
Modern Harmonic Analysis:

Singular Integrals, Maximal Functions and

Littlewood-Paley theory

Bernat Ramis Vich

Supervised by James R. Wright (UoE)

Cosupervised by Albert Mas Blesa (UPC)

Final Bachelor’s Thesis

Bachelor’s degree in Mathematics

Bachelor’s degree in Engineering Physics

May, 2023





Als Matfis, en especial a en Marc.

iii



iv

Abstract
The tools developed in the 1950s by Calderón and Zygmund, which led to

the birth of modern harmonic analysis, are studied. Some of these concepts are
the Hardy-Littlewood maximal function together with its Lp estimates, inter-
polation theorems and, foremost, the Calderón-Zygmund decomposition. These
techniques allow us to show that some singular integrals are well defined and
bounded on Lp spaces. Although Euclidean space is the original setting where
these ideas were developed, a main aim of the project is to understand how
these estimates generalise to other measure metric spaces and to vector-valued
singular integrals.

Despite being powerful, classical Calderón-Zygmund theory has its limita-
tions. For example, the spherical maximal operator introduced by Stein in the
1970’s falls outside the scope of the original theory. However, one can utilise
Littlewood-Paley theory via square function estimates to prove optimal esti-
mates for the spherical maximal operator. Nevertheless, endpoint bounds for
similar singular integral and maximal operators remain as open problems.

Resum
S’estudien les eines desenvolupades en la dècada de 1950 per Calderón i

Zygmund, les quals varen portar al naixement de l’anàlisi harmònica moderna.
Alguns d’aquests conceptes són la funció maximal de Hardy-Littlewood junta-
ment amb les seves propietats d’acotació en espais Lp, teoremes d’interpolació
i, sobretot, la descomposició de Calderón i Zygmund. Aquestes tècniques ens
permeten demostrar que algunes integrals singulars estan ben definides i fitades
en els espais Lp. Tot i que l’espai euclidià fos el context original on totes aques-
tes idees es varen desenvolupar, un objectiu principal del projecte és entendre
com aquestes propietats es generalitzen a altres espais mètrics de mesura i a
integrals singulars de valors vectorials.

Tot i ser potent, la teoria clàssica de Calderón-Zygmund té les seves limita-
cions. Per exemple, l’operador maximal esfèric introduït per Stein en la dècada
de 1970 cau fora de l’abast de la teoria original. Tot i així, un pot utilitzar
la teoria de Littlewood-Paley via desigualtats de square functions per demos-
trar desigualtats òptimes per l’operador maximal esfèric. Per contra, hi ha fites
en els extrems del rang de valors dels exponents p per a operadors integrals
singulars i maximals que romanen com a problemes oberts.
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Resumen
Se estudian las herramientas desarrolladas en la década de 1950 por Calderón

y Zygmund, las cuales llevaron al nacimiento del análisis armónico moderno.
Algunos de estos conceptos son la función maximal de Hardy-Littlewood junto
con sus propiedades de acotación en espacios Lp, teoremas de interpolación
y, sobre todo, la descomposición de Calderón y Zygmund. Estas técnicas nos
permiten demostrar que algunas integrales singulares están bien definidas y
acotadas en los espacios Lp. Aunque el espacio euclídeo sea el contexto original
donde todas estas ideas fueron desarrolladas, un objetivo principal del proyecto
es entender cómo estas propiedades se generalizan a otros espacios métricos de
medida y a integrales singulares con valores vectoriales.

A pesar de ser potente, la teoría clásica de Calderón-Zygmund tiene sus
limitaciones. Por ejemplo, el operador maximal esférico introducido por Stein
en la década de 1970 cae fuera del alcance de la teoría original. Sin embargo,
uno puede utilizar la teoría de Littlewood-Paley via desigualdades de square
functions para demostrar desigualdades óptimas para el operador maximal es-
férico. Aun así, hay cotas en los extremos del rango de valores de los exponentes
p para operadores integrales singulares y maximales similares que permanecen
como problemas abiertos.
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CHAPTER 1

Introduction and preliminaries

1.1. Introduction to the topic

By “singular integral operators” we mean, in the first instance, convolution op-
erators in Rn the kernel function of which presents a singularity, say, at the ori-
gin. Singular integrals show up in a number of problems of analytic nature. For
instance, they generate solutions of some partial differential equations, either
elliptic or hyperbolic; they arise in complex analysis; they underpin apparently
unrelated settings in geometric measure theory, etc.

For decades, analysts felt uncomfortable when utilising such tools because
there was no knowledge regarding their boundedness properties. Were they
handling continuous operators on Lp spaces or not?

Harmonic analysis is the natural framework for studying singular integral
operators. In the middle and end 20th century, the field experienced a burst.
Brilliant mathematicians contributed to the expansion of the theory concerning
singular integrals. Calderón, Zygmund, Littlewood, Paley, Hardy, Bourgain and
Stein are just some of the most influential driving forces in the field.

Due to its ubiquity, in the literature, theory of singular integrals is often just
partially explained, because it serves to step forward at stages within problems
of different natures. Therefore, this document intends to collect most of the
theory of singular integrals, gathering altogether all of its pieces, putting them
into context and depicting their most emblematic applications. This is, instead
of regarding it an auxiliary tool, we centre them in the spotlight.

1



2 Introduction and preliminaries

1.2. Essential initial tools and results

Throughout the chapters, the reader is going to come across a series of recurrent
tools and topics that are succinctly explained in this section. It is necessary to
bear them in mind.

1.2.1. The Fourier transform

The single construction of the Fourier transform on Lp(Rn) spaces would occupy
a whole chapter, therefore we will restrict ourselves to highlighting the most
relevant results for our concern, besides leaving the reference [13], Chapter 1,
Section 1 and 2.

To set the convention:

Definition 1.1. The Fourier transform acting on functions in L1(Rn) is
defined as

f̂(ξ) :=

∫
Rn

f(x)e−2πixξdx, ξ ∈ Rn.

Accordingly,

Definition 1.2. The inverse Fourier transform acting on functions in
L1(Rn) is defined as

ǧ(x) :=

∫
Rn

g(ξ)e2πixξdξ, x ∈ Rn.

It is well known that the Fourier transform operator admits a unique exten-
sion from L1(Rn) ∩ L2(Rn) to all functions on L2(Rn).

Theorem 1.3 (Plancherel’s Theorem). The Fourier transform acting on func-
tions in L2(Rn) defines an isometric isomorphism from L2(Rn) to itself. That
is, equally denoting by f̂ the Fourier transform of f ∈ L2(Rn),∥∥∥ f̂ ∥∥∥

2
= ∥ f ∥2 .

1.2.2. Weak Lebesgue spaces

When Lp spaces are not large enough, the following is a candidate for a substi-
tute.
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Definition 1.4. Let X ≡ (X,Σ, µ) be a measure space. Inspired by the fact

λpµ({x ∈ X : |f(x)| > λ}) ≤
∫
{x∈X:|f(x)|>λ}

|f(x)|pdµ(x)

≤
∫
X

|f(x)|pdµ(x) = ∥ f ∥pp

for f ∈ Lp(X) and λ > 0, we define the weak Lp spaces, with 1 ≤ p <∞ as

Lp,∞(X)1 := {f : X → C measurable : sup
λ>0

λpµ({x ∈ X : |f(x)| > λ}) <∞}.

(1.1)

It is clear that Lp(X) ⊆ Lp,∞(X)2. The fact that these spaces broaden the
conventional Lp(X) is the reason why they are called “weak Lp spaces”.

It turns out that

∥ f ∥Lp,∞(X) = sup
λ>0

λµ({x ∈ X : |f(x)| > λ})
1
p

is not a proper norm, since it does not verify the triangle inequality. However,
for 1 < p < ∞, it is comparable to some other actual norm, which turns
Lp,∞(X) into a Banach space.

It is conventional to set L∞,∞(X) := L∞(X).

1.2.3. Convolution in Lebesgue spaces

Let us recall how convolution behaves in Lp(X) spaces.

Proposition 1.5. Let X be a measure space.

(a) If f, g ∈ L1(X) then f ∗ g ∈ L1(X) and

∥ f ∗ g ∥1 = ∥ f ∥1 ∥ g ∥1 .

(b) If f ∈ Lp(X) for 1 ≤ p ≤ ∞ and g ∈ L1(X) then f ∗ g ∈ Lp(X) and

∥ f ∗ g ∥p ≤ ∥ f ∥p ∥ g ∥1 .

(c) If f ∈ Lp(X) for 1 ≤ p ≤ ∞, and g ∈ Lp′(X), where p and p′ are conjugate
exponents 1

p
+ 1

p′
= 1, then f ∗ g ∈ L∞(X) and

∥ f ∗ g ∥∞ ≤ ∥ f ∥p ∥ g ∥p′ .

The proof is straightforward: by Fubini−Tonelli theorem for (a), by
Minkowski integral inequality for (b) and by Hölder inequality for (c).

1The notation for the weak Lebesgue spaces comes from the fact that they are a particular
case of the Lorentz spaces Lp,q(X).

2Moreover, in Rn, the inclusion is strict: take f(x) = |x|−
n
p . It is easy to check that

f ∈ Lp,∞(Rn) but f /∈ Lp(Rn).
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1.2.4. Approximations to the identity

This one is a versatile tool intervening in density arguments or convergence
proofs.

Definition 1.6. Let K ∈ L1(Rn) and let Kr(x) := r−nK(r−1x) be their integral-
preserving dilates. The family (Kr)r>0 is an approximation to the identity
if it verifies:

(a) K(x) ≥ 0 ∀x ∈ Rn,

(b)
∫
K = 1.

Remark 1.7. It follows from the previous definition that, under the same hy-
potheses, ∀ δ > 0 ∫

|x|>δ

Kr(x)dx→ 0 if r → 0.

1.2.5. Schwartz functions and tempered distributions

When one seeks for a space of functions which makes the Fourier transform be-
have nicely, one of the outstanding candidates is the space of Schwartz functions.
Its definition is inspired by the two following properties.

First, introduce the multi-index notation α = (α1, . . . , αn) ∈ Nn on deriva-
tives of multivariable functions ∂αf(x) := ∂α1

x1
. . . ∂αn

xn
f(x) and on monomials

xα := xα1
1 · . . . · xαn

n .

(a) ∂αf̂(ξ) = ((−2πix)αf(x))̂ (ξ)

(b) ∂̂αf = (2πiξ)αf̂(ξ)

Thus, we need the operations of deriving and multiplying by polynomials to be
well-behaved with our functions.

Definition 1.8. The space of Schwartz functions S (Rn) is the space of all
smooth functions φ ∈ C∞(Rn) such that

∥φ ∥α,β := sup
x∈Rn

|xα∂βφ(x)| <∞ (1.2)

for all multi-indexes α, β ∈ Nn.

Moreover, each ∥ · ∥α,β turns out to be a seminorm on S (Rn). Combining
all of them in a certain way, one can construct a metric for S (Rn), giving it
the nature of a metric vector space, see [13], Chapter 1, Section 3.

Some of the graceful properties of the space of Schwartz functions S (Rn)
are:
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(a) It is a complete metric space.

(b) The Fourier transform is a homeomorphism from S (Rn) to itself.

(c) It is separable.

(d) S (Rn) ⊂ Lp(Rn) for 1 ≤ p ≤ ∞ and S (Rn) is dense in Lp(Rn) for 1 ≤
p <∞.

Again, see [13], Chapter 1, Section 3 for futher details.

Equally important is the dual space of S (Rn).

Definition 1.9. The topological dual space of S (Rn), S ∗(Rn) is called the
space of tempered distributions.

Although tempered distributions arise as a vast topic, let us just state the
results that are worth mentioning here. Check [13] as before for expanded
explanations.

Theorem 1.10. Let u be a linear functional on S (Rn). u is a tempered dis-
tribution if and only if there exist C > 0, N,M ∈ N such that

|u(φ)| ≤ C
∑
α≤N
β≤M

∥φ ∥α,β ∀φ ∈ S (Rn).

The proof can be found in [13], Theorem 3.11 in Chapter 1. This theorem
is practical for checking whether a linear functional is in fact a tempered dis-
tribution. For example, one can check this way that we can define an inclusion
map S (Rn) ↪−→ S ∗(Rn) by assigning

φ→
∫
Rn

φ(x)(·) dx.

Definition 1.11. We say that an equality of tempered distributions u, v ∈
S ∗(Rn) holds in the sense of tempered distributions u = v if

u(φ) = v(φ) ∀φ ∈ S (Rn).

One of the operations one can define involving tempered distributions is the
convolution of a tempered distribution with a Schwartz function. In particular,
assume u, φ, ϕ ∈ S . Then, by Fubini-Tonelli, it holds that∫

Rn

(u ∗ φ)(x)ϕ(x) dx =

∫
Rn

u(x)(φ̃ ∗ ϕ)(x) dx

where φ̃(x) := φ(−x) is the reflected function. The following definition is based
on this equality to generalise the operation of convolution.
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Definition 1.12. Let u ∈ S ∗(Rn) and φ ∈ S (Rn). Define their convolution
as the function

(u ∗ φ)(x) := u(τxφ̃)

where τxf(y) := f(y − x) is the translation operator.

Theorem 1.13. The function f resulting from the convolution of u ∈ S ∗(Rn)
and φ ∈ S (Rn), f(x) = (u∗φ)(x) is a smooth function with growth and growth
of its derivatives at most polynomial.

The proof is available in [13], Theorem 3.13 in Chapter 1.

It is also possible to extend the definition of the Fourier transform on tem-
pered distributions, in similarity with the multiplication formula.

Definition 1.14. The Fourier transform of a tempered distribution u ∈
S ∗(Rn) is defined for tempered distributions by their action as

û(φ) := u(φ̂) ∀φ ∈ S (Rn).

Note the Fourier transform of a tempered distribution is a tempered distri-
bution. In fact, Definition 1.14 allows us to talk about the Fourier transform of
Lp(Rn) functions with p > 2, by viewing these functions as tempered distribu-
tions.

We refer to [13], Chapter 1, Section 3, for the following result.

Proposition 1.15. The Fourier transform on the space of tempered distribu-
tions defines an isomorphism of topological vector spaces from S ∗(Rn) to itself.

1.2.6. Marcinkiewicz interpolation theorem

Sometimes, one wishes to show that an operator is bounded on Lp(X) spaces for
a whole range of values of p. Instead of working out the proof in the generality
f ∈ Lp(X) for any p of the desired range, there are some available interpolation
theorems which allow us to conclude boundedness properties of our operator by
dealing only with the endpoint values of p.

Theorem 1.16 (Marcinkiewicz interpolation theorem). Let Xi ≡ (Xi,Σi, µi),
i = 1, 2 be two σ-finite measure spaces and let T be a sublinear operator mapping
from Lp1(X1) +Lp2(X1) to the space of measurable functions over X2, for fixed
1 ≤ p1 < p2 ≤ ∞, such that:

(i) T is weak-type (p1, p1). That is, ∀λ > 0 and f ∈ Lp1(X1),

µ2({x ∈ X2 : |Tf(x)| > λ}) ≤
(
C1

∥ f ∥p1
λ

)p1

for some constant C1 > 0.
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(ii) T is weak-type (p2, p2). This means, ∀λ > 0 and f ∈ Lp2(X1),

µ2({x ∈ X2 : |Tf(x)| > λ}) ≤
(
C2

∥ f ∥p2
λ

)p2

for some constant C2 > 0.

Then, T is strong-type (r, r) ∀ r in the range p1 < r < p2 and it holds that

∥Tf ∥r ≤ Ap1,p2 ∥ f ∥r
for f ∈ Lr(X1) and Ap1,p2 only depending on p1, p2, C1 and C2.

The proof in the case X1 = X2 = Rn and p1 = 1 is available in [10], Chapter
1, Section 4. The generalization of the proof to the setting of Theorem 1.16 is
straightforward though.

Indeed, Marcinkiewicz interpolation theorem is the main reason why we are
interested in the weak Lp spaces.

1.2.7. The Hardy-Littlewood maximal function

Apparently, as one can read from their original paper [7], G. H. Hardy and J.
E. Littlewood got inspired by cricket to define their maximal function. Both
eager followers of this sport wanted to understand how to maximise a player’s
“satisfaction” after several innings based on the averages of their scores. Beyond
its origin, the Hardy-Littlewood maximal function comes in extremely handy
for the study of singular integrals, and will be the key to extend the precious
Calderón-Zygmund decomposition to a broad class of measure metric spaces.

Definition 1.17. Let f ∈ L1
loc(Rn) be a locally integrable function. The centred

Hardy-Littlewood maximal function of f is defined as

Mf(x) := sup
r>0

1

|Br(x)|

∫
Br(x)

|f(y)|dy. (1.3)

The image of M is not clear to determine from the early definition. This
is going to be the issue of the corresponding theorem, Theorem 1.22. In fact,
we are often going to restrict the domain of M to smaller spaces such as f ∈
Lp(Rn) ⊂ L1

loc(Rn). In the particular case of f ∈ L1(Rn), observe that the
behaviour of the operator M is local, in the sense that the supremum over r
will be approached by small values of r, thus smaller balls.

Remark 1.18. It is possible to write the Hardy-Littlewood maximal function in
terms of a convolution operator. Define the convolution kernel

br(x) :=
1

|Br(0)|
1Br(0)(x), (1.4)



8 Introduction and preliminaries

and write
Mf(x) = sup

r>0
(br ∗ f)(x). (1.5)

In a similar way, we define a sibling of (1.3).

Definition 1.19. Let f ∈ L1
loc(Rn) be a locally integrable function. The un-

centred Hardy-Littlewood maximal function of f is defined as

Muncf(x) := sup
B∋x

1

|B|

∫
B

|f(y)|dy, (1.6)

where this time the supremum is take over all balls B that contain x.

Remark 1.20. Clearly, Mf ≤ Muncf . Furthermore, the reverse inequality
holds up to a multiplicative constant.

Given x ∈ Rn and a ball B ∋ x of radius δ, consider a second ball, centred
at x with radius 2δ, thus B ⊆ B2δ(x). Then,

1

|B|

∫
B

|f(y)|dy ≤ 2n

|B2δ(x)|

∫
B2δ(x)

|f(y)|dy ≤ 2nMf(x).

Now taking the supremum over any ball B containing x, we get Munc ≤ 2nM.
Note that this has been possible thanks to the following property of balls in
Rn: |B2r(x)| = 2n|Br(x)|, ∀x ∈ Rn, r > 0. We are baring it in mind, since we
will need a similar condition at the time of swapping the setting for a generic
measure metric space.

Remark 1.21. The Hardy-Littlewood maximal function is measurable, so it
makes sense to compute its Lp norms: It is easy to check that the averages over
balls A(x, r) := 1

|Br(x)|

∫
Br(x)

|f(y)|dy are continuous functions of x, hence mea-
surable functions of x. Likewise, A(x, r) are continuous functions of r, therefore
taking the supremum of the averages over r > 0 and over r ∈ Q>0 yields the
same result. That the supremum of a countable collection of measurable func-
tions is a measurable function is a basic fact from measure theory.

One of the reasons why the Hardy-Littlewood maximal function turns out
so useful in the theory of singular integrals is the following theorem. It shows
the behaviour of such operator on Lp(Rn) spaces. Consequently, if one proves a
bound for a given operator T by the Hardy-Littlewood maximal function, then
boundedness of T is concluded.

Theorem 1.22 (Maximal theorem in Rn). Let f be a measurable complex-
valued function on Rn. Then:
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(a) If f ∈ Lp(Rn) for 1 ≤ p ≤ ∞, Mf(x) is finite a.e. x ∈ Rn.

