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Abstract

Coloring graphs embedded on surfaces is an old and well-studied area of graph
theory. Thomassen proved that there are finitely many 6-critical graphs on
any fixed surface and provided the explicit set of 6-critical graphs on the torus.
Later, Postle proved that there are finitely many 6-list-critical graphs on any
fixed surface. With the goal of finding the set of 6-list-critical graphs on the
torus, we develop and implement algorithmic techniques for computer search of
critical graphs in different list-coloring settings.

Keywords: graphs on surfaces, list coloring, graph algorithms.
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Resum

La coloracié de grafs dibuixats a superficies és un area antiga i molt estudiada
de la teoria de grafs. Thomassen va demostrar que hi ha un nombre finit de
grafs 6-critics a qualsevol superficie fixa i va proporcionar el conjunt explicit dels
grafs 6-critics al torus. Després, Postle va demostrar que hi ha un nombre finit
de grafs 6-llista-critics a qualsevol superficie fixa. Amb l'objectiu de trobar el
conjunt de grafs 6-llista-critics al torus, desenvolupem i implementem tecniques
algoritmiques per la cerca per ordinador de grafs critics en diferents situacions
de coloracié per llistes.

Paraules clau: grafs en superficies, coloracié amb llistes, algorismes sobre
grafs.

Codis MSC2020: 05C10, 05C15, 68R10.

Resumen

La coloracién de grafos dibujados en superficies es un area antigua y muy estu-
diada de la teoria de grafos. Thomassen demostré que hay un ntimero finito de
grafos 6-criticos en cualquier superficie fija y proporcioné el conjunto explicit
de los grafos 6-criticos en el toro. Después, Postle demostré que hay un nimero
finito de grafos 6-lista~criticos en cualquier superficie fija. Con el objetivo de
encontrar el conjunto de grafos 6-lista-criticos en el toro, desarrollamos e im-
plementamos técnicas algoritmicas para la busqueda por ordenador de grafos
criticos en diferentes situaciones de coloracion por listas.

Palabras clave: grafos en superficies, coloracion con listas, algoritmos sobre
grafos.
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Chapter 1

Introduction

In this chapter, we lay out the basic definitions of graph theoretical and topo-
logical concepts used in this thesis, as well as the background results which
contextualize our research.

We follow the exposition of Diestel [6], of Mohar and Thomassen [17] and of
Postle [18].

1.1 Graphs and Surfaces

1.1.1 Graph Theory Terminology

Here we lay out the basic definitions of graph theory that we will be using in
this thesis. We expect the reader to already have some familiarity with the
concepts, and therefore we will not delve into explainations and will just state
the definitions for the purpose of completeness and disambiguation.

Definition 1.1.1. A graph G is a pair (V(G), E(G)) cousisting of a finite set
V(G) and a set E(G) of two-element subsets of V(G). We call the elements of
V(G) vertices and the elements {u, v} of E(G) edges, which we often denote as
uv.

Definition 1.1.2. Two vertices u,v are adjacent if uv € E(G).

For an edge e = {u,v} € E(G), we say e is incident with v and v.

The neighborhood of v € V(G), denoted by N (v), is the set of all vertices in
G adjacent to v. The degree of a vertex v is d(v) = |N(v)|.

Definition 1.1.3. Two graphs G and H are isomorphic if there exists a bijec-
tion f between V(G) and V(H) any two vertices u and v in G are adjacent if
and only if f(u) and f(v) are adjacent in H.

Definition 1.1.4. For a graph G = (V, E), we say a graph G' = (V/,E') is a
subgraph of G if V! C V, E' C F and for all uv € E’ we have u,v € V'. We
denote G’ being a subgraph of G by G’ C G, and denote a proper subgraph (a



subgraph in which E' C E) by G’ C G. We say that a subgraph G’ = (V', E’)
is induced if E’ contains all the edges in F whose endpoints are in V'. If
X C V, we denote by G[X] the induced subgraph with the vertex set X. If
G' = (V',E) C G = (V,E), we denote by G \ G’ the graph G[V \ V'], and if
X C V we denote by G\ X the graph G[V \ X]|. If e is an edge, G \ e is the
graph (V, '\ {e}).

