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ABSTRACT

Modern machine learning systems are increasingly trained on
large amounts of data embedded in high-dimensional spaces. Often
this is done without analyzing the structure of the dataset. In this
work, we propose a framework to study the geometric structure of
the data. We make use of our recently introduced non-negative ker-
nel (NNK) regression graphs to estimate the point density, intrinsic
dimension, and linearity of the data manifold (curvature). We further
generalize the graph construction and geometric estimation to mul-
tiple scales by iteratively merging neighborhoods in the input data.
Our experiments demonstrate the effectiveness of our proposed ap-
proach over other baselines in estimating the local geometry of the
data manifolds on synthetic and real datasets.

Index Terms— Local neighborhoods, Manifold geometry,
Multi-scale graphs, Intrinsic dimension, Curvature

1. INTRODUCTION

The geometry of a dataset can be summarized using properties such
as point density, curvature, and intrinsic dimensionality (ID). The ID
of a dataset refers to the minimum number of parameters required for
its characterization while maintaining its structure [1]. Approaches
for ID estimation [2] often rely on the construction of similarity-
based graphs such as K-nearest neighbor (KNN) or e-neighborhood
graphs (e-graphs). However, the choice of these “neighborhood pa-
rameters” (K/c) is generally ad hoc, which can severely affect the
estimation of ID and other geometric properties of the data [3, 4, 5].
Furthermore, these similarity-based graph methods define the scale
at which the geometry is estimated through the choice of the same
neighborhood parameters (K/e). As a consequence, the only way to
analyze the data at different scales is by increasing the number of
neighbors connected to a given query point.

In this paper, we propose new local methods for studying the
geometrical properties of manifolds, using novel metrics we have
developed from local data neighborhoods defined with the non-
negative kernel (NNK) regression graphs [6, 7]. An NNK graph is
built by first selecting an initial neighborhood, e.g., a KNN graph,
and then using optimization to eliminate connections to geometri-
cally redundant neighbors. NNK graphs are more robust to the initial
neighborhood definition (e.g., KNN graphs with different K choices
can lead to the same NNK graph). More importantly, the number of
NNK neighbors is explicitly dependent on the local geometry of the
data and results in a local polytope around any query point.

We propose new metrics derived from NNK graphs to gain in-
sights into three aspects of the geometry of a manifold. First, we
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study local manifold properties directly derived from NNK neigh-
bors. The NNK optimization implies that the number of points se-
lected in a neighborhood and the size of the local polytope depend
on the local geometry of the data. This is in contrast to the measures
obtained from a KNN or e-graph where the number of neighbors or
the diameter will depend only on the threshold parameters.

Second, we propose local linear subspace estimation through
low-rank approximation of similarity-based graphs via principal
component analysis (PCA) on the features of the points in each
neighborhood. These lower-dimensional projections are associated
with the tangent plane to the manifold’s surface, and their dimension
has been used [8, 9, 10, 11] to estimate ID. For nonlinear manifolds,
the low-rank approximations of similarity-based graphs have been
shown [3, 4, 5] to depend heavily on the definition of the local
neighborhoods, and therefore, on the choice of the threshold param-
eter (K/e). In the NNK neighborhood optimization, only one point
in each direction will be selected, and, while only locally relevant
directions will be chosen, stronger directions will not be reinforced.
This way, while NNK is more robust to nonlinearities in the data
representation space, KNN projections will be more robust when
there is linearity. This way, the change in KNN projections as a
function of scale can be useful in assessing linearity, while NNK
low-rank approximations will provide more reliable estimates for
the local tangent plane to the manifold.

