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Quantum machine learning is the field that aims to integrate machine learning with quantum
computation. In recent years, the field has emerged as an active research area with the potential
to bring new insights to classical machine learning problems. One of the challenges in the field
is to explore the expressibility of parametrized quantum circuits and their ability to be universal
function approximators, as classical neural networks are. Recent works have shown that with a
quantum supervised learning model, we can fit any one-dimensional Fourier series, proving their
universality. However, models for multidimensional functions have not been explored in the same
level of detail. In this work, we study the expressibility of various types of circuit ansatzes that
generate multidimensional Fourier series. We found that, for some ansatzes, the degrees of freedom
required for fitting such functions grow faster than the available degrees in the Hilbert space gen-
erated by the circuits. For example, single-qudit models have limited power to represent arbitrary
multidimensional Fourier series. Despite this, we show that we can enlarge the Hilbert space of the
circuit by using more qudits or higher local dimensions to meet the degrees of freedom requirements,
thus ensuring the universality of the models.

I. INTRODUCTION

Machine learning (ML) is a well-established field that
aims to develop the necessary tools to extract knowl-
edge from big data batches by drawing inferences from its
patterns. The development of computational paradigms
such as quantum computation opens the path to explore
the use of quantum devices to perform ML tasks, which
raises the question of whether quantum machine learning
(QML) algorithms can offer an advantage compared to
classical ones.

QML explores the use of quantum computing devices
to implement ML algorithms [1]. In some of these al-
gorithms, in particular, in the supervised learning ones,
data stored in a classical register needs to be mapped
into a quantum state to be later processed by the quan-
tum circuit. The parameters of the circuit are optimized
by minimizing a cost function that compares some ex-
pectation values obtained from the circuit with the true
data labels. Several proposals exist to embed data into
quantum circuits [2–4]. Particularly, the re-uploading
strategy has been applied to several problems, such as
classification [2] or function fitting [5].

It has been shown that partial Fourier series emerge as
the output of these models when using the re-uploading
protocol [6]. Fourier series are universal to represent any
square-integrable function in a given interval. This re-
sult has attracted the attention of recent QML works
that use classical data [7–11]. Nevertheless, many appli-
cations that may require the use of QML rely on mul-
tidimensional datasets [12]. Although several works dis-
cuss the generalization of this model to multidimensional
data, there needs to be a more thoughtful analysis of the
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implementation and scaling of the model with the data
dimensions.

The current state of the art in experimental quan-
tum computation, the so-called noisy intermediate-scale
quantum (NISQ) era [13], presents a few qubit devices
with limited coherence times that impose restrictions on
the circuit depth and the fidelity of quantum operations.
A family of algorithms suitable for these devices are vari-
ational quantum algorithms (VQA) [14, 15], from which
the aforementioned supervised QML algorithms are part
of. Variational algorithms present certain noise resilience
due to their hybridization with classical optimization
subroutines that fine-tune the circuit parameters. How-
ever, the low number of qubits in these NISQ devices
limits the size of the Hilbert space available to perform
quantum computational tasks. A way to circumnavigate
this issue is to increase the Hilbert space by exploiting
the higher local dimensions of each quantum informa-
tion unit. Indeed, all quantum systems naturally contain
more than two levels, which makes translating a qubit
quantum device into a qudit system with d dimensions
technically feasible, despite being experimentally chal-
lenging. Thus, increasing the Hilbert space from 2n to
dn for n quantum information units might prove valuable
in the near term [16–21].

This work analyzes the multidimensional Fourier series
representation of QML circuits fed with classical data
using a general formalism for qubits and beyond (qu-
dits). We show how the quantum circuit requirements
scale with the dimension of qudits and data when us-
ing the well-established data re-uploading strategy. Fur-
thermore, we provide four types of circuit ansatzes to
generate these functions and examine the constraints to
ensure a proper fitting of a general series. The study
of this problem sheds light on the expressibility of QML
models, and in turn, provides insights into their capacity
and limitations. It also addresses the question of whether
these models can be considered universal approximators.
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FIG. 1. Schematic representation of a quantum supervised
learning model, which pertains to the family of Variational
Quantum Algorithm (VQA). The picture divides the quantum
and the classical part (dashed line boxes). The quantum part
is composed of a quantum circuit with a given unitary U that

depends on the data point x⃗ and the trainable parameters θ⃗.
The classical part consists of building an expectation value
of a given observable M, introducing it into a cost function
(in our case, tailored for the classification of a target function
f(x⃗)) and optimize it with respect to the parameters via a
classical subroutine.

We show that, while the proposed encoding strategies
generate multidimensional Fourier series, the scaling of
the degrees of freedom required to fit a general function
grows rapidly, in some cases faster than the Hilbert space
of the Parameterized Quantum Circuit (PQC). However,
we present strategies that can overcome such limitations
by increasing the dimension of the local space or employ-
ing a greater number of qudits. These strategies demon-
strate the capability of generating arbitrary Fourier se-
ries through re-uploading methods, providing evidence of
their universality.

This work is organized as follows: In Section II, we re-
view the formalism of the one-dimensional Fourier series,
and in Section III, we extend it to the multidimensional
case. Furthermore, we discuss the degrees of freedom re-
quirements, implementations and analysis of the models
in Section IV. Finally, the conclusions are presented in
Section V.

II. ONE-DIMENSIONAL FOURIER SERIES
WITH QUANTUM CIRCUITS

This section reviews the quantum supervised learning
model for fitting one-dimensional functions with the re-
uploading strategy. We use a VQA fed with classical
data, as we present in Fig. 1. Using a training dataset
{x} with corresponding function images f(x), we gener-
ate a quantum circuit for each data point by using en-

coding gates S(x) and parameterized gates A(θ⃗), which
act as trainable gates. By measuring the expectation
value of some operator M, we obtain a Fourier series in

…

FIG. 2. General structure of a data re-uploading procedure.
The 0th layer is used to generate an initial superposition. The
other layers contain an encoding gate S(x) and a processing

gate A(θ⃗l), containing parameters which are optimized.

the {x} domain. After optimizing the parameters θ⃗, we
introduce test data points into the circuit to obtain a
function prediction.
A widely used technique to define a PQC ansatz con-

sists of defining a layer: a subcircuit composed of en-
coding and processing quantum gates. This structure is
repeated L times along the circuit [2, 22] (see Fig. 2).
We define the general circuit layer l with the data re-
uploading encoding as

U0 ≡ A(θ⃗0), Ul ≡ A(θ⃗l)S(x), (1)

where A(θ⃗l) and A(θ⃗0) are general n qudit unitary gates,

with free parameters θ⃗, that act as processing step. For
the encoding gate, a unitary gate S(x) = eixH is used,
where H is an arbitrary encoding Hamiltonian, and x is
the data point considered. We assume that H is diagonal
since its single value decomposition is S(x) = V †eixΣV ,
where V is a unitary gate that can be re-absorbed by the

processing gate A(θ⃗l), and Σ is a diagonal matrix with
the eigenvalues of H (see App. A for the detailed deriva-
tion). The circuit layer can be interpreted as a quantum
analogy of a neuron from a classical neural network be-
cause both structures are repeatedly fed with data. This
is why these models are sometimes called quantum neural
networks. The aforementioned quantum circuit ansatz
has been used in prior works to prove that we obtain a
one-dimensional truncated Fourier series as the output of
these models [5, 6].

