
Optimization Techniques

for a 2D Engine

Final Degree Project

Video Games Design and Development Degree

David Tello Panea

2021-2022

Director: Jesús Díaz García

David Tello Panea
Optimized 2D Renderer

2

David Tello Panea
Optimized 2D Renderer

Index

Index 3

Summary 7

Tables Index 8

Figures Index 8

Glossary 11

1. Introduction 13

1.1 Motivation 13

1.2 Problem Statement 14

1.3 General Objectives 15

1.4 Specific Objectives 15

1.5 Project Scope 17

2. State of the Art 19

2.1 Engines 19

2.2 Performance and Efficiency Issues 23

3. Project Management 26

3.1 Procedure and Tools 26

3.2. SWOT Analysis 27

3.3 Risks and Contingency Plans 28

3.4 Costs Analysis 31

3.5 Changes in Planification 32

4. Methodology 34

4.1 Feature-Driven Development 34

4.2 Tracking Tools 35

4.3 Validation Tools 36

5. Development 38

3

David Tello Panea
Optimized 2D Renderer

5.1 Environment 38

5.2 The Application 39

5.3 Version 1 - Object Oriented 41

5.4 Version 2 - Data Oriented 49

5.5 Version 3 - Rendering Optimizations 58

5.6 Version 4 - Space Partitioning 66

6. Conclusion 73

7. Webgraphy 76

4

David Tello Panea
Optimized 2D Renderer

Summary

This document contains the description of the development of a small 2D
engine written in C++. The focus of this project is to implement various
optimization techniques to have a performant application.

The result is a small 2D engine that can be executed in any Windows
machine and can handle more than 10.000 entities interacting with each
other in real time.

The source code for this project is public and under the MIT License and
can be found in the Github repository in the following link:
https://github.com/DavidTello1/2D-Renderer

Key Words

Optimization, 2D Engine, Object-Oriented, Data-Oriented, Batch
Rendering, Space Partitioning.

5

https://github.com/DavidTello1/2D-Renderer

David Tello Panea
Optimized 2D Renderer

Tables Index

T 3.1 - Gantt table 24

T 3.3 - Deviation of tasks 27

T 3.4 - Costs analysis 29

T 3.5.1 - Adapted Gantt diagram 30

T 3.5.2 - Updated Costs analysis 31

Figures Index

F 2.1.1 - Unity DOTS 18

F 2.1.2 - Unreal Engine’s Nanite 19

F 2.1.3 - Godot Engine’s Animation System 20

F 4.1 - Feature-Driven Development diagram 32

F 4.2 - HacknPlan interface 34

F 4.3 - Optick interface 35

F 5.2 - Application screenshot 38

F 5.3.2 - Application structure in OOP 41

F 5.3.3 - Module class in OOP 42

F 5.3.4 - Entity class in OOP 43

F 5.3.5 - Component class in OOP 44

F 5.3.4.1 - Object Oriented (FPS) graph 45

F 5.3.4.2 - Object Oriented (Average Delta Time %) graph 46

F 5.3.4.3 - Object Oriented (Delta Time) graph 46

F 5.4.2 - Application structure in DOD 48

F 5.4.3.1 - Entities data in DOD 48

F 5.4.3.2 - Component data in DOD 49

6

David Tello Panea
Optimized 2D Renderer

F 5.4.3.3 - Component Arrays data in DOD 49

F 5.4.3.4 - Data Layout diagram 50

F 5.4.3.5 - AddComponent function in DOD 50

F 5.4.3.6 - RemoveComponent function in DOD 51

F 5.4.3.7 - System Renderer class in DOD 52

F 5.4.4.1 - Versions 1 & 2 (FPS) graph 53

F 5.4.4.2 - Versions 1 & 2 (Delta Time) graph 53

F 5.4.4.3 - Data Oriented (Average Delta Time %) graph 54

F 5.4.4.4 - Versions 1 & 2 (Frame Time) graph 55

F 5.5.1.1 - IsInsideCamera function 56

F 5.5.1.2 - Frustum Culling not applied 57

F 5.5.1.3 - Frustum Culling applied 58

F 5.5.2.1 - Batches data 59

F 5.5.2.2 - Vertex data 59

F 5.5.2.3 - Adding an entity to the batch 60

F 5.5.3.1 - Versions 2 & 3 (FPS) graph 61

F 5.5.3.2 - Versions 2 & 3 (Delta Time) graph 62

F 5.5.3.3 - Rendering Optimizations (Average Delta Time % graph) 62

F 5.5.3.4 - Versions 2 & 3 (Frame Time) graph 63

F 5.6.2.1 - Grid data 65

F 5.6.2.2 - RecalculateGrid function 66

F 5.6.2.3 - Get Collision Candidates function 67

F 5.6.3.1 - Versions 3 & 4 (FPS) graph 68

F 5.6.3.2 - Versions 3 & 4 (Delta Time) graph 69

F 5.6.3.3 - Space Partitioning (Average Delta Time %) graph 70

7

David Tello Panea
Optimized 2D Renderer

F 5.6.3.4 - Versions 3 & 4 (Frame Time) graph 70

F 6.1 - All Versions (Delta Time) graph 71

F 6.2 - Final Version (FPS) graph 72

F 6.3 - Final Version (Delta Time) graph 72

8

David Tello Panea
Optimized 2D Renderer

Glossary

- Efficiency(W1): refers to the amount of work that a program needs to do, it

is governed by the algorithm used. So the less work needed, the more

efficient the algorithm is, which results in a faster program.

- Performance(W1): refers to how fast a program can do the work needed, it

is governed by the data structure. If you have the data structured in a way

that the hardware can access it very quickly, the program will be more

performant.

- Renderer: it is a program used for rendering. Rendering or image

synthesis is the process of generating an image from a 2D or 3D model by

means of a computer program. The resulting image is referred to as the

render.

- Game Engine: it is a software framework primarily designed for the

development of video games, and generally includes relevant libraries and

support programs. The “engine” terminology is similar to the term

“software engine” used in the software industry.

- GPU(W2): stands for Graphics Processing Unit, it is a specialized electronic

circuit designed to rapidly manipulate and alter memory to accelerate the

creation of images in a frame buffer intended for output to a display

device. Modern GPUs are very efficient at manipulating computer graphics

and image processing;

- CPU(W2): stands for Central Processing Unit, it is also called a central

processor, main processor or just processor. It is the electronic circuitry

that executes instructions comprising a computer program. The CPU

performs basic arithmetic, logic, controlling, and input/output (I/O)

operations specified by the instructions in the program.

- Cache(w3): it is a hardware or software component that stores data so that

future requests for that data can be served faster; the data stored in a

cache might be the result of an earlier computation or a copy of data

stored elsewhere.

A “cache hit” occurs when the requested data can be found in a cache,

9

David Tello Panea
Optimized 2D Renderer

while a “cache miss” occurs when it cannot. Cache hits are served by

reading data from the cache, which is faster than recomputing a result or

reading from a slower data store; so, the more requests that can be served

from the cache, the faster the system performs.

10

David Tello Panea
Optimized 2D Renderer

1. Introduction

This document analyzes the creation and development of a 2D Rendering

Engine focusing on performance and optimization. A 2D Rendering Engine

is an application that renders scenes or helps to create small games. It is

2D because this project will only focus on 2D scenes and objects.

Starting by creating a basic application, various optimizations are

implemented one at a time until the final result is achieved. By

implementing optimizations the aim is to achieve a performant application

that is able to process the interactions of lots of objects in real time.

Some of the issues an engine can have are the bad structure of data that

results in lots of cache misses, too many calls to a graphics card’s driver

where each call has a significant time cost or algorithmic decisions that

lead to comparisons with O(N^2) costs.

The solutions we are going to implement in this project are structuring the

data in a data-oriented design to avoid cache misses, batching render calls

to reduce calls to the GPU and a space partitioning technique to help with

comparative operations.

1.1 Motivation

The main motivation for this project is to develop a small application that

can be later expanded to create a game engine, it can help other

developers to just focus on other parts of engine programming and build

upon this base.

During the degree I learnt about game engines and wanted to dive deeper

into the subject, so this was the perfect opportunity to learn new things

and test my skills.