(b) For every λ > 0 and f ∈ L1(Rn),

λ|{x ∈ Rn : Mf(x) > λ}| ≤ A ∥ f ∥1 , (1.7)

where A only depends on the dimension n.

(c) If f ∈ Lp(Rn), 1 < p ≤ ∞, then Mf ∈ Lp(Rn) and

∥Mf ∥p ≤ Ap ∥ f ∥p , (1.8)

where Ap only depends on the dimension n and the exponent p.

Estimates of this Chebyshev kind as in (b) are called weak-type (1, 1) esti-
mates. We shall content ourselves with the maximal function being of weak-type
(1,1) and not type (1,1). Drastically, if f ∈ L1(Rn) is not identically 0 a.e., the
corresponding maximal function is never in L1(Rn).

Remark 1.23. If f ∈ L1(Rn) is not identically 0 a.e., then Mf /∈ L1(Rn).

Proof. Start by assuming that f ∈ L1(Rn) has compact support. Let Bc(0) be
a ball of radius c that fully contains the support of f , supp(f) ⊆ Bc(0). For
each x /∈ Bc(0), we have

Mf(x) ≥ 1

|B2|x|(x)|

∫
B2|x|(x)

|f(y)|dy =
1

|B2|x|(x)|

∫
Bc(0)

|f(y)|dy

=
1

2n|B1(0)|

∫
Bc(0)

|f(y)|dy 1

|x|n
≡ C(f)

|x|n

because Bc(0) ⊆ B2|x|(x). This shows Mf(x) is not integrable.

For the general case when f ∈ L1(Rn) does not have compact support,
restrict f to a compact setK such that f |K is not identically 0 a.e. inK. Hence,
|f | ≥ | f |K | which implies M(f) ≥ M(f |K), so that the previous argument
applies.

Since Theorem 1.22 is key in the results we will be using to bound singular
integrals, let us provide the proof, taken from [10], Chapter 1, Section 1.3.

The proof relies on a covering lemma.

Lemma 1.24 (Vitali-type covering lemma in Rn). Let E be a measurable set
in Rn covered by the union of a family of balls of finite diameter {Bk}k∈K.
Then, from this family we can substract a countable sequence of disjoint balls
{B′

k}k∈N ⊆ {Bk}k∈K such that ∑
k∈N

|B′
k| ≥ C|E|.

Here, C > 0 is a constant that can be taken to be C = 5−n.
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Proof. (Of Theorem 1.22) (a) follows from (b) and (c) because functions in
Lp(Rn) are finite a.e. Since the Hardy-Littlewood maximal function is trivially
bounded on L∞(Rn), if we show that it is a weak-type (1,1) operator (that is,
statement (b)) then by Marcinkiewicz interpolation theorem (Theorem 1.16),
(c) follows.

So, let λ > 0, f ∈ L1(Rn) and consider E := {x ∈ Rn : Mf(x) > λ}. For
each x ∈ E, there exists a ball centered at x, Bx such that

∫
Bx

|f(y)|dy > λ|Bx|.
We have that the family {Bx}x∈E covers E, thus by Lemma 1.24 there exists

a countable subset of disjoint balls {B′
k}k∈N ⊆ {Bk}k∈K such that∑

k∈N

|B′
k| ≥ C|E|,

reaching
λ|E| ≤ C−1λ

∑
k∈N

|B′
k| ≤ C−1 ∥ f ∥1 .

The latter theorem yields the celebrated Lebesgue differentiation theorem.

Corollary 1.25 (Lebesgue differentiation theorem in Rn). Whenever f ∈ L1
loc(Rn),

lim
r→0

1

|Br(x)|

∫
Br(x)

f(y)dy = f(x) a.e. x ∈ Rn. (1.9)

The shocking aspect of the Lebesgue differentiation theorem is that we do
not even require regularity in a locally integrable function for its local averages
around a point to tend to the value on the point, except for a set of measure
zero.

The remaining proofs of Lemma 1.24 and Corollary 1.25 are available in [10],
Chapter 1, Section 1.3.

1.2.8. Layer cake representation

Next, a lemma that helps figure out some computations.

Lemma 1.26 (Layer cake representation). For any 1 ≤ p <∞ and f ∈ Lp(Rn),∫
Rn

|f(x)|pdx = p

∫ ∞

0

αp−1|{x ∈ Rn : |f(x)| > α}| dα.

Proof. Start with the right hand side and p = 1.∫ ∞

0

|{x ∈ Rn : |f(x)| > α}|dα =

∫ ∞

0

∫
Rn

1{|f(x)|>α}(x)dx dα
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Since the integrand is positive, we are entitled to apply Fubini-Tonelli theorem.∫ ∞

0

∫
Rn

1{|f(x)|>α}(x)dx dα =

∫
Rn

∫ ∞

0

1{|f(x)|>α}(x)dα dx =

∫
Rn

|f(x)|dx

This way, we prove the case p = 1. The remaining cases for p unlock by
considering a general f ∈ Lp(Rn) and g(x) = |f(x)|p, with g ∈ L1(Rn) and
applying the formula for the case p = 1 to g.

1.3. Motivation for studying singular integrals

Singular integrals arise in a myriad of problems and settings both in mathe-
matics and physics. Therefore, mathematics needed a rigorous theory for such
operators. In this section, we present a rather simple yet interesting problem
the solution of which demands knowledge on our central topic.

1.3.1. Dirichlet’s problem for the Laplace equation on the
upper half plane

Let R+ = {(x, y) ∈ R2 : y > 0} ⊂ R2 be the upper half plane. Consider the
following Dirichlet problem:


∆u(x, y) = 0 , (x, y) ∈ R+

lim
y→0

u(x, y) = f(x)
(1.10)

Here, f is a real-valued boundary function. Let its ambient function space be
L2(R) for now. In concordance, let the limit for the boundary condition be
understood in the L2(R) sense.

Consider
u(x, y) =

∫
R
f̂(t)e2πixte−2π|t|ydt. (1.11)

This is an absolutely convergent integral by Cauchy-Schwarz, since by
Plancherel theorem f̂ ∈ L2(R), and e−2π|·|y ∈ L2(R). We are also allowed
to differentiate u(x, y) under the integral sign with respect to either variable
thanks to the rapid decay of the real exponential function. Indeed,

∆u(x, y) =

∫
R
f̂(t)(2πit)2e2πixte−2π|t|ydt+

∫
R
f̂(t)(−2π|t|)2e2πixte−2π|t|ydt = 0
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thus u is a harmonic function. For the boundary value, using Plancherel theorem
once again, we have

∥u(·, y)− f(·) ∥2 =
∥∥∥ f̂(·)e−2π|·|y − f̂(·)

∥∥∥
2
→ 0 when y → 0

by the dominated convergence theorem. This solves problem (1.10) in the set-
ting of L2(R). Notice that not only does the solution (1.11) tend to the initial
datum in the L2 sense but also it is regular C2(R+).

A standard argument for uniqueness of classical solution reads as follows.
Consider a conformal map from the unit complex disk D to the upper half
complex plane H (identified with R+) like F : D → H

F (z) = i
1− z

1 + z
.

In particular, F maps the unit circle S1 ⊂ C to the real line {(x, y) ∈ R2 :
y = 0}, except for the point z = −1 that “is mapped to infinity”.

Complex variable functions theory grants that if u is harmonic and F is
analytic, then u ◦ F is harmonic. But now, u ◦ F is a harmonic C2 function on
the open unit disk. Therefore, by the maximum principle of harmonic functions
on a bounded regular domain, if two solutions of the Laplace equation agree
on the boundary, then they are the same solution. Since u ◦ F solves uniquely
Dirichlet’s problem on the unit disk, and F is invertible

F−1(z) =
i− z

i+ z
,

the solution on R+, u, is the unique solution that vanishes at infinity. All in
all, this means that (1.11) is the classical solution of (1.10) that tends to 0 at
infinity.

In view of solution (1.11):

Definition 1.27. For x ∈ Rn and y > 0, call

Py(x) =

∫
Rn

e2πixte−2π|t|ydt (1.12)

the Poisson kernel in Rn.

One may write the solution of (1.10) as the convolution of the boundary
value function with the Poisson kernel in R:

u(x, y) = (Py ∗ f)(x).

Furthermore, a computation (see Chapter 3, Section 2.1, Proposition 5 in [10])
shows that the Poisson kernel (in Rn) can be rewritten as follows.
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Proposition 1.28.

Py(x) = cn
y

(|x|2 + y2)
n+1
2

, cn =
Γ(n+1

2
)

π
n+1
2

(1.13)

From (1.13), it is straightforward to observe that the Poisson kernel is a
well-defined integrable function Py ∈ L1(Rn) for all y > 0, meaning that, for
f ∈ Lp(Rn), 1 ≤ p ≤ ∞, the Poisson integral u(x, y) = (Py ∗ f)(x) belongs
to Lp(Rn) as a function of x (as remarked in the preliminars, Proposition 1.5).
What is more, Py ∈ Lp(Rn) for all y > 0 and 1 ≤ p ≤ ∞. Besides this, it is not
hard to see that (1.13) defines an approximation to the identity in the sense of
Definition 1.6.1

Once a harmonic real-valued function on the plane u(x, y) is obtained, a
licit query is finding the harmonic conjugate function v(x, y), in the framework
of complex variable functions theory. This harmonic conjugate is given by the
solution of the respective Cauchy-Riemann equations:

∂u

∂x
=
∂v

∂y
∂u

∂y
= −∂v

∂x
.

(1.14)

Notice that
u(x, y) =

∫
R
Py(x− t)f(t)dt

behaves nicely in order to differentiate under integral sign, both with respect
to x and y, thanks to the rapid decay of the Poisson kernel (1.13), so in essence
we are interested in checking (1.14) for the Poisson kernel Py and its har-
monic conjugate kernel, say Qy, both thought of as functions of two variables
P (x, y) := Py(x) and Q(x, y) := Qy(x) for (x, y) ∈ R+. From the first Cauchy-
Riemann equation:

∂P (x, y)

∂x
= −c1

2xy

(x2 + y2)2

Q(x, y) =

∫
∂P (x, y)

∂x
(x, y)dy + g(x) = c1

x

x2 + y2
+ g(x)

for a certain function g depending only on x. Imposing now the second Cauchy-
Riemann equation (1.14),

−∂Q(x, y)
∂x

= −
(
c1
x2 + y2 − 2x2

(x2 + y2)2
+
∂g(x)

∂x

)
= c1

x2 + y2 − 2y2

(x2 + y2)2
=⇒

g(x) ≡ 0.
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So we are left with

Qy(x) = Q(x, y) = c1
x

x2 + y2
= P (y, x) = Px(y), (1.15)

which solves the Cauchy-Riemann equations, thus v(x, y) = (Qy ∗ f)(x) is the
harmonic conjugate of u (up to an additive constant that we set to 0 to avoid
integrability issues in what follows). Note that v is a bounded function of x for
every y > 0 by Cauchy-Schwarz inequality3.

The function u was generated by the boundary function f . This is not the
case of v, obtained as the harmonic conjugate of u. This construction leads us
to wondering about the boundary limit of v (see Figure 1.1). First, take the
pointwise limit of (1.15).

lim
y→0

Qy(x, y) = lim
y→0

c1
x

x2 + y2
=

1

πx
if x ̸= 0 (1.16)

Formally, (1.16) is the kernel of the Hilbert transform! We are going to make
precise the meaning of

“Hf(x) = lim
y→0

v(x, y) = lim
y→0

(Qy ∗ f)(x)”

and uncover its properties later on. To be fair, the definition of this transform
requires taking into account the subtlety of the singularity it presents at the
origin, not to mention the lack of integrability. Here is the first time we en-
counter a singular kernel, which drives us to worrying about its definition and
the boundedness properties of the convolution operator it defines, both in the
setting of L2(R) and the rest of the Lp(R) spaces.

1.3.2. The Hilbert transform

There are several reasons why the operator of the Hilbert transform deserves
having its own name. Arguably, it carried the first singular kernel mathemati-
cians worried about. Interestingly, it is a useful tool in applied sciences such as
spectroscopy in chemistry

Due to the fact that the function f : R → R, f(x) = 1
x

is not integrable
around the origin, it makes no sense to integrate it straightaway against any
Lp(R) function. For instance, let g : R → R, g(x) = 1[−1,1](x) ∈ Lp(R) for any
1 ≤ p ≤ ∞, yet ∫

R
f(x)g(x) dx =

∫ 1

−1

1

x
dx

3What is more, if f ∈ Lp(R) for a fixed 1 ≤ p < ∞ and noticing that Qy ∈ Lq(R)
∀ 1 < q ≤ ∞ and y > 0, by applying the well known Young convolution inequality one gets
that Qy ∗ f ∈ Lr(R) ∀ r > p.
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f Hf

∆u = 0 ∆v = 0

Figure 1.1: Rise of the Hilbert transform in Dirichlet’s problem for Laplace’s
equation. First, let f be defined in the axis y = 0. Obtain u such that ∆u = 0
and f is its boundary value. Then, obtain the conjugate harmonic function v
of u (the one that turns u(x, y) + iv(x, y) into a holomorphic function on the
complex plane, setting the additive constant to 0). Finally, obtain the Hilbert
transform of f , Hf by computing the limit lim

y→0
v(x, y).

is not computable in the Lebesgue sense. However, we still have hope for a
definition of the convolution of f against other functions because of the fact
that f is an odd function. We would like to exploit this feature to achieve
enough cancellation to overcome the effect of the singularity.

Definition 1.29. Let f : R → R be a function with a singularity around the
origin. Its integral is computed in the principal value sense as

p.v.
∫
R
f(x)dx := lim

ϵ→0+

∫
|x|>ϵ

f(x)dx.

This way, if f · 1Bϵ(0)c ∈ L1(R) ∀ ϵ > 0, then the limit of the above integral
as ϵ→ 0+ may also yield a real number.

Proposition 1.30. Define the linear functional acting on φ ∈ S :

p.v.
(
1

x

)
(φ) := p.v.

∫
R

φ(x)

x
dx

This yields a tempered distribution.
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Proof. Inroduce a φ(0) term taking advantage of the oddness of 1
x

and split the
domain of integration for a separate treatment of the integrability issues.∣∣∣∣p.v.

(
1

x

)
(φ)

∣∣∣∣ ≤ lim
ϵ→0+

∫
ϵ<|x|<1

|φ(x)− φ(0)|
|x|

dx+

∫
|x|≥1

|φ(x)|
|x|

dx

≤ lim
ϵ→0+

∫
ϵ<|x|<1

|φ′(c)||x|
|x|

dx+

∫
|x|≥1

|xφ(x)|
|x|2

dx

≤ ∥φ ∥0,1
∫
|x|<1

dx+ ∥φ ∥1,0
∫
|x|≥1

1

|x|2
dx = C1 ∥φ ∥0,1 + C2 ∥φ ∥1,0

We used the mean value theorem (with some c ∈ [0, x] appearing) and the
seminorms from Definition 1.8. So the result follows from Theorem 1.10.

The principal value is a tool that allows us to properly define the Hilbert
transform.

Definition 1.31. Let φ ∈ S (Rn) be a Schwartz function. The Hilbert trans-
form of φ, Hφ is defined as the convolution of the principal value distribution
1
π
p.v.

(
1
x

)
against the Schwartz function φ (see Definition 1.12):

Hφ(x) :=
1

π
p.v.

(
1

x

)
∗ φ(x) = 1

π
p.v.

∫
R

φ(x− y)

y
dy

Naturally, we would like to take advantage of the density of S (Rn) in
Lp(Rn), 1 ≤ p < ∞ to extend this definition to any Lp(Rn) function. This
is one of the goals of Chapter 2.

Alternatively, it is possible to define the Hilbert transform as a multiplier
operator.

Definition 1.32. In the setting of L2(Rn), where Plancherel theorem for the
Fourier transform holds, an essentially bounded function m ∈ L∞(Rn) is called
a multiplier, when we consider an associated operator Tm : L2(Rn) → L2(Rn)
such that

T̂mf(ξ) = m(ξ)f̂(ξ), ∀ f ∈ L2(Rn).

The intuition one gets from the definition is that the role of a multiplier
function is to modify the frequency spectrum of a function. The topic of multi-
pliers is once again a broad world on its own. There are some examples linking
this topic with the theory of Chapter 2 in Chapter 4.

Definition 1.33. The Hilbert transform is the operator mapping H : L2(Rn) →
L2(Rn) defined via the multiplier m(ξ) = −isgn(ξ). This is,

Ĥf(ξ) := −isgn(ξ)f̂(ξ).
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Again, it is desirable to somehow extend this definition to the rest of Lp(Rn)
spaces, relying, for example, on the fact that L2(Rn)∩Lp(Rn) is dense in Lp(Rn)
for 1 ≤ p <∞.

Note the following coherence:

Proposition 1.34. Definition 1.31 and definition 1.33 are equivalent:(
1

π
p.v.

(
1

x

))
ˆ= −isgn(·)

in the sense of tempered distributions.

Proof. Let us first show that

1

π
p.v.

(
1

x

)
= lim

y→0
Qy

holds in the sense of tempered distributions, where Qy denotes the conjugate
Poisson kernel (understand the right hand side as in the following computation).

Take any φ ∈ S (Rn) and combine the limit on the right-hand side with the
one in the principal value distribution:

1

π
p.v.

(
1

x

)
(φ)− lim

y→0
Qy(φ)

= lim
y→0

∫
|x|>y

(
1

πx
− 1

π

x

x2 + y2

)
φ(x)dx+ lim

y→0

∫
|x|≤y

(
− 1

π

x

x2 + y2

)
φ(x)dx

= lim
y→0

∫
|x|>1

(
1

π

1

x(x2 + 1)

)
φ(yx)dx+ lim

y→0

∫
|x|≤1

(
− 1

π

x

x2 + 1

)
φ(yx)dx

yields after a scaling change of variables. Realise that

r1(x) :=
1

π

1

|x|(x2 + 1)
1{|x|>1}(x) r2 =

1

π

|x|
x2 + 1

1{|x|≤1}(x)

are both integrable functions. This, combined with the fact that φ is a Schwartz
function, allows us to invoke the dominated convergence theorem that leads to

1

π
p.v.

(
1

x

)
(φ)− lim

y→0
Qy(φ)

=

∫
|x|>1

(
1

π

1

x(x2 + 1)

)
φ(0)dx+

∫
|x|≤1

(
− 1

π

x

x2 + 1

)
φ(0)dx = 0

because of oddness.
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Once proved this, since the Fourier transform is continuous on S ∗(Rn) (see
Proposition 1.15), for any Schwartz function φ,(

1

π
p.v.

(
1

x

))
(̂φ) = (lim

y→0
Qy )̂ (φ) = lim

y→0

(
Q̂y

)
(φ).

A simple computation shows that

(−isgn(ξ)e−2πy|ξ|)̌ (x) = Qy(x).

Therefore, by the dominated convergence theorem,

lim
y→0

(
Q̂y

)
(φ) = lim

y→0

∫
R
Q̂y(ξ)φ(ξ)dξ

= lim
y→0

∫
R
−isgn(ξ)e−2πy|ξ|φ(ξ)dξ =

∫
R
−isgn(ξ)φ(ξ)dξ

holds.

1.3.3. Connection of the maximal function with the har-
monic extension on the upper half plane

Here, we present the first utility of the maximal function. Our will is to transfer
some of the properties of the Hardy-Littlewood maximal function to the Poisson
integral. Interestingly, this is not only possible for the Poisson kernel but also
for other kernels that share a common property with it.