Definition 1.1.5. A connected component of a graph is the induced graph by
the vertices of an equivalence class over the transitive closure of the adjacency
relation on the vertices.

A graph is connected if it has only one connected component.

A vertex v € V(G) is a cutvertex if G\ {v} is not connected. A graph G is
2-connected if it has no cutvertices.

Definition 1.1.6. The complete graph in n vertices, denoted by K,, is the
graph with a vertex set of size n and edges between any pair of vertices. A path
is a connected graph with two vertices, the endpoints, with degree 1 and all the
other vertices with degree 2. The path is said to be of length ¢ if it has ¢ edges.
A cycle is a connected graph with all vertices of degree 2. The cycles is said to
be of length £ if it has ¢ edges and vertices. The cycle of length ¢ is denoted by
Cy.

Definition 1.1.7. The join of two graphs G; = (V4, E1) and Go = (Va, E»),
denoted by G1 + G2, is the graph (V4 UVa, By U Ey U (Vy X Va)), where (V4 x Va)
denotes the set {vy,vy : v1 € V1,09 € Vo}.

Definition 1.1.8. The distance d(u,v) between two vertices u and v in G is
the length of the shortest path between them.

In one section of this thesis, we will also need the variant of directed graphs.

Definition 1.1.9. A directed graph G is a pair (V(G), E(G)) consisting of a
finite set V(G) and a set E(G) of ordered pairs of elements of V(G). We call
the elements of V(G) vertices and the elements (u,v) of E(G) edges, which we
often denote as 0.

Definition 1.1.10. The indegree d*(v) of a vertex v € V(G) of a directed
graph @ is the number of edges of the form @0 in G. The outdegree d~ (v) is the
number of edges of the form o0 in G. A directed graph is said to be eulerian if
for all vertices v, d™(v) = d~(v).

1.1.2 Surfaces

Definition 1.1.11. A surface is a connected compact 2-dimensional manifold
without boundary.

Example 1.1.12. The sphere Sy is the surface defined by the set {(z,y,z2) €
R3 : 2?2 + y? + 2% = 1} with the euclidean metric inherited from R3.

The torus Sy is the surface defined by the set {(z,y,2) € R? : (/22 + 32 —
2)2 + 22 = 1} with the euclidean metric inherited from R3.



Note that, even though we have defined the above example surfaces as geo-
metric objects in R3, we think of surfaces as topological objects, and therefore
consider two surfaces equivalent if they are homeomorphic.

An important result in topology is that all surfaces defined in this way can
be classified:

Theorem 1.1.13 (Classification Theorem of Surfaces). Every surface is home-
omorphic to one of the following surfaces:

e Sy, the sphere.

e Sy, the surface obtained from the sphere by performing the operation of
adding a handle k > 1 times.

e Ny, the surface obtained from the sphere by performing the operation of
adding a crosscap k > 1 times.

The operation of adding a handle in a surface ¥ can be thought of as deleting
the interiors of two small disks 77 and 75 from the surface ¥ and identifying the
boundaries of T} and T5. The operation of adding a crosscap in a surface ¥ can
be thought of as deleting the interior of a small disk T" of ¥ and identifying the
diametrically opposite points of T'. In this thesis, we will be mainly concerned
only with the two surfaces Sy and S7, so we do not delve into the topological
details of this construction.

We often represent surfaces via their fundamental polygon. A fundamental
polygon is a polygon with a labelling and an orientation of its edges so that the
corresponding surface is obtained by identifying the edges with the same labels
along the specified orientations. Theorem 1.1.13 can be restated as that every
surface is homeomorphic to a surface obtained from some type of fundamen-
tal polygon. See Figure 1.1 for representations of Sy and S; as fundamental
polygons.

Finally, we define the following topological invariant for surfaces:

Definition 1.1.14. The Euler characteristic of a surface ¥ is x(X) = 2 — 2k
if ¥ =5, and x(¥) =2 -k if ¥ = Ni. The FEuler genus of a surface ¥ is

9(¥) =2-x(®).