Finally, we propose a geometric analysis at multiple scales. Dif-
ferent approaches have been proposed to analyze manifolds at mul-
tiple scales. [10, 11] build on the technique of applying PCA locally
by taking a multiscale approach in the KNN graph construction. This
approach, however, relies on choosing an appropriate range of values
for K > ID, where the value is small enough that the manifold is lin-
ear and large enough to mitigate noise in the data. Thus, [10, 11] are
highly sensitive to the density and distribution of points in the mani-
fold. An alternative approach followed by TwoNN [12] is to work on
smaller subsets of the initial dataset, generated by random sampling
of data points. The estimates are then aggregated, under the assump-
tion that the errors that arise from the sampling will average to zero
for a large enough number of subsets. In practice, ID estimates based
on random sampling have high variance on sparse manifolds and do
not account for changes in the local manifold structure.

We propose an alternative approach to dataset sampling in which
the points in the dataset are merged iteratively based on the neighbor-
hood defined at the current scale. This step is repeated until a dataset
of the desired size is obtained. Subsets with different geometrical
properties can be achieved based on the choice of similarity metric
and neighborhood definition. For example, when using a Euclidean
distance-based KNN similarity graph, the closest points in space will
be selected and denser areas will be merged faster. On the contrary,
when using the distance-based similarity but with NNK similarity
graphs we can preserve the geometry of the initial data and maintain



areas of different density in the resulting sampled datasets.

In summary, we propose a framework to study the local geome-
try of data using the properties of NNK graphs. We demonstrate via
experiments: (i) ID estimation using NNK is in line with the state-
of-the-art methods, (ii) linearity of data manifolds using KNN and
NNK graphs, and (iii) the impact of neighborhood choice in merg-
ing examples for scale. Practical applications of some of the metrics
(at one scale) presented here are studied in the context of transfer
performance of pre-trained neural networks in [13].

2. NON-NEGATIVE KERNEL (NNK) REGRESSION
GRAPHS

A positive definite kernel k(x;, ;) corresponds to a transformation
of points in R? to points in a Hilbert space H, such that similarities
can be interpreted as dot products in this transformed space (gen-
erally referred to as Kernel Trick). This way, k(x;, 2;) = ¢F ¢;,
where ¢ : R* — H and ¢; represents the transformed observation
x;. A popular kernel based on the distance between points that has
this property is the Gaussian kernel,
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where o corresponds to the bandwidth parameter of the kernel.

A KNN (or e-graph) can be constructed by choosing the K
largest inner products ¢ ¢; (or those above a threshold ¢). There-
fore, these approaches are analogous to a sparse approximation of ¢;
using a thresholding approach.

In contrast, an NNK [7] graph corresponds to an improved strat-
egy for representation using basis pursuit. Starting from an initial
KNN or e-neighborhood S, the NNK neighborhood at each node is
obtained by solving

— 1 ¢ — 2
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where s corresponds to the weights of neighbors (®s) used to ap-
proximate ¢;. Using the Kernel Trick, the objective in (2) can be
rewritten as:

0s = argminleTKs,se - K%,0, (3)
0:6>0 2

where K; ; = k (s, a;). Thus, the i-th row of the graph adjacency
matrix W is given by W; s = 0s and W; sc = 0.

NNK performs a selection similar to the orthogonal step in or-
thogonal matching pursuits [14] which makes NNK robust to the
choice of sparsity parameters in the initialization (i.e., K in KNN).
Additionally, the resulting graph has a geometric interpretation
where each edge in an NNK graph corresponds to a hyperplane with
normal in the edge direction, points beyond which are not connected
(edge weight zero) [6, 7].

NNK has been shown to perform well in several machine learn-
ing tasks [15], image representation [16], and generalization estima-
tion in neural networks [17]. Furthermore, NNK has also been used
to understand convolutional neural networks (CNN) channel redun-
dancy [18] and to propose an early stopping criterion for them [19].
Graph properties (not necessarily based on NNK graphs) have been
also proposed for the understanding and interpretation of deep neu-
ral network performance [20], latent space geometry [21, 22] and
to improve model robustness [23]. The specific contribution of this
work is to explore the effectiveness of NNK graphs in providing in-
sights into the local geometry of the data, which can be useful in

understanding the properties and structure of the whole dataset. The
metrics we propose are not limited to analyzing features in deep neu-
ral networks and can be on any dataset embedded in some space.

