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The present article consists in the modelling an design of a Paul ion trap using the Method of
Moments for numerical integration. Firstly, we have developed some preliminary work with simple
geometries in two and three dimensions. Then we have designed the geometry of the trap, consisting
in two hiperboloid plates which have been discretized, triangulated, and solved by the Method of
Moments. The potential in the plates has been set to vary harmonically, since sinusoidal signals
have proved to be more effective than triangular and square signals. We have then simulated the
confinement of one, two and multiple ions, and we have studied how the chosen frequency and
potential affect the effectiveness of the trap. Our simulation code can be found in our Github repo.

I. INTRODUCTION

In 1989, physicist Wolfgang Paul received the Nobel
prize together with Hans Dehmelt for creating a de-
vice capable of trapping charged particles. This device,
known as the Paul ion trap, consists of two hyperbolic
electrodes charged with oscillating potentials, creating an
AC electric field in its interior. The trap has applications
in a great number of areas including mass spectropy and
quantum computing.

The aim of our paper is to model a Paul ion trap using
MatLab, with the help of computational physics tech-
niques such as the Method of Moments (MoM) [1] and
the triangulation method of Delaunay [2], and simulate,
and to simulate the confinement of several particles.

II. PRELIMINARY WORK

In order to gain insight into electrode simulation using
MatLab and to validate the performance of the MoM,
we proceed to design and test some capacitors in two
and three dimensions. We compute the potential using
the MoM and use the finite element method –already im-
plemented in the MatLab function gradient– to sketch
the electric field. Finally, we compare the derived capac-
ity to the ideal one to check the validity of our results.

A. Two-dimensional geometry design

We start designing a planar and a cylindrical 2D capac-
itors. From [3], we know that the electrostatics integral
equation in two dimensions can be expressed as

−1

2πε0

∫
C

q(ρ′) ln(|ρ− ρ′|) dρ′
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C

= V0(ρ)

for any closed curve C. To find the charge distribution
in each plate, we discretize them as a linear combination
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of pulse basis functions centered at the sites ρm, with
length hm. Their respective charges qm are given by a
vector [q], which can be found through the MoM. Indeed,
it satisfies the linear system [Z][q] = [b], where the ele-
ments of [Z] and [b] are given by

Znm =

{
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− hm

2πε0

[
ln
(
hm

2

)
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]

if m = n

and bm = V0(ρm), respectively. We proceed to solve
this linear system by setting a fixed V = ±0.5 V on the
plates. Once the discrete charge distribution [q] has been
found, we can easily find the potential in each point of
the plane, and take the gradient to find the electric field.
The results of these simulations are plotted in figure 1.

Figure 1. Magnitude of the potential (in V) and direction of
the electric field, for the planar (left) and cylindrical (right)
capacitors. The same color bar applies to both graphics.

The capacity of both capacitors can be experimentally
calculated as Cexp = 1

∆V

∑
hmqm. For the planar capac-

itor we obtain

Cideal = ε0
L

d
≈ 177.08 pF, Cexp = 195.04 pF,

which leads to a relative error of εr = 10, 14%. However,
since the ideal capacity formula refers to an infinite ca-
pacitor, we cannot conclude whether the largest source of
error is the MoM or the finite geometry approximation.
For the cylindrical capacitor we have

Cideal =
πε0

acosh
(
d
R

) ≈ 21.121 pF, Cexp = 21.148 pF
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In this case, there is no geometry approximation, so all
discrepancies are due to the discretization method. But
now εr = 0, 13%, so we conclude the MoM is a good
approximation for this problem.

B. Three-dimensional geometry design

We now want to design a 3D planar capacitor, consist-
ing of two parallel square plates of side L = 1 m and a
separation of d = 0.1 m. In the three-dimensional case,
the electrostatics integral equation reads (see [3]):∫

S

q(r′)
1

4πε0|r − r′|
dr′
∣∣∣∣
S

= V0(r).

