 6, 4 and 0 we have high salinity and for cluster 3 we have considerable lower
salinity compare to other clusters.
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Figure 4.5: Fluorescence for prokaryote Figure 4.6: Salinity for prokaryote

Nutrients: In the figures 4.7 , 4.8 and 4.9, nutrients such as NO3, PO4 and
SiO3 are analyzed respectively. These nutrients show similar behaviour in clusters.
When we are moving from shallower part of the sea to the depth near to 1000 m,
the amount of nutrient will increase. On the other side, when the depth increased
more than 1000 m, cluster 4 and 0, the level of nutrient is decreasing. While, in
cluster 3 that has samples collected from deeper part of the sea, the nutrient level
is higher than other clusters.

Figure 4.7: NO3 for prokaryote Figure 4.8: PO4 for prokaryote
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Figure 4.9: SiO3 for prokaryote

4.2.3 Analysis of communities

Each sample in the prokaryote matabarcoding dataset has 1241 dimensions or
ASVs. To visualize this multi-dimensional dataset, we first need to reduce dimen-
sions. The metaMDS function from vegan package in R has been used to reduce
dimensions from 1241 to two dimensions. After 100 iterations, stress reaches to
0.096 that shows NMDS is good representation for our dataset. To visualize the
relation between dissimilarity in real observation and dissimilarity in reduced di-
mensions, we can also utilize Shepard diagram. In the figure 4.10, the Shepard di-
agram has been provided. In this plot, with increasing dissimilarity between real
observation, dissimilarity between reduced dimensions, ordination distance, will
increase as well. Therefore, it shows good performance of NMDS in prokaryote.

Figure 4.10: Shepard diagram for prokaryote
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In addition to showing samples in two dimensions, we can assign label for
each of samples to clarify how samples separated from each other. This label can
be dominant community for each sample or depth and basin of samples.
In the figure 4.11, shape and colour of sample points are specified based on basin
and depth that samples gathered respectively. According to this figure, the sam-
ples on the right hand side of the plot correspond to the surface and DCM (depth ≤
200m) area. While, we have a sample from DCM part of Atlantic ocean that exist
very far from other points.
When we are moving to the left hand side of the plot, there are samples from
deeper part of the sea, Mesopelagic (200m ≤ depth ≤ 1000m) and Bathypelagic
(depth ≥ 1000m).

Figure 4.11: NMDS for prokaryote labeled by basin & depth

In the figure 4.12, label of samples are based on their dominant cluster and
basin. For the shallower part of the sea there are three clusters, cluster 1, 5 and
2, and most of samples in these clusters belong to east and west part of Mediter-
ranean sea. These clusters were also close in the ASV network in the figure 4.1.
Samples in the left side of the plot belong to 4 communities, cluster 6, 4, 0 and 3.
Most of samples in cluster 6 are collected from west of Med sea and Atlantic ocean.
While, in cluster 0 we have samples from east and west of Med sea that their depth
is much higher than other clusters. At the end, we have cluster 3 that belongs to
samples in Atlantic ocean. Samples in this cluster are widely spreading in the plot.
The samples that collected from shallower part of Atlantic are near to cluster 6
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and 0 and the samples collected from deeper part are located further than other
samples. Based on the domain knowledge of biologist, this behaviour is related to
the water flow between Atlantic ocean and Med sea in the shallow part of the sea.
Additionally, we can conclude that the different behaviour of cluster 3 in previous
section is related to the basin that the samples of this cluster collocated.

Figure 4.12: NMDS for prokaryote labeled by basin & cluster

4.3 Implementation on Eukaryote

4.3.1 Network of Eukaryote

Like the steps that have been done for prokaryote dataset, we will do these steps
on eukaryote dataset as well. After running FlashWeave and filtering negative
weights, the network of ASVs created by networkx. This network has 1760 nodes
and 7464 edges. Then, we need to know which one of community detection algo-
rithm give us better modularity score. Louvain gives higher score and in the figure
4.13 the communities that specified by this algorithm has been presented. In the
upper right side of this plot, we have three communities, 6, 5 and 1 that are located
very close to each other. On the other side, in the bottom left side of the plot, we
have another three communities, 2, 3 and 0 that are connected to communities in
the right hand side by a bridge that is community 4.
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Figure 4.13: Eukaryote communities

In the next step, we should know that which one of samples belong to which
one of communities. Therefore, edge satisfaction has been calculated for each of
samples. In the figure 4.14, number of samples that assigned to each cluster have
been presented. Based on this diagram, community 0 is dominant for most of
samples and community 1 is less dominant.