By developing a small application instead of making a big and complex

one, the focus can be shifted to optimization and performance. We can

then analyze the results and reason about the improvements of a specific

optimization we made.

11

David Tello Panea
Optimized 2D Renderer

1.2 Problem Statement

The main problem this project is trying to solve is the cost and low

performance of executing code from an engine that has not taken into

account various optimization factors.

This project focuses mainly on performance and efficiency, these are

topics that have only been mentioned during the degree so it is something

new for me so I have to expand my knowledge in this area in order to

develop the project.

Efficiency and performance are two terms that can be easily confused with

each other, to keep things clear we will briefly explain what they are.

Efficiency refers to the amount of work a program needs to do and is

governed by the algorithm used, so that the better the algorithm the more

efficient the program will be.

Performance refers to how fast you can do this work, it is governed by the

hardware used and how the data is structured. The faster the

memory-access the more performant the program will be.

Efficiency and performance are not dependent on one another. You can be

efficient without being performant if you do very little work to get the job

done but do it slowly, and you can also be performant without being

efficient if you do a lot of work to get the job done but do it very fast.

What we are aiming for is to be both efficient and performant.

So, basically, the problem to solve are the factors that make an application

or engine not as optimal as it could be, factors that include the

performance and efficiency of it.

These problems have already been solved before, so this project isn’t

trying to solve something new but to gather these solutions and

implement them in a small application that is efficient and performant.

By creating a small demo and documenting the process, other developers

can use this project to expand it or use it as a guide for their own projects.

12

David Tello Panea
Optimized 2D Renderer

In conclusion, this is the problem we are going to solve. Next we will see

the objectives set for this final degree project.

1.3 General Objectives

The main objective of this project is to develop a 2D Rendering Engine
from scratch and implement various optimization techniques that will
improve the efficiency and performance of the application.

Every time a new optimization is implemented, we will analyze the result
and compare it with previous iterations to ensure there has been an
improvement.

The final result should be able to handle 10.000 objects in the scene at a
minimum of 60 FPS, every object in the scene should be able to interact
with each other and, to show the results, a small application with some
degree of interactivity will be created as a demo.

In summary, the general objectives are:

- 2D rendering from scratch.
- Applying optimization techniques that improve the performance to

achieve the desired result.
- Documenting the process and creating a demo to make the project

accessible and didactic.

1.4 Specific Objectives

To be able to achieve all the general objectives stated above, we need to
break each objective into more specific objectives.

1.4.1 Framework

- Basic Application: create a basic application to develop the engine,
structure the code in a modular way and keep functionalities
separated to help with organization.

- Resource Management: be able to load textures, shaders and other
resources into the engine and manage them accordingly.

13

David Tello Panea
Optimized 2D Renderer

1.4.2 Rendering

- OpenGL: implement OpenGL library and allow 2D rendering in the
application.

- Batch Rendering: putting objects into batches to reduce calls to the
GPU and allowing many objects to be drawn at once. It improves the
performance of the rendering pipeline.

- Clipping: only drawing the objects inside the camera view frustum.
It improves the performance of the application and makes it more
efficient by discarding unnecessary draw calls to the GPU.

1.4.3 Scene Management

- Entity Component System: entities are only an index, components
hold the data in arrays and systems operate on the data. It focuses
on improving the efficiency of the application by keeping data
tightly packed and makes it more performant when accessing it.

1.4.4 Physics

- Rigidbodies: physics apply to objects and they interact with each
other in a realistic manner.

- Colliders: objects can collide with each other and the physics system
will react to it accordingly.

- Space Partitioning: space is divided into sub-spaces. Physics
operations only check for objects in the same space division, which
results in more efficiency as there are less comparisons, and it also
improves the performance of the physics system.

1.4.5 User Interface

- Render Stats: users can easily see visually the most important stats
of the application.

- Settings: users can easily modify some parameters of the scene.

14

David Tello Panea
Optimized 2D Renderer

- Adding and Removing Objects: users can add and remove objects
from the scene.

1.4.6 Demo

- Debug Mode: there is an option to see the debug features of the
application to better see the inner functioning of the demo.

- Build: have an interactive demo that showcases the results of the
project.

1.4.7 Documentation

- Step by step: each version of the application has its own dedicated
part to explain the concepts and optimizations implemented.

- Profiling and comparisons: after each implementation, tests are
done and compared with previous versions.

- Graphs: to better show the performance of each version there are
some graphs showing the improvements of every implementation.

1.5 Project Scope

In this part we will explain the scope of what the project tries to achieve

and who would benefit from it.

There is not a specific target as this is just a project to learn new skills. But

it can be used as a base for more complex applications like a 2D Engine or

a graphics renderer.

The beneficiaries of the project would be people who want to develop a

more complex application using this project as a base or just want to have

a working example to guide them when making their own application.

The scope has been limited to just the rendering engine with some basic

physics to have interaction between objects, it should have all the basic

functionalities to create a small game and be performant even if there is a

large number of entities.

15

David Tello Panea
Optimized 2D Renderer

We could have Vulkan or other graphics libraries but that would be too

much for the scope of the project, for this reason OpenGL was used as I

had previous knowledge about it.

16

David Tello Panea
Optimized 2D Renderer

2. State of the Art

There are already many applications that do the same tasks this project

addresses. In this part we will analyze the current solutions and the

applications that exist in the market giving some details about the

optimization techniques used.

2.1 Engines

There are many game engines but the three most popular ones nowadays
are Unity, Unreal Engine and Godot. We will now analyze each one of
them and the opportunities they give for developing optimized
executables.

2.1.1 Unity(W4)

Unity is a cross-platform game engine developed by Unity Technologies,

first announced and released in June 2005 at Apple Inc.’s Worldwide

Developers Conference as a Mac OS X-exclusive game engine. The engine

has since been gradually extended to support a variety of platforms.

It is considered easy to use for beginner developers and is popular for

indie game development.

The engine can be used to create 3D and 2D games, as well as interactive

simulations and other experiences.

One of the most relevant optimizations for the project that this engine

uses is Unity’s Data-Oriented Tech Stack (DOTS)) which is a combination of

technologies that work together to deliver a data-oriented approach to

coding in Unity. This allows users to build projects that are better suited to

their target hardware and are therefore more performant.

The three main pillars of DOTS are:

- The Entity Component System (ECS), which provides the framework

for coding using a Data-Oriented approach.

- The C# Job System, which provides a simple method of generating

multithreaded code.

17

David Tello Panea
Optimized 2D Renderer

- The Burst Compiler, which generates fast and optimized native code.

For the physics calculations, Unity uses a 2D rigid body simulation library

for games called Box2D. This library allows physics simulation with a

variety of shapes and constraints.

For rendering, Unity supports Vulkan, Metal, DirectX and OpenGL APIs. As

per optimization techniques used we can find GPU instancing, static and

dynamic batching, culling and many more.

In the following figure we can see a screenshot of Unity’s Tiny Racing

demo, powered by DOTS.

F 2.1.1 - Unity DOTS

2.1.2 Unreal Engine(W5)

Unreal Engine is a game engine developed by Epic Games, first showcased

in the 1998 first-person shooter game Unreal. Initially developed for PC

first-person shooters, it has since been used in a variety of genres of 3D

games and has seen adoption by other industries, most notably the film

and television industry.

Written in C++, Unreal Engine features a high degree of portability,

supporting a wide range of platforms.

18

David Tello Panea
Optimized 2D Renderer

The latest version is Unreal Engine 5, which was released in early access on

May 26th, 2021.

About optimizations, the main ones related to the project are:

For the physics simulation, Unreal Engine uses PhysX, an open-source

real-time physics engine middleware SDK developed by Nvidia as a part of

Nvidia GameWorks software suite.

For rendering, it supports DirectX and Vulkan and offers a wide variety of

options for shaders and post-processing.

Two big optimizations implemented in the latest version are Nanite and

World Partition. Nanite is a virtualized micropolygon geometry system that

allows the use of massive amounts of geometric detail while maintaining a

real-time frame rate, and without any noticeable loss of fidelity. It streams

and processes only the detail that can be perceived, largely removing poly

count and draw call constraints.