Now the challenge is to discretize the capacitor surfaces.
To this end, we use the MatLab function delaunay,
that given a mesh of points from a surface returns a set of
triangles along with their topology matrix, corresponding
to a surface triangulation. With the help of the MoM and
the function int S 1divR documented in [4] to determine
the matrix [Z] of the linear system, we are able to find
the charge distribution of the capacitor, as well as the
potential and electric field (figure 2). We have set with
V = ±0.5 V on the plates.

Figure 2. Left: Charged planar plates, triangulated using
delaunay function. Right: potential along the axes’ slices (in
V), and electric field displayed using coneplot function.

We can now compute the discrepancy between the ideal
and experimental capacity of this model:

Cideal =
ε0L

2

d
≈ 88, 540 pF, Cexp = 66, 737 pF,

which leads to a relative error of εr = 24, 6%. This is a
successful result, keeping in mind our conclusions of the
2D case: must of the error must come from the finite
geometry approximation.

III. SIMULATION OF A PAUL ION TRAP

A. Geometry design

The Paul ion trap we will design consists in two hyper-
boloid plates which enclose a region in space for effective

ion confinement. One plate consists in a two-sheet hy-
perboloid along the z axis, given implicitly by

2x2 + 2y2 − z2 = −z2
0 ,

with points taken from the disk x2 + y2 < r2
0. The other

plate is a one-sheet hyperboloid around the z axis, which
is in turn given by

x2 + y2 − 2z2 = r2
0,

with points from the ring r2
0 < x2 + y2 < r2

0 + 2z2
0 .

We take positive and negative values of z, and fix the
geometry parameters to r0 = 1 m and z0 = 0.3 m.

We thus proceed to discretize the surface of the plates
and solve the MoM as done with the 3D planar capacitor.
Once again, we set V = ±0.5 V in the hyperboloid plates.
Figure 3 shows the resulting charge distribution and the
potential and electric field it creates.

Figure 3. Top: charged hyperboloid plates of our Paul ion
trap. The color shows the charge per unit surface on the
plates, in units of 10−11 C/m2. Bottom: potential along the
axes’ slices (in V) and electric field, flowing from the positively
charged plate to the negative one.
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B. Single ion with DC potential

The first step towards testing our trap is to study the
motion of a positively charged ion when placed at a ran-
dom position near the center of the system. We fix the
mass and the charge of the ion to be m = 30 u and
q = +e, respectively. The trajectory of the ion is ob-
tained using Newton’s equations of motion by comput-
ing its acceleration from the electric field, and assuming
it remains constant for very short periods of time.

However, there are two ways to compute the electric
field at the ion’s instantaneous position. The most ef-
ficient option is to interpolate the electric field plotted
in 3, but this would lead to precision errors due to both
approximating the gradient of V and its subsequent in-
terpolation. Instead, we choose a less efficient but more
precise alternative: using the plate charge distribution to
compute the resulting electric field, modelling each trian-
gle in the plates by a point charge. Our implementation
has been properly vectorized and has thus proved to be
time efficient for our applications.

Our results show the positive ion moves towards the
negatively charged plate, as expected. However, we are
interested in knowing the average time T it takes for it to
escape the trap. Figure 4 shows our results when running
the simulation for different plate potentials V .

Figure 4. The average escape time T has obtained using 100
trials for each potential V supplied to the hyperbolic plates.

A linear regression using the polyfit MatLab func-
tion yields a slope of m ≈ 0.4889 for the plot in figure 4.
Moreover, it is reasonable to hypothesise the minimum
threshold frequency needed to trap an ion using a pe-
riodic signal will be proportional to the inverse average
escape time. Thus, we obtain the relation

fmin ∝
√
V , (1)

where the constant on proportionality depends on several
factors such as the charge to mass ratio q/m and the
geometrical parameters r0 and z0.