High-resultion Scale

Coarse Scale

[

Sample Points < p

NNK Polytope

—

Collapse Points

Tangent Plane

Embedded
Manifold

Fig. 1: Our proposed approach to the geometric analysis of data
using multi-scale NNK graphs. We assume observed data belongs
to a manifold embedded in a higher dimensional space. Properties
derived from NNK graphs allow us to capture the local geometry of
the data. Changes in the properties of NNK graphs at multiple scales
reflect changes in the manifold geometry.

3. MULTI-SCALE ANALYSIS OF NNK GRAPHS

3.1. Local NNK neighborhood data

For the Gaussian kernel, the local geometry of the NNK graph for
a given node is a convex polytope around the node. Given a suffi-
ciently large number of initial neighbors, the local connectivity of an
NNK graph will be a function of the local dimension of the manifold,
as depicted in Fig. 1. We can derive a set of geometrical properties
from an NNK graph, and by comparing these properties at different
points in a manifold we can gain insight into its geometry.

The number of neighbors in an NNK graph can be insightful, but
it can vary locally based on (i) the distribution of the points sampled
from a manifold and (ii) the location of the points relative to the
geometry of the manifold (e.g., on the edges vs. the middle of the
manifold). We can obtain information on the local geometry of the
manifold by analyzing other properties of an NNK graph.

The diameter of an NNK polytope is defined as the maximum dis-
tance between points in the NNK neighborhood around datapoint k:

di = max |[z; — 4], “
where x; and x; are the features of nodes ¢ and j in the NNK neigh-
borhood of k, Si. Given that NNK will select the nearest point along
each direction in space, we can assess the local point density of a
manifold using the diameter dj, of polytopes around different points.

3.2. Linear subspace estimation from an NNK graph

An existing approach to ID estimation consists of performing a local
parametrization by finding the local tangent plane in the NNK/e-
graph neighborhood of a point and aggregating the estimated ID for
each data neighborhood analyzed [8, 9, 10, 11]. Given an appro-
priate neighborhood, PCA returns the local linear tangent space to



KNN low-rank approximation on a Linear Manifold

KNN low-rank approximation on a Non-Linear Manifold
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Fig. 2: Average number of principal components of the low-rank approximation of KNN graphs as a function of point merging, together
with a black line indicating the datasets’ ID, and distribution of the principal angles between NNK low-rank approximation subspaces
on a linear manifold and a non-linear manifold. We merge points using Euclidean distance, which, given that the manifolds are uniformly
sampled, will result in points being merged at the same rate throughout the manifolds. We show the angles between pairs of adjacent NNK
neighborhoods (i.e., one of the center nodes is a neighbor of the other) and the angles for random pairs of NNK neighborhoods. On a linear
manifold, the chosen principal components of a KNN graph will be equal to the manifold’s ID, and any pair of neighborhoods will have
angles close to 0. On a nonlinear manifold, the principal components of a KNN graph will over-estimate the ID, and close neighborhoods
have angles close to zero, while random neighborhoods are more dissimilar

the manifold. PCA estimates are robust on linear manifolds, but on
nonlinear manifolds, the task of finding an appropriate neighborhood
makes these estimators unstable [3, 4, 5]. We can also obtain a low-
rank approximation from the NNK neighborhood vector subspace,
such that the number of relevant principal components would be
a robust estimate of the ID of the manifold. The sparsity enforced
by the NNK selection makes NNK graphs less sensitive to the in-
stability of the neighborhood in the initial KNN graph. To find the
number of significant eigenvalues, we introduce a threshold on the
size of the eigenvalues as proposed in [8], namely

1
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In addition, we use the change with scale in the size of the low-rank
approximations of KNN graphs to validate our observations on the
curvature of a manifold. While the KNN graph’s projection will not
change on flat manifolds, it will be unstable and overestimate the
flatness on highly curved manifolds.