Theorem 1.35. Let φ ∈ L1(Rn) be a kernel function and let φy(x) = y−nφ(y−1x)
be its integral-preserving dilates. Assume there exists a strictly decreasing func-
tion ψ : R → R such that |φ(x)| ≤ ψ(|x|). Let ρ : Rn → R be the radial function
defined by ρ(x) := ψ(|x|) for convenience, and suppose ρ ∈ L1(Rn). Analo-
gously, denote their dilates by ρy(x) := y−nρ(y−1x). If f ∈ Lp(Rn), 1 ≤ p ≤ ∞,
then,

(a)
sup
y>0

|φy ∗ f(x)| ≤ CnMf(x) ∀x ∈ Rn (1.17)

where Cn is a constant depending only on the dimension and the L1 norm
of ρ.

(b) Moreover, when
∫
φ = 1, the convolution φy ∗ f(x) is almost everywhere

convergent to f(x), namely,

lim
y→0

φy ∗ f(x) = f(x) a.e x ∈ Rn.
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The key feature of the kernels for which this theorem applies is the possi-
bility of approximating them by sums of centred indicator functions of concen-
tric balls, which are, at the end of the day, the kernel present in the Hardy-
Littlewood maximal function (1.4).

Proof. Note that the convolution is well defined, accounting that f ∈ Lp(Rn)
and φy ∈ L1(Rn) (Proposition 1.5). To show (a),

|φy ∗ f(x)| ≤
∫
Rn

|f(x− t)||φy(t)|dt ≤
∫
Rn

|f(x− t)|ρy(t)dt.

Introduce an indicator function for ρy and, since the integrand functions are
positive, apply Fubini-Tonelli theorem:∫

Rn

|f(x− t)|ρy(t)dt =
∫
Rn

|f(x− t)|
∫ ∞

0

1{u<ρy(t)}(u)du dt

=

∫ ∞

0

∫
Rn

|f(x− t)|1{u<ρy(t)}(u)dt du

One realises that {t : u < ρy(t)} is in fact a ball on the t variable, due to ρy
being a radial function and radially decreasing. Note it is either a ball with
finite measure or the empty set, but never the whole space thanks to the fact
that ψ is strictly decreasing. Denote Br(y,u)(0) := {t : u < ρy(t)} for y, u > 0.
Multiplying and dividing by the measure of this ball (whenever the values of u
and t yield a nonempty ball, otherwise we integrate zero), one gets∫ ∞

0

∫
Rn

|f(x− t)|1{u<ρy(t)}(u)dt du =∫ ∞

0

1

|Br(y,u)(0)|

∫
Br(y,u)(0)

|f(x− t)|dt |Br(y,u)(0)| du

≤ Mf(x)

∫ ∞

0

|{t : u < ρy(t)}|du = ∥ ρ ∥1Mf(x).

The last equality follows from Lemma 1.26. (1.17) yields after taking supremum
on y. The result has been obtained with Cn = ∥ ρ ∥1.

The result in (b) is the analogue of the Lebesgue differentiation theorem 1.25.
What (b) tells us is that not only do the averages of an L1

loc(Rn) function tend
to the central point, but also this happens for any approximation to the identity
verifying the hypotheses in the theorem (notice that the kernel present in the
Hardy-Littlewood maximal function, see Eq. (1.5), defines an approximation
to the identity). In fact, the proof of (b) is the same as for the Lebesgue
differentiation theorem. Essentially, the idea of the proof is showing uniform
convergence for continuous and compactly supported functions, so that the
almost everywhere convergence follows by a density argument and the result in
(a). Check [10], Chapter 3, Section 2.2 for the proof.
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It is obvious that the Poisson kernel (1.13) is radial and strictly decreasing
in x. Therefore, the result in part (a), in view of the maximal theorem 1.22 im-
plies that the maximal version of the Poisson integral inherits the boundedness
properties stated in the maximal theorem, i.e. that supy>0 u(x, y) = Py ∗ f(x)
belongs to Lp(Rn) provided f ∈ Lp(Rn), 1 < p <∞, and supy>0 u(x, y) belongs
to L1,∞(Rn) if f ∈ L1(Rn).

In general, if one considers a family of linear operators (Ty)y>0 on Lp(X)
and wishes to show pointwise convergence results of the kind lim

y→0
Tyf(x) = f(x)

(as in (b)), the usual strategy is to strive for a maximal weak-type estimate for
the family (Ty)y>0 (as result (a) implies).

1.3.4. Nontangential convergence

Despite Theorem 1.35 being a powerful result, it still has an improved version.
Consider the cones with vertexes at (x0, 0), Γα(x0) = {(x, y) ∈ R+ : y >
|x−x0| tanα} for any α ∈ (0, π

2
]. While the statement of Theorem 1.35 is based

on limits for y → 0 on vertical lines, the statement still holds for limits along
any curve that sits in one of the cones Γα(x0) and thus tends to the horizontal
axis in a nontangential manner (see Figure 1.2).

f f

Figure 1.2: Vertical convergence as stated in Theorem 1.35 (on the left) com-
pared to the nontangential convergence of Theorem 1.36 (on the right). The
second kind of convergence generalises the result for the first kind. However, the
statement turns out to be false for convergence outside any cone, in a tangential
fashion.

Theorem 1.36. Let φ ∈ L1(Rn) be a kernel and let φy(x) = y−nφ(y−1x) be its
integral-preserving dilates. Assume there exists a strictly decreasing function ψ :
R → R such that |φ(x)| ≤ ψ(|x|). Let ρ : Rn → R be the radial function defined
by ρ(x) := ψ(|x|) for convenience, and suppose ρ ∈ L1(Rn). Analogously, denote
their dilates by ρy(x) := y−nρ(y−1x). If f ∈ Lp(Rn), 1 ≤ p ≤ ∞, and the kernel
ρy has the property

ρy(x− t) ≤ Aαρy(x) for |t| < tan(α)y, (1.18)



1.4 The Hardy-Littlewood maximal function on measure metric spaces 21

where Aα is a constant only depending on α. Then, for any α ∈ (0, π
2
],

(a)
sup
y>0

(x,y)∈Γα(x0)

|φy ∗ f(x)| ≤ Cn,αMf(x0) ∀x0 ∈ Rn, (1.19)

where Cn,α is a constant depending only on the dimension, the angle α and
the L1 norm of ρ.

(b) Moreover, when
∫
φ = 1, the convolution φy ∗ f(x) is almost everywhere

convergent to f(x), namely,

lim
y→0

(x,y)∈Γα(x0)

φy ∗ f(x) = f(x0) a.e x0 ∈ Rn.

The proof stems from a slight modification of that of Theorem 1.35, check
[10], Chapter 7, Section 1 for the details.

Condition (1.18) is new with respect to Theorem 1.35. However, it is not a
rare condition for usual kernels. Indeed, it is straightforward to check that the
Poisson kernel verifies it.

1.4. The Hardy-Littlewood maximal function on
measure metric spaces

The two main tools we used to define the Hardy-Littlewood maximal function
were the balls of the metric space Rn and integration on the latter. Conse-
quently, it makes sense to define an analogous version somewhere where we have
balls and integration, that is, on a measure metric space ((X, d),Σ, µ) ≡ X.

Definition 1.37. Let X be a measure metric space and let f ∈ L1
loc(X) be a lo-

cally integrable function. The centred Hardy-Littlewood maximal function
of f is defined as

Mf(x) := sup
r>0

1

µ(Br(x))

∫
Br(x)

|f(y)|dµ(y). (1.20)

This time, the balls Br(x) are built out of the distance d that arms the measure
metric space X.

Similarly, one defines the uncentred version of it, as we did in Definition
1.19.

As a foothold, hereinafter we are going to provide the measure metric space
with the so-called doubling property.
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Definition 1.38. A measure metric space X is said to have the doubling
property if

µ(B2r(x)) ≤ Cµ(Br(x)), ∀ r > 0, x ∈ X, (1.21)

C being a universal constant for the space X.

Observe Rn enjoys the doubling property with C = 2n. Also recall that
we used such a property to see that the centred and the uncentred Hardy-
Littlewood maximal functions in Rn are comparable, Mf ∼ Muncf in Remark
1.20. By assuming the doubling property for our measure metric space X, we
keep on having Mf ∼ Muncf available. Not only do we have the compara-
bility result but also the doubling property teams up with the generalisation
of the Vitali-type covering lemma (Lemma 2.5), key to prove the forthcoming
Calderón-Zygmund Lemma in our new setting, as exposed in Theorem 2.3.

Remark 1.21, Theorem 1.22 and Corollary 1.25 hold for any measure metric
space enjoying the doubling property and the proofs follow the same strategy.
The Vitali-type covering lemma (Lemma 1.24) can be substituted by Lemma
2.5 providing the availability of the doubling property.

Theorem 1.39 (Maximal theorem, general setting). Let f be a measurable
complex-valued function on a measure metric space X enjoying the doubling
property. Then:

(a) If f ∈ Lp(X) for 1 ≤ p ≤ ∞, Mf(x) is finite a.e. x ∈ X.

(b) For every λ > 0 and f ∈ L1(X),

λµ({x ∈ X : Mf(x) > λ}) ≤ A ∥ f ∥1 , (1.22)

where A is a constant.

(c) If f ∈ Lp(X), 1 < p ≤ ∞, then Mf ∈ Lp(X) and

∥Mf ∥p ≤ Ap ∥ f ∥p , (1.23)

where Ap only depends on the exponent p.

Corollary 1.40 (Lebesgue differentiation theorem, general setting). Whenever
f ∈ L1

loc(X),

lim
r→0

1

µ(Br(x))

∫
Br(x)

f(y)dµ(y) = f(x) a.e. x ∈ X. (1.24)

Remark 1.41. Remark 1.21 also holds in the new setting of X: the Hardy-
Littlewood maximal function is measurable.



CHAPTER 2

Calderón-Zygmund theory

2.1. Calderón-Zygmund decomposition

The Calderón-Zygmund theory was developed originally in the setting of Rn,
in the 1950s, set off with the collaborative breakthrough paper [2] published
in 1952. It aimed to prove boundedness of singular convolution-type opera-
tors on spaces of functions (mainly Lp spaces) built over Rn. It is almost a
miracle how the following, apparently disconnected idea, eventually yields the
aforementioned boundedness result.

(a) Alberto Pedro Calderón. Mendoza
(Argentina) 1920 - Chicago (United
States of America) 1998. [Source:
https://www.ams.org/notices/199809/
mem-calderon.pdf]

(b) Antoni Zygmund. Warsaw
(Poland) 1900 - Chicago (United
States of America) 1992. [Source:
https://mathshistory.st-andrews.ac.
uk/Biographies/Zygmund/]

Figure 2.1: The fathers of the theory of singular integrals. They were not only
close collaborators, but also Calderón was Zygmund’s PhD student. Together,
they revolutionised Analysis of the 20th century, and founded the Chicago
School of Mathematical Analysis.
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https://www.ams.org/notices/199809/mem-calderon.pdf
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24 Calderón-Zygmund theory

Theorem 2.1 (Calderón-Zygmund Lemma in Rn). Let f ∈ L1(Rn) and λ > 0.

(a) There exists a partition Rn = F ⊔ Ω, such that

(b) |f(x)| ≤ λ a.e. x ∈ F , and

(c) Ω can be written as a countable union of cubes Qk with disjoint interior,
Ω =

⊔
k∈NQk moreover satisfying

λ ≤ 1

|Qk|

∫
Qk

|f(x)|dx ≤ 2nλ, ∀ k ∈ N. (2.1)

Essentially, what this theorem tells us is: for any wild function f just subject
to being Lebesgue integrable, there exists a decomposition of its domain, Rn,
into two disjoint sets such that f is essentially bounded in one of them, and
although it may not be in the other, the averages of f over some (almost)
disjoint cubes are bounded.

Although a generalisation of this theorem is going to come up later, we
leave here the proof, which consists in an elegant stopping-time argument worth
explaining.

Proof. Mesh Rn into cubes {Q0
k}k∈N with disjoint interior and of the same size,

large enough so that the averages of |f | are bounded above by the given λ on
all of the cubes in the mesh:

1

|Q0
k|

∫
Q0

k

|f(x)|dx < λ ∀ k ∈ N.

This is possible because f is integrable,

1

|Q0
k|

∫
Q0

k

|f(x)|dx ≤ ∥ f ∥1
|Q0

k|
,

so choose the size of the cubes such that |Q0
k| >

∥ f ∥1
λ

.

We are going to run an algorithm. Set Ω = ∅ and the step s = 1. We split
each of the cubes {Q0

k}k∈N into 2n dyadic descendent cubes of the same size
{Q1

k}k∈N.

Case 1: For each descendent cube in step s (that is, for each k ∈ Z), if

1

|Qs
k|

∫
Qs

k

|f(x)|dx > λ, (2.2)

then Qs
k is selected to take part in the set Ω, so actualise Ωnew = Ωold ∪Qs

k. For
such a cube Qs

k, assume that Qs−1
r is its direct ancestor cube. Then, by (2.2)

and the fact that Qs−1
r fell into Case 2,

λ <
1

|Qs
k|

∫
Qs

k

|f(x)|dx ≤ 2n

|Qs−1
r |

∫
Qs−1

r

|f(x)|dx ≤ 2nλ
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which proves (2.1) for Qs
k.

Case 2: Instead, if
1

|Qs
k|

∫
Qs

k

|f(x)|dx ≤ λ,

then we iterate and further divide Qs
k into 2n identical descendent cubes, and

check into which of the two cases falls each of them.

Actualise snew = sold + 1 and let the algorithm run recursively. This way,
we obtain a partition like in (a), plus (c) has been verified for all cubes Qs

k

that were selected for Case 1. Fact (b) yields from the Lebesgue differentiation
theorem (Corollary 1.25)1 because

f(x) = lim
j→∞

1

|Qj
k|

∫
Qj

k

|f(x)|dx ≤ λ ∀ k ∈ N

since here all of the intervening cubes fall into Case 2.

Let us now state the crucial Calderón-Zygmund decomposition of an inte-
grable function as a corollary.

Corollary 2.2. Let f ∈ L1(Rn) and λ > 0. There exists a decomposition of
f as sum of two functions, f = g + b such that g is an essentially bounded
function, and such that the support of b can in its turn be decomposed into a
union of cubes with disjoint interior, in each of which b has zero average. More
precisely, there exists a decomposition f = g + b such that

g(x) ≤ 2nλ a.e. x ∈ Rn,
1

|Qk|

∫
Qk

b(x) dx = 0 ∀ k ∈ N,

1

|Qk|

∫
Qk

|b(x)| dx ≤ 2nλ, supp(b) =
⊔
k∈N

Qk, b ≤ f. (2.3)

g and b are usually referred to as the “good” and the “bad” part of f . It is a
worthwhile trade to gain such boundedness properties on g and b for the price
of having to deal with two functions instead of only one.

Proof. Fix any λ > 0 and apply Calderón-Zygmund Lemma, Theorem 2.1, to
get the decomposition Rn = F ⊔ Ω, as in the statement. Define

g(x) :=

{
f(x), x ∈ F
1

|Qk|

∫
Qk
f(x)dx, x ∈ Qk,∀ k ∈ N.

1Being meticulous, the Lebesgue differentiation theorem was presented in Chapter 1 in the
form of averages over balls, not cubes. However, this theorem still holds if the family of sets
over which one averages is so-called regular. In particular, the family of all cubes in Rn is a
regular family. Such condition of being regular resembles the doubling condition. For details,
see [10], Chapter 1, Section 1.8.



26 Calderón-Zygmund theory

Directly notice that g is essentially bounded by 2nλ. Consistently, let

b(x) := f(x)− g(x) =

{
0, x ∈ F

f(x)− 1
|Qk|

∫
Qk
f(x)dx, x ∈ Qk,∀ k ∈ N,

which immediately implies (2.3) and the proof is complete.

This is the right approach to get the estimates needed in the coming-up
Theorem 2.9.

In contrast, the setting of this chapter, unless otherwise specified, is a
generic σ-finite measure space over a metric space equipped with
a regular measure ((X, d),Σ, µ) enjoying the doubling property.

Theorem 2.3 (Calderón-Zygmund lemma, general setting). Let f ∈ L1(X)
and λ > 0.

(a) There exists a partition of the space X = F ⊔ Ω, F being a closed set and
Ω an open set, such that

(b) |f(x)| ≤ λ a.e. x ∈ F , and

(c) Ω can be written as a countable disjoint union of smaller sets Ω =
⊔

k∈N Ωk

moreover satisfying

1

µ(Ωk)

∫
Ωk

|f(x)|dµ(x) ≤ Cλ, ∀ k ∈ N (2.4)

for some real constant C > 0.

In the same way as in the case of Rn:

Corollary 2.4. Let f ∈ L1(X) and λ > 0. There exists a decomposition of f as
sum of two functions, f = g + b such that g is an essentially bounded function,
and such that the support of b can in its turn be decomposed into a union disjoint
sets {Qk}k∈N, in each of which b has zero average. More precisely, there exists
a decomposition f = g + b such that

g(x) ≤ Cλ a.e. x ∈ X,
1

µ(Qk)

∫
Qk

b(x) dµ(x) = 0 ∀ k ∈ N,

1

µ(Qk)

∫
Qk

|b(x)| dµ(x) ≤ Cλ, supp(b) =
⊔
k∈N

Qk, b ≤ f (2.5)

for some C > 0.
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An analogous argument as that in Corollary 2.2 proves the new corollary.

Notice the slight differences with respect to the former Theorem 2.1 in the
setting of Rn. The downside of Theorem 2.3 is that it lacks the lower bound for
the averages over the Ωk. As an upside, we get a topological characterization
of the sets F and Ω. These disagreements owe to the fact that the proof of
Calderón-Zygmund Lemma 2.1 cannot be analogously generalised to a generic
measure space, because partitioning the space Rn into a perfectly fitting mesh
of disjoint cubes (up to a set of measure zero) is a specificity of Rn. Accordingly,
Theorem 2.3 demands a totally different proof, heavily relying on the Hardy-
Littlewood maximal function.

Furthermore, we are going to be needing a convenient Vitali-type covering
lemma for the proof. Let us introduce some notation: let B = Br(x) be a ball
of radius r and centre x in a metric space. Denote by B∗ an enlarged dilation
of the ball B, sharing the same centre. That is, say c∗ > 1 is the dilating factor,
then B∗ = Bc∗r(x).

Lemma 2.5 (Vitali-type covering lemma, general setting). Let (X, d) be a met-
ric space enjoying the the following engulfing property: there exists c1 > 1 such
that for all x, y ∈ X and δ > 0

Bδ(x) ∩Bδ(y) ̸= ∅ =⇒ Bδ(y) ⊂ Bc1δ(x).

Let F ⊆ X be a nonempty closed set. Then, there exists a sequence of balls
(Bk)k∈N and two families of each dilations, (B∗

k)k∈N and (B∗∗
k )k∈N, such that

(a) (Bk)k∈N are pairwise disjoint,

(b)
⋃

k B
∗
k = F c, and

(c) B∗∗
k ∩ F ̸= ∅, ∀ k.

The interest of this lemma is that each family of balls exhibits different
useful properties: (Bk)k are pairwise disjoint, (B∗

k)k gather together to recover
F c and the last dilation is large enough so that any ball in (B∗∗

k )k meets the
border of F . We clarify that each family of dilations shares the same dilation
factor. Check [12], Chapter 1, Section 3.2., for the proof of the lemma.