World Partition is a system that automatically divides the world into a grid

and streams the necessary cells. It helps to make the creation of open

worlds faster, easier, and more collaborative for teams of all sizes.

In the following figure we can see an example of how Nanite works

internally and the result that will be seen in-game.

F 2.1.2 - Unreal Engine’s Nanite

19

David Tello Panea
Optimized 2D Renderer

2.1.3 Godot(W6)

Godot is a 2D and 3D cross-platform, free and open-source game engine.

It was initially developed by OKAM Studios from 2001. In February 2014 it

was released to the public under the MIT License.

The development environment runs on multiple operating systems

including Linux, macOS and Windows. Godot can create games targeting

PC, mobile and web platforms.

Godot implements many optimizations but the main ones related to the

project are the use of 2D batching, culling and the reuse of shaders and

materials to decrease the number of draw calls which can be prohibitively

high when treating each item individually. In addition, this means state

changes, material and texture changes can be kept to a minimum.

For physics, Godot uses a proprietary engine called Godot Physics. This

engine is almost entirely based on the Separating Axis Theorem algorithm

for collision detection, which requires mathematically defining some axes

used to check if a pair of objects are separated from each other.

For rendering, the OpenGL library is used.

In the following figure we can see Godot’s interface and its animation

system.

F 2.1.3 - Godot Engine’s Animation System

20

David Tello Panea
Optimized 2D Renderer

2.2 Performance and Efficiency Issues

In software development there are many common pitfalls, in this part we

will explain some of the most important ones regarding this project and

how they can be solved.

2.2.1 Memory Architectures and Cache Misses(W25)

When creating a software application, memory architectures are an
important topic to consider. Nowadays x64 is the usual mode as it
supports vastly larger amounts of virtual memory and physical memory
than was possible on its 32-bit predecessors, allowing programs to store
larger amounts of data in memory.

CPUs don't load data directly from the system RAM, this is because system

RAM is very slow to access. Instead, CPUs load data from a smaller, faster

bank of memory called cache. Loading data from cache is considerably

faster, but every time you try to load a memory address that is not stored

in cache, the cache must make a trip to main memory and slowly load in

some data. This delay can result in the CPU sitting around idle for a long

time, and is referred to as a "cache miss". This time the CPU is waiting for

data to be loaded implies a reduced performance of the program.

If you have an algorithm that loads small bits of data from randomly

spread out areas of main memory, this can result in a lot of cache misses

and, a lot of the time, the CPU will be waiting around for data instead of

doing any work. If we make the data accesses localized, or even better,

access memory in a linear fashion like a continuous list, then the cache will

work optimally and the CPU will be able to work as fast as possible.

A solution to this problem is Data-Oriented Design (DOD), a program

optimization approach motivated by efficient usage of the CPU cache and

mainly used in video game development. The approach is to focus on the

data layout, separating and sorting fields according to when they are

needed, and to think about transformations of data. The parallel array or

structure of arrays (SoA) is the main example of data-oriented design. It is

contrasted with the array of structures (AoS) typical of object-oriented

designs.

21

David Tello Panea
Optimized 2D Renderer

2.2.2 GPU Communication Bottlenecks

When drawing many objects in a scene by performing a draw call for each
one of them, you'll quickly reach a performance bottleneck because of the
many draw calls. Compared to rendering the actual vertices, telling the
GPU to render your vertex data eats up quite some performance since the
graphics library must make necessary preparations before it can draw the
vertex data (like telling the GPU which buffer to read data from, where to
find vertex attributes and all this over the relatively slow CPU to GPU bus).
So even though rendering the vertices is super fast, giving the GPU the
commands to render them isn't.

It would be much more convenient if we could send data over to the GPU

once, and then tell the graphics library to draw multiple objects using this
data with a single drawing call.

One of the solutions to this problem can be instancing, or instanced

rendering. It is a way of executing the same drawing commands many

times in a row, with each producing a slightly different result. This can be a

very performant method of rendering a large amount of geometry with

very few draw calls.

Another solution is to perform what is called frustum culling or clipping.

The view frustum is the region of space in the modeled world that may

appear on the screen, it is what the camera can see.

Frustum culling or clipping is the process of removing objects that lie

completely outside the viewing frustum from the rendering process.

Rendering these objects would be a waste of time since they are not

directly visible and by not rendering them we can lower the amount of

calls to the GPU.

Both of these solutions are not exclusive to each other and it is generally

encouraged to apply both of them.

There are also other types of visibility culling, such as hierarchical depth

culling; and there is a software called Umbra which is used in many AAA

games that is used for discarding non-visible geometry. These methods try

to avoid sending geometry to draw if they are ultimately not going to be

visible.

22

David Tello Panea
Optimized 2D Renderer

In 3D scenes a technique called depth prepass helps with this as well, first

the depth of the scene is drawn without color, then the depth buffer is

used to remove the non-visible geometry with the help of visibility culling

algorithms, and finally the visible geometry is drawn.

2.2.3 Algorithmic Complexity

When dealing with lots of objects in a scene that interact with each other,
there are normally problems with efficiency. These problems can arise in
the physics system for example, where checking for collisions can result in
operations with O(N^2) cost.

Space partitioning(W22) algorithms are one way of solving this problem, it
consists of the process of dividing a space into two or more disjoint
subsets. In other words, space partitioning divides a space into
non-overlapping regions and any point in the space can lie in exactly one
of the regions.

Depending on how the data is structured we can have different types of
partitions:

- Grid: A grid is a data structure that has equal sized cells. They are
the simplest type of space partitioning and are most often used to
partition 2D spaces.

- Quadtrees: A quadtree is a tree data structure in which each

internal node has exactly four children. They are most often used to

partition 2D spaces by recursively subdividing it into four quadrants

or regions.

- KD Trees: A k-d tree (short for k-dimensional tree) is a space

partitioning data structure for organizing points in a k-dimensional

space. They are a special case of binary space partitioning trees.

- BSP Trees: Binary space partitioning (BSP) is a method for

recursively subdividing a space into two convex sets by using

hyperplanes as partitions. It was developed in the context of 3D

computer graphics in 1969, and its structure is useful in rendering

and performing geometrical operations among others.

23

David Tello Panea
Optimized 2D Renderer

3. Project Management

This section describes all the necessary aspects of the management of the

project that help to plan and measure the progress of the tasks needed for

the completion of the project.

3.1 Procedure and Tools

3.1.1 Gantt

To organize and distribute all the work, a Gantt diagram is used. A Gantt

diagram shows the assigned time for every task. This allows the

measurement of the progress of the project and helps to compare it to the

original plan and adapt or change objectives in consequence.

This diagram is represented in the following table.

24

David Tello Panea
Optimized 2D Renderer

T 3.1 - Gantt Table

3.1.2 Version Control

Since the beginning of the development, a repository was created in

Github, each main step of the optimization has its own branch to keep

code separated and make it easier to switch between versions.

Each branch is created at the start of the optimization’s implementation

and when it has been completed, a new branch will be created containing

the new version.

3.2. SWOT Analysis

The SWOT analysis of the project can be broken down into:

Strengths

- Free open-source. Everyone can build on top of it.

- Step by step documentation of the project.

- Modular. Code is separated and can be easily updated or removed.

Weaknesses

- Solo developer. Only one person is working on the project.

- No visibility. There isn’t a platform to share and gain visibility.

25

David Tello Panea
Optimized 2D Renderer

Opportunities

- There aren’t many practical examples with documentation of the
process.

- It is a useful base for creating tools.

Threats

- There are already complete engines widely used and with a lot of
tools.

- Very small market sector. Not so many developers create their own
technology because the vast majority tend to use a commercial
engine.

3.3 Risks and Contingency Plans

This section analyzes all the risks taken into account in this project, and its

possible solutions.

3.3.1 Lack of time

The main risk of the project is the lack of time, documenting all the
process and performing tests each step adds up a lot of time to the
development of the application.

By planning ahead and leaving some time at the end of each part to test
and polish we can better organize the time needed to complete each task
and minimize the risk of running out of time.