Definition 1. One-dimensional truncated Fourier se-
ries. A truncated Fourier series is an expansion of a
periodic real-valued function that can be expressed as a
sum of sines and cosines. In the exponential form, it
takes the following structure:

f(x) =

D∑
ω=−D

cωe
ix π

K ω, (2)

where K is a half of the function period, D = max(Ω) is
the Fourier series degree and ω ∈ N are the multiples of
the fundamental frequency π

T . The frequency spectrum is
given by Ω = {ω π

K }ω. The coefficients cω ∈ C, fulfill the
condition cω = c∗−ω. A Fourier series with enough degree
D can approximate any continuous, square-integrable
function.
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By computing the expectation value of an observable
M in the output state of the PQC, we obtain an approx-
imation of f(x). For simplicity, when we use more than
one qudit in the PQC, we measure only one of them.
Then, M = M ⊗ I ⊗ ...I, where M is a single-qudit ob-
servable. We obtain (see App. A for the details)

⟨M(x)⟩ =
∑

ω∈Ωkk’

cω eixω, (3)

with

cω =

N∑
k,k′=1
Ωkk’=ω

(
N∑
i=1

MiA
(L)
ikL
A

∗(L)
ik′

L

)

×A
(0)
k11
A

∗(0)
k′
11

L∏
p=2

A
(p−1)
kpkp−1

A
∗(p−1)
k′
pk

′
p−1

, (4)

where N = dn is the dimension of the Hilbert space of n
qudits with local dimension d, L is the number of layers,
and Mi are the eigenvalues of the observable, which we
assume to be diagonal. We use the multi-index notation
k ≡ {k1, k2, ...kL} ∈ [N ]L, with ki ∈ {1, ..N}. Also, we
introduce the multi-index sum defined by Λk ≡ (λk1 +
λk2 + ...λkL

), where λki is an eigenvalue of the encoding
Hamiltonian H in the layer i. With this, the frequency
spectrum of the model is given by

Ωkk’ ≡ {Λk − Λk′} =

{λk1 + λk2 + · · ·+ λkL
−
(
λk′

1
+ λk′

2
+ · · ·+ λk′

L

)
}.

(5)

The frequency spectrum is fully characterized by the
eigenvalues of the encoding Hamiltonian, and the coef-
ficients rely on the trainable gates and their parameters.
Notice that all combinations of the multi-indices k and
k’ that generate a frequency Ωkk’ = ω give us a different
contribution to the coefficient cω.
So far, this model accepts a general encoding Hamilto-

nian H, but let us take the following choice for practical
purposes: using a Hamiltonian with the N -dimensional
spin Sz eigenvalues, which we name the “spin-like” en-
coding. For one qubit we use H = 1

2σz, with eigenval-
ues ±1/2; for one qutrit, the analogous Hamiltonian of
a spin-1 Hamiltonian, which eigenvalues are ±1, 0, etc.
We use a global Sz Hamiltonian tailored to the dimen-
sion of the quantum circuit N = dn. For example, for a
system of two qubits (N = 22 = 4), H is the spin-3/2
Hamiltonian, which acts on the whole circuit instead of
using H = 1

2σz ⊗ 1
2σz. This encoding will be the same

used with a ququart, a qudit of d = 4 (with the same
value of N as for two qubits). Using this particular en-
coding, the positive frequency spectrum, emerging from
Eq. (5), is Ω = {0, · · · , (N − 1)L − 1, (N − 1)L}, where
L is the number of layers in the circuit. The negative
frequencies are also included in the spectrum, which is
symmetric by its construction. For simplicity, from now
on, we drop the label for multi-indices in the frequency

spectrum: Ω ≡ Ωkk’. The degree of the Fourier series,
with this particular encoding, is given by D = (N − 1)L.
The spectrum generated with the “spin-like” encod-

ing only contains integer frequencies. For instance, if the
function we are fitting requires semi-integer or real fre-
quencies a proper approximation cannot be achieved, re-
gardless of the number of layers used. We can tackle this
issue by introducing a re-scaling parameter η into the en-
coding gate: S(x) = eixηH . This parameter is optimized
together with the rest of the free parameters of the cir-
cuit, as we explain in App. C. With this re-scaling factor,
the whole Fourier series spectrum is multiplied by η, and
the degree of the Fourier series becomes D = η(N − 1)L.
We can introduce more fine-tuning in the frequency spec-
trum by using a different ηi for each encoding gate in
the circuit layers. This extension is closer to the origi-
nal idea from the data re-uploading work [2] but should
be treated carefully, because methods with re-scaling pa-
rameters may lead to good expressibility but overfitting
and poor generalization bounds for more complex tasks
[23]. Nevertheless, when applied appropriately, the re-
scaling factor can serve as an effective hyperparameter
for promoting generalization in quantum kernel models
[24]. It is important to note that the encoding strategy
plays a significant role in determining the characteristics
of the frequency spectrum. For instance, in Ref. [8],
the authors propose a technique that utilizes re-scaling
factors to generate exponentially more frequencies.

III. MULTIDIMENSIONAL FOURIER SERIES
WITH QUANTUM CIRCUITS

In this section, we present different ansatzes that gen-
erate multidimensional Fourier series and explore the
scaling of the QML models’ performance with the dimen-
sions of the input data. To do it, we study the expressibil-
ity of the multidimensional Fourier model, meaning the
type of functions that the model can generate. Hence,
we expand the function fitting formalism to multidimen-
sional data, opening the possibility to explore more com-
plex problems with these quantum models.

Definition 2. Multidimensional truncated Fourier se-
ries. The generalization of a one-dimensional truncated
Fourier series to M -dimensional data is given by

f(x⃗) =

D∑
ω1,ω2,...,ωM=−D

cω⃗e
ix⃗·ω⃗, (6)

where D = max(ω1, ω2, ..., ωM ) is the degree of the
Fourier series. The data x⃗ = (x1, x2, ..., xM ) ∈ RM and
the frequencies ω⃗ = (ω1, ω2, ..., ωM ) ∈ ZM are repre-
sented by M−dimensional vectors, and x⃗ · ω⃗ is the scalar
product. The coefficients cω1,ω1,...,ωM

∈ C fulfill the rela-
tion cω1,ω1,...,ωM

= c∗−ω1,−ω1,...,−ωM
.

The M -dimensional Fourier series contains substan-
tially more coefficients than a series with only one di-
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mension. For a given degree D ∈ N, the number of inde-
pendent coefficients cω⃗ is

Nc =
(2D + 1)M − 1

2
+ 1. (7)

As an example, for degree D = 1 and data-dimension
M = 2, according to Eq. (7), we have 5 coeffi-
cients: c00, c01, c10, c11, c−11, while the other ones are con-
strained by cω1ω2

= c∗−ω1−ω2
. The degrees of freedom ν

(abbreviated as DOF) of the Fourier series are the num-
ber of independent variables needed to fully characterize
a set of coefficients of a series with a given degree D.
They account for the real and imaginary parts of each
coefficient, except the one associated with the zero fre-
quency, which only contains a real part. Therefore, the
DOF of an M -dimensional Fourier series are given by

ν ≡ 2Nc − 1 =
(
2D + 1)M . (8)

Depending on the circuit ansatz, the number of layers
required to achieve enough freedom to represent an ar-
bitrary series will vary. In the following subsection, we
propose four strategies: the Line, Parallel, Mixed, and
Super-parallel Ansatzes. We assume that the processing
gates are general unitary transformations in all models.
Hence, the number of parameters they contain is N2−1,
determined by the dimension of SU(N), with N = dn be-
ing the dimension of the quantum circuit. We acknowl-
edge that this approach may not be practical in terms of
trainability. However, we utilize this strategy to explore
the limits of the models.

A. Line ansatz

The Line Ansatz (LA) encodes all data dimensions in
a single qudit. The structure of the model is shown in
Fig. 3 (a). Each layer L(l) of the LA encodes M data
features as

L(l)(x⃗, θ⃗)LA ≡
M∏

m=1

S(xm)A(l)
m (θ⃗l,m), (9)

where M is the dimension of the dataset, xm the data

features and θ⃗l,m are the processing parameters corre-
sponding to feature m from layer l. After the encoding
step, the processing gate is applied to avoid the collapse
of the data in a single variable (see App. D for details).