Remark 2.6. It is convenient to extract another sequence of sets from Lemma
2.5. Take the first element in (B∗

k)k∈N and define Q1 := B∗
1 . Next, define

Q2 := B∗
2 ∖ (Q1). By an inductive process, build

Qk := B∗
k ∖

(
k−1⋃
j=1

Qj

)
.

The sequence (Qk)k has the properties that their sets are pairwise disjoint and⋃
kQk = F c. We paid the price that Qk are no longer balls, but other less

elementary sets.
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The name Qk of such new sets is inspired by their role in the proof of
Theorem 2.12, which mimics the one carried out by the cubes in the proof of
the X = Rn case.

Proof. (Of Calderón-Zygmund Lemma, Theorem 2.3) Let f ∈ L1(X) and fix
λ > 0. Choose F := {x ∈ X : Mf(x) ≤ λ} and so Ω := {x ∈ X : Mf(x) > λ}.
Accounting that averaging over balls A(x, r) := 1

µ(Br(x))

∫
Br(x)

|f(y)|dµ(y) is a
continuous function of x, and that the measure µ is assumed to be regular, it
is easy to see that the set F so defined is a closed set; hence, Ω open.

Working first with the set F , let us use the Lebesgue differentiation theorem
1.40 (and Theorem 1.39).

λ ≥ Mf(x) = sup
r>0

1

µ(Br(x))

∫
Br(x)

|f(y)|dµ(y)

≥ lim
r→0

1

µ(Br(x))

∫
Br(x)

|f(y)|dµ(y) = |f(x)|, a.e. x ∈ F,

so (b) is shown.

In order to prove (c), take into account Lemma 2.5 and Remark 2.6. For each
Bk in the sequence (Bk)k∈N given by the lemma, choose a point pk ∈ B∗∗

k ∩ F
(the lemma ensures this set is nonempty). By the definition of F ,

λ ≥ Mf(pk) ≥ CuncMuncf(pk) ≥
Cunc

µ(B∗∗
k )

∫
B∗∗

k

|f(x)|dµ(x)

≥ Cunc

µ(B∗∗
k )

∫
Qk

|f(x)|dµ(x) ≥ Cunc

C∗∗
1

µ(Qk)

∫
Qk

|f(x)|dµ(x).

The two last inequalities stem from the facts that Bk ⊆ Qk ⊆ B∗∗
k and the

doubling property: µ(Qk) ≤ µ(B∗∗
k ) ≤ C∗∗µ(Bk) ≤ C∗∗µ(Qk). Since (Qk)k∈N

partition Ω, Ω =
⊔

k Ωk ≡
⊔

kQk, the proof is complete.

Note that this proof unveils the precise identity of the sets F and Ω, which
are defined in terms of the Hardy-Littlewood maximal function.

In exactly the same way as in Corollary 2.2, the Calderón-Zygmund decom-
position of an integrable function f ∈ L1(X) is deduced.

2.2. Bounding singular integral operators

2.2.1. First steps in the Euclidean space

Here is where the Lp boundedness theorem for convolution-type operators will
shine. We will get to the desired theorem in the broadest setting after intro-
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ducing the specific hypotheses and its corresponding version in Rn which serves
as inspiration.

To start with, general convolution-type operators in Rn over Lp(Rn) func-
tions looks like

(Tf)(x) =

∫
Rn

K(x− y)f(y)dy, for f ∈ Lp(Rn), (2.6)

being K : Rn → C a function called the convolution kernel. Assume for the
moment the ideality that the kernel is integrable, K ∈ L1(Rn). Then,

• if p = 1, Tf ∈ L1(Rn) and moreover, ∥Tf ∥1 = ∥K ∥1 ∥ f ∥1 by Fubini
theorem.

• if 1 < p ≤ ∞, Tf ∈ Lp(Rn) and moreover, ∥Tf ∥p ≤ ∥K ∥1 ∥ f ∥p by
Minkowski integral inequality.

As easy as that for an integrable kernel: T is a bounded operator on Lp(Rn) for
any 1 ≤ p ≤ ∞. However, our interest relies on kernels that are not integrable
due to a single singularity, say in the origin of the kernel, K : Rn ∖ {0} → C.
Always keep in mind the example of the Hilbert transform, (1.16).

The integrability issue of singular kernels is already a hassle for the asso-
ciated operator to be defined. One can encounter many different approaches
digging in the literature. The typical strategies to overcome such problems are:

(a) The following is inspired by the concept of principal value. Consider the
truncations of the kernel around the singularity

Kϵ(x) :=

{
K(x) if |x| ≥ ϵ

0 if |x| < ϵ

and so
Tϵf(x) :=

∫
Rn

Kϵ(x− y)f(y)dy

This way, it is usually a simple matter to show that Tϵ is well defined and
bounded on some Lp(Rn) spaces for all ϵ > 0. The subsequent procedure
is defining T := limϵ→0 Tϵ in a suitable way and proving it inherits the
boundedness property from Tϵ. Usually, these kind of approaches involve
several uniform and Lp(Rn)-norm convergence arguments. See [10], Chapter
2.

(b) Enter the world of tempered distributions. In this approach, one would
say that initially T ∈ S ∗(Rn) is a tempered distribution. However, one
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imposes that T agrees with a measurable function K away from the origin,
namely

⟨K,φ⟩ =
∫
Rn

K(x)φ(x)dx

for any φ ∈ S (Rn) with 0 /∈ supp(φ) (this way, the singularity is dodged).
It is implicitly assumed that Kφ ∈ L1(Rn). Then, one defines the operator
T by means of the convolution of the tempered distribution K ∈ S ∗(Rn)
against the Schwartz function φ ∈ S (Rn), as in Definition 1.12; the result
of such a convolution is a smooth function with at most polynomial growth.

Tφ(x) := K ∗ φ(x)

For this strategy, one would hopefully prove the a priori version of the
desired estimates for such a definition of T and then use a density argument
for the class of Schwartz functions to obtain the estimates in the setting of
Lp(Rn) spaces of functions.

(c) We are going to follow an approach aligned with the previous one, but
working with another class of dense functions: Lp(Rn) ∩ Lq(Rn). It is
similar to the previous one in the sense that it tries to avoid the singularity
by choosing conveniently supported functions. See [3], Chapter 5.

Essentially, two hypothesis on the kernel are required to succeed in our
mission. The first of them is a foothold on a particular Lp(Rn) space: after
correctly defining the T operator, assume that T : Lq(Rn) → Lq(Rn) bound-
edly: ∥Tf ∥q ≤ A ∥ f ∥q. This serves as an ingredient to invoke Marcinkiewicz
interpolation theorem.

The second hypothesis is a technical one.

Definition 2.7. A convolution kernel K on Rn is said to satisfy the Hörman-
der condition if

sup
|y|>0

∫
|x|≥2|y|

|K(x− y)−K(x)|dx = B <∞, (2.7)

where B > 0 is a finite number.

Since the integral is computed over the region {x ∈ Rn : |x| > 2|y|}, the
singularity of the kernel is avoided both for x−y, |x−y| ≥ |x|−|y| ≥ 2|y|−|y| =
|y| > 0 and for x, |x| ≥ 2|y| > 0. In some sense, we are asking that the global
variation of the kernel is not so wild that is not integrable. Nevertheless, the
Hörmander condition is usually seen as a weakened version of the stronger
condition

|∇K(x)| ≤ C

|x|n+1
(2.8)
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for K ∈ C1(Rn∖{0}). Even though condition (2.8) is neater than the Hörman-
der condition, we are still interested in keeping the latter since some kernels fulfil
the Hörmander condition, but not condition (2.8) (in this regard, we discuss the
Hörmander multipliers in Chapter 4, Section 4.1).

Proposition 2.8. If a kernel K ∈ C1(Rn ∖ {0}) fulfils (2.8), then it satisfies
the Hörmander condition (2.7).

Proof. Using the multidimensional mean value theorem for K,∫
|x|≥2|y|

|K(x− y)−K(x)|dx ≤
∫
|x|≥2|y|

|∇K(c)||y|dx

for some c in the segment joining x−y and x. We may assume that this segment
does not contain the origin, because the set of x for which the segment contains
the origin is of measure zero. Applying the gradient bound,∫

|x|≥2|y|
|∇K(c)||y|dx ≤ C

∫
|x|≥2|y|

|y|
|c|n+1

dx.

Now c is comparable in modulus to x, since it lies in the segment joining x and
x−y and both endpoints are comparable in modulus to x, (1

2
|x| ≤ |x−y| ≤ 3

2
|x|).

This means |c| ≥ A|x| for a universal constant A.

C

∫
|x|≥2|y|

|y|
|c|n+1

dx ≤ AC

∫
|x|≥2|y|

|y|
|x|n+1

dx

With the change of variables z = x
|y| ,

AC

∫
|x|≥2|y|

|y|
|x|n+1

dx = AC

∫
|z|≥2

1

|z|n+1
dz

which is now a finite number independent of y, yielding the uniform bound.

We are in the position of stating a theorem to bound singular integrals on
Lp(Rn) spaces in the setting of Rn.

Theorem 2.9. Let T be a linear operator such that there exists a measurable
kernel function K such that

Tf(x) =

∫
Rn

K(x− y)f(y)dy

converges absolutely whenever f ∈ L2(Rn) and x /∈ supp(f). Suppose the fol-
lowing:

(i) T is bounded on L2(Rn): ∥Tf ∥2 ≤ A ∥ f ∥2.
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(ii) The kernel K verifies the Hörmander condition (2.7) with constant B.

Then,

(a) T is bounded on Lp(Rn), 1 < p <∞, and

∥Tf ∥p ≤ Cn,p ∥ f ∥p

for f ∈ Lp(Rn) and Cn,p only depending on n, p, A and B.

(b) T is weak-type (1, 1), i.e, for all λ > 0 and f ∈ L1(Rn)

λ|{x ∈ Rn : |Tf(x)| > λ}| ≤ Cn ∥ f ∥1

where Cn is a constant only depending on the dimension n, A and B.

The proofs of (some slight variants of) this theorem are available in [10],
Chapter 2, Section 2 and [3], Chapter 5, Section 1. Often, condition (i) of
Theorem 2.9 is encapsulated in other, perhaps more practical, hypotheses, such
as the Fourier transform of the kernel being uniformly bounded, K̂ ≤ A. We
are skipping the proof of the theorem because a more general one is going to be
discussed in detail in due time.

Corollary 2.10. The Hilbert transform is a bounded operator on Lp(R) for
1 < p <∞.

Proof. Since the multiplier function of the Hilbert transform mH(ξ) = −isgn(ξ)
is a bounded function, condition (i) in Theorem 2.9 is fulfilled. That the gra-
dient condition (2.8) is satisfied by the kernel 1

x
, and thus so is the Hörmander

condition for (ii), is straightforward and completes the proof.

2.2.2. Singular kernels on measure metric spaces

The first significant issue that we encounter when attempting to generalise what
was done in the previous section is the fact that in a general ((X, d),Σ, µ),
subtracting points x − y makes no sense because we lack a group structure.
Thus, we can no longer understand convolution as we did in Rn. Since we
unavoidably need two variables to input into K (an integration variable and a
variable for the resulting function Tf), we are going to get around this obstacle
by considering 2-variable kernels, K(x, y), that are assumed to blow up and be
troublesome around x = y.

Immediately afterwards, we need to reformulate the Hörmander condition.
As pointed out, we substitute K(x − y) by K(x, y). What do we swap K(x)
for, then? We should not give preference to any particular point in X; we do
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not even have an origin now, so instead we are going to introduce K(x, y0)
and include y0 in the supremum. This choice is going to lead to success in
the corresponding proof. Finally, we shall drop the 2 factor in the integration
domain and introduce a certain constant C > 1 for versatility and generality.
All in all:

Definition 2.11. A kernel K on the product measure space ((X, d),Σ, µ) ×
((X, d),Σ, µ) is said to satisfy the Hörmander condition if

sup
y,y0∈X

∫
d(x,y)≥Cd(y,y0)

|K(x, y)−K(x, y0)| dµ(x) = B <∞ (2.9)

for some constants B > 0 and C > 1.

Theorem 2.12. Let T be a linear operator such that there exists a measurable
kernel function K such that

Tf(x) =

∫
X

K(x, y)f(y)dµ(y)

converges absolutely whenever f ∈ Lq(X) and x /∈ supp(f). Suppose the follow-
ing:

(i) T is bounded on Lq(X) for some 1 < q ≤ ∞: ∥Tf ∥q ≤ A ∥ f ∥q.

(ii) The kernel measurable function K verifies the Hörmander condition (2.9)
with constants B and C.

Then,

(a) T is bounded on Lp(X) ∩ Lq(X), 1 < p < q, and

∥Tf ∥p ≤ Cp ∥ f ∥p

for f ∈ Lp(X) ∩ Lq(X), and Cp only depending on p, q, A, B and C.

(b) T is weak-type (1, 1) in the sense that for any λ > 0,

λµ{x ∈ X : |Tf(x)| > λ} ≤ C1 ∥ f ∥1

for f ∈ L1(X)∩Lq(X) and some constant C1 depending on q, A, B and C.

Proof. We aim at showing that T is weak-type (1, 1) on L1(X)∩Lq(X) so that
Marcinkiewicz interpolation theorem applies. With this purpose, let λ > 0 and
take f ∈ L1(X) ∩ Lq(X). Since f ∈ Lq(X), Tf is well defined and belongs
to Lq(X) by assumption (i). Also, thanks to the fact that f ∈ L1(X), we are
allowed to invoke the Calderón-Zygmund decomposition, Corollary 2.4, on f at
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height λ, that is, f = g + b, with g being essentially bounded and b averages 0
on the sets Qk obtained from Remark 2.6.

f = g + b =⇒ Tf = Tg + Tb =⇒ |Tf | ≤ |Tg|+ |Tb| =⇒

{x ∈ X : |Tf(x)| > λ} ⊆
{
x ∈ X : |Tg(x)| > λ

2

}
∪
{
x ∈ X : |Tb(x)| > λ

2

}
because if |Tf(x)| > λ then it cannot happen that both |Tg(x)| and |Tb(x)| are
smaller than λ

2
. Hence, by countable subadditivity,

µ({x ∈ X : |Tf(x)| > λ})

≤ µ

({
x ∈ X : |Tg(x)| > λ

2

})
+ µ

({
x ∈ X : |Tb(x)| > λ

2

})
. (2.10)

We will be done when we show the weak-type (1, 1) estimates for g and for b
separately.

g is weak-type (1, 1): We use the assumption that T is bounded on Lq(X)2.(
λ

2

)q

µ

({
x ∈ X : |Tg(x)| > λ

2

})
≤
∫
{x: |Tg(x)|>λ

2}
|Tg(x)|qdµ(x)

≤
∫
X

|Tg(x)|qdµ(x) = ∥Tg ∥qq ≤ Aq ∥ g ∥qq = Aq

∫
X

|g(x)|q−1|g(x)|dµ(x)

Since q > 1 and g is essentially bounded, |g(x)|q−1 ≤ (CCZλ)
q−1 (the constant

comes from Theorem 2.3, and is an absolute constant of the measure space X)
a.e. x ∈ X. Thus

Aq

∫
X

|g(x)|q−1|g(x)|dµ(x) ≤ AqCq−1
CZ λ

q−1 ∥ g ∥1 ,

all in all yielding

λµ

({
x ∈ X : |Tg(x)| > λ

2

})
≤ (2A)qCq−1

CZ ∥ g ∥1 ≤ (2A)qCq−1
CZ ∥ f ∥1 .

b is weak-type (1, 1): Write Ω∗∗ :=
⋃

k B
∗∗
k (with the notation of Lemma 2.5)

and notice that{
x ∈ X : |Tb(x)| > λ

2

}
={

x ∈ Ω∗∗ : |Tb(x)| > λ

2

}⋃{
x ∈ Ω∗∗c : |Tb(x)| > λ

2

}
.

2The argument for q = ∞ needs a slight modification. Given an essentially bounded
function g, by assumption Tg is essentially bounded. Instead of decomposing f at height λ
(the parameter for the weak-type estimate), we may choose a height such that Tg is essentially
bounded by λ

2 . This way, µ
({

x ∈ X : |Tg(x)| > λ
2

})
= 0 so we only need to control the term

µ
({

x ∈ X : |Tb(x)| > λ
2

})
.
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The measure of the first set on the right-hand side can be bounded using the
doubling property of the measure and the maximal theorem, Theorem 1.39 for
the general setting as follows:

µ

{
x ∈ Ω∗∗ : |Tb(x)| > λ

2

}
≤ µ{x ∈ Ω∗∗}

≤ c∗∗µ{x ∈ Ω} = c∗∗µ{x ∈ X : Mf(x) > λ} ≤ AHLc
∗∗

λ
∥ f ∥1 . (2.11)

Bounding the measure of the second set on the right-hand side is a bit more
laborious. Accounting for the nature of b, one can write

b(x) =
∑
k

bk(x)

where bk is supported on Qk and it averages 0 there.

λ

2
µ

({
x ∈ Ω∗∗c : |Tb(x)| > λ

2

})
≤
∫
{x∈Ω∗∗c:|Tb(x)|>λ

2
}
|Tb(x)|dµ(x)

≤
∫
Ω∗∗c

|Tb(x)|dµ(x) =
∫
Ω∗∗c

|
∑
k

Tbk(x)|dµ(x)

We are now entitled to write explicitly T thanks to the integration domain,
which is disjoint with the support of each bk.∫

Ω∗∗c
|
∑
k

Tbk(x)|dµ(x) ≤
∑
k

∫
Ω∗∗c

∣∣∣∣∫
Qk

K(x, y)bk(y)dµ(y)

∣∣∣∣ dµ(x)
=
∑
k

∫
Ω∗∗c

∣∣∣∣∫
Qk

(K(x, y)−K(x, yk))bk(y)dµ(y)

∣∣∣∣ dµ(x)
for fixed yk ∈ Qk. In the last step, we introduced a substracting term in the
inner integral, which is licit thanks to the property that bk integrates 0 on
Qk. Next, apply the triangle inequality and Fubini-Tonelli theorem, with the
intention to reach the position of using the Hörmander condition.∑

k

∫
Ω∗∗c

∫
Qk

|K(x, y)−K(x, yk)||bk(y)|dµ(y)dµ(x)

=
∑
k

∫
Qk

∫
Ω∗∗c

|K(x, y)−K(x, yk)||bk(y)|dµ(x)dµ(y)

≤
∑
k

∫
Qk

∫
B∗∗c

k

|K(x, y)−K(x, yk)|dµ(x)|bk(y)|dµ(y)

The last step is an overestimation of the integration domain. Because of y, yk ∈
Qk ⊆ B∗

k ⊆ B∗∗
k , we have d(y, yk) < 2c∗ rk, where rk > 0 is the radius of the ball
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Bk and c∗ > 1 is the common dilation factor for the family (B∗
k)k∈N. On the

other hand, since x ∈ B∗∗c
k , d(x, y) > (c∗∗ − c∗)rk, where c∗∗ > 1 is the common

dilation factor for the family (B∗∗
k )k∈N. It is desired that c∗∗−c∗ ≥ 2Cc∗ (here, C

is the constant present in the integration domain in the Hörmander condition) so
that the conclusion d(x, y) ≥ Cd(y, yk) yields. This happens if c∗∗ ≥ (1+2C)c∗,
which may not be the case. However, in the unfavourable case, we can enlarge
the c∗∗ factor so that we get c∗∗ ≥ (1 + 2C)c∗. This makes the family of balls
(B∗∗

k )k larger, but this preserves their property of intersecting F c = Ω and each
B∗∗

k still contains B∗
k. All in all, in either case the argument is still valid and

may be carried on.