3.3.2 Lack of knowledge

The second risk is the lack of knowledge in some areas of the project that
can result in taking extra time to learn about the concept and possible
wrong implementations or bugs.

To avoid this problem, information was gathered about all the topics that
were going to be implemented without previous experience. Also, the
potential time deviation of the tasks related to these topics were taken
into consideration.

26

David Tello Panea
Optimized 2D Renderer

3.3.3 Risk of the Tasks

The following table shows all of the tasks and the potential time deviation.

T 3.3 - Deviation of tasks

27

David Tello Panea
Optimized 2D Renderer

Some of the tasks have a higher potential deviation than others, these
tasks are the following.

Batching - Medium
Batching is an important optimization for the performance of rendering
lots of objects. The reason it is labeled as medium risk is because I have
never implemented it before so it is a potential risk.

Entity Component System - High
The ECS is the part where the data-oriented design optimization will take
part. As this includes a big change in how the code is structured and also
implements an important optimization of the project, it is labeled as high
risk.

Space Partitioning - Medium
A Fixed Resolution Grid is the space partitioning technique that is going to
be implemented. It is the main optimization for the physics operations in
the engine and is labeled as medium risk because it is an important part of
the project and its implementation could potentially be a risk if something
were to go wrong.

28

David Tello Panea
Optimized 2D Renderer

3.4 Costs Analysis

The following table shows all of the costs planned for the development of

the project. For the cost estimates, we are going to assume a total number

of 300 hours of work and that the cost per hour is 10€.

T 3.4 - Costs Analysis

As we can see, the main cost is of human resources, in software

development projects the necessary material is minimal and the software

is generally accessible free of charge for students.

Indirect costs are calculated approximately.

29

David Tello Panea
Optimized 2D Renderer

3.5 Changes in Planification

In this section we will talk about the changes on the initial plan for the

development of the project and how I have adapted to solve them.

The main reason for the delay of the finish date was lack of time due to

not correctly predicting the time it would take certain tasks. This

misprediction was mostly because of unexpected problems and bugs that

appeared and were very time-consuming.

I also failed to predict the time needed for testing and profiling and it

contributed to this lack of time too.

The way I adapted to these problems was to extend the deadline and cut

the playable demo. Instead of a playable demo there will be a basic

application where you can modify some world parameters and add and

remove asteroids.

The following Gantt diagram reflects the adapted times for each task.

30

David Tello Panea
Optimized 2D Renderer

T 3.5.1 - Adapted Gantt Diagram

As the Gantt diagram shows, the project was delayed 2,5 months until the

middle of September. This extension in time also implies additional costs

to the development of the project, we can see the new costs analysis table

below.

T 3.5.2 - Updated Costs

31

David Tello Panea
Optimized 2D Renderer

4. Methodology

For this project, an Agile methodology called Feature-Driven Development
(FDD) was used to track the progress of the project and its different parts.

4.1 Feature-Driven Development(W7)

As we can see in the following figure, Feature-Driven Development defines
five steps in two phases: planning and construction.

F 4.1 - Feature-Driven Development diagram

4.1.1 Planning Phase

The planning phase is all about getting an accurate understanding of
content and context of the project.

- Develop an Overall Model refers to clarifying what the final
objective is. What things need to be done and how they can be
approached.

- Build a Features List is to lay out all the features the final result will
have. These features should be purposes or smaller goals, rather
than tasks.

- Plan by Feature refers to organizing all the features you need to
implement in a prioritized list, taking into account dependencies
between features and importance of each feature in the overall
project.

32

David Tello Panea
Optimized 2D Renderer

4.1.2 Construction Phase

In the design and build phase of FDD, you work through the feature list on
a feature-by-feature basis so that when all the features are implemented,
the result would be a finished product. Each feature is developed in two
steps.

- Design by Feature is the step where the feature is designed and
every task needed for the implementation is layed out.

- Build by Feature is the step where the actual implementation
occurs. After the feature is implemented and tested, if the result is
positive, the construction phase begins for the next feature.

4.1.3 Feature-Driven Development in this Project

The way this methodology was applied to the project was to divide it into
four versions, with defined objectives and features to implement.

The planning phase consisted in exactly this, listing all the necessary
features for each version and sorting them by priority.

The construction phase consisted in implementing all the features needed
for each version. After implementing them, tests were performed to
ensure a positive result and that every version was better than the
previous one, which meant that the construction phase for the next
version could begin.

This process was repeated until the completion of every version.

4.2 Tracking Tools

To track the development of the project, a tool named HacknPlan was

used along the Gantt diagram shown previously.

HacknPlan(W8) allows tracking tasks and their completion in a useful way to

help with the development of each feature implemented.

The following figure shows an example of the interface of HacknPlan.

33

David Tello Panea
Optimized 2D Renderer

F 4.2 - HacknPlan interface

4.3 Validation Tools

In order to validate the completion of the tasks, when a new

implementation is finished, a series of tests are done to ensure correct

performance.

These tests consist of profiling each iteration focusing on specific parts of

the application where the optimizations take place and comparing them

with previous iterations.

In order to do the profiling of the project, a tool named Optick was used.

In the following figure we can see a screenshot of the application.

34

David Tello Panea
Optimized 2D Renderer

F 4.3 - Optick interface

Regular tests are also done during the development of the project to check

for bugs or small errors.

After a new iteration has passed these tests, a meeting with the director is

arranged to show the advancements and, if it is validated by the director,

start working on the next iteration.

35

David Tello Panea
Optimized 2D Renderer

5. Development

In this section we will explain the basic application and analyze each
version that is implemented during the development of the project.

The project is divided into four different versions where a specific
optimization or group of optimizations is implemented, each version is
tested against the previous one to ensure the correct improvement of the
project and the completion of the objectives set at the start of the
development.

5.1 Environment

All the code is written in C++ with VisualStudio compiler which allows for
easy and fast debugging.

The operative system chosen is Windows and the main external libraries
are the following:

- OpenGL(W10): stands for Open Graphics Library. It is a cross-language,
cross-platform application programming interface (API) for
rendering 2D and 3D vector graphics.
It was released on June 30, 1992 by Silicon Graphics, Inc. and, since
2006, has been managed by Khronos Group.

- SDL(W11): stands for Simple DirectMedia Layer. It is a cross-platform
software development library designed to provide a hardware
abstraction layer for computer multimedia hardware components.
SDL manages video, audio, input devices, CD-ROM, threads, shared
object loading, networking and timers. For this project we are only
using it for the input manager and to create the window.

- GLEW(W12): stands for OpenGL Extension Wrangler Library. It is a
cross-platform open-source C/C++ extension loading library. It
provides efficient run-time mechanisms for determining which
OpenGL extensions are supported on the target platform.

- Dear ImGui(W13): is a bloat-free graphical user interface library for
C++. It is fast, portable, renderer agnostic and self-contained (no
external dependencies). It was used for creating the UI panel.

36

David Tello Panea
Optimized 2D Renderer

- PCG Random(W14): PCG is a family of simple fast space-efficient
statistically good algorithms for random number generation.

- GLM(W15): stands for OpenGL Mathematics. It is a header-only C++
mathematics library for graphics software based on the OpenGL
Shading Language (GLSL) specifications. It provides classes and
functions designed and implemented with the same naming
conventions and functionalities as GLSL.

- stb_image(W16):is a group of single-file public domain (or MIT
licensed) libraries for C/C++. This project uses the stb_image library
for loading and drawing images.

- Optick(W9): is a super-lightweight C++ profiler for Games. It provides
access for all the necessary tools required for efficient performance
analysis and optimization: instrumentation, switch-contexts,
sampling, GPU counters. It was used for profiling each version of the
project.

5.2 The Application
Every version is basically the same application but with optimizations built
on top of the previous one.

The application itself is a minimal 2D engine that allows the user to add
and remove asteroids from the scene. These asteroids collide and bounce
off each other and the edges of the background.

The camera can be zoomed in and out with the mouse wheel and, if the
map is not shown completely, the camera can be moved with the WASD
keys.

There is a UI panel that shows some stats, such as the framerate or the
number of draw calls. It also has sliders to tweak some aspects of the
scene like the background size or the camera speed. There are also two
checkboxes to show a grid, and the debug view of the colliders.