Another strategy to encode multidimensional data
in one qudit is to use non-commuting gates, meaning
[S1(x), S2(x)] ̸= 0. For example, in the two-dimensional
qubit case, we could use S1(x1) = Ry(x1) and S2(x2) =
Rz(x2). Given that S1 and S2 do not commute, the single
value decomposition of the encoding gate is given by

S1(x1)S2(x2) = V †
1 Σ(x1)V1V

†
2 Σ(x2)V2. (10)

This can be interpreted as adding an extra layer V1V
†
2

in between the two encoding gates that does not contain

trainable parameters and also avoids the model from in-
terpreting the data as one-dimensional.
The number of parameters to be optimized in the LA

ansatz is given by

N (LA)
p = (ML+ 1)(N2 − 1) ∼MLN2. (11)

As mentioned above, N = d is the dimension of the cir-
cuit and the dimension of the encoding gate S(x). Thus,
the parameters grow linearly with the number of layers
L and the data dimensionM , and quadratically with the
circuit dimension N .

B. Parallel ansatz

The parallel ansatz (PA) encodes each data feature in
a different qudit with a single-qudit gate, therefore, we
require n =M qudits to encode allM data features. The
encoding is followed by a processing M−qudit gate, as
shown in Fig. 3 (b). We define each layer as

L(l)(x⃗, θ⃗)PA ≡

(
M⊗

m=1

S(xm)

)
A(l)(θ⃗l), (12)

where A(l)(θ⃗l) is a N × N general processing unitary,
with N = dM . This ansatz contains a total number of
parameters

N (PA)
p = (d2M − 1)(L+ 1) ∼ d2ML, (13)

which grows exponentially with the number of features
M .
If single-qudit gates are used in the processing steps

instead of general multi-qudit gates, then a product ofM
one-dimensional Fourier series is generated. Therefore,
entanglement must be included in the processing gates
to obtain a genuine multidimensional series (see App. E
for more details).

C. Mixed ansatz

Now we consider a mix between the two ansatzes pre-
viously discussed, named the Mixed Ansatz (MA). It di-
vides the data features into different batches and uses p
qudits for different sets (see Fig. 3 (c)). Taking p ≤ M
qudits, the data features are distributed in p qudits, as
in the PA, and more encoding layers can be used for each
qudit if required, as in the LA. For p = 1, MA behaves
like LA, and for p =M it behaves like PA. More formally,
we define a layer of the MA as

L(l)(x⃗, θ⃗)MA ≡
⌈M/p⌉∏
k=1

(
p⊗

m=1

S(xm)

)
A

(l)
k ( ⃗θl,k), (14)

and the number of parameters in this model is given by

N (MA)
p = (d2p − 1)(⌈M/p⌉L+ 1). (15)

If M/p is not an integer, we use fewer encoding gates on
the layers’ last encoding block.
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…

FIG. 3. Quantum circuit ansatzes of the models. The Line ansatz (a) encodes each data feature in a single qudit. Thus, the
circuit depth grows linearly with the total number of features M . The Parallel ansatz (b) encodes the M features in M qudits
instead. The Mixed ansatz (c) combines the two approaches by distributing the features encoding between p < M qudits and
uses more gates to introduce several features in each layer. Finally, the Super-Parallel ansatz (d) uses L layers and L encoding
blocks per qudit, therefore requiring d = ML qudits.

D. Super-Parallel ansatz

Finally, we provide an ansatz that includes layers
in depth and width directions of the quantum circuit.
In other words, it has the same layer structure of re-
uploading models but with L encoding blocks per layer.
Each block contains M single-qubit encoding gates (one
for each data feature). As shown in Fig. 3 (d), a total of
n = LM qudits are required for this ansatz. Each layer
is given by

Ll(x⃗, θ⃗)SP ≡

(
L⊗

i=1

(
M⊗

m=1

S(xm)

))
A(l)(θ⃗l), (16)

and the number of parameters in this model is

N (SP )
p = (L+ 1)(d2ML − 1) ∼ Ld2ML, (17)

which grows exponentially with the input data dimension
and the number of layers.

IV. RESULTS AND DISCUSSION

To compare the models, we assume that all use singe-
qudit encoding gates, although their extension to multi-
qudit gates is straightforward (equivalent to finding an
information unit of dimension d̄ = dn). The degree of
the Fourier series generated by the first three ansatzes is
determined by

D = (d− 1)L, (18)

where d is the dimension of the qudit(s) used in the
model. The super parallel model outputs a Fourier series
of degree

D(SP ) = (d− 1)L2, (19)

which grows quadratic with the number of layers due to
the use of multiple encoding blocks per layer. For de-
tailed derivation and further information on the models,
refer to App. D, E, F, and G. By specifying the qudit
dimension d and the number of layers L, we determine
the Fourier series frequency spectrum Ω and its degree
D. This allows us to calculate the degrees of freedom ν
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FIG. 4. Comparison of the degrees of freedom condition for a two-dimensional Fourier series for the Line (first column), Parallel
(second column), and Super-parallel (third column) ansatzes using qubits (first row) and qutrits (second row). The dashed
lines represent the degrees of freedom ν of the Fourier series produced by the models plotted against its degree D, while the
solid line depicts the number of trainable parameters Np in the circuit ansatzes that generate a Fourier series of degree D with
L layers. The Parallel Ansatz fulfils the degrees of freedom condition for higher-degree Fourier series compared to the Line
Ansatz, being the gap wider when using qutrits. In particular, the condition for the Parallel Ansatz is fulfilled until D = 3 and
D = 10 for qubits and qutrits, respectively. In the Super-Parallel ansatz, plotted on a logarithmic y-axis scale, we observe a
faster increase in the number of parameters compared to the degrees of freedom.

of the output series by plugging Eq. (18) and (19) in Eq.
(8). Our next step is to investigate whether we can fully
represent the Fourier series coefficients by comparing the
degrees of freedom ν with the number of independent
parameters Np in the quantum circuit. The ansatzes
are required to contain, at least, ν free parameters to
generate any series coefficient, resulting in a condition
Np ≥ ν. When this condition is not accomplished, the
model is not general enough to approximate all possible
Fourier series. However, having ν > Np does not neces-
sarily guarantee that we can fit a general series since the
coefficient equations are highly coupled and non-linear
(see Eq. (4)), although one might expect that, in gen-
eral, ν > Np is enough to approximate a given series.
Our goal is to establish a lower bound in the worst-case
scenario in terms of the circuit ansatz requirements to fit
a general multidimensional Fourier series.

The one-dimensional feature model, introduced in sec-
tion II, possesses ν = 2(D+1) = 2(L(d− 1)+ 1) degrees
of freedom, and Np = (L + 1)(d2 − 1) free parameters.
Both these quantities increase linearly with the number

of layers and Np > Nc holds for all values of L and d,
which implies that the degrees of freedom requirements
are satisfied in all cases.

For the line, parallel and mixed ansatz with a fixed
qudit dimension, the degrees of freedom grow polyno-
mially with the number of layers, ν ∼ LM , while the
number of parameters grows proportionally to the layers
used Np ∼ L, regardless of the data dimension. There-
fore, at some point, the DOF will exceed the number of
free parameters of the model.

In Fig. 4 we represent the DOF condition for the
Line, Parallel and Super-parallel ansatzes for a case of
two-dimensional data with qubits and qutrits models. In
the first place, we see that the Line Ansatz only fulfils
the condition for the qubit model with D = 1. Taking
into account the asymptotics in the degrees of freedom
condition Np ≥ ν and assuming that ν ∼ (2DL)M and

N
(LA)
p ∼MLd2, we obtain the following condition:

d <∼
( M

2MLM−1

)1/(M−2) −−−−→
M→∞

1

2L
. (20)
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FIG. 5. Simulation the Line and Parallel ansatzes for fitting a Fourier series of degree D = 2. The target function in the
trigonometric form is given by f(x1, x2) = −0.02 + 0.04 cos(2x1 + x2) + 0.25 sinx1 − 0.3 cos 2x2 − 0.1 sin(x1 − x2). We use the
Nelder-Mead method as a classical optimization subroutine with 500 training and 1500 testing data points. In the Line ansatz,
we use one qubit and L = 2. The accuracy obtained is 38.53% and, as we can see, the model does not capture the structure of
the target function. In the Parallel ansatz, we use two qubits and L = 2. The accuracy obtained is 95.63%, and the predicted
and target functions have a similar structure. In this regime, the Line ansatz model does not fulfil the DOF condition, while
the Parallel does. This is reflected in the accuracy of the simulations.