Figure 4.14: Number of samples in each community of eukaryote
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4.3.2 Analysis on environmental parameters

Similar to the analysis that had been presented for prokaryote communities, in this
part we will analyse environmental features for eukaryote communities.

Depth: In the figure 4.15, depth of samples in each community presented.
Based on its result, cluster 6, 5, 1 and 4 are representing for lower depth of the
sea. while, cluster 3, 2 and 0 are dominant clusters for deeper part of the sea.
Temperature: In the figure 4.16, temperature for each cluster provided. As we are
moving to the deeper part, temperature is decreasing. For example, cluster 2 is
represented for the depth higher than 1000 m and the temperature associated with
this cluster is significantly lower than other clusters.

Figure 4.15: Depth of each eukaryote Figure 4.16: Temperature for eukaryote

Fluorescence: In figures 4.17, fluorescence and salinity for different clusters have
been presented. The average of fluorescence for cluster 5 and 1 are higher than
other clusters, because these clusters consist of samples that are collected from
DCM and surface part of the sea.
Salinity: Based on the figure 4.18, salinity for cluster 2 is much lower than other
clusters and cluster 1 has highest salinity.
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Figure 4.17: Fluorescence for eukaryote Figure 4.18: Salinity for eukaryote

Nutrients: In the figures 4.19, 4.20 and 4.21, amount of NO3, PO4 and Sio3 for
different communities have been provide respectively. For all these three nutrients,
we have the same behaviour in all communities. When the depth increases to 1000
m the nutrient level increases as well. In the cluster 2 there is sharp increase in the
level of nutrients and in cluster 0 the nutrient level decreases and reaches to even
lower value compare to cluster 3.

Figure 4.19: NO3 for eukaryote Figure 4.20: PO4 for eukaryote
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Figure 4.21: SiO3 for eukaryote

4.3.3 Analysis of communities

To reduce dimensions for eukaryote, the metaMDS function has been used to re-
duce dimensions from 1760 to two dimensions. After 100 iterations, stress reaches
to 0.107 that shows NMDS is approximately good representation for our dataset.

Additionally, Shepard diagram that is provided in the figure 4.22 shows that
with increasing dissimilarity between observed values, the dissimilarity between
reduced dimensions values increases too.

Figure 4.22: Shepard diagram for eukaryote

In the figure 4.23, the samples are presented in 2 dimensions based on their
depth and basin. The distribution of samples in this plot is approximately as same
as prokaryote structure that presented in the figure 4.11. Distribution of samples
starts from surface water in the right hand side of the plot and when we are mov-
ing to the left side the depth is increasing. In the prokaryote, samples that were
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collected from deeper part of Atlantic were exist far from other samples. While, in
the eukaryote most of these samples are close to deeper part of west of Med sea.

Figure 4.23: NMDS for eukaryote labeled by the basin & depth

Based on the figure 4.24, samples in NMDS are specified by the cluster and
basin. In the right side of the plot, there are four communities, 6, 5, 1 and 4 that
are representing for shallower part of the sea, surface and DCM. In the left side of
plot, three clusters, 3,2 and 0, are presenting the deeper part of the sea.

As we saw in the section 4.3.2, cluster 2 that had different behaviour compare
to other clusters, has samples that collected from deeper part of the Atlantic ocean.

Figure 4.24: NMDS for eukaryote based on the basin & cluster



Chapter 5

Phytoplankton communities in
surface samples

In this chapter, we will try to find behaviour of samples in surface water. Addi-
tionally, we will use satellite features for this part, because as mentioned before
satellite can capture information of surface water. In the first part, correlation be-
tween satellite and in-situ data will be studied. Then, we will find communities of
surface water by in-situ dataset. At the end, we will analyse possibility of predic-
tion presented communities with satellite features.