The following figure shows a screenshot of the application where we can
see the background, the asteroids and the UI panel.

37

David Tello Panea
Optimized 2D Renderer

F 5.2 - Application screenshot

38

David Tello Panea
Optimized 2D Renderer

5.3 Version 1 - Object Oriented

This is the first version of the project, it is the application coded with an

object oriented approach. This version serves as the foundation and the

optimizations of every version are applied gradually on top of this initial

version.

5.3.1 Object Oriented Programming(W17)

Object Oriented Programming (OOP) is a programming paradigm based on

the concept of “objects”, which can contain data and code: data in the

form of fields (often known as “attributes” or “properties”), and code, in

the form of procedures (often known as “methods”).

OOP is structured in the following way:

- Classes: user-defined data types that act as the blueprint for

individual objects, attributes and methods.

- Objects: instances of a class located in the main memory and

created with specifically defined data. Objects can correspond to

real-world objects or an abstract entity.

- Methods: functions that are defined inside a class that describe the

behaviors of an object. Each method contained in class definitions

starts with a reference to an instance object. Additionally, the

subroutines contained in an object are called instance methods.

Programmers use methods for reusability or keeping functionality

encapsulated inside one object at a time.

- Attributes: are defined in the class template and represent the state

of an object. Objects will have data stored in their attributes.

The main principles of OOP are:

- Encapsulation: all the important information is contained inside an

object and only select information is exposed. The implementation

and state of each object are privately held inside a defined class.

Other objects do not have access to this class or the authority to

make changes. They are only able to call a list of public functions or

39

David Tello Panea
Optimized 2D Renderer

methods. This characteristic of data hiding provides greater program

security and avoids unintended data corruption.

- Abstraction: objects only reveal internal mechanisms that are

relevant for the use of other objects, hiding any unnecessary

implementation code. The derived class can have its functionality

extended. This concept can help developers to more easily make

additional changes or additions over time.

- Inheritance: classes can reuse code from other classes.

Relationships and subclasses between objects can be assigned,

enabling developers to reuse common logic while still maintaining a

unique hierarchy. This property of OOP forces a more thorough data

analysis, reduces development time and ensures a higher level of

accuracy.

- Polymorphism: objects are designed to share behaviors and they

can take on more than one form. The program will determine which

meaning or usage is necessary for each execution of that object

from a parent class, reducing the need to duplicate code. A child

class is then created, which extends the functionality of the parent

class. Polymorphism allows different types of objects to pass

through the same interface.

5.3.2 Application Structure

The way in which the base engine is structured is shown in the following

diagram.

40

David Tello Panea
Optimized 2D Renderer

F 5.3.2 - Application Structure in OOP

Main is the main file that contains the main loop, and Application is the

base class that contains all the modules and performs operations

regarding framerate and modules’ management.

We will now explain each one of the parts of this diagram.

5.3.3 Modules

A module is a part of the code that is in charge of a specific aspect of the

application. They contain all the necessary functions and data to manage

the operations and data they need for their task.

The following figure shows the base Module class.

41

David Tello Panea
Optimized 2D Renderer

F 5.3.3 - Module class in OOP

The list of modules in the project are:

- ModuleInput: manages all input related operations.

- ModuleWindow: manages the window.

- ModuleRenderer: contains all rendering related code.

- ModuleGUI: is in charge of drawing and managing the UI.

- ModuleScene: manages the scene of the application, it contains and

manages all the objects inside the scene.

- ModuleSceneBase: is in charge of the camera and the debug

options.

- ModulePhysics: contains all the operations related to physics

simulation.

- ModuleResources: manages the resources and the operations

regarding loading, unloading and storing them. There are only two

types of resources in the application: textures and shaders.

42

David Tello Panea
Optimized 2D Renderer

5.3.4 Objects

The class Entity is the base class for every object, it contains a list of

components and has the operations regarding components’ creation and

deletion.

The following figure shows the Entity header file.

F 5.3.4 - Entity class in OOP

5.3.5 Components

Components are the building blocks that conform the entities, they
contain the data and operations to perform the task needed.

An entity or object can have different combinations of components
depending on what they are going to be used for.

The following figure shows the base class inherited by every component.

43

David Tello Panea
Optimized 2D Renderer

F 5.3.5 - Component class in OOP

Depending on the type we can have the following components:

- Transform: manages the position, rotation, and scale of the object.

- Camera: manages the position and rotation of the camera object

and also the view, projection and viewProjection matrices.

- Camera Controller: manages the movement of the camera, the

zoom and the speed in which it moves.

- Renderer: draws the entity.

- Sprite: holds the texture to be drawn and the shader to be used.

- Collider: can be a Circle Collider or a Rectangle Collider, the borders

of the scene are rectangle colliders while the asteroids have circle

colliders. It manages the position and size of the object’s collider.

44

David Tello Panea
Optimized 2D Renderer

- RigidBody: manages the velocity, mass and rotational speed of the

object. Along with the collider component they are used by the

Physics Module to perform physics operations.

5.3.4 Profiling

After finishing this version, profiling was done with the help of Optick. The

key aspects that we are focusing on every version in this version are:

- Frame Rate (FPS)

- Main Update function

- Draw function

- Physics calculations

In the next versions we will use the following graphs to make comparisons

and check if the optimizations implemented translate to a better

performance.

The following graph shows how the frames-per-second (FPS) vary when

adding more and more entities. The limit is set to 1000 asteroids because

that is when the FPS become lower than 60 which is the minimum frame

rate we want to maintain.

F 5.3.4.1 - Object Oriented (FPS) graph

45

David Tello Panea
Optimized 2D Renderer

This graph shows the overall percentages of the time it takes to process a

frame. We can see that the physics calculations are clearly what takes the

most time.

F 5.3.4.2 - Object Oriented (Avg. Delta Time %) graph

The next graph shows the milliseconds it takes to compute each part, and

how it grows the more asteroids we have.

F 5.3.4.3 - Object Oriented (Delta Time) graph

46

David Tello Panea
Optimized 2D Renderer

5.4 Version 2 - Data Oriented

In this section we will analyze the development of the second version of
the project.

5.4.1 Data Oriented Design

Data-Oriented Design shifts the perspective of programming from objects
to the data itself: The type of the data, how it is laid out in memory, and
how it will be read and processed.(W18)

If we look at a program from the data point of view, the ideal data
generally is in a format that uses the least amount of transformations. Very
often this ideal data layout will be large blocks of contiguous,
homogeneous data that can be processed sequentially.

When we think about objects, we immediately think of some form of trees

and our data is naturally arranged that way. As a result, when we perform
an operation on an object, it will usually result in that object in turn
accessing other objects further down in the tree. Iterating over a set of
objects performing the same operation generates cascading, totally
different operations at each object.

To achieve the best possible data layout, it’s helpful to break down each
object into the different components, and group components of the same
type together in memory, regardless of what object they came from. This
organization results in large blocks of homogeneous data, which allow us
to process the data sequentially.(W19)

5.4.2 Application Structure

This version included some major changes to the core structure of the
application. It was a complete rework of how the entities’ data is stored,
accessed and modified, as well as the code regarding components.

The structure of this version is shown in the following diagram.

47

David Tello Panea
Optimized 2D Renderer

F 5.4.2 - Application structure in DOD

We can see that there are two new modules: Game and Event.
ModuleGame manages all the entities that are created in the scene and
ModuleEvent manages the events sent internally in the engine.

The following sections explain the internal functioning of this version.

5.4.3 Entity Component System

In this version entities are just an ID number and a bitmask to find out
which components an entity has. This can be seen in the next figure.

F 5.4.3.1 - Entities data in DOD

In order to have unique IDs, when an entity is created the ID is retrieved
from a list of numbers and when it is destroyed its ID is returned to the list
to be used by another future entity.

Components become just containers of data, as we can see in the figure
below.

48

David Tello Panea
Optimized 2D Renderer

F 5.4.3.2 - Component data in DOD

Components are stored in a big array for each type. To keep track of the

data a sparse-set(W20) is used, it consists of two arrays: dense and sparse.