This suggests that simply increasing the qudit dimen-
sion is insufficient to achieve the desired number of pa-
rameters. In particular, for large data dimensions, the
condition can not be fulfilled because d ≤ 1/2L is an
impossible condition for L > 1. Therefore, one-qudit
models have limited power for fitting multidimensional
functions.

For the Parallel ansatz depicted in the second row of
Fig. 4, we see that by increasing the qudit dimension, we
arrive at higher Fourier series Degrees. Indeed, by run-
ning the asymptotics in the DOF condition considering

N
(PA)
p ∼ Ld2M , we achieve

d >∼ 2L
M−1
M −−−−→

M→∞
2L, (21)

which implies that in order to satisfy the inequality, we
would need to use qudit dimensions that increase with
the number of layers. In particular, in the limit of large
dimensional datasets, d has to grow proportional to L.
This indicates that the model remains universal, in the
sense that can generate any arbitrary Fourier series, as

long as d can grow with L. In that case, the complexity
of the problem would shift to finding systems with arbi-
trarily large qudit dimensions to fit generic Fourier series,
which can be resource-demanding for some technologies.

Fig. 5 depicts the results of simulation for models fit-
ting a two-dimensional Fourier series of degree D = 2
with the Line and Parallel ansatzes. Since for two-
dimensional data, the LA does not accomplish the DOF
condition, the simulation does not find suitable param-
eters to fit the coefficients. On the contrary, the par-
allel model approximates with high accuracy the tar-
get function with only two layers, because meets the
DOF requirements. For more details on two and three-
dimensional models see Ref. [25], where expressibility is
analyzed in detail.

The limitation that we exhibit for the Line and Parallel
ansatzes is that we do not have enough free parametriza-
tion in the Hilbert space of the PQC to accomplish
the DOF that multidimensional Fourier series require.
Therefore, we can only fit functions up to a certain de-
gree. One might assume that the problem could be solved
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by adding more layers, which introduces more trainable
parameters in the PQC to match the DOF required for
the desired set of coefficients. However, the addition of
more layers also increases the output Fourier series’ de-
gree D (see Eq. (18)), which requires more coefficients
and thus more degrees of freedom. Therefore, the prob-
lem cannot be resolved by merely increasing the number
of layers because this also raises the required degrees of
freedom of the output model.

The Super-parallel ansatz has a number of qudits that
grows with the number of layers and the data dimen-
sion. In this scenario, the degrees of freedom scale as
ν ∼ (2dL2)M . Substituting this into the inequality
Np ≥ ν with the parameter count given in Eq. (17)
yields

d ≥ 2
1

2L−1L
2

2L−1 . (22)

It can be easily seen that this inequality is always satis-
fied. An example of this can be observed in the third row
of Fig. 4, where we can notice that the number of param-
eters grows more rapidly than the degrees of freedom of
the resulting model function, making the model capable
of fitting any arbitrary Fourier series. There is an increas-
ing gap between the number of parameters and degrees
of freedom, which opens the possibility of finding more
sophisticated Super-parallel encodings that can employ
lesser variables while remaining universal, for instance,
by using non-general unitary gates or fewer qudits.

V. CONCLUSIONS

In this work, we have explored how to generate multi-
dimensional Fourier series with parameterized quantum
circuits. These series emerge naturally from the expecta-
tion values of quantum operators with a particular data
encoding. We have compared the degrees of freedom of
a general Fourier series of a given degree to the number
of free parameters in the circuit, which we refer to as
the DOF condition and provides insight into the model
expressibility. We provide a trade-off between the num-
ber of qudits, circuit depth (measured with the number
of layers of the circuit), data dimension, and local qudit
dimension.

Current quantum computers can use higher energy
states to perform high-dimensional quantum computa-
tion. Apart from this, the use of a general formalism
for qudits is motivated by the possibility of exploring
larger Hilbert spaces (with more extensive parametriza-
tion), which gives more freedom when fitting the desired
set of coefficients.

For one-dimensional data, the DOF requirement is
always accomplished. However, for higher-dimensional
data, the degrees of freedom grow exponentially with
the data dimensions, which can be problematic for some

models that may not be able to keep up with this rapid
growth. For example, single-qudit models have limited
power in the expressivity of multidimensional data, be-
cause they lack the appropriate parametrization. How-
ever, multi-qudit models can approximate functions up
to a higher degree, which can be used as an appropriate
approximation for some problems.

We can always find a model that satisfies the DOF
condition by using large qudit dimensions or a substan-
tial number of qudits, then being fully expressive. There-
fore, multidimensional quantum learning models can be
considered universal, as with sufficient parametrization,
they can fit any arbitrary Fourier series. Potential issues
may appear with trainability and generalization result-
ing from using such a large parametrization. However,
we speculate that for most problems, such an extensive
parametrization would not be necessary nor practical in
terms of trainability.

The Line, Parallel and Mixed ansatzes exhibit an in-
ductive bias towards limited-band functions, which con-
tain low frequencies. Further work needs to be done
for studying how the inductive bias of quantum learning
models [26, 27] varies with the PQC used. It would be
interesting to benchmark the performance, trainability,
and generalization capabilities of the ansatzes against a
classical surrogate model [28, 29]. Another open question
is how to determine the level of redundancy necessary in
the output Fourier series degree when the target function
is not known beforehand.

We aim for our work to contribute to the understand-
ing of QML with classical multidimensional data and
the further exploration of more sophisticated embedding
strategies.

CODE AND DATA AVAILABILITY

All code used in this work can be found on the
GitHub repository https://github.com/bsc-quantic/
fourier.
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Appendix A: Data re-uploading for one-dimensional Fourier series

This section explains how we generate one-dimensional Fourier series with a circuit of n qudits of dimension d. For
processing gate a general unitary is taken, of total dimension N = dn (n qudits of dimension d):

A(l) =

 A
(l)
11 · · · A

(l)
1N

...
. . .

...

A
(l)
N1 · · · A(l)

NN

 . (A1)

In contrast to the processing, the encoding gates are the same in all layers. Let’s assume the following single-qudit
encoding gate:

S(x) = eixH , (A2)

where H is a N×N Hermitian operator and x is a one-dimensional data point from the function we want to represent.
We assume that the encoding Hamiltonian H is diagonal because, when taking the Singular Value Decomposition,
H = V †ΣV , where V and V † are unitary matrices and Σ is a diagonal matrix formed with the eigenvalues of H, the
encoding gate becomes

S(x) = e−ixV ΣV †
=

∞∑
m=0

1

m!
(−ixV ΣV †)m = 1 +

∞∑
m=1

1

m!
V (−ixΣ)mV † = V e−ixΣV † = V R(x)V †. (A3)

where we take into consideration that V †V = I and Σ = diag(λ1, ..., λN ). The resulting diagonal encoding gate is

R(x) = diag
(
eixλ1 , · · · , eixλN

)
. (A4)

Therefore, we assume, without loss of generality, a diagonal encoding matrix, since V and V † gates are re-absorbed
in the definition of the general processing gates A(l). With this assumption, each layer l is composed of the product

L(l) = A(l)R(x) L(0) = A(0), (A5)

which matrix elements are

L
(l)
ij =

N∑
k=1

A
(l)
ikRkj = A

(l)
ij e

ixλj , L
(0)
ij = A

(0)
ij . (A6)