5.1 Correlation between in-situ and satellite

In one of the product of Copernicus satellite dataset website (Plankton Med sea),
amount of chlorophyll that represented in some of taxonomies such as Diatom,
Dino, Crypto, Hapto, green algae and prokar for Mediterranean sea presented.
Therefore, we can retrieve these values for each of stations in Med sea. In the case
that the value for specific location did not exist, because of cloudy weather or other
reasons, the preprocessing steps, described in the section 3.2.3, should be applied
to impute missing values.
On the other side, we can retrieve relative abundance of these taxonomies from
in-situ dataset. To do that we need to do below steps:

1. Preprocess metabarcoding dataset based on the steps that described in the
section 3.2.2.2.

2. Find accumulative abundance of taxonomies for each station. It means, we
should apply summation over abundance of all ASVs for specific station.

30
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3. Filter ASVs for each of desire taxonomies, Diatom, Dino, Crypto, Hapto,
green algae and prokar. Then, calculate accumulate abundance for each group
in each station.

4. Divide accumulate abundance for each specific group to accumulative abun-
dance, for each station. In another word, divide result of step 3 to result of
step 2 for each station and taxonomy.

Then, we can compare result of satellite with in-situ in each station. In the case
that there is high correlation between these two features, we can say that changes
in this feature in in-situ dataset is compatible with changes in satellite dataset. Ad-
ditionally, to find a correlation between two variables, the Pearson correlation has
been used, because we want to evaluate linear relationship between two features.
The formula for Pearson correlation has provided in below. The range of changes
for Pearson correlation is between -1 and +1.

r =

∑
(Xi − X̄)(Yi − Ȳ )√∑

(Xi − X̄)2
∑

(Yi − Ȳ )2
(5.1)

In this formula, x and y are referring to the two variables that we want to calculate
correlation between them. In the numerator of this equation, covariance between
two variables calculated and it shows how these two variables vary together. Then,
in the denominator, the covariance will be normalized by dividing it to the multi-
plication of standard deviations.

In the below figures, correlation between two datasets for different taxonomies
have been presented. The x-axis presents the stations and the right hand side y-
axis shows the values in the satellite dataset which specified by red colour and the
left hand side y-axis shows the in-situ values that coloured with blue colour.
Each figure has 2 plots, the blue plot shows the changes in the taxonomy in differ-
ent stations for the in-situ dataset and the red one shows that changes in satellite
dataset. As we can see, in the 5.1 comparison for Diato and green has been pro-
vided. Based on these plots and the Pearson correlation value that specified with
pcc in the plot, there is high correlation between in-situ and satellite dataset for
these two taxonomies.
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Figure 5.1: Correlation between satellite and in-situ for Diato and green

Based on the figures 5.2 and 5.3, other taxonomies such as crypto, hapto, dino
and prokar do not show high correlation between in-situ and satellite dataset. The
possible reason for that is related to the filtration that scientist used at laboratory
to retrieve different taxonomies. For some taxonomies, this filteration is so big and
scientist could not get whole of this taxonomies from the samples.
In the table 5.1, correlation between satellite and in-situ dataset for different tax-
onomies have been provided.

Figure 5.2: Correlation between satellite and in-situ for Crypto and hapto
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Figure 5.3: Correlation between satellite and in-situ for dino and prokar

DITO GREEN CRYPTO HAPTO DINO PROKAR
pcc 0.926 0.931 0.015 0.113 -0.586 0.064

Table 5.1: Pearson correlation between satellite and in-situ dataset

5.2 Methodology for community detection( surface wa-
ter)

The number of samples that collected from surface water was 23 samples. To find
the communities of surface samples, creating network of ASVs is not an efficient
way because the number of samples is small. In this case, the probability of find-
ing same pattern in abundance of ASVs in different samples will be lower than
having higher number of samples. Therefore, the output network will not be one
connected component and we will have different connected components. Addi-
tionally, as mentioned in github page of FlashWeave Git, this package is optimized
for large-scale data sets.
The approach that is applied to detect communities in surface water is based on
Hierarchical clustering. This technique divide into two types: Agglomerative and
Divisive.
Agglomerative clustering is a bottom-up approach. In this approach each node
considers as an individual cluster and then in each iteration nodes with higher
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similarity merged into one cluster. This procedure continues until we reach to one
cluster that has all nodes. In the divisive type, the procedure is opposite to Ag-
glomerative approach. It means that all the nodes consider as one cluster and in
each iteration the node that is not similar to other nodes will be separated from
cluster.
In this study, agglomerative hierarchical clustering has been used to put similar
samples in one cluster. The similarity between samples is assessed by considering
the metabarcoding table, which represents the abundance of ASVs in each sample.
The approach to calculate similarity between samples is based on Bray-Curtis that
described in the section 4.1.4.