∑
k

∫
Qk

∫
B∗∗c

k

|K(x, y)−K(x, yk)|dµ(x)|bk(y)|dµ(y)

≤
∑
k

∫
Qk

∫
d(x,y)>Cd(y,yk)

|K(x, y)−K(x, yk)|dµ(x)|bk(y)|dµ(y)

≤ B
∑
k

∫
Qk

|bk(y)|dµ(y)

thanks to the Hörmander condition on each inner integral. It only remains to
tackle a simple computation:

B
∑
k

∫
Qk

|bk(y)|dµ(y) = B

∫
Ω

|b(y)|dµ(y) ≤ B ∥ b ∥1 ≤ B ∥ f ∥1 .

Putting everything together,

µ({x ∈ X : |Tf(x)| > λ}) ≤ (2A)qCq−1
CZ

∥ f ∥1
λ

+ AHLc
∗∗∥ f ∥1

λ
+B

∥ f ∥1
λ

= C1(A,B,C, q)
∥ f ∥1
λ

which concludes the proof of (b).

(a) follows from Marcinkiewicz interpolation theorem (Theorem 1.16) ap-
plied to the range of p between the endpoints 1 and q.

Conclusions (a) and (b) of the theorem require f to live in Lp(X) ∩ Lq(X)
(p = 1 in (b)) just to make sure T is well defined. Of course, since Lp(X)∩Lq(X)
is always dense in Lp(X) for all finite 1 ≤ p < ∞, T extends by continuity
(equivalent to the boundedness just shown) to a unique operator acting on the
whole Lp(X) space (with p = 1 in (b)).

One further step is attempting to get the full range of boundedness 1 < p <
∞ for our operator T despite only relying on the assumption that T is bounded
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on Lq(X) for finite q < ∞ (so that Marcinkiewicz interpolation theorem does
not yield the full range). In this direction, it is wise to use duality tools since
the dual space of Lp(X) is isomorphic to Lp′(X) (for finite conjugate exponents
such that 1

p
+ 1

p′
= 1) and if p ≤ q then p′ ≥ q′. Consider the adjoint operator

T ∗ : Lp′(X) → Lp′(X), g ∈ Lp′(X) and f ∈ Lp(X). A corollary of Hahn-Banach
theorem unlocks the characterization of norms by duality as follows.

∥T ∗g ∥p′ = sup
∥ f ∥p≤1

| ⟨T ∗g, f⟩ | = sup
∥ f ∥p≤1

| ⟨g, Tf⟩ |

≤ sup
∥ f ∥p≤1

∥Tf ∥p ∥ g ∥p′ ≤ Cp ∥ g ∥p′ (2.12)

The reasoning is: from the boundedness of T acting on Lq(X) (and the
Hörmander condition) we deduce that T is bounded on Lp(X) for 1 < p < q.
From here, T ∗ acts boundedly on Lp′(X) for q′ < p′ < ∞. At this point, we
dream of somehow transferring the latter property to T acting on Lp′(X) for
q′ < p′ <∞.

If we swap the roles of T and T ∗ in (2.12), we have that T is bounded on
Lp′(X) for q′ < p′ <∞

∥Tg ∥p′ ≤ Cp ∥ g ∥p′
if and only if T ∗ is bounded on Lp(X) for 1 < p < q.

We shall investigate the anatomy of the “kernel” functions of T and T ∗. Let
f ∈ Lp(X) and g ∈ Lp′(X) be functions such that supp(f)∩supp(g) = ∅. Under
this condition,

⟨Tf, g⟩ =
∫
X

g(x)

∫
X

K(x, y)f(y)dµ(y) dµ(x)

is well defined. Thanks to Theorem 2.12, we know that Tf ∈ Lp(X), and
so it is finite µ-almost everywhere. Also, the whole outer integral is absolutely
convergent by Hölder inequality, which enables us to use Fubini-Tonelli theorem:∫

X

g(x)

∫
X

K(x, y)f(y)dµ(y) dµ(x)

=

∫
X

f(y)

∫
X

K(x, y)g(x)dµ(x) dµ(y) = ⟨T ∗g, f⟩ (2.13)

from where we see that

T ∗g(x) =

∫
X

K(y, x)g(y)dµ(y) =

∫
X

K∗(x, y)g(y)dµ(y) (2.14)

where K∗ is the kernel of the adjoint operator, provided f and g had disjoint
support. It is to be remarked that Eq. (2.13) does not completely define the
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operator T ∗ on all of its domain, but yet gives useful information: Whenever
x /∈ supp(g), (2.14) holds. Realise that K∗(x, y) = K(y, x). Therefore, this
argument of duality will work only if the kernel behaves nicely when swapping
their pair of input variables.

As seen, T ∗ is very close to satisfying the conditions of Theorem 2.12: it
is linear, it can be written in terms of a kernel K∗ providing the technicalities
described and it is bounded on Lq′(X). If only such kernel fulfilled the corre-
sponding Hörmander condition, T ∗ would be bounded for exponents 1 < p′ < q′,
meaning by the previous reasoning that T would be bounded for q < p < ∞.
However, it is in general impossible to deduce a Hörmander condition for K∗

based on that for K, meaning that we need to assume it as an extra.

Corollary 2.13. Under the assumptions of Theorem 2.12 and supposing an
extra Hörmander condition for the kernel K with swapped variables,

(iii)

sup
y,y0∈X

∫
d(x,y)≥C′d(y,y0)

|K(y, x)−K(y0, x)| dµ(x) = B′ <∞ (2.15)

for some B′ > 0 and C ′ > 1,

then the following bonus track holds.

(c) T is bounded on Lp′(X) for q′ < p′ <∞ and

∥Tf ∥p′ ≤ Cp′ ∥ f ∥p′

for all f ∈ Lp′(X) and a constant Cp′ > 0 depending on p, q, A, B′ and C ′.

For instance, if the setting is the euclidean space X = Rn and so the kernel
is intended for convolution, K(x, y) = KE(x− y), then one can write

K∗(x, y) := K(y, x) = KE(y − x) = KE(−x− (−y)) = K(−x,−y).

Clearly in this case, if K satisfies the original Hörmander condition, so does K∗

and no further assumption is required. It is then possible to show by duality
that, in Rn, if T is bounded on Lq(Rn), then T is bounded not only in Lp(Rn)
for 1 < p ≤ q but also for q′ ≤ p < ∞. Notice that if q = 2 (which is usually
a convenient scenario due to the Hilbert space structure and the availability
of Plancherel theorem, which unlocks the characterisation of bounded linear
translation-invariant operators on L2(Rn) by means of the boundedness of their
Fourier multiplier functions) one obtains the full range 1 < p <∞.



CHAPTER 3

Vector-valued extensions

3.1. Integration of vector-valued functions

So far, we have only considered complex-valued functions and complex-valued
kernels that act on such functions by product of complex numbers. Thinking of
vector-valued functions bodes well for a generalization of the Calderón-Zygmund
theory. It is of special interest to apply this broader theory to sophisticated
operators, for instance square functions and maximal singular operators.

We follow a similar approach to the ones in [3] and [5]. To begin with, since
we would like to, in some sense, integrate vector-valued functions, we need to
give a precise meaning to generalised concepts of measurability of functions,
Lebesgue spaces and integrability. In the context of this chapter, we are going
to work in the setting of the following definition.

Definition 3.1. Let (X,Σ, µ) ≡ X be a σ-finite measure space and let B be a
Banach space. A function F : X → B is said to be measurable if both of the
following conditions hold.

(i) There is a separable subspace BF ⊆ B such that F (x) ∈ BF for µ-a.e. x ∈
X.

(ii) For every element of the dual space b∗ ∈ B∗, the complex-valued function
x→ ⟨b∗, F (x)⟩ is measurable in the usual sense.

The main goal of requirement (ii) is to ensure that norms of vector-valued
functions are going to be measurable, and thus candidates to be integrated.

39
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Namely, the function ∥F ∥B : x → ∥F (x) ∥B is measurable1 as a real-valued
function.

On the other hand, by assuming (i), we are enabling the forthcoming def-
inition of integration of vector-valued functions via an extension from a dense
class. Note that we could have assumed, with less generality, that B is separable
straightaway.

We appreciate having an analogue of the Lebesgue spaces.

Definition 3.2. Let (X,Σ, µ) be a measure space and let B be a Banach space.
For every 1 ≤ p ≤ ∞ let

Lp
B(X) := {F : X → B measurable :

∫
X

∥F (x) ∥pB dµ(x) <∞} (3.1)

(in the conventional understanding that the integral is substituted by an essential
supremum when p = ∞) be the set of (equivalence classes of) vector-valued
measurable functions the p-th power of the norm of which is integrable (in the
real Lebesgue sense). Call them vector-valued Lebesgue spaces, or simply
Lebesgue spaces if no confusion may occur.

It turns out that for all 1 ≤ p ≤ ∞ and Banach space B, Lp
B(X) is also a

Banach space, equipped with the expectable norm

∥F ∥Lp
B(X) =

(∫
X

∥F (x) ∥pB dµ(x)
) 1

p

or
∥F ∥L∞

B (X) = ess sup
x∈X

∥F (x) ∥B .

Similarly, one may define the weak-Lp
B(X) spaces.

Definition 3.3. Let (X,Σ, µ) be a measure space and let B be a Banach space.
For every 1 ≤ p ≤ ∞, let

Lp,∞
B (X) := {F : X → B measurable : sup

λ>0
λpµ({x ∈ X : ∥F (x) ∥B > λ}) <∞}

(3.2)
1Characterise the norm by duality: ∥F (x) ∥B = sup∥ b∗ ∥B∗≤1 | ⟨b∗, F (x)⟩ | (we can take B∗

to be the dual space of BF instead of B, whenever x ∈ X allows us). We invoke mighty
theorems from functional analysis. For our Banach space B, we know that the dual closed
unit ball B∗

1(0) is compact in the weak∗ topology. Not only this, but since B is separable,
B∗

1(0) equipped with the weak∗ topology is metrizable. Now, any compact metric space
is separable, thus B∗

1(0) with the weak∗ topology is separable. By definition of the weak∗

topology, the maps b∗ → | ⟨b∗, F (x)⟩ | are continuous in such a topology, meaning that we
can take a countable dense set in {b∗ : ∥ b∗ ∥B∗ ≤ 1}, say {b∗n}n∈N to write ∥F (x) ∥B =
supn∈N | ⟨b∗n, F (x)⟩ | and conclude that ∥F (x) ∥B is a measurable function of x owing to the
supremum over a countable set and the assumption that | ⟨b∗n, F (x)⟩ | are measurable functions
of x µ-a.e.
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(the convention for p = ∞ is L∞,∞
B (X) = L∞

B (X)) be the set of (equivalence
classes of) vector-valued measurable functions such that such supremum is finite.
Name them vector-valued weak Lebesgue spaces, or simply weak Lebesgue
spaces if there is no risk of confusion.

As an example, take f ∈ Lp(X) (a classic complex-valued Lebesgue function)
and b ∈ B an element of some complex Banach space. Consider, for every
x ∈ X, the product f(x)b ∈ B a.e. x ∈ X. Let us check Definition 3.2 for this
element.

∫
X

∥ f(x)b ∥pB dµ(x) =
∫
X

|f(x)|p ∥ b ∥pB dµ(x)

=

∫
X

|f(x)|pdµ(x) ∥ b ∥pB = ∥ f ∥pp ∥ b ∥
p
B <∞

From here, we conclude that f(x)b ∈ Lp
B(X). Moreover,

∥ fb ∥Lp
B(X) = ∥ f ∥p ∥ b ∥B .

Let Lp(X)⊗B := span{fb : f ∈ Lp(X), b ∈ B} be the set of all finite linear
combinations of elements of the form just treated.

Proposition 3.4. Lp(X)⊗B is dense in Lp
B(X) for 1 ≤ p <∞.

Proof. We find help in the σ-finiteness of the measure space X. Let F ∈ Lp
B(X)

and let Xj ↗ X be a countable sequence of increasing measurable sets tending
to the total space such that 0 < µ(Xj) < ∞ ∀ j ∈ N. By assumption (i) in
Definition 3.1, we can take a countable set {bn}n∈N ⊂ B which is dense in the
image of F , except for a set of measure 0 which we may ignore.

Fix a global ϵ > 0. By density, for each j ∈ N and ϵj > 0 (that we are
going to choose later on) ∀x ∈ Xj ∃n ∈ N such that ∥F (x)− bn ∥B < ϵj.
Next, we construct a measurable function to associate with each x and F (x) a
bn ∈ {bn}n∈N that is close enough to F (x). Define2

Φj : Xj −→ N
x −→ min{n ∈ N : ∥F (x)− bn ∥ < ϵj}.

(3.3)

At this point, we have grouped all x ∈ Xj into the measurable disjoint sets
Xn

j := {x ∈ Xj : Φj(x) = n}, Xj =
⊔

n≥1X
n
j . With the will of constructing an

2The functions Φj are measurable because one can inductively express the preimages of
singletons as Φ−1

j (n) = {x ∈ Xj : ∥F (x)− bn ∥B < ϵj}
⋂n−1

i=1 (Φ
−1
j (i))c ∀n ≥ 1. Of course,

the maps x → ∥F (x)− bn ∥B are measurable in the restricted measure space (Xj ,Σj , µ), in
alignment with Definition 3.1.
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element of Lp(X)⊗B which resembles F , define, for each n ∈ N, the measurable
functions

fn(x) :=

{
1 x ∈ Xn

j

0 x /∈ Xn
j .

In the remaining of the proof, we check that F is approximated by the sequence
of elements

∑N
m=1 fmbm ∈ Lp(X) ⊗ B indexed by N ∈ N. First, estimate the

integrals over each Xn
j with n ≤ N .

∫
Xn

j

∥∥∥∥∥F (x)−
N∑

m=1

fm(x)bm

∥∥∥∥∥
p

B

dµ(x) =

∫
Xn

j

∥F (x)− bn ∥pB dµ(x)

≤ ϵpjµ(X
n
j ) = 2−j

µ(Xn
j )

µ(Xj)
ϵ

once we have chosen ϵpj := 2−j

µ(Xj)
ϵ. Splitting the global integral according to j

and N , we reach

∫
X

∥∥∥∥∥F (x)−
N∑

m=1

fm(x)bm

∥∥∥∥∥
p

B

dµ(x) ≤
∑
j≥1

∫
Xj

∥∥∥∥∥F (x)−
N∑

m=1

fm(x)bm

∥∥∥∥∥
p

B

dµ(x)

=
∑
j≥1

∫
∪N
n=1X

n
j

∥∥∥∥∥F (x)−
N∑

m=1

fm(x)bm

∥∥∥∥∥
p

B

dµ(x)

+
∑
j≥1

∫
∪∞
n=N+1X

n
j

∥∥∥∥∥F (x)−
N∑

m=1

fm(x)bm

∥∥∥∥∥
p

B

dµ(x)︸ ︷︷ ︸
E(N)

≤
∑
j≥1

N∑
n=1

2−j
µ(Xn

j )

µ(Xj)
ϵ+ E(N) ≤

∑
j≥1

2−jϵ+ E(N) = ϵ+ E(N).

Proving that the error term E(N) tends to zero as N → ∞ would conclude the
proof. After realizing that the inner sum vanishes in the integration domain of
E(N), that

E(N) =

∫
∪j≥1∪∞

n=N+1X
n
j

∥F (x) ∥pB dµ(x) → 0 as N → ∞

is true can be shown by the dominated convergence theorem and the fact that
F ∈ Lp

B(X).

There is a reasonable way of defining integration of elements in Lp(X)⊗B
making the most of the Lp(X) integration structure.
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Definition 3.5. Let fb be a tensor product of a function f ∈ L1(X) and some
Banach space element b ∈ B. Define its integral over the measure space X:∫

X

f(x)b dµ(x) :=

(∫
X

f(x)dµ

)
∀ b ∈ B.

This definition extends to all L1(X) ⊗ B by imposing linearity to this integral
operation.

Resembling the triangle inequality, we get the following inequality for the
integral in the previous definition. It is going to become essential for the proof
of Theorem 3.9.

Proposition 3.6. If Ft ∈ L1(X)⊗B, then
∥∥ ∫

X
Ftdµ

∥∥
B
≤ ∥Ft ∥L1

B(X).

Proof. The statement is pretty obvious for simple functions: Let Ft(x) =∑N
n=1

∑K
k=1 a

k
n1Xk(x)bn be a linear combination of integrable simple functions

multiplied by some elements in B , were akn are their complex values and Xk

are measurable sets. Then,

∥∥∥∥∫
X

Ftdµ

∥∥∥∥
B

=

∥∥∥∥∥
∫
X

N∑
n=1

K∑
k=1

akn1Xk(x)bndµ(x)

∥∥∥∥∥
B

=

∥∥∥∥∥
K∑
k=1

N∑
n=1

aknµ(X
k)bn

∥∥∥∥∥
B

≤
K∑
k=1

∥∥∥∥∥
N∑

n=1

aknbn

∥∥∥∥∥
B

µ(Xk) =
K∑
k=1

∫
Xk

∥∥∥∥∥
N∑

n=1

aknbn

∥∥∥∥∥
B

dµ(x)

=

∫
X

∥∥∥∥∥
N∑

n=1

K∑
k=1

akn1Xk(x)bn

∥∥∥∥∥
B

dµ(x) = ∥Ft ∥L1
B(X) .

The last step is legit due to the indicator functions of disjoint sets. If we denote
by S(X) the space of integrable simple functions over X, taking into account
that the inclusion S(X)⊗B ⊂ L1(X)⊗B is a dense inclusion, we are done by
continuity.

What Proposition 3.6 tells us is that the linear map of Banach spaces∫
X

· dµ : L1(X)⊗B ⊂ L1
B(X) −→ B

Ft −→
∫
X

Ftdµ

(3.4)

is continuous (equivalently bounded). Therefore, by Proposition 3.4, we can
extend the operator (3.4) by continuity uniquely to an operator acting now
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on all of the L1
B(X) space. We shall use the same notation for the extended

operator ∫
X

· dµ : L1
B(X) −→ B

F −→
∫
X

Fdµ.

(3.5)

Proposition 3.7. For F ∈ L1
B(X), the element

∫
X
Fdµ ∈ B is characterised

by 〈
b∗,

∫
X

F dµ

〉
=

∫
X

⟨b∗, F (x)⟩ dµ(x) ∀ b∗ ∈ B∗. (3.6)

Proof. Checking that
∫
X
Fdµ is the only element in B that satisfies (3.6) is

immediate by the customary way of assuming there exists a different element
b ∈ B that also verifies (3.6) and reaching the contradiction that

∫
X
Fdµ− b =

0 ∈ B.

To prove that
∫
X
Fdµ built as in (3.5) satisfies (3.6), let F ∈ L1

B(X) and
write F = Ft + G, where Ft ∈ L1(X) ⊗ B and G ∈ L1

B(X) is such that, fixed
ϵ > 0, ∥G ∥L1

B(X) < ϵ (which is permitted thanks to Proposition 3.4).