F 5.4.3.3 - Component Arrays data in DOD

The dense array is aligned with the components’ array and the sparse

array is aligned with the entities ID array (available_indexes).

‘n’ is just a counter of the number of components inside the array.

The following figure shows a diagram of how the data is stored and linked.

49

David Tello Panea
Optimized 2D Renderer

F 5.4.3.4 - Data Layout diagram

When creating a component, its data is stored in the last position of the

array.

In the dense array we store an index to the sparse array, and in the sparse

array we store the index to the dense array so that we can access each
other from any of the two. After doing this we update the counter.

This is shown in the following figure.

F 5.4.3.5 - AddComponent function in DOD

50

David Tello Panea
Optimized 2D Renderer

When removing an entity we first check if the entity has that component.
Then we decrease the counter and overwrite the data of the component
to be deleted with the data of the component in the back of the array.

The function to remove a component looks like this.

F 5.4.3.6 - RemoveComponent function in DOD

Because components are just data, we need some way of transforming
that data. Systems are the ones in charge of this.

Every system has a unique mask that tells which components an entity
needs to have to be included in it, as well as an array to store those
entities.

Each system has then an array for every type of component it works on to
have the data stored locally.

The following figure shows the Renderer System that works on entities
that have a transform, renderer and sprite components. If an entity has
these three components but has more it will also be added to the system,
but if it has just one or two of them it will not be added.

51

David Tello Panea
Optimized 2D Renderer

F 5.4.3.7 - System Renderer class in DOD

We have four systems inside the project:

- Renderer: is in charge of sending the necessary data to the
ModuleRenderer which holds the necessary functions to draw every
entity.

- Debug: is in charge of sending the data of the colliders of every
entity to be drawn by the ModuleRenderer.

- Camera: manages the camera movement, zooming and resizing.

- Physics: manages all the collisions between entities and performs
the necessary operations to simulate them.

5.4.4 Profiling

The tests performed after finishing this version followed the same

methodology as the previous version.

The following graph shows the difference in performance between this

version and the previous one.

52

David Tello Panea
Optimized 2D Renderer

F 5.4.4.1 - Versions 1 & 2 (FPS) graph

The next graph shows the comparison between the delta time of both

versions, we can see that as we have more asteroids, the object-oriented

version takes more time for every frame than the data oriented-one. And,

as we continue adding more asteroids, the difference between both of

them increases.

F 5.4.4.2 - Versions 1 & 2 (Delta Time) graph

53

David Tello Panea
Optimized 2D Renderer

The graph below shows the overall percentages of the time it takes to

process a frame. We can see the scene takes less time proportionally than

in the previous version’s 8% and that the physics calculations take up the

extra percentage while the other calculations remain as 9%.

F 5.4.4.3 - Data Oriented (Avg Delta Time %) graph

The following graph shows the comparison between both versions and the

time it takes each part of the frame.

We can see that the scene operations take more or less the same time, the

new version being a little bit faster. The physics calculations are clearly

more efficient in the new version.

54

David Tello Panea
Optimized 2D Renderer

F 5.4.4.4 - Versions 1 & 2 (Frame Time) graph

55

David Tello Panea
Optimized 2D Renderer

5.5 Version 3 - Rendering Optimizations

In this section we will focus on the third version of the project which
consists of two rendering optimizations: frustum culling and batch
rendering.

5.5.1 Frustum Culling

Frustum Culling or Camera Clipping is a rendering optimization with the
primary focus of lowering the amount of data sent to the GPU.

It does this by checking if an object to be rendered is inside the camera
boundaries, in other words if it will actually be seen. If the object is
outside the camera, its data will not be drawn.

The following image shows how it is implemented in the project.

F 5.5.1.1 - IsInsideCamera function

56

David Tello Panea
Optimized 2D Renderer

Inside the debug panel of the application we can see the number of quads
being drawn. The following images show that when it is not applied every
entity is drawn, in this case 30 asteroids and 1 background. But when it is
applied, only the entities inside the camera limits will be drawn.

F 5.5.1.2 - Frustum Culling not applied

57

David Tello Panea
Optimized 2D Renderer

F 5.5.1.3 - Frustum Culling applied

5.5.2 Batch Rendering(W21)

Batch Rendering is an optimization technique used to lower the amount of
draw calls sent to the GPU.

Engines have to send a set of instructions to the GPU to tell the GPU what
and where to draw. These instructions are sent using common instructions
called APIs, in this project the graphics API is OpenGL.

Different APIs incur different costs when drawing objects. OpenGL handles
a lot of work for the user in the GPU driver at the cost of more expensive
draw calls. As a result, applications can often be sped up by reducing the
number of draw calls.

In 2D, we need to tell the GPU to render a series of primitives (rectangles,
lines, polygons etc). The most obvious technique is to tell the GPU to
render one primitive at a time.

58

David Tello Panea
Optimized 2D Renderer

While this is conceptually simple from the engine side, GPUs operate very
slowly when used in this manner. GPUs work much more efficiently if you
tell them to draw a number of similar primitives all in one draw call, which
we will call a "batch".

The way it was implemented in the project was by making these batches
an array of vertex data containing the information of every quad. Since all
of the entities that can be created have a rectangle primitive we can pack
them together in a batch to draw them in a single draw call.

We keep track of the number of indices of the batch and also a pointer to
the last position of the array, to know where to add more data.

F 5.5.2.1 - Batches data

The vertex data layout is shown in the figure below, it contains the model
matrix of the entity, its position, color, texture coordinates and texture
index.

F 5.5.2.2 - Vertex data

When the Render System sends data to draw an entity it is added to the
current batch as shown in the following figure.

59

David Tello Panea
Optimized 2D Renderer

F 5.5.2.3 - Adding an entity to the batch

The way in which batches are processed is divided into three functions:

- BeginBatch: it is called every frame before the data is sent to the
renderer, it resets the vertex array buffer to start a new batch.

- EndBatch: during the frame’s update function the batch is filled with
data and, when the frame ends, the function EndBatch sends the
data to the GPU.

- RenderBatch: it performs the draw call.

60

David Tello Panea
Optimized 2D Renderer

5.5.3 Profiling

The tests performed after finishing this version followed the same

methodology as the previous versions.

The following graph shows the difference in performance between this

version and the previous one. There isn’t much difference because, as with

the previous versions, the physics calculations are what takes the most

time to compute.

F 5.5.3.1- Versions 2 & 3 (FPS) graph

The next graph shows the difference between delta times, we can see that

as the number of asteroids begin to grow, the new version outperforms

the previous one and, the higher the number of asteroids, the difference

between them becomes bigger.

61

David Tello Panea
Optimized 2D Renderer

F 5.5.3.2 - Versions 2 & 3 (Delta Time) graph

The following graph reflects the percentages of the average delta time

taken in a frame. We can see that the percentages are exactly the same as

in the data-oriented version, but as the previous graph shows, it takes less

time to calculate each frame.

F 5.5.3.3 - Rendering Optimizations (Average Delta Time %) graph

62

David Tello Panea
Optimized 2D Renderer

The following graph shows the comparison between both versions and the

time it takes each part of the frame. We can see that the physics

calculations remain mostly the same with a slight improvement in the new

version. The scene operations are where the optimization was

implemented and we can see that it has a positive result in the time taken

to compute.

F 5.5.3.4 - Versions 2 & 3 (Frame Time) graph

63

David Tello Panea
Optimized 2D Renderer

5.6 Version 4 - Space Partitioning

In this section we will analyze the fourth and last version of the project.
The main optimization of this version is focused on improving the physics
calculations with the implementation of a space partitioning algorithm.

5.6.1 Space Partitioning

As we have already seen in the graphs of the previous versions, the physics
system is the most time consuming part of the application. It takes so
much time to compute because we are checking if an entity is colliding
against every other entity, which results in a computational cost of O(N^2).

Space partitioning algorithms are one way of solving this problem, it
consists of the process of dividing a space into non-overlapping regions
and any point in the space can lie in exactly one of the regions.

By dividing the space we can now check for collisions only between
entities that lie in the same subspace, greatly reducing the amount of
checks we have to do.