Another thing that we should take into account is how to calculate distance
between two clusters, in the case that at least one of clusters has more than one
member. To calculate this distance there are some linkage methods, such as Single,
Complete, Average and ward linkage. In below, formula for each linkage method
has been provided. In these formulas, a and b are the members in the cluster A and
B respectively. The goal in single linkage is finding minimum distance between
members in cluster A and B, while in complete linkage we prefer to find maximum
distance between members in cluster A and B.
In the average linkage, the pairwise distance between members in cluster A and
B calculated and then considered the average of these distances. Since, average
linkage considers all the points in the cluster, it is less sensitive to outliers and
noise compared to complete and single linkage methods Clu. On the other side,
ward method will minimize the total within cluster variance. In each iteration, two
clusters will merge if we could reach to the minimum total within variance after
merging these two clusters Raieli (2021).

Single linkage(A,B) = min(d(a, b) : a ∈ A, b ∈ B) (5.2)

Complete linkage(A,B) = max(d(a, b) : a ∈ A, b ∈ B) (5.3)

Average linkage(A,B) =
1

NA.NB

.

NA∑
i=1

NB∑
j=1

D(xAa.xBb) (5.4)

Ward linkage(A,B) =
NA.NB

NA +NB

.||mA −mB||2 (5.5)



5.3. IMPLEMENTATION OF COMMUNITY DETECTION(SURFACE WATER) 35

NA, NB: number of points in cluster A and B respectively.
mA, mB: center of cluster A and B respectively.

To decide which method has better performance on the dataset, agglomera-
tive coefficient (AC) value for each method has been calculated. When AC value
gets closer to one, it suggests a stronger clustering. The AC is calculated based on
formula 5.6. In this formula, m(i) is the dissimilarity of observation i to the first
cluster it merges with, divided by the dissimilarity of the last merger in the algo-
rithm. The agglomerative coefficient is obtained by averaging the values of 1 - m(i)
for all observations Documentation (2022).

AC =
1

n
(1−mi) (5.6)

After finding the best linkage method, we will run the agglomerative hierarchi-
cal clustering algorithm. It will give us dendrogram1 that leafs refer to the samples.
Then, to measure the goodness of clustering technique, we can use silhouette score.

This metric measures the cohesion of a cluster, which refers to the within-
cluster similarity, as well as the separation of a cluster from other clusters. It ranges
between -1 and +1, when it is near to 1 it shows that observations are very well as-
signed to clusters. When this index is decreasing, it shows the points are poorly
assigned to the cluster. In below formula for Silhouette width has been provided.

Si =
bi − ai

max(ai, bi)
(5.7)

ai: Average dissimilarity between i and other points that are in the same cluster
that i exists.
d(i, c): Average dissimilarity of point i to the points in the cluster c.
bi = mincd(i, c): Minimum distance between observation i and points in the cluster
c.

5.3 Implementation of community detection(surface wa-
ter)

Based on the steps that mentioned in methodology, first we need to find simi-
larity between points or stations. The vegan package in R has been used to find

1The main role of dendrogram is showing the hierarchical relationship between objects or sam-
ples.
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Bray-curtis dissimilarity between samples. Then, hclust in stats package or agnes
in cluster package in R can put similar stations in one cluster. To find the best
approach for assigning nodes to clusters, different linkage methods have been
tried and the result provided in the table 5.2. In accordance with the result, Ward
method has highest AC and it shows stronger clustering structure compare to other
methods.