1.1.3 Embedding Graphs in Surfaces
Let X be a topological space.

Definition 1.1.15. An arc in X is the image of a continuous injective function
f:[0,1] = X. A closed curve in X is the image of a continuous injective
function f : S' — X, where S is the circle.

Definition 1.1.16. A graph embedded in X is a graph G in which each element
of V(@) is a point in X, together with an associated arc A,, in X for each edge
uv € E(G), such that the interior of each arc A,, is disjoint from any vertices
of G and its endpoints are u, v.



Figure 1.1: Representation of Sy and S; as embedded manifolds in R? and as
fundamental polygons.

The existence of an arc between two points of X determines an equivalency
relation which partitions X into equivalence classes known as arcwise connected
components.

Definition 1.1.17. A face of a graph G embedded in X is an arcwise connected
component of X \ queE(G) Auw.

The graph G is 2-cell-embedded if every face is homeomorphic to an open
disk.

Definition 1.1.18. A plane graph is a graph G embedded in the plane. A
planar graph is a graph G for which there exists an embedding of G into the
plane.

If G is a plane graph, then there exists an unbounded face of G. We say
that the boundary walk of the infinite face of G is the outer walk of G. We say
than an edge e of G is a chord of the outer walk of G if the edge does not lie on
the boundary of the infinite face but both its ends do.

We have the following result for plane graphs:
Theorem 1.1.19. In a 2-connected plane graph, each face is bounded by a cycle.

Therefore, when talking about 2-connected graphs, we may refer to the outer
walk as the outer cycle.

Note also that technically plane graphs are not graphs embedded in surfaces,
since the plane is not a surface according to our definition (it is not compact).
But by compactifying the plane we see that embedding a connected graph in
the plane is in some sense “equivalent” to embedding the graph in Sy, and we
will interchangeably refer to plane graphs and graphs embedded in the sphere
when convenient.



Theorem 1.1.20 (Euler’s formula). Let G be a 2-cell-embedded graph in a
surface X. If G has V wvertices, E edges and F faces, then

V—E+F=x)

Definition 1.1.21. A homotopy between two functions f and g from a space
X to aspace Y is a continuous map G : X x [0,1] — Y such that G(z,0) = f(x)
and G(z,1) = g(x). Two functions are homotopic or homotopically equivalent
if there is an homotopy between them.

Definition 1.1.22. A contractible cycle of a graph G embedded in a surface is
a cycle in the graph whose embedding is the image of a closed curve homotopic
to a constant map. The edge-width ew(G) of an embedded graph G is the length
of the smallest non-contractible cycle in G.

1.2 Graph Coloring

Problems related to coloring are a fundamental part of graph theory. Although
there are many variants, the original one and the most important is wvertex
coloring.

Definition 1.2.1. A wvertex coloring of a graph G is a function ¢ : V(G) — N.
The vertex coloring is said to be proper if Yuv € E(G), ¢p(u) # ¢(v).

We think of this as assigning one color to each vertex of the graph, so that
adjacent vertices are assigned different colors. This interpretation comes from
the origin of the problem in map coloring, in which we have to color a political
map assigning colors to countries so that neighboring countries are assigned
different colors in order to distinguish them. A quantity of interest is the number
of colors required for a proper coloring of the graph:

Definition 1.2.2. A vertex coloring ¢ is said to be a k-coloring if [Im¢| = k. A
graph G is said to be k-colorable if it admits a proper k-coloring. The chromatic
number x(G) of a graph G is the minimum & such that G is k-colorable.

In the map coloring context, we study vertex coloring for planar graphs.
The following remarkable result was the origin of this area of mathematics:

Theorem 1.2.3 (Four color theorem). For all planar graphs G, x(G) < 4.

This theorem, originally conjectured in 1852, was proven by Appel and
Haken in 1976 [4, 5]. Their proof achieved some notoriety due to use of com-
puters to process a lengthy case analysis.