In general, for L layers, the unitary transformation of the whole circuit is expressed as

Uij =

N∑
k1,··· ,kL=1

A
(L)
ikL
e−ixλkLA

(L−1)
kLkL−1

...A
(1)
k2k1

e−ixλk1A
(0)
k1k0

. (A7)

The initial state of the circuit is the zero state of dimension N . Therefore |0⟩ = (1, 0, · · · , 0)T . Thus, the state
generated by the circuit becomes:

|ψ⟩ = U |0⟩⊗n, (A8)

ψi = Uijδj1 = Ui1. (A9)

Putting it all together, we obtain

ψi =

N∑
k1,··· ,kL=1

e−ix(λk1
+...+λkL

)A
(L)
ikL
A

(L−1)
kLkL−1

...A
(1)
k2k1

A
(0)
k11
, (A10)

By introducing the multi-index notation k ≡ {k1, ..., kL} ∈ [N ]L and the multi-index sum Λk = λk1 + ... + λkL
,we

re-express the i-vector state:

ψi =
∑

k∈[N ]L

e−ixΛkA
(L)
ikL
A

(L−1)
kLkL−1

...A
(1)
k2k1

A
(0)
k11
. (A11)
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Each multi-index k is a possible combination of L indices and each run from 1 to N . The multi-index sum Λk =
λk1

+ ...+ λkL
is a sum that has |k| = NL possible values, given by all the possible combinations of λki

.
Now we compute the expectation value of a given observable M in this state. The observable can be diagonal by

the same argument used for the encoding gate S(x), explained above. The eigenvalues of any observable are real, so
M∗

ii = Mii ≡ Mi. All together,

⟨M⟩ = ⟨ψ|M|ψ⟩ =
N∑
i=1

U∗
i1MiUi1 =

N∑
k1,··· ,kL=1
k′
1,··· ,k

′
L=1

eix(Λk−Λk′ )

(
N∑
i=1

MiA
(L)
ikL
A

∗(L)
ik′

L

)
A

(0)
k11
A

∗(0)
k′
11

L∏
p=2

A
(p−1)
kpkp−1

A
∗(p−1)
k′
pk

′
p−1

. (A12)

For each set of k and k′ parameters, we generate a particular frequency Ωkk′ = Λk−Λk′ . Notice that different k,k′

choices can give the same frequency. Also, to obtain the opposite sign value −Ωkk′ , one needs to exchange the k and
k′ indices. Therefore, we can group the coefficients that generate the same frequencies from the above expression:

⟨M⟩ =
∑
ω≥0

N∑
k,k′=1
Ωkk′=ω

eixω

(
N∑
i=1

MiA
(L)
ikL
A

∗(L)
ik′

L

)
A

(0)
k11
A

∗(0)
k′
11

L∏
p=2

A
(p−1)
kpkp−1

A
∗(p−1)
k′
pk

′
p−1

+ e−ixω

(
N∑
i=1

MiA
(L)
ik′

L
A

∗(L)
ikL

)
A

(0)
k′
11
A

∗(0)
k11

L∏
p=2

A
(p−1)
k′
pk

′
p−1

A
∗(p−1)
kpkp−1

. (A13)

Thus, we generate a Fourier series with coefficients

cω =

N∑
k,k′=1
Ωkk′=ω

(
N∑
i=1

MiA
(L)
ikL
A

∗(L)
ik′

L

)
A

(0)
k11
A

∗(0)
k′
11

L∏
p=2

A
(p−1)
kpkp−1

A
∗(p−1)
k′
pk

′
p−1

, (A14)

and c−ω = c∗ω, with a frequency spectrum

Ωkk’ = {Λk − Λk’} = {(λk1 + · · ·+ λkL
)− (λk′

1
+ · · ·+ λk′

L
)}. (A15)

Notice that the frequency spectrum is directly related to the eigenvalues of the encoding Hamiltonian, while the
coefficients depend on the elements of the trainable parameters.

Appendix B: Matrix elements combinations to generate Fourier coefficients

All the terms that constitute a given coefficient with associated frequency ω have in common that Λk − Λk’ = ω
(see Eq. (A14)). In this appendix, we explore how many combinations of the multi-indices k, k’ give us the same
frequency ω, what we call the number of contributions to the coefficient (sω). In some occasions, this is also called the
degeneracy of the frequency. Having more terms that contribute to the same coefficient may be beneficial since we
can have more parameters yielding the same coefficient. The number of contributions does not affect the discussion
about the degrees of freedom.

The frequencies are generated according to Eq. (A15). For one qudit model and with the “spin-like” encoding
discussed in Sec. II, the frequencies are generated by subtracting L eigenvalues to L eigenvalues, and each of them
can take N values. In total we have |ω| = N2L possible eigenvalues combinations. However, some subtraction results
with the same frequency ω. The number of combinations that gives rise to the same frequency is given by

sω =

(
2L

L− ω

)
N−1

. (B1)

As expected, the number of combinations depends on the number of layers, the frequency considered and the dimension
of the model. The symmetry in the generation of the frequencies is reflected by sω = s−ω. The sum of all combinations
gives back |ω|, the eigenvalues combinations.

∑
ω∈Ω sω = d2L = |ω|. For qubits (N = 2), the distribution of

combinations becomes a binomial distribution:

sN=2
ω =

(
2L

L− ω

)
1

=
2L!

(L− ω)!(L+ ω)!
. (B2)
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ω = 0 ω = 1 ω = 2

1
2
+ 1

2
−

(
1
2
+ 1

2

)
1
2
+ 1

2
−

(
− 1

2
+ 1

2

)
1
2
+ 1

2
−

(
− 1

2
− 1

2

)
1
2
− 1

2
−

(
1
2
− 1

2

)
1
2
+ 1

2
−

(
+ 1

2
− 1

2

)
1
2
− 1

2
−

(
− 1

2
+ 1

2

)
1
2
− 1

2
−

(
− 1

2
− 1

2

)
− 1

2
+ 1

2
−

(
− 1

2
+ 1

2

)
− 1

2
+ 1

2
−

(
− 1

2
− 1

2

)
− 1

2
+ 1

2
−

(
+ 1

2
− 1

2

)
− 1

2
− 1

2
−

(
− 1

2
− 1

2

)
s0 = 6 s1 = 4 s2 = 1

TABLE I. Example of the number of combinations of the positive frequencies in the single-qubit model with 2 layers and
encoding gate S(x) = eixH with H = σz/2. The combinations of the negative frequencies are obtained by swapping the
eigenvalues, giving rise to the same combination value (sω = s−ω).

For qutrits (N = 3), we have a trinomial distribution:

sN=3
ω =

(
2L

ω

)
2

=
∑

0≤µ,ν≤2L
µ+2ν=2L+ω

2L!

µ!ν!(2L− µ− ν)!
. (B3)

For ququarts, a quadrinomial distribution, etc. By using higher-dimensional systems, the number of total combinations
grows exponentially with the number of layers used.

For example, let us consider a model with one qubit and L = 2. The frequency spectrum is given by Ω =
{λk1

+ λk2
− (λk′

1
+ λk′

2
)}. The eigenvalues are λki

= ±1/2 and we can combine them in |ω| = d2L = 24 = 16 ways
to obtain one of the frequencies Ω = {−2,−1, 0, 1, 2}. In Tab. I, we show the distribution of combinations to obtain
these frequencies. As we can see, it fulfils s−2 + s−1 + s0 + s1 + s2 = 16.

We can easily generalize this for the M−dimensional models. The discussion is valid for the Line, Parallel, and
Mixed ansatz. We have coefficients associated with M frequencies in such models: cω1,...,ωM

. Hence, the possible
combinations of the coefficients depend on the combinations of every single frequency ωi,

sω⃗ = sω1
sω2

...sωM
, (B4)

where sωi with i ∈ {1, ...,M} is the degeneracy of the one-dimensional model given in Eq. (B1). The more terms are
contributing to the sum of a coefficient, the more likely is to exist more than one set of parameters that contributes
to the same coefficient.