5.6.2 Fixed Resolution Grid(W23)

For this project I decided to implement a fixed-resolution grid to subdivide
the space. Each division is of the same size and we will call these divisions
“cells”.

I decided to implement a fixed-resolution grid because every entity is
moving and they can be fast so every frame each cell will have different
entities than in the previous frame. In order to keep all the data updated,
the easiest and fastest way to do so is by clearing the data and re-inserting
all the entities in the corresponding cells. By having a simple data
structure, it is easier to perform these calculations.

Inside the project, the grid is declared as shown in the image below.

64

David Tello Panea
Optimized 2D Renderer

F 5.6.2.1 - Grid data

We keep track of the number of rows and columns the grid has, its
position and total size, and the cell size.

We have three arrays:

- Items List: is the main array, it holds the data of every item inside
the grid. In this case every entity inside the grid is just its ID number.

- Cell Heads: is an array with the index of the first item inside the
main array for each cell. Its size is the number of cells.

- Cell Sizes: is an array the number of items each cell contains. Its size
is the same as cell_heads and they are aligned.

The indices inside the cell_heads array are set by calculating the number
of items inside each cell with the help of the cell_sizes array.

65

David Tello Panea
Optimized 2D Renderer

The following image shows the function used to recalculate the grid.

F 5.6.2.2 - RecalculateGrid function

The first step is to clear the current grid. Then we get the number of items
inside each cell.

In order to get the current cell or cells that contain each item we check in
which cell lies each one of the four corners of the item. With this method
we ensure that every item can be in a maximum of four cells at a time, this
way we know that the item’s data won’t be copied a lot, but this method
won’t work correctly if an item is bigger than the cells’ size.

After this we can now calculate the cell_heads array with the correct
indices to the items_list array.

Finally we insert all the items inside the items_list array in the order of the
cells.

We now have a sorted array of data containing all the items inside the grid,
if we wanted to check if a specific entity is colliding we just have to get the
entities that are in the same cells as the specific entity.

66

David Tello Panea
Optimized 2D Renderer

The following image shows the function that does this, we pass it the
position and size of the entity to check and return an array filled with the
entities contained in the same cells.

F 5.6.2.3 - Get Collision Candidates function

As mentioned before, the method used for calculating the cells that
contain each item does not work with items bigger than the cell size, the
borders of the game-world are bigger than the cell size. The solution to
this problem is by checking if a cell is on the edge of the grid and, if it is,
we add the corresponding border to the candidates list.

67

David Tello Panea
Optimized 2D Renderer

5.6.3 Profiling

The tests performed after finishing this version followed the same

methodology as the previous versions.

The following graph shows the difference in performance between this

version and the previous one. We can see that at the beginning the new

version is slower than the previous one, this is because of the grid

calculations. But as the number of asteroids become higher we can see a

clear improvement in frame rate.

F 5.6.3.1 - Versions 3 & 4 (FPS) graph

The next graph shows the difference between delta times. We can see

that, from the start, the new version outperforms the previous one and its

delta time doesn’t grow much even at the previous version’s limit.

68

David Tello Panea
Optimized 2D Renderer

F 5.6.3.2 - Versions 3 & 4 (Delta Time) graph

The following graph shows the percentages of the average delta time

taken in a frame. We can see that the percentages have changed from the

previous version: physics calculations take 10% less from the total frame’s

time. On the other hand, this extra time is taken up by the scene

operations which now take 15% of the total time instead of the previous

4%.

This means that the time to perform all the physics calculations has been

reduced so that proportionally the scene operations appear to take more

time, but the time needed to perform the scene operations is exactly the

same as before.

69

David Tello Panea
Optimized 2D Renderer

F 5.6.3.3 - Space Partitioning (Average Delta Time %) graph

The following graph shows the comparison between both versions and the

time it takes each part of the frame. Scene operations remain mostly the

same, but where it really changes is in the physics calculations. We can see

that, with the use of the space partitioning technique, the time taken to

perform the operations is significantly reduced.

F 5.6.3.4 - Versions 3 & 4 (Frame Time) graph

70

David Tello Panea
Optimized 2D Renderer

6. Conclusion

After implementing all the optimizations we have a performant application
that is able to simulate many objects that interact with each other in real
time.

The following graph shows a comparison between all the versions and the

time it takes each frame. We see that the final version greatly outperforms

the others.

F 6.1 - All Versions (Delta Time) graph

The frame rate is so much better that we can start to have more asteroids

at an acceptable frame rate, the following graph shows the FPS from 1.000

asteroids to 11.000.

71

David Tello Panea
Optimized 2D Renderer

F 6.2 - Final Version (FPS) graph

Finally, the graph below shows the time it takes each part of the frame. We

can see that physics calculations are still the bottle-neck of the application

but, even with 11.000 entities in the scene, the milliseconds needed to

perform the operations is below 15ms, lower than the time taken in the

first version with only 1.000 entities.

F 6.3 - Final Version (Delta Time) graph

72

David Tello Panea
Optimized 2D Renderer

If we go back to the general objectives set at the beginning of the
development, we can analyze its state and progress overall.

- 2D rendering from scratch: this objective has been achieved, we can
render images, rectangles and lines, and there is a render pipeline
that performs the necessary operations to draw everything with the
use of OpenGL.

- Applying optimization techniques that improve the performance:
this objective has also been achieved, after implementing every
version the final result is able to handle more than 10.000 entities
that interact with each other at a frame rate higher than 60FPS.

- Documenting the process and creating a demo: this objective has
been mostly achieved, the only thing that has not been fully
completed is the demo. With the changes in planification I decided
to not make a controllable character and a small game to play but
instead have a basic application with a debug panel to tweak some
parameters and add or remove asteroids to the scene.

Even though the project is finished and the result is positive, there are still
many things that could be improved to make it still more performant.
Some of this further optimizations could be implementing a better space
partitioning algorithm like a hierarchical grid or a loose double grid(w24),
making the application run in multiple threads to distribute the workload,
or performing the physics calculations not every frame but once every 5,
10, or a number of frames to not have to do costly operations so
frequently.

The result of this project, Optimization techniques for a 2D engine, is
public under the MIT License in the Github repository “2D Renderer”, the
initial name of the project.

73

https://github.com/DavidTello1/2D-Renderer

David Tello Panea
Optimized 2D Renderer

7. Webgraphy

W 1 - Daniel Shaya. (August 5th, 2015). The difference between Efficiency

and Performance – It’s not all about the Big O. Java Code Geeks. Article,

URL. The difference between Efficiency and Performance - It's not all about

the Big O - Java Code Geeks - 2022

W 2 - Kevin Krewell. (2009). What’s the Difference Between a CPU and a

GPU?. Webpage.CPU vs GPU? What’s the Difference? Which Is Better? |

NVIDIA Blog

W 3 - Gabriel Torres (September 12th, 2007). How The Cache Memory

Works. Hardware secrets. Webpage, URL. How The Cache Memory Works

- Hardware Secrets

W 4 - DOTS packages. Unity. Webpage, URL.

https://unity.com/dots/packages

W 5 - Nanite Virtualized Geometry. Unreal Engine. Webpage,URL.

https://docs.unrealengine.com/5.0/en-US/nanite-virtualized-geometry-in-

unreal-engine/

W 6 - Gogotengine. Main page. Webpage, URL. https://godotengine.org/

W 7 - Agile methodology: Feature Driven Development. Main page.

Webpage, URL. http://agilemodeling.com/essays/fdd.htm

W 8 - HacknPlan. Webpage, URL. https://hacknplan.com/

W 9 - Optick. C++ Profiler for Games. GitHub. Webpage, URL.

https://optick.dev/

W 10 - Chua, Hock-Chuan (July, 2012). OpenGL Tutorial: An introduction on

OpenGL with 2D grafics. Programming Notes. An introduction on OpenGL

with 2D Graphics - OpenGL Tutorial (ntu.edu.sg)

W 11 - Shreiner, Sellers, Kessenich, Licea-Kane. (March 2013). OpenGL

Programming Guide: The Official Guide to Learning OpenGL (Red Book).