Single Average Complete Ward
AC 0.440 0.443 0.486 0.686

Table 5.2: AC for different linkage methods

After specifying the distance between stations and best linkage method we can get
the graphical representation of hierarchical clustering algorithm as a tree, known
as a dendrogram. It is presented in the figure 5.4. The height in this dendrogram
is a measure of similarity between leafs or stations2. When the height is increas-
ing, the stations are less similar. For example, station 28 and 26 have low height
that shows these stations are very similar. while, station 15 is not so similar to the
station 16 and 18, because their height is high.

Figure 5.4: Dendrogram for surface samples(hclust)

2Each station has only one surface sample, therefore instead of using the word sample we are
using the station.
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To evaluate generated clusters, silhouette width has been used and the re-
sult has been provided in the figure 5.5. Moreover, to dig deeper about relation
between stations and cluster boundaries, dimension reduction technique on the
abundance of ASVs for different stations has been implemented by fviz cluster
function from the factoextra package in R. The result of dimension reduction pre-
sented in the figure 5.6.
Based on the figure 5.5, cluster 3 has highest average silhouette width, 0.59, com-
pare to other clusters. It shows that samples in this cluster are very similar. Addi-
tionally, in the figure 5.6, the cluster 3 that has been specified with blue colour is
very compact and its members are very close to the center. The members of cluster
3 are pointing to the last stations that are located in the Atlantic ocean, based on
table 3.2 that has information of stations.
The second position belongs to the cluster 1 that its silhouette width equals to
0.29. The dominant stations in this cluster are located in the eastern part of the
Mediterranean Sea, with only one station located in the western region. Cluster 1
is not as compact as cluster 3 and there are some stations such as 14 and 21 that
their distance to the center of the cluster is higher than other stations in this cluster.

Figure 5.5: silhouette Width for hclust Figure 5.6: DR for hclust

The last position belongs to the cluster 2 that has lowest silhouette width. This
cluster is dominant with samples from west of Med sea. There are some samples
in this cluster that their sillouhette score are negative. It shows that behaviour of
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these samples are different with other members in this cluster. Additionally, based
on the result of 5.6, the area of polygon related to the this cluster is bigger than
other clusters and it shows the diversity of samples in western part of Med sea.

Another approach to build hierarchical clustering is based on reculter.cons from
recluster package in R. In this approach a series of trees have been created based
on resampling the order of stations in the similarity matrix. Then, to find robust
clusters, consensus among trees has been computed Dapporto et al. (2013). The
result of this approach provided in the figure 5.7.

Figure 5.7: Dendrogram for surface samples(recluster)

As we can see in the figure 5.7, we have some stations that do not belong to any
cluster and they have their own cluster. Similarly, to evaluate the effectiveness of
the recluster approach, silhouette score and dimension reduction were employed.
Based on the result in the figure 5.8 the average silhouette width increased to 0.26.
The good point of the new clustering is that we do not have negative silhouette
width. The three stations that had negative score in previous case, station 14, 15
and 24, now have zero silhouette score 3.

On the other side in the figure 5.9 the distribution of samples in clusters pre-
sented. Clusters that were related to the east and Atlantic did not change. While
the cluster that was related to the west divided to the four clusters.

3The silhouette score for a cluster with one member is zero
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Figure 5.8: silhouette Width for recluster Figure 5.9: DR for recluster

In the figure 5.10, clusters and their location on the map have been presented.
This plot has been drawn by ggmap in the R Kahle and Wickham (2013) .As we can
see, the samples that collected from east of Mediterranean sea are grouped in one
cluster. While in the west of med we have 4 different clusters. Moreover, samples
in the Atlantic ocean grouped in one cluster.

Figure 5.10: Stations with their labels in the map
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5.4 Community composition

Community composition refers to finding relative abundance of different taxonomies
in each community. Even though, we expect to see specific pattern in composition
of taxonomies in each community, but there might be some similarity between
composition in some communities. In the figure 5.11, relative abundance of dif-
ferent taxonomies in the east cluster presented. Based on this plot, Dinoflag has
higher abundance in this cluster and next position belong to the prokar that its
mean relative abundance is getting higher than 0.2. Relative abundance of other
taxonomies in this cluster are near zero.
When we are moving from east to west of Med sea, the abundance of phytoplanc-
tons starts to change. As mentioned before for west of Med sea, we have 4 clus-
ters and for each of these clusters composition of taxonomies shows different be-
haviour. For example, in cluster west 1 in figure 5.12 the relative abundance of
Dinoflag and Prokar starts decreasing compare to the east cluster and the amount
of Green algae starts increasing.