Appendix C: Re-scaling factor

In this section, we discuss why it is relevant to introduce a re-scaling factor in quantum methods for function fitting,
which can be extended to other methods. For simplicity, we first discuss the re-scaling strategy for the one-dimensional
case and then generalize it to the multidimensional model.

The non-negative frequency spectrum generated by the one-qudit models with the “spin-like” encoding (without
the re-scaling factor) is given by

Ω = {(d− 1)L, (d− 1)L− 1, ..., 0}. (C1)

Suppose we want to fit a M−dimensional function that can be approximated with a Fourier series of degree D′. We
fit the function with at least L = D′/(d − 1) layers, under the condition of the degrees of freedom (see section III).
Nevertheless, we can find cases in which there is no number of layers such that D′ = (d − 1)L. For instance, with
the “spin-like” encoding, we generate integer frequencies without the possibility of generating semi-integer or float
frequencies, regardless of the number of layers used. If the target function contains a non-integer frequency, the model
cannot generate the proper functions and the model’s training fails. We overcome this inconvenience by introducing
a re-scaling η.
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FIG. 6. Simulations of a one-dimensional Fourier serie with one qubit and two layers. The target function is f(x) = 0.2(1 +

cos x
2
+ sin x

2
+ cosx+ sinx) and the trainable gates are A(i)(θ⃗i) = Ry(θ

(1)
i )Rz(θ

(2)
i ) in both cases. The solid line is the target

function, while the dots correspond to the output of different quantum models. The blue dots use an encoding gate Rz(x) and
the orange ones use Rz(ηx), where η is the re-scaling factor. The optimization subroutine finds η ≃ 1

2
.

Let’s study the case of fitting a function f(x) = 0.2(1 + cos x
2 + sin x

2 + cosx + sinx), which is decomposed in a
Fourier series with frequencies Ω′ = {0,±1/2,±1}. With one layer, the qubit model generates the frequency ω = 0 and
ω = ±1, but it cannot generate the semi-integer ones. Consequently, it fails to fit this function. A solution to avoid
this is introducing a re-scaling factor η in the Hamiltonian H of the encoding gates, such that S(x) = eixηH = eixH

′
.

Now, all the eigenvalues of the Hamiltonian become ηλi, leading us to a different frequency spectrum

Ωη = ηΩ. (C2)

The re-scaling factor η is optimized by the classical subroutine and all the other trainable parameters. In the example
considered, the optimization subroutine ideally finds η = ± 1

2 . With this, we change the eigenvalues of the encoding
Hamiltonian to λ′ = {−1/4, 1/4}. Consequently, the frequency spectrum becomes Ωη=1/2 = {±L/2,±(L−1)/2, ..., 0}.
With two layers, we have the desired frequencies present in the target function. A simulation with this example is
shown in Fig. 6.

To have a more flexible model in terms of the frequencies, one can introduce different re-scaling parameters in all L
processing gates to be optimized together with the rest of the model’s parameters (see Ref.[2] for a similar proposal
for classification problems). By doing this, we can match the target function frequencies with more freedom. The
accessible frequencies for the model become

Ωη⃗ = {η1(λk1
− λk′

1
) + ...+ ηL(λkL

− λk′
L
)}. (C3)

The Fourier series now has non-equispaced and real frequencies that can capture better the target function structure.
We obtain any desired frequency present in the target with enough layers by optimizing the right parameters.

The re-scaling proposal can be easily generalized to M−dimensional models by introducing more re-scaling param-
eters: S(η⃗ · x⃗), where η⃗ = (η1, η2, ..., ηM ) and x⃗ = (x1, x2, ..., xM ) are M−dimensional vectors. In this way, we modify
the frequency associated with each dimension.

This method requires a small amount of classical pre-processing. Instead of generating a unitary transformation
with parameter θ = x, we have to generate a θ = ηix transformation. In exchange for this, we obtain flexibility to
fit functions with unknown frequencies. However, this approach should be treated carefully, because methods with
re-scaling parameters may lead to good expressibility but overfitting and poor generalization bounds for more complex
tasks.

Appendix D: Fourier series with the Line Ansatz

In this appendix, we explore the Line Ansatz (LA) for a qudit of arbitrary dimension d. We show the exact form
of the parameterized states after the quantum circuit and the expectation value of an observable in this state (the
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output of the quantum model). We also include a slight variation of the LA that does not contain the processing
gates between each data dimension. We show why this formalism does not fit multidimensional functions in general.

We study the state after the quantum circuit of the LA model (see Fig. 3 (a) for the quantum circuit). We consider
the “spin-like” encoding discussed in the main article for all data features, having the same frequency spectrum in all
dimensions. The quantum state is given by

ψi =

d∑
j1,..,jL
k1,..,kL
t1,...,tL

...

A
(L)
MitL

eixMλtL ...A
(L)
1kLjL

eix1λjL ...A
(1)
Mj2t1

eixMλt1 ...A
(1)
1k1j1

eix1λj1A
(0)
j11
, (D1)

where λji are the eigenvalues of the single-qudit encoding Hamiltonian H, with i ∈ {1, · · · , d}. In the symbol

for a trainable gate A
(l)
mi,j , l indicates the layer, m the position of the gate in the layer, and i, j are the indices

of the matrices. Note that each eigenvalue on the exponentials, introduced by the encoding gates S(xi), has a
different index. This is crucial for having a non-related dependency in each dimension and it occurs because of the
intermediate trainable gates between each encoding gate. For the sake of simplicity, from now on, we assume that
the M processing gates of any layer l have the same structure but taking into consideration that they have different

parameters: A
(l)
1 ∼ A

(l)
2 ∼ ... ∼ A

(l)
M ≡ A(l). With the multi-index notation j = {j1, j2, ..., jL} and re-grouping terms

we write

ψi =

d∑
j,k,...t

eix1(λjL
+...+λj1

)...eixM (λtL
+...+λt1

)A
(L)
itL
...A

(L)
kLjL

..A
(1)
j2t1

...A
(1)
k1j1

A
(0)
j11
. (D2)

Finally, we define the multi-index sum: Λj = λj1 + λj2 + ...+ λjL , simplifying the previous expression

ψi =

d∑
j,k,...t

ei(x1Λj+...+xMΛt)A
(L)
itL
...A

(L)
kLjL

..A
(1)
j2t1

...A
(1)
k1j1

A
(0)
j11
. (D3)

After this, we compute the expectation value of the observable M. Without loss of generality, we assume that
Mij = Mii = Mi

⟨M⟩ =
d∑

j, j’,...t, t’∈[N ]L

ω1=ω′
1,...,ωM=ω′

M

N∑
i

eix1(Λj−Λj’)...eixM (Λt−Λt’)A
(0)∗
j′11

A
(1)∗
k′
1j

′
1
...A

(1)∗
j′2t

′
1
...A

(L)∗
k′
Lj′L

...A
(L)∗
it′L

Mi

×A
(L)
itL
...A

(L)
kLjL

...A
(1)
j2t1

...A
(1)
k1j1

A
(0)
j11
.