By comparing the principal angles between the low-rank ap-
proximation of NNK neighborhoods we can better understand the
geometry of a manifold. Principal angles [24] refer to the general-
ization of the concept of angles between lines in the plane to any
arbitrary dimension. This way, on a flat manifold the distribution
of the angles will be similar in neighborhoods in different positions
of the manifold, and many of these principal angles will be close to
zero. In contrast, on a highly curved manifold, the distribution of
the angles between NNK subspaces will change at different regions
in the manifold, and the angles will be larger. Moreover, on locally
smooth manifolds, we would expect the majority of the angles be-
tween the low-rank approximation of adjacent NNK neighborhoods
(i.e., neighborhoods of points where one is in the NNK neighbor-
hood of the other) to be close to zero.

3.3. NNK graph construction at multiple scales

To study the manifold at multiple scales, we must increase the size
of the NNK neighborhood. Intuitively, we would do so by adjusting
the hyperparameters of the NNK algorithm to observe points that
are further away. However, by definition, NNK will choose a single
neighbor in each relevant direction, therefore increasing the sparsity
parameter K in the initial KNN graph is unlikely to affect the size
of the resulting NNK neighborhood after optimization. On the other
hand, increasing the bandwidth o of the Gaussian kernel will make
points that are very close to each other collapse (similarity value of
1), in which case the NNK optimization will only select one point
for the neighborhood. To overcome this issue, we propose an ap-
proach that simultaneously increases o while merging the closest
data points in the manifold. Thus, we change the scale of the analy-
sis by subsampling the manifold in a controlled way, increasing the
distances between points in the process, while also increasing o to
allow farther away points to be connected.

We would expect a linear manifold to have similar properties
at different scales. However, merging on a highly curved manifold
would result in connecting points that were initially in different local
neighborhoods, thus changing the shape of the manifold and leading
to changes on the NNK graphs at coarser scales (see Fig. 1). Thus,
studying our proposed properties at different scales can lead to a
better understanding of the shape of the manifold.

To achieve a sparser representation we iteratively merge the two
closest points according to some selected metric. For example, we
can merge the two nodes with the shortest pairwise distance (largest
KNN graph weight), and the nodes with the largest NNK pairwise
weight, or use alternative metrics. At each step, we combine the
points that are closest so that we can increase the window of obser-
vation. After each merging iteration, we can recalculate the NNK



graph. Since the decay parameter o has been defined based on the
distances in the dataset, we will in turn increase the size of the NNK
graph as we merge points. This way, we can construct larger NNK
graphs and thus be able to analyze the manifold at different scales.
This merged dataset can be achieved as described in Algorithm 1.

Algorithm 1 Two-closest Merging

Input: X features, / merging steps
1: for iterin I do
2: for eachnodei =1,2,..., N do
S; = {neighborhood of node 7}
K; s = {similarity to each neighbor}
end for
4,9 = {i,j : max Ki;}

SANRAN

7. X =xuXN\ X x;
8: end for
Output: Dataset X after ] merging steps

4. EXPERIMENTS

4.1. ID estimation benchmark

d MLE kNNG BPCA Hein CD DANCo MLSVD NNK
1 1.00 1.07 5.70 1.00  1.14 1.00 1.00 1.00
2 2.21 2.03 1.55 200 2.19 2.00 1.00 1.00
2 1.97 2.06 2.00 200 1.98 2.00 2.00 2.00
2 1.96 2.09 2.00 2.00 1.93 2.00 2.35 2.00
3 2.88 3.03 3.00 3.00 288 3.00 3.00 3.00
4 3.83 3.82 4.00 4.00 3.23 4.00 2.08 4.00
4 3.95 4.76 4.25 400 3.88 4.00 8.00 4.00
6 6.39 11.24 12.00 595 5091 7.00 12.00 8.00
10 8.26  10.21 520 890 8.09 9.86 10.00 10.00
10 9.10 9.98 545 945 9.12 10.09 10.00 10.00
3 4.05 4.32 4.00 3.00 3.37 4.00 1.00 3.00
811 1029  9.58 11.00  8.00 6.96 9.98 1.00 10.00