Figure 5.11: Composition in east Figure 5.12: Composition in west 1

For cluster west 2 that presented in the figure 5.13, the relative abundance of
Dinoflag reaches to 0.9, that is highest among other clusters. Additionally, abun-
dance of other taxonomies in this cluster is very low and we can say dinoflag is a
dominant taxonomy for cluster 2.
On the other side, in the west 3 cluster the abundance of dinoflag considerably de-
creased compared to west 2 cluster and abundance of prokar and green increased.
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Figure 5.13: Composition in west 2 Figure 5.14: Composition in west 3

For the last cluster in the west of Med sea, cluster west 4, we can observe a
different behaviour in abundance of taxonomies. With respect to figure 5.15 the
amount of Dinoflag and prokar decreased compared to the west 3 cluster and the
abundance of green algae increased and reached to 0.7 and became a dominant
taxonomy in this cluster.
Finally, behavior of taxonomies in atlantic cluster has been provided in the figure
5.16. It shows that relative abundance of prokar reaches to highest value com-
pare to other clusters. The second and third highest relative abundances belong
to Dinaflag and Green respectively. It does worth to mention that, the behaviour
of phytoplancton composition in the atlantic cluster and west cluster follow the
same pattern, prokar is dominant taxonomy and dinoflag and green algae are in
the second and third position.

Figure 5.15: Composition in west 4 Figure 5.16: Composition in atlantic
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5.5 Classify communities based on satellite features

After finding communities and composition of each community for the surface
water, our next objective is to explore the feasibility of satellite-based features in
predicting these communities. In order to do that, we will assign labels that gen-
erated from hierarchical agglomerative clustering to the corresponding satellite
features obtained from that station.
Then, we can train different classification algorithm on the satellite features and
find which one of algorithms can achieve higher accuracy. We should consider
that there are 23 stations with surface samples which is not sufficient to train clas-
sification algorithm. As mentioned in the preprocessing part, a box of 5*5 km
considered around the station to impute missing values. Therefore, we expect to
not have considerable changes in distribution of phytoplanktons inside this box.
As a result, we can increase number of samples by considering imaginary samples
inside the box of each station. Then, the label that is defined for that station will
be assigned to the imaginary samples as well. At the end, number of samples in-
creased to 100.
The approach that is used to train and test algorithms is based on Leave one out
cross validation (Loocv), because our dataset is small and we want to utilize all
available data points for training and test evaluation. As a result, LOOCV leading
the model to have more reliable performance.
While, train-test split may not perform well in small dataset because the limited
amount of data allocated for training can be insufficient and potentially biased to-
wards specific groups. Therefore, the model may not learn patterns from other
groups adequately.

In the next step, we should test performance of different classification algo-
rithms on the dataset. These algorithms have been presented in the table 5.3 that
scikit-learn package has been used to train each of them.
The criteria that are used to select the best model are accuracy score and F1 score.
In the accuracy score that its formula provided in the 5.8, we want to know the
proportion of the data that correctly predicted. Therefore, it focuses on the true
positive and true negative classes. In another word, all the classes are equally im-
portant in accuracy score. While, in F1 score that its formula provided in the 5.9, a
combination of precision and recall has been considered and it pays more attention
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to the cases that incorrectly classifies, false negative and false positive cases.

Accuracy =
True Positives + True Negatives

True Positives + True Negatives + False Positives + False Negatives
(5.8)

F1 Score = 2× Precision × Recall
Precision + Recall

(5.9)

Algorithm Accuracy score F1 score
Random Forest (n trees = 100) 0.945 0.928

SVM(linear kernel) 0.890 0.873
K-nearest Neighbors (k =3) 0.824 0.817
K-nearest Neighbors (k =2) 0.818 0.817
K-nearest Neighbors (k =1) 0.818 0.821
K-nearest Neighbors (k =4) 0.809 0.797
K-nearest Neighbors (k =5) 0.796 0.780