Checking (3.6) for Ft is straightforward by linearity. The density argument
reads as follows.〈

b∗,

∫
X

F dµ

〉
=

〈
b∗,

∫
X

Ft +

∫
X

G dµ

〉
=

〈
b∗,

∫
X

Ft dµ

〉
+

〈
b∗,

∫
X

G dµ

〉
=

∫
X

⟨b∗, Ft(x)⟩ dµ(x) +
〈
b∗,

∫
X

G dµ

〉
=

∫
X

⟨b∗, F (x)⟩ dµ(x)−
∫
X

⟨b∗, G(x)⟩ dµ(x) +
〈
b∗,

∫
X

G dµ

〉
Eventually, it remains to show that the second and third terms are arbitrarily
small. For the second term, let us use duality of norms.∣∣∣∣∫

X

⟨b∗, G(x)⟩ dµ(x)
∣∣∣∣ ≤ ∫

X

∥ b∗ ∥B∗ ∥G(x) ∥B dµ(x)

= ∥ b∗ ∥B∗ ∥G ∥L1
B(X) ≤ ∥ b∗ ∥B∗ ϵ

For the third term, we also rely on the inequality in Proposition 3.6.∣∣∣∣〈b∗,∫
X

G dµ

〉∣∣∣∣ ≤ ∥ b∗ ∥B∗

∥∥∥∥∫
X

G dµ

∥∥∥∥
B

≤ ∥ b∗ ∥B∗ ∥G ∥L1
B(X) < ∥ b∗ ∥B∗ ϵ

This route led to (3.6).
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Having developed a grounding for integrating vector-valued functions, we
are in a position to shoot for an extension of our main theorem, Theorem 2.12,
now in this new vaster setting. We are going to showcase how to make the most
of the Calderón-Zygmund theory developed in Chapter 2.

The problem of, given a linear Lp(Rn)-bounded operator, attempting to
show that it has a vector-valued extension was faced a couple decades before
the birth of the Calderón-Zygmund theory. Efforts were made to try to show
estimates of the kind: Given a particular known linear bounded operator on
Lp(Rn), H (say, for instance, the Hilbert transform, if n = 1), choose B = ℓq(R)
and prove that the extended linear operator H̃ : Lp

ℓq(R)(R) → Lp
ℓq(R)(R) given

by H̃({fj}j∈N) := {Hfj}j∈N is bounded, namely∥∥∥∥∥∥
(∑

j≥1

|Hfj|q
) 1

q

∥∥∥∥∥∥
p

≤ Cp,q

∥∥∥∥∥∥
(∑

j≥1

|fj|q
) 1

q

∥∥∥∥∥∥
p

. (3.7)

Even though, with enough imagination, one can come up with a myriad of
operators acting on vector-valued functions, it was wildly difficult to shelter a
complete amount of them under the same theory. It was not until the machinery
of Calderón-Zygmund was discovered that we got a general enough theory for
akin operators.

Retrieving the idea of operators given by integration against, in some sense,
a kernel, since we would like to work with vector-valued functions, the kernel
K(x, y) is no longer going to be a function, but a linear operator mapping
Banach spaces into Banach spaces. Let L(A,B) denote the Banach space of
bounded linear operators mapping the Banach space A into the Banach space
B. In order to carefully select the operators we are homing in on, we consider K
with domain in the product measure spaceX×X, K(x, y) being ill-defined along
the diagonal x = y, and taking values K(x, y) ∈ L(A,B). In similarity with the
hypotheses of Theorem 2.12, let us assume K to be measurable (in the sense
of Definition 3.1) and locally integrable away from the diagonal. Moreover,
whenever F ∈ L∞

A (X) has compact support and x /∈ supp(F ), the object of
study T is given by

TF (x) =

∫
X

K(x, y)F (y)dµ(y).

Under such assumptions, for x /∈ supp(F ),

∥Tf(x) ∥B ≤
∫
supp(F )⊆K′⊆X

∥K(x, y)F (y) ∥B dµ(y)

≤ ∥F ∥L∞
A (X)

∫
supp(F )⊆K′⊆X

∥K(x, y) ∥L(A,B) dµ(y) <∞
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meaning that Tf(x) is a well defined element of B if x /∈ supp(F ).

It is not to be forgotten that we should impose some kind of Hörmander
condition. Analogously to Definition 2.11:

Definition 3.8. A kernel K on the product measure space ((X, d),Σ, µ) ×
((X, d),Σ, µ) taking values in L(A,B) is said to satisfy the Hörmander con-
dition if

sup
y,y0∈X

∫
d(x,y)≥Cd(y,y0)

∥K(x, y)−K(x, y0) ∥L(A,B) dµ(x) = D <∞ (3.8)

for some constants C > 1 and D > 0.

Astonishingly, the natural generalization of Theorem 2.12 turns out to work
in this setting as well!

Theorem 3.9. Let ((X, d),Σ, µ) be a measure metric space with the doubling
property. Let A,B be Banach spaces and let T be a linear operator which is
represented by

TF (x) =

∫
X

K(x, y)F (y)dµ(y)

whenever F ∈ L∞
A (X) with compact support and x /∈ supp(F ), where the vector-

valued kernel K ∈ L(A,B) is measurable in X ×X and locally integrable away
from the diagonal. Assume that

(i) T is bounded from Lq
A(X) to Lq

B(X) for a fixed 1 < q ≤ ∞, ∥TF ∥Lq
B(X) ≤

Cq ∥F ∥Lq
A(X), and

(ii) the operator kernel K satisfies the Hörmander condition in (3.8) with con-
stants C and D.

Then,

(a) the operator T has a bounded extension mapping Lp
A(X) to Lp

B(X), with
1 < p < q. Furthermore,

∥TF ∥Lp
B(X) ≤ Cp ∥F ∥Lp

A(X) , 1 < p <∞

for F ∈ Lp
A(X) and Cp only depending on p, q, Cq, C and D.

(b) The operator T has a bounded weak-type (1,1) extension that satisfies

λµ({x ∈ X : ∥TF (x) ∥B > λ}) ≤ C1 ∥F ∥L1
A(X) ∀λ > 0 (3.9)

for F ∈ L1
A(X) and C1 only depending on q, Cq, C and D.
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Proof. The key new remark, in comparison with the proof of Theorem 2.12 is
that, when letting F ∈ L1

A(X) in order to prove the weak-type (1,1) estimate, we
can apply the Calderón-Zygmund decomposition to the function x→ ∥F (x) ∥A,
which lies in L1(X). We sketch the proof emphasizing the slight differences.

The goal is, once again, showing T is weak-type (1,1) so that Marcinkiewicz
interpolation applies. Let λ > 0 and let F ∈ L1

A(X) ∩ L∞
A (X).

By Theorem 2.3 and Remark 2.6, there exists a partition of the space X =
FX ⊔ Ω, Ω =

⊔
k∈NQk such that ∥F ∥A ≤ λ a.e. x ∈ Ω and

1

µ(Qk)

∫
Qk

∥F (x) ∥A dµ(x) ≤ CCZλ, ∀ k ∈ N.

It is suitable to define

G(x) :=

{
F (x) x ∈ FX

1
µ(Qk)

∫
Qk
F (x)dµ(x) x ∈ Qk ⊂ Ω, ∀ k ∈ N.

Consequently, BF (x) := F (x)−G(x) ,∀x ∈ X3.

As in the sibling proof, we reduce matters to showing the weak-type (1,1)
property for each of the two terms (see (2.10)):

µ({x ∈ X : ∥TF (x) ∥B > λ}) ≤ µ

({
x ∈ X : ∥TG(x) ∥B >

λ

2

})
+ µ

({
x ∈ X : ∥TBF (x) ∥B >

λ

2

})
. (3.10)

G is weak-type (1, 1): This is carried out in the same way, using hypothesis
(a) and the fact that, this time, ∥G(x) ∥q−1 ≤ (CCZλ)

q−1 a.e. x ∈ X. Note
that, in the case q = ∞, we would proceed as remarked in the former proof.

B is weak-type (1, 1): Let us check how the new Hörmander condition helps
us find the way out this time. Step (2.11) works the same way using the maximal
theorem in the scalar setting:

µ

{
x ∈ Ω∗∗ : ∥TBF (x) ∥B >

λ

2

}
≤ AHLc

∗∗

λ
∥F ∥L1

B(X) .

3We keep on using the notation G and BF standing for “good” and “bad” to preserve the
tradition, but please do not mistake the function BF (x) for the Banach space B. Similarly,
make a distinction for the vector-valued function F and the set FX from the Calderón-
Zygmund decomposition.
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To deal with the second term in (3.10), proceed as in the scalar-valued case to
reach

λ

2
µ

({
x ∈ Ω∗∗c : ∥TBF (x) ∥B >

λ

2

})
≤
∑
k

∫
Ω∗∗c

∥∥∥∥∫
Qk

K(x, y)Bk(y)dµ(y)

∥∥∥∥
B

dµ(x)

and then introduce a second constant kernel operator term relying on the fact
that Bk (which is the restriction of BF to Qk) integrates zero on Qk. After
using triangle inequality, Fubini-Tonelli, the operator norm inequality, and an
overestimation of the integration domain, we reach the step where to use the
Hörmander condition (3.8).

∑
k

∫
Ω∗∗c

∥∥∥∥∫
Qk

K(x, y)Bk(y)dµ(y)

∥∥∥∥
B

dµ(x)

≤
∑
k

∫
Qk

∫
d(x,y)>Cd(y,yk)

∥K(x, y)−K(x, yk) ∥L(A,B) dµ(x) ∥Bk(y) ∥A dµ(y)

≤ D ∥BF ∥L1
B(X) ≤ D ∥F ∥L1

F (X)

Once we know T is weak-type (q, q) (in fact, type (q, q)) and weak-type (1, 1),
both of course in the vector valued setting, we want to use Macinkiewicz inter-
polation. Even though Theorem 1.16 is exposed in the scalar-valued nature, it
turns out to be true for vector-valued functions (with the obvious modifications,
in particular replacing absolute values by norms of the Banach spaces). In fact,
the proof in both cases follows exactly the same route, see Theorem 1.18 in [5],
Chapter 5, Section 1.

Finally, the fact that we worked with F ∈ L1
A(X) ∩ L∞

A (X) due to the
technical issues surrounding the kernel is not an obstacle since this space is
dense in L1

A(X), thus once the weak-type estimate is proved, a density argument
yields the estimate for the whole space.

All these machinery we built turns out useful to bound vector-valued oper-
ators, or even scalar-valued ones, through a variety of different techniques. We
are stating some more crucial results that take part in those techniques. Later
on in this chapter, we are going to experiment with them.

Here is an extension result for operators acting on scalar-valued functions
to operators acting on vector-valued functions.

Theorem 3.10 (Marcinkiewicz-Zygmund). Let (Xi,Σi, µi) be two σ-finite mea-
sure spaces, i = 1, 2. Let T : Lp(X1) → Lq(X2), 1 ≤ p, q < ∞, be a linear
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bounded operator with norm ∥T ∥. Then,∥∥∥∥∥∥
(∑

j∈N

|Tfj(x)|2
) 1

2

∥∥∥∥∥∥
q

≤ Cp,q ∥T ∥

∥∥∥∥∥∥
(∑

j∈N

|fj(x)|2
) 1

2

∥∥∥∥∥∥
p

(3.11)

for (fj)j∈N ∈ Lp
ℓ2(R

n) and some constant Cp,q > 0 depending on p and q.

What underpins the corresponding proof are randomisation techniques, that
we are going to discuss later on. The proof can be found in [5], Chapter 5,
Theorem 2.7.

This results partially answers the question we mentioned about extending
the Hilbert transform to ℓp. Theorem 3.10 solves the problem for p = 2. In
general, it is not possible to find extensions to functions taking values in Banach
spaces that are not Hilbert spaces; such a structure is really helpful.

Likewise, if instead of a single linear bounded operator we have a collection
of them, the corresponding vector-valued operator is in general unlikely to be
tameable, unless in very nice situations like the following one.

Theorem 3.11. Let {Ij}j∈N be an arbitrary countable collection of intervals in
Rn with sides parallel to the coordinate axis, and denote by TIj the multiplier
operators associated to the indicator function of each interval on the frequency
side. Then, for all 1 < p <∞ and (fj)j∈N ∈ Lp

ℓ2(R
n),∥∥∥∥∥∥

(∑
j∈N

|TIjfj(x)|2
) 1

2

∥∥∥∥∥∥
p

≤ Cp

∥∥∥∥∥∥
(∑

j∈N

|fj(x)|2
) 1

2

∥∥∥∥∥∥
p

(3.12)

where Cp > 0 is a constant depending on p and n.

The details of the proof can be found in [5], Chapter 5, Corollary 2.13. Let
us explain the main idea though. Since the intervals have sides parallel to the
coordinate axis, it is possible to give a tensor product structure to the operator
that reduces matters to the one dimensional case. In this position, one realises
that the indicator function of an interval 1[a,b] can be written as the sum of
two sign functions, with the intention to make the multiplier of the Hilbert
transform show up (use Definition 1.33). The proof concludes by an application
of the Marcinkiewicz-Zygmund theorem (Theorem 3.10) and the fact that the
Hilbert transform is a bounded operator on Lp(Rn), for 1 < p <∞.

3.2. Littlewood-Paley theory

The Littlewood-Paley theory has its origin in the 1930’s, firstly developed by
J. E. Littlewood and R. Paley with the main intention of studying Fourier
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series. Although the theory was in the beginning developed in the setting of
the real line, many brilliant mathematicians like Zygmund, Marcinkiewicz and
Stein made further contributions all along the century. Nowadays, the theory
is powerful enough to be capable of extending properties of L2(Rn) functions to
Lp(Rn) functions.

(a) John Edensor Littlewood. Rochester
(United Kingdom) 1885 - Cambridge
(United Kingdom) 1977. [Source: https:
//londmathsoc.onlinelibrary.wiley.
com/doi/pdf/10.1112/blms/11.1.59]

(b) Raymond Paley. Bournemouth
(United Kingdom) 1907 - Canadian
Rockies (Canada) 1933. [Source:
https://mathshistory.st-andrews.
ac.uk/Biographies/Paley/]

Figure 3.1: The fathers of the Littlewood-Paley theory. They could not col-
laborate long because Paley died young in a skiing accident in the Canadian
Rockies.

Accordingly, the starting point is the framework of L2(Rn). The central
idea is splitting the Fourier domain Rn into concentric dyadic annuli in sort of a
partition of unity: the Littlewood-Paley decomposition. We turn to the details.

Lemma 3.12 (Smooth Littlewood-Paley decomposition in R). One can write

1 =
∑
j∈Z

ψ(2−jξ) ∀ ξ ∈ R∖ {0} (3.13)

where ψ(2−jξ) ∈ C∞
c (R) is a smooth function compactly supported in

[−2j+1,−2j−1] ∪ [2j−1, 2j+1] for every j ∈ Z.

Proof. Let ϕ0 ∈ C∞
c (R) be a bump function such that supp(ϕ0) ⊆ [−1

2
, 1
2
] and∫

R ϕ0(ξ)dξ = 1.

https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/blms/11.1.59
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/blms/11.1.59
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/blms/11.1.59
https://mathshistory.st-andrews.ac.uk/Biographies/Paley/
https://mathshistory.st-andrews.ac.uk/Biographies/Paley/
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|
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Figure 3.2: The function ψ we build in Lemma 3.12 looks like this.

Consider ϕ1(ξ) := 1[− 3
2
, 3
2
]∗ϕ0(ξ). We have that ϕ1 ∈ C∞

c (R) and the support
is the Minkowski sum of the supports of the convolving functions: supp(ϕ1) ⊆
[−2, 2]. Moreover, ϕ1(ξ) = 1 for ξ ∈ [−1, 1].

Define now ψ(ξ) := ϕ1(ξ)− ϕ1(2ξ). This function satisfies the requirements
of the statement. Obviously, ψ is a smooth function. Since ϕ1(ξ) = ϕ1(2ξ) = 1
on |ξ| ≤ 1

2
, and ϕ1(ξ) = ϕ1(2ξ) = 0 on |ξ| ≥ 2, then supp(ψ) ⊆ [−2,−1

2
]∪ [1

2
, 2].

Finally,∑
j∈Z

ψ(2−jξ) =
∑
j∈Z

ϕ1(2
−jξ)− ϕ1(2

−j+1ξ) = lim
J→∞

∑
|j|≤J

ϕ1(2
−jξ)− ϕ1(2

−j+1ξ)

= lim
J→∞

(ϕ1(2
−Jξ)− ϕ1(2

J+1ξ)) = lim
ξ→0

ϕ1(ξ)− lim
ξ→∞

ϕ1(ξ) = 1 ∀ ξ ̸= 0,

by telescope summation (notice that, for every ξ ∈ R, at most 3 terms are
contributing to the sum).

Without much effort, the Littlewood-Paley decomposition in R extends to
Rn by imposing spherical symmetry. Let Aj := {ξ ∈ Rn : 2j−1 ≤ |ξ| ≤ 2j+1}
∀ j ∈ Z denote the dyadic annuli in Rn of those frequencies that are about 2j.

Corollary 3.13 (Smooth Littlewood-Paley decomposition in Rn). One can
write

1 =
∑
j∈Z

ψ(2−jξ) ∀ ξ ∈ Rn ∖ {0} (3.14)

where ψ(2−jξ) ∈ C∞
c (Rn) is a smooth function compactly supported in Aj for

every j ∈ Z.

Proof. Just take the function ψR from Lemma 3.12 and set ψRn(ξ) := ψR(|ξ|).
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Imagine for the moment that we wish to study a certain multiplier m. Such
decomposition of the frequency space is useful for exploiting the properties of
m for frequencies around comparable scales. By defining mj(ξ) := m(ξ)ψ(2−jξ)
and carrying out the decomposition

m(ξ) =
∑
j∈Z

mj(ξ) =
∑
j∈Z

m(ξ)ψ(2−jξ)

we may separately treat each mj, although we will afterwards have to face the
problem of bringing back the properties to m. We do not care about m not
being defined in ξ = 0 since m is only defined a.e.

Carrying on the previous idea, surely we can think of the multiplier operator
associated to m,

T̂mf(ξ) = m(ξ)f̂(ξ) =
∑
j∈Z

m(ξ)ψ(2−jξ)f̂(ξ).

This computation invites us to define a family of multiplier operators indexed
by j ∈ Z:

T̂mj
f(ξ) := mj(ξ)f̂(ξ) = m(ξ)ψ(2−jξ)f̂(ξ),

so that
T̂mf(ξ) =

∑
j∈Z

T̂mj
f(ξ). (3.15)

In the spacial domain,

Tmj
(x) = (m(ξ)ψ(2−jξ))̌ ∗ f(x).

Accounting that m(ξ)ψ(2−jξ) ∈ L1(Rn), its inverse Fourier transform is well de-
fined as a continuous function, in concordance with Definition 1.2. Nevertheless,
the tempting step

(m(ξ)ψ(2−jξ))̌ = m̌ ∗ 2njψ̌(2j·)(x)

will not make sense in the framework of functions unless stronger assumptions
on m are made.

Besides, in contrast with the clearly absolutely convergent sum in (3.15),
one should also worry about the sum in the spacial side

Tmf(x) =
∑
j∈Z

(m(ξ)ψ(2−jξ))̌ ∗ f(x) (3.16)

being absolutely convergent so that the decomposition makes sense as a func-
tion. At least, the sum in (3.16) does converge in the L2 sense thanks to
Plancherel, as can be easily checked.
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3.2.1. Square functions

Forget about the multiplier function now; set m ≡ 1. In such a case, the identity
(3.16) rephrases as

f(x) =
∑
j∈Z

2njψ̌(2j·) ∗ f(x) (3.17)

understood in the sense of L2 convergence. Let us introduce some notation for
this particular case:

P̂jf(ξ) := ψ(2−jξ)f̂(ξ) ∀ j ∈ Z.

With this notation, rewrite (3.17) as

f(x) =
∑
j∈Z

Pjf(x).

Let us here promote the linear sum to a square sum, eventually reaching the
definition of the smooth Littlewood-Paley square function.