Table 1: ID estimation on synthetic datasets [2] (first 10 rows),
Isomap [25], and MNIST [26] (last 2 rows), using 7 state-of-the-art
methods and our proposed NNK approach.

We estimate ID from the number of principal components se-
lected from the NNK graph following equation (5). We compare
our proposed method for ID estimation (NNK), with state-of-the-art
methods for each of the categories defined in an ID estimator liter-
ature review and benchmark proposal [2]. We include BPCA [27]
and MLSVD [28], which are projective estimators; the KNNG [29]
graph-based estimator; CD [30] and Hein [31] as examples of topo-
logical fractal estimators; and MLE [5] and DANCo [32], topologi-
cal nearest neighbor-based estimators. We show the results on a se-
ries of synthetic datasets [31] generated by uniformly drawing sam-
ples from manifolds of known ID that are embedded linearly or non-
linearly on higher dimensional spaces. We also show results for the
Isomap [25] faces and MNIST [26] datasets.

Table 1 shows that the estimate of ID derived from NNK graphs
achieves performance in line with that of other estimators in the lit-
erature. While a more complete benchmark would help assess the
capabilities and limitations of our NNK estimates, our results show
that meaningful information about the local geometry of a data man-
ifold can be derived from NNK neighborhoods.

4.2. Synthetic manifold analysis

We use two of the metrics we previously described to assess the lin-
earity of two synthetic data manifolds. In the first row, we show
the size of the low-rank approximations of KNN neighborhoods as a
function of the points in the dataset. Below, we plot the distribution
of the principal angles between the low-rank approximation of NNK
neighborhoods. Fig. 2 shows the distributions obtained by compar-
ing adjacent and random NNK neighborhoods on a linear (left) and
nonlinear (right) manifold. For the linear manifold, the distribution
of both adjacent and random pairs of neighborhoods are almost the
same, since the geometry of a neighborhood in a linear manifold
will be similar throughout the manifold. In contrast, on the nonlin-
ear manifold, there is a difference in the distribution of the angles.
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Fig. 3: Distribution of the diameter of NNK graph polytopes con-
structed on the control dataset while merging with KNN or NNK
similarity. When merging based on KNN similarity, we observe the
polytope diameter distribution shift to larger diameters. When using
NNK similarity in the selection of the points to merge, the distribu-
tion of the polytope sizes remains the same after merging.

4.3. Choice of neighborhoods for merging

From the distribution of the diameter of the NNK polytopes for the
same dataset, in Fig. 3, we observe that when using KNN similarity
for merging, the size of the polytopes increases, such that the size
distribution shifts to larger polytopes while also growing in size. In
contrast, when NNK similarity is used for merging, the distribution
of the polytope diameters is preserved as their sizes grow overall.
This shows that NNK merging is better if the goal is to preserve the
differences in point densities in the multiscale analysis.

5. CONCLUSION

We present a framework based on the geometrical properties of NNK
graphs to gain insight into the shape of data manifolds in terms of
their intrinsic dimension, curvature, and point density. The proposed
metrics are the dimension of the low-rank approximation of the KNN
and NNK graphs, the diameter of NNK graphs, and the principal an-
gles between the low-rank approximations of NNK graphs. More-
over, we compare these metrics at multiple scales, which we can do
by using our proposed point merging algorithm. Experiments show
that we can accurately estimate ID on popular benchmark manifolds.
Furthermore, we have shown the effectiveness of NNK properties in
characterizing data manifolds.
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