C. Single ion with AC potential

Once the ion trajectories have been tested with a
fixed plate potential, these are set to periodically vary in
order to perform our first ion confinement. Knowing the
charge on the plates [q] is proportional to V , it suffices
to compute the charge with a fixed potential and then
multiply it by our periodic signal. A logical pattern is
observed when varying the frequency: for f � 1/T ,
the ion escapes the trap, whilst f � 1/T leads to a
successful trapping of the particle.

Figure 5. Ion trapping using a sinusoidal signal, at f = 670 Hz
(unsuccessful) and f = 680 Hz (successful).

Figure 6. N = 10 trials per frequency have been performed.
The minimum frequencies for the Paul trap at V = 0.5 V are
f = 674 Hz for the sinusoidal potential and f = 695 Hz for
the triangular one. Their transition bandwidths are ∼ 5 Hz,
20 Hz respectively.

Let fmin ∝
√
V be the threshold frequency at which

the ion’s trapping is first successful. Ideally fmin should
be low, and also well defined (with a small transition
bandwidth). We compare these aspects when the po-
tential is varied using a sinusoidal, triangular or square
signal. The latter has shown to be the worst at parti-
cle trapping, having a very high and undefined threshold
frequency compared to the sinusoidal and triangular sig-
nals. These in turn show very similar behavior, although



4

the former is better in both aspects as shown in figure 6.
It is also interesting to mention that the relation fmin ∝√
V shows to be extremely precise for the sinusoidal sig-

nal. The constant of proportionality can be computed
with the data in figure 6, and predictions of the threshold
frequency for different potentials are extremely accurate.

D. Increasing the number of ions

A simulation with two identical ions in the trap is per-
formed by taking into account the electrostatic force act-
ing between them. The confinement is shown to be suc-
cessful above the same threshold frequency (see figure 7),
since the interaction between the ions is negligible com-
pared to the force due to the electrodes (with charges of
∼ 10−13 C ∼ 106e). However, if the charge of the ions is
increased (or the trap potential is reduced), their mutual
interaction should have a greater impact.

Figure 7. Two ions trapped using a sinusoidal potential, at
f = 672 Hz. The threshold frequency remains the same.

Finally perform simulations with more than two ions
in the trap. We are interested in studying the effect of ion
interaction without altering the parameters of the single
ion simulation, so we proceed to increase the charge of
each ion by a certain scale factor factor with respect to
the elementary charge +e, while reducing the potential
on the surfaces by the same factor. This way, the inter-
action between the electrodes and the ions remains the
same, and so does the expected working frequency. Of

course, if the ions’ charge is increased, so does the like-
lihood they overcome the confining potential due to the
increase in electrostatic forces between them. Figure 8
shows the results for the the maximum charge scale fac-
tor for which all the ions are successfully trapped, varying
the number of ions up to N = 200.

Figure 8. Maximum scale factor of ions charge for which a
set of N ions remains confined into the trap, shown for up
to N = 200 in a log− log scale. The case N = 1 would ad-
mit arbitrarily large scale factors since there is no interaction
between ions, but we only tested scale factors up to k = 1000.

As we expected, larger the number of trapped ions,
the lower the charge they will need to escape it, since the
resulting force on each ion is roughly proportional to the
number of ions in the trap. The results in 8 have to be
interpreted only from a qualitative point of view, since
for a large number of particles the main reason why ions
leak is due to numerical approximations. In fact, with a
large number of ions, there is a non-negligible probability
that two ions became so close that in the next time-step
they are fired out of the trap.

IV. CONCLUSIONS

We have been able to successfully model and simu-
late single and multiple ion confinement using a Paul
ion charged with hyperbolic plates. Optimal conditions
have been achieved through a sinusoidal variation of the
plates’ potential, leading to a very well defined threshold
frequency satisfying fmin ∝

√
V .

Our simulation has been capable of determining the
trajectory of more than N = 200 trapped ions. However,
simulations with large values of N become too slow to
compute. Alternative implementations for larger N in-
clude a higher level of code vectorization or using a linear
interpolation of the field created by the plates.
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