Naive Bayes(Gaussian) 0.781 0.773
SVM(RBF kernel) 0.745 0.706

SVM(sigmoid kernel) 0.690 0.629

Table 5.3: Result of classification algorithms on test set

Based on the table 5.3, the accuracy and f1 score in test set for random forest
are higher than classifiers. On the other side, between different variant of SVM
algorithm such as rbf, sigmoid and linear kernel, svm with linear kernel has better
performance. It means that the dataset can be linearly separated and we do not
need to map data to higher dimension and find a hyperplane to separate dataset.
For the k nearest neighbor algorithm , when we choose k = 3 we could reach to
higher accuracy compare to other k values. Additionally, the visualization format
of this plot has been presented in the figure 5.17.
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Figure 5.17: Comparison between accuracy and f1 score of classification algorithms

Afterward, we want to know which one of Satellite features, Reflectance(in 5
wave length), KD490, CHL, SST and POC, has considerable effect on classification
of communities. In the figure 5.18 importance of features based on the Random
forest algorithm has been provided. The first three important features are SST, poc
and chl and if we train the random forest algorithm with just these three features,
accuracy score reaches to 0.927 and f1 score reaches to 0.91.

Figure 5.18: Importance of features based on RF algorithm



Chapter 6

Conclusion and Future work

6.1 Conclusion

In this project, we detected phytoplankton communities in Mediterranean sea and
adjacent eastern Atlantic ocean. The community detection divided into two parts,
finding communities for all-depth water and surface water. Conclusion for each
part provided separately in below:

• All-depth water
In below we have three main conclusions for all-depth water:
First: For each of phytoplankton types, prokaryote and eukaryote, we could
detect 7 communities by applying Louvain algorithm. The most important
features that affect on creating communities were the depth and basin that
sample collected.
Second: There is a difference between eukaroyte and prokaryte communi-
ties, in prokaryote we have 3 clusters in the depth ≤ 200m, while in the eu-
karyote communities, we have 4 clusters in this depth. On the other side, in
the depth ≥ 200m, 4 clusters identified for prokaryote, whereas eukaryotes
exhibit 3 clusters in this depth. Therefore, it seems that eukaroyte has higher
distribution in shallower part of the sea compare to prokaroyte.
One possible explanation for this behaviour is that eukaryotes consist a more
diverse range of taxonomies, including dino, diato, hapto, crypto and green
algae, which rely on sunlight for photosynthesis. In contrast, prokaryote pri-
marily consist of cyanobacteria as the main photosynthetic organisms.
Third: One of the environmental features that affect on creating new com-
munity is the amount of nutrient levels such as NO3, PO4 and Sio3. For

45
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example, in the Atlantic ocean the nutrient levels are higher than Med sea
and it causes to have separate community in the Atlantic ocean.

• Surface water
The main conclusion related to the studying surface water divided to three
parts:
First: In the surface samples, both in-situ data and satellite data are utilized to
explore the correlation of common features between these two datasets. No-
tably, a significant correlation observed in diatoms and green algae. There-
fore, in the long term, satellite features can be employed to track the fluctua-
tions in these two taxonomies.
Second: We could detect 6 communities in the surface water, which are dif-
ferentiated based on basin characteristics and taxonomic composition.
Third: We proved that with satellite features, we can predict representa-
tive communities with high accuracy. The most important features that have
highest affect on classification are SST, chl and poc.

6.2 Future work

The possible future work also can be divide into two parts, all-depth analysis and
surface analysis.

• all-depth water
We could find number of communities and important environmental or phys-
ical features that affect on creating communities. Another possible work is
finding community composition and analyse the amount of taxonomies that
exist in each of communities. To do that we need to have domain knowledge
of biology.

• Surface water
Future works related to surface water divided to two parts:
First: Correlation between satellite and in-situ data has been calculate based
on the metabarcoding table and as we saw there were not correlation for
some taxonomies. Therefore, one possible work can be considering another
dataset, like metagenomic dataset, to explore the potential correlation for de-
sire taxonomies between satellite and in-situ dataset.
Second: Based on trained algorithm with satellite features, we can study
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changes in distribution of communities for different years. Therefore, this
study can be step toward further analysis of long term changes in communi-
ties.
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