(D4)

As we can observe, the expectation value has the structure of a multidimensional Fourier series:

⟨M⟩ =
∑
ω⃗∈Ω⃗

cω⃗e
ix⃗·ω⃗. (D5)

Each data dimension has its frequency spectrum, resulting in a M−dimensional vector of frequencies:

Ω⃗(LA) =
(
{Λj − Λj’}, ..., {Λt − Λt’}

)
. (D6)

The set of coefficients

cω⃗ =
∑

Λj−Λj’=ω1

...
Λt−Λt’=ωM

A
(0)∗
j′11

A
(1)∗
k′
1j

′
1
...A

(1)∗
j′2t

′
1
...A

(L)∗
k′
Lj′L

...A
(L)∗
it′L

OiA
(L)
itL
...A

(L)
kLjL

...A
(1)
j2t1

...A
(1)
k1j1

A
(0)
j11
, (D7)

also fulfill that cω1,ω2,··· ,ωM
= c∗−ω1,−ω2,··· ,−ωM

.
Now, we provide an alternative ansatz in which data of all dimensions is uploaded without a processing gate

separating the different dimensions. Considering this, the ansatz is composed of the following layers

L0 = A(0), Li = S(x1)S(x2)...S(xM )A(i). (D8)
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FIG. 7. Fitting of a Fourier two-dimensional series with S(x⃗) = Rz(x1)Rz(x2) and 10 layers. The target function is f(x1, x2) =
1
12
(1+cosx1+cosx2). The classical optimization method is the Nelder-Mead. We use 500 training points and 1500 test points.

The predicted functions do not result to be like the target. Instead, it presents a structure similar to f(x1 + x2).

The problem with this ansatz is that, by using the same S(xi) for all encoding gates, these gates become
S(x1)S(x2) · · ·S(xM ) = S(x1 + x2 + ... + xM ). Hence, all data dimensions are mapped to a single dimension in
the following way: x̄ = x1 + ...+ xM . In other words, the M−dimensional data collapses in a one-dimensional space.
For example, the data we introduce for M = 2 with a qubit circuit is x̄ = x1 + x2. The model cannot distinguish
the data points x1 = 1, x2 = 0, and x1 = 0, x2 = 1. Consequently, the results obtained by the model for fitting a
two-dimensional function have a similar structure to the function f(x1 + x2) (depicted in Fig. 7). For this reason, we
need to introduce a trainable gate in the middle of the encoding gate to separate the data dependency.

Appendix E: Fourier series with the Parallel Ansatz

This section explains in more detail the Parallel Ansatz (PA) and studies its performance. With this ansatz, we
take advantage of larger Hilbert spaces for operations with the trainable gates, which determine the coefficients of the
Fourier series. First, each data dimension is encoded in a different qudit. Then, we present the resulting state after
the parameterized quantum circuit and the expectation value of an arbitrary observable M in this state. We also
provide a variation of this ansatz that does not use entanglement in the trainable gates and we discuss the differences
between the two models.

Following the circuit of the PA in Fig. 3 (b), the M−qudit state after the circuit is given by

ψi =

N=dM∑
j1,...,jL=1

A
(L)
ijL
e
i(x1λ

(1)
jL

+...+xMλ
(M)
jL

)
...A

(1)
j2j1

ei(x1λ
(1)
j1

+...+xMλ
(M)
j1

)A
(0)
j11
. (E1)

Now the indices run from 1 to N = dM , being M = n, the number of qudits, and d its dimension. The
encoding gate is S(x⃗) = S(x1) ⊗ S(x2) ⊗ ... ⊗ S(xM ) = eix1H ⊗ eix2H ...eixMH , which can be rewritten as

S(x⃗) = ei(x1H
(1)+x2H

(2)+...+xMH(M)), with

H(i) = I︸︷︷︸
1

⊗ I︸︷︷︸
2

⊗ · · · ⊗ H︸︷︷︸
i

⊗ · · · ⊗ I︸︷︷︸
M

. (E2)

All the Hamiltonians are built by the tensor product of n − 1 identities except in the i position where we have
the single-qudit Hamiltonian. This gives a Hamiltonian of dimension N = dM , which has the d eigenvalues λi
of the single-qudit Hamiltonian distributed along the N = dM possible positions on the diagonal. For example,
a qubit model with two-dimensional data (M = 2) and the “spin-like” encoding (H = σz/2) has the following

encoding gate: S(x1, x2) = eix1H ⊗ eix2H = ei(x1H
(1)+x2H

(2)). The eigenvalues of the two Hamiltonians are: λ(1) =
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{− 1
2 ,−

1
2 ,+

1
2 ,+

1
2}, and λ

(2) = {− 1
2 ,+

1
2 ,−

1
2 ,+

1
2}. Therefore, the eigenvalues of σz/2 are maintained but distributed

differently. Continuing with the quantum state, we group the different eigenvalues with the multi-index sum notation,

i.e., Λ
(i)
j = λ

(i)
j1

+ λ
(i)
j2

+ ...+ λ
(i)
jL
, we rewrite the final state as

ψi =

N=dn∑
j

ei(x1Λ
(1)
j +...+xMΛ

(M)
j )A

(L)
ijL
...A

(1)
j2j1

A
(0)
j11
. (E3)

All data dimensions in the exponential are multiplied by a multi-index sum with the same index, which may cut some
freedom in fitting a Fourier series. Although having the same index, they are non-equally distributed. With this, the
model has enough freedom to have an independent frequency spectrum in each dimension. Finally, the expectation
value of the observable is given by

⟨M⟩ =
N∑

j,j’=1=1

N∑
i=1

ei[x1(Λ
(1)
j −Λ

(1)
j’ )+...+xM (Λ

(M)
j −Λ

(M)
j’ )]A

(0)∗
j′11

A
(1)∗
j′2j

′
1
...A

(L)∗
ij′L

MiA
(L)∗
ijL

...A
(1)
j2j1

A
(0)
j11
, (E4)

which has the structure of a multidimensional Fourier series. The observable M acts on n qudits, but we propose to
measure only one qudit, for example, the first one. Then the observable becomes M = M⊗ I⊗ ...⊗ I, where M is a
single-qudit observable. This does not affect the models’ structure. The frequency spectrum obtained is

Ω⃗(PA) = ({Λ(1)
j − Λ

(1)
j’ }, ..., {Λ(M)

j − Λ
(M)
j’ }). (E5)

Therefore, the PA’s output has a multidimensional Fourier series structure.
Now we explore a variation of the PA. The circuit ansatz we consider is the same, but instead of using processing

gates A(i) as multi-qudit gates, we only use single-qudit gates, meaning that we need to eliminate any entangling gate.
In this way, we explore the outcome of the model working with each qudit separately. Now we measure an observable
acting in all qudits because they do not interact and consequently do not share any correlation. The state after the
circuit with the ansatz considered is

|ψ⟩ = A(0)S(x⃗)A(1)...S(x⃗)A(L) = |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψM ⟩ . (E6)

where A(i) = A
(i)
1 ⊗ A(i) ⊗ ... ⊗ A

(i)
M , and S(x⃗) = S(x1) ⊗ S(x2) ⊗ ... ⊗ S(xM ). Hence, if we choose to measure an

observable M = σz ⊗ σz ⊗ ....⊗ σz, the result is

⟨M(x⃗)⟩ = ⟨ψ1|σz |ψ1⟩ ⟨ψ2|σz |ψ2⟩... ⟨ψM |σz |ψM ⟩ =
∑
ω1

c(1)ω1
eix1ω1

∑
ω2

c(2)ω2
eix1ω2 ...

∑
ωM

c(M)
ωM

eix1ωM

=
∑
ω⃗

c(1)ω1
c(2)ω2

...c(M)
ωM

ei(x1ω1+x2ω2+...+xMωM ),
(E7)

where we have used the results of the one-dimensional Fourier series discussed in App. A. We obtain a multiplication
of M one-dimensional Fourier series. In this case, however, we do not have all the free coefficients because cω⃗ ̸=
c
(1)
ω1 c

(2)
ω2 ...c

(M)
ωM . For example, for M = 2 we have 5 free coefficients: c00, c01, c10, c11, c1−1 but in this variation of the

model we have 4 free coefficients: c
(1)
0 , c

(2)
0 , c

(1)
1 , c

(2)
1 , since the other ones are constrained by c

(i)
ωi = c

(i)∗
−ωi

. The output
of this model is still a Fourier series, but not the most general one. Regardless of this, the possibility of finding
applications for some problems is not discarded, as the question remains open.