Addison-Wesley.

https://www.cs.utexas.edu/users/fussell/courses/cs354/handouts/Addiso

74

https://www.javacodegeeks.com/2015/08/the-difference-between-efficiency-and-performance-its-not-all-about-the-big-o.html
https://www.javacodegeeks.com/2015/08/the-difference-between-efficiency-and-performance-its-not-all-about-the-big-o.html
https://www.javacodegeeks.com/2015/08/the-difference-between-efficiency-and-performance-its-not-all-about-the-big-o.html
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://hardwaresecrets.com/how-the-cache-memory-works/
https://hardwaresecrets.com/how-the-cache-memory-works/
https://unity.com/dots/packages
https://unity.com/dots/packages
https://docs.unrealengine.com/5.0/en-US/nanite-virtualized-geometry-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/nanite-virtualized-geometry-in-unreal-engine/
https://godotengine.org/
http://agilemodeling.com/essays/fdd.htm
https://hacknplan.com/
https://optick.dev/
https://optick.dev/
https://www3.ntu.edu.sg/home/ehchua/programming/opengl/cg_introduction.html
https://www3.ntu.edu.sg/home/ehchua/programming/opengl/cg_introduction.html
https://www.cs.utexas.edu/users/fussell/courses/cs354/handouts/Addison.Wesley.OpenGL.Programming.Guide.8th.Edition.Mar.2013.ISBN.0321773039.pdf
https://www.cs.utexas.edu/users/fussell/courses/cs354/handouts/Addison.Wesley.OpenGL.Programming.Guide.8th.Edition.Mar.2013.ISBN.0321773039.pdf

David Tello Panea
Optimized 2D Renderer

n.Wesley.OpenGL.Programming.Guide.8th.Edition.Mar.2013.ISBN.0321773

039.pdf

W 12 - The OpenGL Extension Wrangler Library. (2017). Latest Release:

2.1.0. Webpage, URL. GLEW: The OpenGL Extension Wrangler Library

(sourceforge.net)

W 13 - Ocornut/imgui. Bloat-free Graphical User interface for C++ with

minimal dependencies. Library. Github. Webpage,URL.GitHub -

ocornut/imgui: Dear ImGui: Bloat-free Graphical User interface for C++

with minimal dependencies

W 14 -PCG, A Family of Better Random Number Generators. Webpage,

URL. PCG, A Family of Better Random Number Generators

(pcg-random.org)

W 15 - OpenGL Mathematics (GLM). A C++ mathematics library for

graphics programming (GLM 0.9.9.7) Library. Webpage, URL. OpenGL

Mathematics (g-truc.net)

W 16 - Sean Barret. Nothings/stb. stb single-file public domain libraries for

C/C++. Library. Github. Webpage, URL. GitHub - nothings/stb: stb

single-file public domain libraries for C/C++

W 17 - S. Gilis, A., Lewis, S (July, 2021). Object-oriented programming

(OOP). TechTarget network. Webpage, URL.

https://www.techtarget.com/searchapparchitecture/definition/object-orie

nted-programming-OOP

W 18 - Jonathan Mines. (March 20th, 2018). Data-Oriented vs

Object-Oriented Design. Medium. Article, URL.

https://medium.com/@jonathanmines/data-oriented-vs-object-oriented-d

esign-50ef35a99056

W 19 - Noel. (December 4th, 2009). Data-Oriented Design (Or Why You

Might Be Shooting Yourself in The Foot With OOP). Gamesfromwithin.

Webpage, URL. https://gamesfromwithin.com/data-oriented-design

W 20 - Mikhail Semenov. (January 3rd, 2015). Fast Implementations of

Sparse Sets in C++. Code Project. Article, URL.

75

https://www.cs.utexas.edu/users/fussell/courses/cs354/handouts/Addison.Wesley.OpenGL.Programming.Guide.8th.Edition.Mar.2013.ISBN.0321773039.pdf
https://www.cs.utexas.edu/users/fussell/courses/cs354/handouts/Addison.Wesley.OpenGL.Programming.Guide.8th.Edition.Mar.2013.ISBN.0321773039.pdf
https://sourceforge.net/projects/glew/files/glew/2.1.0/
http://glew.sourceforge.net/
http://glew.sourceforge.net/
https://github.com/ocornut/imgui
https://github.com/ocornut/imgui
https://github.com/ocornut/imgui
https://www.pcg-random.org/#
https://www.pcg-random.org/
https://www.pcg-random.org/
https://github.com/g-truc/glm/releases/download/0.9.9.7/glm-0.9.9.7.zip
https://glm.g-truc.net/0.9.9/
https://glm.g-truc.net/0.9.9/
https://github.com/nothings/stb
https://github.com/nothings/stb
https://www.techtarget.com/searchapparchitecture/definition/object-oriented-programming-OOP
https://www.techtarget.com/searchapparchitecture/definition/object-oriented-programming-OOP
https://medium.com/@jonathanmines/data-oriented-vs-object-oriented-design-50ef35a99056
https://medium.com/@jonathanmines/data-oriented-vs-object-oriented-design-50ef35a99056
https://gamesfromwithin.com/data-oriented-design
https://www.codeproject.com/script/Membership/View.aspx?mid=3883711
https://www.codeproject.com/Articles/859324/Fast-Implementations-of-Sparse-Sets-in-Cplusplus

David Tello Panea
Optimized 2D Renderer

https://www.codeproject.com/Articles/859324/Fast-Implementations-of-S

parse-Sets-in-Cplusplus

W 21 - Godotengine. Optimization using batching. Webpage, URL.

https://docs.godotengine.org/en/stable/tutorials/performance/batching.h

tml#doc-batching

W 22 - Robert Nystrom. (2014). Game Programming Patterns. Genever

benning. https://gameprogrammingpatterns.com/spatial-partition.html

W 23 - Conkerjo. (June 13th, 2009). Spatial hashing implementation for

fast 2D collisions. The mind of conkerjo. Blog, URL.

https://conkerjo.wordpress.com/2009/06/13/spatial-hashing-implementat

ion-for-fast-2d-collisions/

W 24 - Efficient (and well explained) implementation of a Quadtree for 2D

collision detection. (January 30th, 2017) Stackoverflow. Blog, URL.

https://stackoverflow.com/questions/41946007/efficient-and-well-explain

ed-implementation-of-a-quadtree-for-2d-collision-det

W 25 - Molly Rocket. (2021). Handmade Hero Chat 017 - Modern x64
Architectures and the Cache. [Video]. Youtube, URL.
https://guide.handmadehero.org/chat/chat017/

W 26 - DavidTello1/2D-Renderer. Webpage, URL.

https://github.com/DavidTello1/2D-Renderer

76

https://www.codeproject.com/Articles/859324/Fast-Implementations-of-Sparse-Sets-in-Cplusplus
https://www.codeproject.com/Articles/859324/Fast-Implementations-of-Sparse-Sets-in-Cplusplus
https://docs.godotengine.org/en/stable/tutorials/performance/batching.html#doc-batching
https://docs.godotengine.org/en/stable/tutorials/performance/batching.html#doc-batching
https://gameprogrammingpatterns.com/spatial-partition.html
https://conkerjo.wordpress.com/2009/06/13/spatial-hashing-implementation-for-fast-2d-collisions/
https://conkerjo.wordpress.com/2009/06/13/spatial-hashing-implementation-for-fast-2d-collisions/
https://conkerjo.wordpress.com/2009/06/13/spatial-hashing-implementation-for-fast-2d-collisions/
https://conkerjo.wordpress.com/2009/06/13/spatial-hashing-implementation-for-fast-2d-collisions/
https://conkerjo.wordpress.com/2009/06/13/spatial-hashing-implementation-for-fast-2d-collisions/
https://stackoverflow.com/questions/41946007/efficient-and-well-explained-implementation-of-a-quadtree-for-2d-collision-det
https://stackoverflow.com/questions/41946007/efficient-and-well-explained-implementation-of-a-quadtree-for-2d-collision-det
https://stackoverflow.com/questions/41946007/efficient-and-well-explained-implementation-of-a-quadtree-for-2d-collision-det
https://guide.handmadehero.org/chat/chat017/
https://guide.handmadehero.org/chat/chat017/
https://github.com/DavidTello1/2D-Renderer