Definition 3.14 (Smooth Littlewood-Paley square function).

Sf(x) :=

(∑
j∈Z

|Pjf(x)|2
) 1

2

(3.18)

Of course this is not the identity operator. In fact, it is not even linear,
which is an obstacle to overcome. The truth is that Sf comes in handy in
many situations, creating the need to understand this particular operator.

Let us shoot for proving that (3.18) is bounded on Lp. The main ingredients
we are going to be using are the vector-valued theory and a probabilistic trick.

First of all, we like to think of the square function as the norm of an operator
acting on vector-valued functions S : Lp(Rn) → Lp

ℓ2(R
n): Define

P (f) := (Pjf)j∈Z = (. . . , P−1f, P0f, P1f, . . . )

= (. . . , 2−nψ̌(2−1ξ) ∗ f(x), 20ψ̌(20ξ) ∗ f(x), 2nψ̌(21ξ) ∗ f(x), . . . )

which is a linear operator mapping functions to sequences of functions4.
Accordingly,

Sf(x) = ∥Pf(x) ∥ℓ2(Z) .

Next, we introduce the Rademacher functions that will provide us with some
useful Lp estimates.

4One can play the same trick with maximal functions, for instance, Mf(x) =
∥A(x, ·) ∥L∞(R>0)

.
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Definition 3.15. Let

r0(t) :=

{
1 t ∈ [0, 1

2
)

−1 t ∈ [1
2
, 1)

(3.19)

and define r0(t) on all of the real line by its periodic extension, r0(t) = r0(frac(t)).
For any m ∈ N, let rm(t) := r0(2

mt). The family {rm}m∈N of functions are called
the Rademacher functions.

Remark 3.16. The Rademacher functions are an orthonormal system in L2([0, 1]).
However, we highlight that they are not a basis of such space.

A satisfactory result that this family unlocks is the following.

Theorem 3.17. Let F (t) :=
∑

m∈N amrm(t) for any sequence of square summable
complex coefficients (am)m∈N ∈ ℓ2(C). Then, for every 1 ≤ p < ∞, F ∈
Lp([0, 1]) and

Ap ∥F ∥Lp([0,1]) ≤ ∥ (am)m ∥ℓ2(C) =

(∑
m∈N

|am|2
) 1

2

≤ Bp ∥F ∥Lp([0,1]) (3.20)

for some constants Ap, Bp > 0 depending on p.

The proof is available in [10], Appendix D5.

In some sense, the Rademacher functions introduce a random component in
the function F that makes such apparently unrelated norms comparable. We
intend to exploit this fact to extend L2 bounds for some operator to Lp bounds
for the square function.

Theorem 3.18. The smooth Littlewood-Paley square function (3.18) is bounded
in Lp(Rn) for every 1 < p <∞.

Proof. We cannot apply the Calderón-Zygmund theory directly to S, for in-
stance, because it is not a linear operator. Let the Rademacher functions per-
turbate the Littlewood-Paley decomposition:

Ptf(x) :=
∑
j∈Z

rj(t)Pjf(x). (3.21)

It is true that we only defined rm for m ∈ N although we are considering m ∈ Z.
Just reorder the Rademacher functions so that they are indexed by the integers;
the only thing that matters is the orthogonality.

5Some authors prefer alternative results to this one, in order to tackle the goal of showing
Lp boundedness of the square function. Using sequences of gaussian random variables or
using Khintchine inequality are two alternatives. However, what they all have in common
is the philosophy of randomness: they are all set in the framework of probability theory in
order to exploit the so-called square root cancellation phenomenon.



3.2 Littlewood-Paley theory 55

Notice that
∥∥P(·)(x)

∥∥
L2([0,1])

= Sf(x) , recovering the square function.

Unboxing (3.21), we find that the operator Pt is given by convolution against
some kernel:

Ptf(x) =

(∑
j∈Z

rj(t)2
njψ̌(2jx)

)
∗ f(x). (3.22)

We are willing to apply the Calderón-Zygmund theory to Pt. If we call Kt

the kernel in (3.22),

|K̂t(ξ)| =

∣∣∣∣∣∑
j∈Z

rj(t)ψ(2
−jξ)

∣∣∣∣∣ ≤∑
j∈Z

ψ(2−jξ) = 1 ∀ ξ ̸= 0,

which shows that the corresponding multiplier is an essentially bounded func-
tion, with bound independent of t. Thus, Pt defines a bounded operator on
L2(Rn). Let us check that Kt verifies the gradient decay condition (2.8).

|∇Kt(x)| =

∣∣∣∣∣∑
j∈Z

rj(t)2
n(j+1)∇ψ̌(2jx)

∣∣∣∣∣ ≤∑
j∈Z

2n(j+1)|∇ψ̌(2jx)|

Thanks to ψ̌ ∈ S (Rn), we have both |∇ψ̌(x)| ≤ C
|x|n+2 and |∇ψ̌(x)| ≤ C

|x|n . Let
us split the sum according to x:∑

j∈Z

2n(j+1)|∇ψ̌(2jx)| ≤
∑
2j≥|x|

2n(j+1) C

|2x|n+2
+
∑
2j<|x|

2n(j+1) C

|2x|n

=
C

|x|n+1

∑
2j≥|x|

1

2j|x|
+
∑
2j<|x|

2j|x|

 ≤ C

|x|n+1
(2 + 2) =

4C

|x|n+1
.

The latter is also an estimate independent of t. Consequently, because of
Theorem 2.9, for all t ∈ R, Pt is bounded on Lp(Rn):

∥Ptf ∥p ≤ Cp ∥ f ∥p (3.23)

for some constant Cp independent of t.

Having developed this, by Theorem 3.17, we have

Sf(x) =

(∑
j∈Z

|Pjf(x)|2
) 1

2

≤ Bp

∥∥P(·)(x)
∥∥
Lp([0,1])

∀ 1 < p <∞.

If we then take Lp norms in x,

∥Sf(x) ∥p ≤ Bp

∥∥∥∥∥P(·)(x)
∥∥
Lp([0,1])

∥∥∥
p
= Bp

(∫
Rn

∫
[0,1]

|Ptf(x)|pdt dx
) 1

p
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and by Fubini-Tonelli,

Bp

(∫
Rn

∫
[0,1]

|Ptf(x)|pdt dx
) 1

p

= Bp

(∫
[0,1]

∫
Rn

|Ptf(x)|pdx dt
) 1

p

= Bp

(∫
[0,1]

∥Ptf ∥pp dt
) 1

p

.

Finally, we make use of estimate (3.23) to reach

Bp

(∫
[0,1]

∥Ptf ∥pp dt
) 1

p

≤ Bp

(∫
[0,1]

Cp
p ∥ f ∥

p
p dt

) 1
p

= BpCp ∥ f ∥p .

One could wonder why we made an effort to build a smooth Littlewood-Paley
square function instead of chopping the frequency space with rough cutoffs.
Well, the answer is in what comes next.

Let Aj := {ξ ∈ Rn : 2j−1 ≤ |ξ| ≤ 2j} be the annuli containing the frequen-
cies with magnitude between 2j−1 and 2j, j ∈ Z. Define the following rough
multipliers.

P̂jf(ξ) := 1Aj
(ξ)f̂(ξ) ∀ j ∈ Z

As in the smooth case, one has a decomposition of the identity,

f(x) =
∑
j∈Z

Pjf(x),

as well as a square function.

Definition 3.19 (Rough Littlewood-Paley square function).

Sf(x) :=

(∑
j∈Z

|Pjf(x)|2
) 1

2

(3.24)

By its construction, it is natural to start the study in L2(Rn). By Plancherel
and Fubini-Tonelli,

∥∥Sf ∥∥2
2
=

∫
Rn

∑
j∈Z

|Pjf(x)|2dx =
∑
j∈Z

∫
Rn

|Pjf(x)|2dx

=
∑
j∈Z

∫
Rn

|1Aj
(ξ)f̂(ξ)|2dξ =

∫
Rn

∑
j∈Z

1Aj
(ξ)|f̂(ξ)|2dξ =

∫
Rn

|f̂(ξ)|2dξ = ∥ f ∥22 .
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Not only is the rough square function bounded in L2(Rn) but also it is an isom-
etry. From here, with L2(Rn) as a foothold, one would expect some argument
that proves Lp(Rn) boundedness. Well, with great surprise, it turns out that
the behaviour of the square function depends on the dimension of Rn, as the
following results depict.

Theorem 3.20. Let n = 1. The rough Littlewood-Paley square function (3.24)
is bounded on Lp(R) for 1 < p <∞.

|
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Figure 3.3: The multiplier functions 1A0
and ψ0 in the proof of Theorem 3.20

compare like this.

Proof. If 1Aj
(ξ), Aj := {ξ ∈ Rn : 2j−1 ≤ |ξ| ≤ 2j} ∀ j ∈ Z, are the multipliers

corresponding to the rough square function, let us cover them by multipliers
resembling the smooth ones. Let ψj(ξ) ∈ C∞

c (R) such that ψj(ξ) = 1 on
2j−1 ≤ |ξ| ≤ 2j and ψj(ξ) = 0 on |ξ| ≤ 2j−2 and |ξ| ≥ 2j+1. Not happy with
this, require

2 =
∑
j∈Z

ψj(ξ) ∀ ξ ∈ R∖ {0}.

Such functions can be constructed similarly as we did in Lemma 3.12.

As a consequence we can relate the smooth and rough multipliers by

1Aj
ψj = 1Aj

=⇒ Pj ◦ P ′
j = Pj,

in the understanding that

P̂ ′
jf(ξ) := ψj(ξ)f̂(ξ) ∀ j ∈ Z.

This allows us to write

∥∥Sf ∥∥
p
=

∥∥∥∥∥∥
(∑

j∈Z

|PjP
′
jf(x)|2

) 1
2

∥∥∥∥∥∥
p

≤ Cp

∥∥∥∥∥∥
(∑

j∈Z

|P ′
jf(x)|2

) 1
2

∥∥∥∥∥∥
p

= Cp ∥S ′f ∥p .
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Here, we used Theorem 3.11, but notice that it only works because in R the
multipliers 1Aj

can be seen as indicator function of intervals, not only annuli.
We reduced the problem to bounding the smooth Littlewood Paley square func-
tion, so the proof is complete by Theorem 3.18 (valid both for S and S ′, it does
not matter the variant of the construction of the smooth square function).

Theorem 3.21. Let n ≥ 2. The rough Littlewood-Paley square function (3.24)
is bounded on Lp(Rn) if and only if p = 2.

Proof. We have already seen that S defines an isometry on L2(Rn). From the
simple bound

|P0f(x)| ≤ Sf(x) =

(∑
j∈Z

|Pjf(x)|2
) 1

2

we deduce that if S is bounded on Lp(Rn), then so is |P0f(x)|. But |P0f(x)| is
the rest of two ball multiplier operators, so by the ball multiplier theorem6, for
n ≥ 2 this can only happen if p = 2.

In what precedes, we have exposed a clear manifestation of an ubiquitous
phenomenon in harmonic analysis: In the multidimensional case n ≥ 2, a mul-
tiplier whose support has smooth curved boundary is going to behave nastier
the rougher the decay of the multiplier function is near the boundary. Such a
boundary is degenerate in the n = 1 case, so these heuristics do not apply.

6The ball multiplier theorem is a deep result in harmonic analysis, often linked to the study
of convergence of partial Fourier integrals and partial Fourier sums. It was a major open
problem in the 1960’s; in fact, many people believed the ball multiplier would be bounded in
a larger range of values of p. The breaking paper [4] of Charles Fefferman solved the problem
in 1971. The proof is based, in its turn, on the existence of Kakeya sets.



CHAPTER 4

Applications and examples

4.1. Hörmander multipliers

In this section, we are dealing with a particular family of multipliers that arise,
for instance, in partial differential equations. We present them as a setting
where to apply the Calderón-Zygmund theory. In the understanding of the
multi-index notation α ∈ Nn as in Chapter 1, here is how we define them.

Definition 4.1. A multiplier function m ∈ L∞(Rn) ∩ C∞(Rn ∖ {0}) is called
a Hörmander multiplier if

|∂αm(ξ)| ≤ Cα

|ξ||α|
∀ ξ ∈ Rn ∖ {0}, ∀α ∈ Nn. (4.1)

We will also consider the case when these multipliers do not enjoy full reg-
ularity but just up to a certain order.

Theorem 4.2. Let m be a Hörmander multiplier. Then, its associated dis-
tributional kernel K agrees with a smooth function away from the origin that
verifies

|∂αK(x)| ≤ Aα

|x|n+|α| ∀α ∈ Nn (4.2)

for some constants Aα.

Proof. We start with applying the smooth Littlewood-Paley decomposition (3.14)
to the multiplier. Write

m(ξ) =
∑
j∈Z

mj(ξ) ∀ ξ ̸= 0

where each mj contains the information of the multiplier m around the frequen-
cies 2j. That is,

mj(ξ) := m(ξ)ψ
(
2−jξ

)
∀ j ∈ Z.
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Now define their corresponding kernels using the Fourier inversion formula,

Kj(x) :=

∫
Rn

mj(ξ)e
2πixξdξ.

Since m is a smooth bounded function, so is mj as well as compactly supported.
Thus, each mj is Lebesgue integrable (as well as their derivatives), from where
Kj is a well defined smooth function. Note that this conclusion would be desir-
able for m, but a priori this may not be the case.

Let us shoot for bounds for each piece of the kernel. Begin with the basic
identity:

(−2πix)γ∂αKj(x) =

∫
Rn

∂γ(mj(ξ)(2πiξ)
α)e2πixξdξ

The following crude inequality follows from the assumption (4.1) and the fact
that mj is supported on the annulus of radii 2j−1 and 2j+1.

(2π|x|)γ|∂αKj(x)| ≤ (2π)α
∫
Rn

|∂γ(mj(ξ)ξ
α)|dξ

≤ (2π)α|B1(0)|2n(j+1)C1(α, γ, Cα)2
j(|α|−|γ|) ≤ C2(n, α, γ, Cα)2

j(n+|α|−|γ|)

After this computation, γ as a parameter is freed. Set M := |γ| and conclude
that

|∂αKj(x)| ≤ C2(n, α,M,Cα)2
j(n+|α|−M)|x|−M ∀M ∈ N. (4.3)

Next, we would like to estimate the complete sum
∑

j∈Z |∂αKj(x)| by strate-
gically splitting it into two sums and using the inequality (4.3) with two different
values of M .

With M = 0 and by a geometric summation,∑
2j≤|x|−1

|∂αKj(x)| ≤ C2(n, α, Cα)
∑

2j≤|x|−1

2j(n+|α|) ≤ C3(n, α, Cα)|x|−n−|α|.

Analogously, select M = n+ |α|+ 1:∑
2j>|x|−1

|∂αKj(x)| ≤ C2(n, α, Cα)|x|−(n+|α|+1)
∑

2j>|x|−1

2−j ≤ C4(n, α, Cα)|x|−n−|α|.

All in all, we have just shown∑
j∈Z

|∂αKj(x)| ≤ C5(n, α, Cα)|x|−n−|α| (4.4)

which resembles what we are aiming to show. Here is the limiting argument
that leads to the end of the proof.
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We see that
∑

|j|≤N Kj tends to K as N → ∞ in the sense of distributions.
Take any φ ∈ S (Rn) and compute the following limit.

lim
N→∞

∑
|j|≤N

Kj −K

 (φ) = lim
N→∞

∫
Rn

∑
|j|≤N

mj(ξ)−m(ξ)

 φ̌(ξ)dξ = 0

In the last step, we used the facts that, by construction,
∑

|j|≤N mj(ξ) → m(ξ)
pointwise as N → ∞ (providing ξ ̸= 0); and that their difference is bounded
by 2m(ξ) which is a bounded function. dominated convergence theorem applies
since φ̌ is a Schwartz function.

Recalling that we showed (4.4) (focus on α = 0), we know that
∑

j∈ZKj(x) is
pointwise and absolutely convergent away from the origin. Since it converges to
K in the sense of distributions, we conclude thatK is a distribution which agrees
with a function away from the origin. Moreover, carrying out an analogous
computation for the derivatives ∂αKj, we deduce that the function with which
K agrees is smooth.

Eventually, once we know K can be viewed as a smooth function away from
the origin, (4.2) stems from (4.4) by triangle inequality.

From a wider perspective, what Theorem 4.2 tells us is that a Hörmander
multiplier is not only a bounded function (thus giving an associated bounded
operator on L2(Rn)) but also it verifies the gradient condition (2.8) (which,
recall, is stronger than the Hörmander condition). By the main Theorem 2.9
(say, in the setting of Rn), a Hörmander multiplier defines, on the spacial side,
an operator that is bounded on Lp(Rn) and is weak-type (1,1)!

Corollary 4.3. Hörmander multipliers define bounded operators on Lp(Rn) for
1 < p <∞.

Note that in the proof of Theorem 4.2, we heavily relied on the hypothesis
m ∈ C∞(Rn) at the time of deducing the crude estimate (4.4). As soon as
we drop the full smoothness hypothesis, we loose Theorem 4.2. Nevertheless,
if we assume m to be sufficiently regular (although not smooth), we can show
that the associated kernel still satisfies the Hörmander condition! This is one of
the reasons why we care about such a cumbersome condition in theorems like
Theorem 2.9 instead of just assuming a more handy condition like the gradient
one: The Hörmander multipliers without full regularity, but with enough, are
still embraced by the Hörmander condition (not by the gradient one though),
as the following theorem showcases.

Theorem 4.4. Let m ∈ L∞(Rn) ∩ Cℓ(Rn ∖ {0}) be a multiplier function such
that

|∂αm(ξ)| ≤ Cα

|ξ||α|
∀ ξ ∈ Rn ∖ {0}, ∀α ∈ Nn, 0 ≤ |α| ≤ ℓ. (4.5)
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with ℓ := ⌈n
2
⌉ the smallest integer greater than or equal to n

2
. Then, its associated

distributional kernel K agrees with a function away from the origin that verifies
the Hörmander condition:

sup
|y|>0

∫
|x|≥2|y|

|K(x− y)−K(x)|dx = B <∞.

for some constant B > 0.

As the proof of Theorem 4.4 involves similar technicalities as the one of The-
orem 4.2, we just note that the proof can be found in [12], Chapter 6, Section
4.4. Essentially, instead of deducing a crude estimate as (4.4), a neater applica-
tion of Plancherel leads to a similar estimate contemplating less regularity yet
turning out useful.

Corollary 4.5. Hörmander multipliers with limited regularity, as in the previ-
ous theorem, define bounded operators on Lp(Rn) for 1 < p <∞.

4.1.1. Elliptic differential operators

We are now focusing on partial differential operators with constant coefficients
of the kind

Du =
∑
|α|≤k

cα∂
αu (4.6)

with k, n ∈ N and understanding the multi-index notation α ∈ Nn as in Chapter
1.

Definition 4.6. We say that an operator of the type (4.6) is elliptic if the
characteristic polynomial of the associated homogeneous differential operator of
degree k

Du =
∑
|α|=k

cα∂
αu

FT−−→ P (ξ) =
∑
|α|=k

cαξ
α ξ ∈ Rn (4.7)

only vanishes at ξ = 0: P (ξ) ̸= 0 ∀ ξ ̸= 0.