Appendix F: Fourier series with the Mixed Ansatz

In this section, we explore the last ansatz considered. The circuit in Fig. 3 (c) is called the Mixed Ansatz (MA)
because it combines elements of the LA and the PA: various data dimensions are encoded in the same qudit as in
the LA, but also other qudits are used to encode them, like in the PA. The idea of this model is to take advantage of
the hardware requirements of the current quantum devices. For instance, if we have a chip with 4 qubits and 8 data
features, we introduce 2 dimensions in each qubit.

Let us consider a MA circuit of p qudits and a M−dimensional dataset. In the ideal case, we encode M/p data
dimensions in every qudit. Of course, M/p will not always be an integer. In such cases, we use fewer encoding gates
in the last layer. Since we are encoding different data features in the same qudit, we need extra processing gates
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between these dimensions, like in the LA. All the trainable gates are p-dimensional qudit gates since we encode data
in this number of qudits. The quantum state after the circuit is given by

ψi =

N=dp∑
j1,..,jL
k1,..,kL
t1,...,tL

...

A
(L)
M/pitL

ei(xM−(p−1)λ
(1)
tL

+...+xMλ
(p)
tL

)...A
(L)
1kLjL

e
i(x1λ

(1)
jL

+...xpλ
(p)
jL

)
...

×A
(1)
M/pj2t1

ei(xM−(p−1)λ
(1)
t1

+...+xMλ
(p)
t1

)...A
(1)
1k1j1

ei(x1λ
(1)
j1

+...+xpλ
(p)
j1

)A
(0)
j11
.

(F1)

This equation has a different distribution of eigenvalues: λ(i) with i ∈ {1, ..., p} because we have p qudits. The
different distribution comes from the tensor product of the identity in all the p qudits and the encoding Hamiltonian
in the i−th qudit (see Eq. (E2)). By introducing the multi-index and multi-sum notation that we have explored in
this work, we reduce the expression to

ψi =

N=dp∑
j,k,t,...

ei(x1Λ
(1)
j +...+xpΛ

(p)
j +...+xM−(p−1)Λ

(1)
t +...+xMΛ

(p)
t )A

(L)
M/pitL

...A
(L)
1kLjL

...A
(1)
M/pj2t1

...A
(1)
1k1j1

A
(0)
j11
, (F2)

where j = {j1, j2, ..., jL} and Λ
(i)
j = λ

(i)
j1

+ λ
(i)
j2

+ ...+ λ
(i)
jL
. The expectation value of an observable M in this quantum

state is given by

⟨M⟩ =
N=dp∑

j,j’,k,k’,t,t’...

N∑
i=1

e
i[x1(Λ

(1)
j −Λ

(1)

j′ )+...+xp(Λ
(p)
j −Λ

(p)
j’ )+...+xM−(p−1)(Λ

(1)
t −Λ

(1)
t’ )+...+xM (Λ

(p)
t −Λ

(p)
t’ )]

A
(0)∗
j′11

A
(1)∗
1k′

1j′1
...

×A(1)∗
M/pj′2t′1

...A
(L)∗
1k′

L
j′
L

...A
(L)∗
M/pit′

L

MiA
(L)
M/pitL

...A
(L)
1kLjL

...A
(1)
M/pj2t1

...A
(1)
1k1j1

A
(0)
j11
.

(F3)

In terms of the eigenvalues, we see combined features of the two models: having a different distribution of eigenvalues
with the same index (in the data dimensions processed at the same level of depth) and having a different index
with the same distribution of eigenvalues (the data-features processed in the same qudit). Therefore, this model also
generates a multidimensional Fourier series.

Appendix G: Fourier series with the Super-parallel Ansatz

In this section, we introduce the Super-parallel Ansatz. It contains n = ML qudits. The ansatz in question is
depicted in Fig. 3 (d). It can be seen that now the layers grow in two dimensions: in width and depth. Each layer
comprises L encoding blocks, with each block consisting of M single-qudit encoding gates. Similar to the previous
ansatz, the Super-parallel Ansatz also generates multidimensional Fourier series, and the derivation is similar to
that of the Parallel Ansatz. Thus, we will not provide an explicit derivation here. However, the encoding gates are
significantly different in this ansatz. For instance, consider an encoding block of the Super-parallel Ansatz with L = 2
for M -dimensional data:

S(x⃗) =S(x1)⊗ ...⊗ S(xM )⊗ S(x1)⊗ ...⊗ S(xM ) = eix1H ⊗ ...⊗ eixMH ⊗ eix1H ⊗ ...⊗ eixMH

dLM∑
j1=1

ei(x1λ
(1)
j1

+...+xMλ
(M)
j1

+x1λ
(M+1)
j1

+...+xMλ
(2M)
j1

) =

dLM∑
j1=1

ei[x1(λ
(1)
j1

+λ
(M+1)
j1

)+...+xM (λ
(M)
j1

+λ
(2M)
j1

)],
(G1)

where λ
(1)
j1

is given in Eq. (E2). We see that each data feature in a single encoding block is multiplied by a sum of L

eigenvalues (in this case L = 2). Consequently, the output Fourier series degree D becomes additionally dependent on
the number of layers in depth (the number of encoding blocks for a data feature per layer), yielding D = (d− 1)L2.
The rest of the derivations can be deduced using a similar approach as in Appendix E.

Appendix H: Practical case: fitting 4-dimensional data

In this appendix, we fit a 4-dimensional Fourier series of degree D with the three ansatzes described in this work:
the LA, PA, and MA. We compare which models are more convenient for fitting higher-degree Fourier series. The
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FIG. 8. Graphic representation of the degrees of freedom and the free parameters with respect to the number of layers for the
Line, Parallel, and Mixed ansatzes models with 4−dimensional data. The upper plot depicts results for qubits and the lower
for qutrits. The y-axis is logarithmic and represents the number of coefficients or parameters and the x-axis is the number of
layers in the models. The only model that accomplishes the DOF condition is the PA and the results are improved when we
use qutrits. With qubits, the condition is satisfied until the Fourier series of degree D = (d− 1)L = 2 and D = 4 for qutrits.

general target function is given by

f(x1, x2, x3, x4) = f(x⃗) =

D∑
ω⃗=−D

cω⃗e
ix⃗·ω⃗, (H1)

where ω⃗ = (ω1, ω2, ω3, ω4) describes the frequency in each dimension. The number of free coefficients Nc in the
4-dimensional Fourier series is determined by the degree of the series:

Nc =
(2D + 1)4 − 1

2
+ 1, (H2)

since half of them are constrained by cω⃗ = c∗−ω⃗, except c0⃗. At the same time, the degree of the Fourier series generated
by the model is determined by the qudit used and the number of layers of the model: D = (d − 1)L. Hence, Nc

depends on d, and L. We know that ν ≡ 2Nc − 1 is the number of degrees of freedom required for the model to fit
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the general Fourier series. The number of free parameters of the different models for 4−dimensional data is given by

N (LA)
p = (4L+ 1)(d2 − 1),

N (PA)
p = (L+ 1)(d8 − 1),

N (MA)
p = (2L+ 1)(d4 − 1),

(H3)

where for the MA we use two qudits, therefore p = 2. With this, we determine graphically the Fourier series degree
that accomplishes the DOF condition. This is shown in Fig. 8 for qubit and qutrit models. As we can notice, for
4−dimensional data, both the LA nor the MA do not accomplish the DOF condition for any number of layers. This
means we do not have enough free parameters in the model for fitting an arbitrary Fourier series. With the PA model,
the condition is satisfied until L = 2, meaning that we achieve Fourier series of degree D = 2(d− 1), having degree 2
for the qubit model and 4 for the qutrit. Hence, this model can give limited approximations to some functions.
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