Let us first work directly with a homogeneous differential operator of degree
k, as in Eq. (4.7). Consider the PDE

Du(x) = f(x)

for a given function f : Rn → R (let us work out formal computations for the
moment). Equivalently, in the frequency domain,

P (ξ)û(ξ) = f̂(ξ)



4.1 Hörmander multipliers 63

with ξ ∈ Rn and P being the associated characteristic polynomial to the differ-
ential operator D. The computation

(∂αu)̂ (ξ) = (2πiξ)αû(ξ) =
(2πiξ)α

P (ξ)
P (ξ)û(ξ) =

(2πiξ)α

P (ξ)
f̂(ξ) (4.8)

is valid whenever ξ ̸= 0. Hence, (4.8) wishes to be interpreted in the sense of
multipliers.

Indeed, neglecting the constant 2πi, define the multiplier

mh(ξ) :=
ξα

P (ξ)
|α| = k. (4.9)

Since we assumed D to be homogeneous, P is a homogeneous polynomial of
degree k, meaning that Eq. (4.9) defines a singular homogeneous multiplier of
degree 0:

mh ∈ L∞(Rn) mh(λξ) = mh(ξ) ∀λ > 0, ξ ̸= 0.

Not happy with this, we realise that a Hörmander multiplier has arisen! mh

in (4.9) is clearly smooth and bounded away from the origin. Furthermore,
because of the anatomy of the derivatives of quocients of polynomials, the par-
tial derivatives of mh satisfy (4.1). Thanks to this, by taking inverse Fourier
transforms and Lp norms in (4.8) and accounting for Corollary 4.3, we get

∥ ∂αu ∥p ≤ ∥Tmh
∥ ∥Du ∥p , |α| = k, 1 < p <∞. (4.10)

Precisely, if D is an elliptic differential operator with constant coefficients, then
any monomial partial differential operator of the same order as D is bounded,
in the Lp norm, by D. We leave the task of explaining the meaning of (4.10)
for after discussing the nonhomogeneous case.

The next step is considering a nonhomogeneous elliptic differential operator
of the kind (4.6). In such scenario, let us split its characteristic polynomial into
a sum of the homogeneous terms of degree k, Ph, and the remaining lower order
terms, Pl: P (ξ) = Ph(ξ) + Pl(ξ). We show that the polynomial P is bounded
below away from the origin.

|P (ξ)| =

∣∣∣∣∣∑
α≤k

cαξ
α

∣∣∣∣∣ =
∣∣∣∣|ξ|kPh

(
ξ

|ξ|

)
+ Pl(ξ)

∣∣∣∣
Note that the restriction to the unit sphere of the homogeneous part Ph appears,
but since Ph(ξ) does not vanish for ξ ̸= 0, such a restriction is bounded below in
modulus by some constant ch > 0. Furthermore, Pl is a polynomial of degree at
most k−1, thus there exists another constant Cl > 0 such that |Pl(ξ)| ≤ Cl|ξ|k−1

for |ξ| ≥ 1. We then reach the bound∣∣∣∣|ξ|kPh

(
ξ

|ξ|

)
+ Pl(ξ)

∣∣∣∣ ≥ ch|ξ|k − Cl|ξ|k−1 ≥ Cl|ξ|k
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for |ξ| ≥ R, where R := max{1, r} and r > 0 is such that chrk = 2Clr
k−1, so

r = 2Cl

ch
. All in all, P is bounded below away from the origin: |P (ξ)| ≥ ClR

k

for |ξ| > R.

Having remarked this, let ϕ ∈ C∞
c (Rn) be a bump function such that ϕ(ξ) =

1 for ξ ∈ BR(0) and ϕ(ξ) = 0 for ξ /∈ B2R(0). The adaptation of the computation
in (4.8) is as follows.

(∂αu)̂ (ξ) = (2πiξ)αû(ξ) = (2πiξ)αû(ξ)ϕ(ξ) + (2πiξ)αû(ξ)(1− ϕ(ξ))

= (2πiξ)αϕ(ξ)û(ξ) + (2πi)α
ξα

P (ξ)
(1− ϕ(ξ))P (ξ)û(ξ) (4.11)

It is safe to divide by P (ξ) in the second term because (1− ϕ(ξ)) = 0 in BR(0)
and we saw that |P | is bounded below elsewhere.

Again, neglecting 2πi factors from now on, define the multiplier

mnh(ξ) :=
ξα

P (ξ)
(1− ϕ(ξ)) |α| = k (4.12)

which is not homogeneous at all this time. However, it clearly lives in L∞(Rn)∩
C∞(Rn∖{0}) and, thankfully, it is at the end of the day a Hörmander multiplier:
for |ξ| < R, mnh(ξ) = 0; for R ≤ |ξ| ≤ 2R, mnh(ξ) is bounded; and for |ξ| > 2R,
mnh(ξ) =

ξα

P (ξ)
. Even though P is not homogeneous this time, since in the latter

case we are away from the origin, the bound (4.1) holds for mnh. To sum up,
mnh unmasks as a Hörmander multiplier. Thus, by Corollary 4.3, the multiplier
defines an operator Tmnh

which is bounded on Lp(Rn) for 1 < p <∞.

Take inverse Fourier transforms and then Lp norms in Eq. (4.11) to obtain

∥ ∂αu ∥p ≤ ∥ (ϕ(ξ)ξα)̌ ∗ u ∥p + ∥Tmnh
(Du) ∥p , |α| = k. (4.13)

Do not be afraid of the function (ϕ(ξ)ξα)̌ . It is a Schwartz function if we take
into account that ϕ ∈ S (Rn) also is. Utilising Proposition 1.5 for the first term
and the boundedness of Tmnh

(Corollary 4.3) for the second one, we reach

∥ ∂αu ∥p ≤ ∥ (ϕ(ξ)ξα)̌ ∥1 ∥u ∥p + ∥Tmnh
∥ ∥Du ∥p , |α| = k, 1 < p <∞.

(4.14)
This kind of estimates ((4.10) and (4.14)) are useful in the context of studying
regularity of solutions of partial differential equations. Imagine that we take
the initial data f = Du to live in Lp(Rn), and suppose that we were capable to
show that the solution to the equation u is also an Lp(Rn) function. Then, what
estimate (4.14) tells us is that, in fact, the solution u belongs to the Sobolev
space W p,k(Rn).
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4.2. Marcinkiewicz multipliers

Here, we present another interesting family of multipliers. Even though one
can define Marcinkiewicz multipliers in the setting of Rn, it will be more il-
lustrative and practical to work in the real line R. Let I = [2j+1, 2j] or
I = [−2j,−2j+1], j ∈ Z, be a dyadic interval.

Definition 4.7. A multiplier function m on the real line is a Marcinkiewicz
multiplier if m ∈ L∞(R) ∩ C1(R∖ {0}) and there exists B ≥ 0 such that∫

I

|m′(ξ)|dξ ≤ B <∞ (4.15)

for all dyadic intervals I = [2j, 2j+1] and I = [−2j+1,−2j], j ∈ Z.

Remark 4.8. The C1 regularity condition may be relaxed so that instead of
requiring (4.15), more generally we demand that m has uniformly bounded vari-
ation1 on dyadic intervals.

Remark 4.9. The following straightforward computation shows that a Hörman-
der multiplier in R is a Marcikiewicz multiplier in R as well.∫ 2j+1

2j
|m′(ξ)|dξ ≤ C1

∫ 2j+1

2j

dξ

|ξ|
= C1 log

(
2j+1

2j

)
= C1 log(2) ∀ j ∈ Z

Indeed, Marcinkiewicz multipliers generalise Hörmander multipliers. Our
natural concern now is the Lp boundedness of this broader class of multipliers.

Theorem 4.10. A Marcinkiewicz multiplier m, as in Definition 4.7 defines an
operator Tm which is bounded on Lp(R) for 1 < p <∞.

So far, every time we have stated a theorem the thesis of which is that a
certain operator is bounded on Lp(X) for 1 < p < ∞, the strategy for the
proof has been invoking the Calderón-Zygmund theory. This time, however,
Marcinkiewick multipliers do not verify the Hörmander condition. To be accu-
rate, the inverse Fourier transform of a Marcinkiewick multiplier may not even
be a function, meaning that the Hörmander condition makes no sense in this
context. Therefore, such a strategy is automatically discarded. In spite of this,
we are going to succeed by making wise use of the vector-valued theory and
the Littlewood-Paley theory. The following is a sketch of a proof; we have not
introduced enough machinery to explain the full proof.

Proof. We denote by TI the multiplier operator whose multiplier function is
the indicator function of the interval I. Likewise, denote by TmI

the multiplier
1To expand knowledge on this space of functions, see [14], Chapter 2, Section 1.
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operators with multipliers m1I . Let us work with φ ∈ S (R) (and extend
by continuity in the end) and dyadic intervals I. Clearly, by the fundamental
theorem of calculus, assuming I = [2j, 2j+1],

T̂mI
φ(ξ) = m(2j)1I(ξ)φ̂(ξ) +

∫
I

1[s,∞)(ξ)1I(ξ)φ̂(ξ)m
′(s)ds

or, on the spacial side,

TmI
φ(x) = m(2j)TIφ(x) +

∫
I

T[s,∞)TIφ(x)m
′(s)ds.

Introducing absolute values and using Cauchy-Schwarz, one reaches

|TmI
φ(x)| ≤ |m(2j)||TIφ(x)|+

∫
I

|T[s,∞)TIφ(x)(m
′(s))

1
2 ||m′(s)|

1
2ds

≤ ∥m ∥∞ |TIφ(x)|+B
1
2

(∫
I

|T[s,∞)TIφ(x)|2|m′(s)|ds
) 1

2

,

whereB is the constant bounding the variation of the derivative of the Marcinkiewicz
multiplier, as in (4.15). Now apply ℓ2 and Lp norms.∥∥∥∥∥∥

(∑
I

|TmI
φ(x)|2

) 1
2

∥∥∥∥∥∥
p

≤ ∥m ∥∞

∥∥∥∥∥∥
(∑

I

|TIφ(x)|2
) 1

2

∥∥∥∥∥∥
p

+B
1
2

∥∥∥∥∥∥
(∑

I

∫
I

|T[s,∞)TIφ(x)|2|m′(s)|ds

) 1
2

∥∥∥∥∥∥
p

= ∥m ∥∞
∥∥Sφ ∥∥

p
+B

1
2

∥∥∥∥∥∥
(∑

I

∫
I

|T[s,∞)TIφ(x)|2|m′(s)|ds

) 1
2

∥∥∥∥∥∥
p

The sum is over all dyadic intervals, both in the negative and positive sides of
the real line. Also, we identified the one dimensional rough Littlewood-Paley
square function S in the first term. The following step deals with the second
and cumbersome term. The main problem is tackling T[s,∞). The truth is that
this document does not reach a theoretical stage that enables us to justify the
move. Therefore, consult [5], Chapter 5, Theorem 5.13 for the rigorous proof
and higher technology. Just for illustrative purposes, let us sweep T[s,∞) under
the rug.∥∥∥∥∥∥

(∑
I

∫
I

|TIφ(x)|2|m′(s)|ds

) 1
2

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
(∑

I

|TIφ(x)|2
∫
I

|m′(s)|ds

) 1
2

∥∥∥∥∥∥
p

≤ B
1
2

∥∥∥∥∥∥
(∑

I

|TIφ(x)|2
) 1

2

∥∥∥∥∥∥
p

= B
1
2

∥∥Sφ ∥∥
p
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Winding back, we reached∥∥∥∥∥∥
(∑

I

|TmI
φ(x)|2

) 1
2

∥∥∥∥∥∥
p

≤ (∥m ∥∞ +B)
∥∥Sφ ∥∥

p

and since by Theorem 3.20, the one dimensional rough square function is Lp(R)-
bounded, so is such a vector-valued extension of the Marcinkiewicz multiplier
Tm. Again, we refer to [5], Chapter 5, Corollary 5.11, to find out why the
bounded vector valued extension implies that the simple original multiplier Tm
is bounded as well.





CHAPTER 5

Beyond the paradigm

The gift of Calderón and Zygmund illuminated the mathematical analysis com-
munity. Eventually, mathematicians could understand the behaviour of iconic
operators such as the Hilbert transform or square functions. Later, the the-
ory broadened to generic measure metric spaces and vector-valued functions.
Nevertheless, together with this progress, new problems arose in the field. In
particular, interest was shown in singular measure operators.

The reason for this interest relies on the thirst for understanding other ap-
pealing problems like the Kakeya problem, the Bochner-Riesz conjecture or the
Fourier restriction problem, which still remain mysterious and open.

In this chapter, we would like to give a flavour of the difficulties and state-
of-the-art challenges by an exposition of a particular example: Stein’s spherical
maximal operator.

5.1. The spherical maximal operator

In Chapter 1, we introduced the Hardy-Littlewood maximal function:

Mf(x) := sup
r>0

1

|Br(x)|

∫
Br(x)

|f(y)|dy

It is to be noted that for r → 0, the averages over balls of radius r tend to
resemble the convolution with the Dirac delta (as a feature of approximations
to the identity). By this, we want to highlight that the Hardy-Littlewood
maximal operator is certainly a singular operator, in the sense that the kernels
tend to generate a singularity.

If light of the latter, why not considering an analogous construction but
averaging over spheres, instead of balls? This is precisely what Elias Stein
wondered in the 1970’s.
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Definition 5.1. Let f : Rn → C be a measurable function in Rn 1. Define the
spherical maximal function as follows.

Sf(x) := sup
r>0

∫
Sn−1

f(x− rω)dσ(ω) ∀x ∈ Rn (5.1)

where Sn−1 is the (n−1)-dimensional unit sphere in Rn, σ is the surface measure
in Rn and ω ∈ Sn−1 is a unit vector.

The first remark we make noticeable is that it is necessary to use the surface
measure σ instead of the Lebesgue measure. However, since we are going to
be considering functions f ∈ Lp(Rn) in Lebesgue spaces over Rn equipped with
the Lebesgue measure, the integral (5.1) is clearly singular for those functions,
because an Lp(Rn) function may take ∞ as a value on a sphere, yet have p-th
power integrable on all of Rn 2.

Secondly, the surface measure σ is not absolutely continuous at all with re-
spect to the Lebesgue measure, meaning that Radon-Nikodym theorem3 does
not apply, thus we cannot interpret (5.1) as convolution against a kernel func-
tion. Instead, we like to view it as convolution against a measure (different to
the surface measure σ).

Definition 5.2. Let µ be a measure defined on the Borelians in Rn, (Rn,B, µ).
Let f be a Borel-measurable function. Define the convolution of a function
against a measure as the function of x ∈ Rn

(f ∗ µ)(x) :=
∫
Rn

f(x− y)dµ(y). (5.2)

In the case that concerns us, the measure is

µr(f) :=

∫
Sn−1

f(rω)dσ(ω). (5.3)

Here, we have defined the measure µr making use of Riesz representation the-
orem4, a powerful result that in essence tells us that the dual space of the
continuous functions that tend to 0 at infinity are the finite measures.

If f is a continuous function, it is very clear that (5.3) defines a linear and
bounded functional, because f is bounded on the compact set r Sn−1. Therefore,

1If B is the σ-algebra of the Borelians, λ is the Lebesgue measure and σ is the surface
measure, measurable functions on (X,B, λ) are the same as the ones on (X,B, σ). It does not
matter the measure function.

2It is in fact a subtle matter to correctly define the spherical average operator on functions
f ∈ Lp(Rn). Check [12], Chapter 11 for more on this.

3Check [9], Chaper 6, Theorem 6.10.
4See [9], Chapter 6, Theorem 6.19.
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µr turns out to be a finite measure, for every r > 0. All in all, we are now
comfortable with

Sf(x) = sup
r>0

(f ∗ µr)(x).

Surely, by dealing with convolution with finite measures, we have to forget
about shooting for the Hörmander condition, which requires the kernel to be
an actual function. Therefore, the spherical maximal operator definitely falls
outside the scope of the Calderón-Zygmund theory.

Against all odds, it is desirable to study the properties of the spherical
maximal function because, as remarked in Chapter 1, maximal estimates lead
to almost everywhere convergence results. It turns out that the spherical average
operator is intimately related to the wave equation in Rn. In fact, it is present in
the analytic solution of it. Therefore, with maximal estimates for such operator
one may deduce almost everywhere convergence for the solution of the wave
equation to the initial datum.

To put even more stress in how untameable Sf is, here is a comparison.
Let us set us back to the Hardy-Littlewood maximal function, the supremum
of which we took over the continuum r > 0,

Mf(x) := sup
r>0

1

|Br(x)|

∫
Br(x)

|f(y)|dy.

It is sometimes useful in the study of maximal operators to place a supremum
over a countable set of dyadic numbers, like

M̃f(x) := sup
k∈Z

1

|B2k(x)|

∫
B

2k
(x)

|f(y)|dy.

Clearly, M̃f ≤ Mf . Moreover, the reverse inequality also holds up to a multi-
plicative constant. To show it, let k ∈ Z and let 2k−1 ≤ r ≤ 2k.

1

|Br(x)|

∫
Br(x)

|f(y)|dy ≤ 1

|B2k−1(x)|

∫
B

2k
(x)

|f(y)|dy

=
2n

|B2k(x)|

∫
B

2k
(x)

|f(y)|dy ≤ 2nM̃f(x)

Now taking supremum over all k ∈ Z and r > 0, one obtains Mf ≤ 2nM̃f as
desired. All in all, what Mf ∼ 2nM̃f means is that these two manifestations of
the operator are bounded on the same spaces; in this sense, they are equivalent.

The shown feature is not specific of the Hardy-Littlewood maximal function.
For instance, the maximal version of the parabolic measure

µpar
r (f) :=

∫ 2

1

f(rt, r2t2)dt
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also presents this property, as it can be similarly shown.

Unfortunately, the dyadic version of the spherical maximal operator

S̃f(x) := sup
k∈Z

∫
Sn−1

f(x− 2kω)dσ(ω)

is not comparable to the continuous supremum version Sf . The only true
inequality is the trivial S̃f ≤ Sf . The reason for this property to fail is that, in
the case of the Hardy-Littlewood maximal function, the set of centred solid balls
are a nested collection of sets, whereas the hollow centred spheres of different
radii are not nested by any means. Perhaps surprisingly, this issue leads to
different behaviours of Sf and S̃f . Here is what we can say about this pair of
operators.

Theorem 5.3. The dyadic spherical maximal operator S̃f is bounded in Lp(Rn)
for 1 < p ≤ ∞. This is, for f ∈ Lp(Rn),∥∥∥ S̃f ∥∥∥

p
≤ Cp ∥ f ∥p ,

for some constant Cp > 0 depending on p and n.

Conjecture 5.4. The dyadic spherical maximal operator S̃f is weak-type (1,1).
So for any λ > 0 and f ∈ L1(Rn),

λ|{x ∈ Rn : S̃f(x) > λ}| ≤ C1 ∥ f ∥1 ,

for some constant C1 > 0 depending on n.

Theorem 5.5. The spherical maximal operator S is bounded in the following
cases:

(a) For any dimension n ≥ 2, n
n−1

< p ≤ ∞ and f ∈ Lp(Rn),

∥ Sf ∥p ≤ Cp ∥ f ∥p ,

for some constant Cp > 0 depending on p and n.

(b) For n ≥ 3, S is of restricted type5 at the endpoint. By this, we mean:

∥ Sf ∥
L

n
n−1 ,∞

(Rn)
≤ Cn ∥ f ∥L n

n−1 ,1
(Rn)

,

where Cn is a constant depending on n.

However, (b) is false for n = 2:

(c) S does not map L2,1(R2) to L2,∞(R2).

See Stein and Bourgain’s work in this regard, in [11] and [1].
5Learn more about Lorentz spaces and their interpolating role in [6], Chapter 1.
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