A natural generalization of the above problem is to study the chromatic
number of graphs embedded in surfaces other than the plane. The following re-
sult, due to Heawood in 1890 [14], generalizes the four color theorem to surfaces
other than the plane:



Theorem 1.2.4 (Heawood). Let ¥ be a surface with Euler genus g(X) > 1.
Any graph embedded in X can be colored with

H(E) = {7+ w/12+249(2)J

colors.

We call H(X) the Heawood number of the surface.

The very interesting result is that this bound is tight for all surfaces with
g(X) > 1 except for Ny, the Klein bottle. (It is also tight for the sphere Sp,
but Heawood’s proof does not work for this case). This was finally proved after
much work by Ringel and Youngs:

Theorem 1.2.5 (Ringel-Youngs [22]). For every surface ¥ # Nz, Ky x) em-
beds into X.

A more recent approach to problems of coloring graphs on surfaces is to ask
how the graphs that are not colorable with a certain number of colors look like,
and see if there is any algorithmic insight to obtain from that. For example,
is Kp(s) the only graph which is not (H(X) — 1)-colorable? Any other graph
which contains Kz (s will also chromatic number at least H(X), so in order to
properly ask this question we need the concept of critical graphs.

Definition 1.2.6. A graph G is k-critical if x(G) = k but x(H) < k for any
proper subgraph H C G.

k-critical graphs are the minimal obstructions for k-colorability:

Observation 1.2.7. x(G) > k < G contains a k-critical graph as a sub-
graph.

Theorem 1.2.8 (Dirac; Albertson, Hutchinson [1]). For ¥ # Ny, g(X) > 1,
Ky sy is the only H(X)-critical graph embeddable in X.

This means that determining (H(X) — 1)-colorability for graphs embedded
in H(X) is equivalent to finding an H (¥)-clique.

Is it possible that other simple characterizations exist for graphs on surfaces
which are not k-colorable for k < H(X) — 1?7 The answer is affirmative:

Theorem 1.2.9 ([26]). For any surface ¥ and k > 6, there exist only finitely
many k-critical graphs embeddable in .

This was proved by Thomassen after previous results by Dirac and Gallai
for k > 8 and k > 7. It is the best possible bound for & since Fisk [11] proved
the existence of infinitely many 5-critical graphs on the torus.

Let us briefly discuss the algorithmic implications of this result. For a fixed
graph H, it is possible to check whether H is a subgraph of G in time polynomial
in the size of G. In fact, by a result of Eppstein [9], for graphs G in a fixed
surface it is possible to test subgraph isomorphism in linear time. Therefore,
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Figure 1.2: An example of a bipartite graph which is not L-colorable for a
2-list-assignment L.

for k > 6 there exists an algorithm for determining k-colorability in linear time
for graphs on a fixed surface, by testing subgraph isomorphism with each of the
k-critical graphs in the finite list.

We can ask what is the complexity of testing k-colorability with & < 6 for
graphs in fixed surfaces. 1-colorability and 2-colorability can be determined
in linear time. 3-colorability is NP-complete even for planar graphs [13]. The
complexity of 4-colorability in surfaces other than the sphere remains an open
problem.

1.3 List Coloring

A variant of graph coloring called list coloring was introduced by Vizing [29]
and Erdés, Rubin and Taylor [10].

Definition 1.3.1. Let G be a graph. A list assignment for G is a function
L : V(G) — 2Y. An L-coloring of G for a list assignment L is a (proper)
coloring ¢ such that ¢(v) € L(v) Vv € V(G).

Definition 1.3.2. A k-list-assignment is a list assignment L with |L(v)| >
kVYv € V(G). A graph G is k-list-colorable or k-choosable if there exists an
L-coloring of the graph for all k-list-assignments L. The list chromatic number
or choosability x¢(G) is the least integer so that G is x¢(G)-list-colorable.

Note the following:
Observation 1.3.3. G is k-list-colorable = G k-colorable, so x¢(G) > x(G).

The reason for this is that by setting L(v) = {1,2,...,k} one retrieves the
usual coloring.

10



But there exist graphs with x;(G) > x(G): consider K33 with the list
assignment given as in Figure 1.2.

A motivation for this variant of coloring is to consider coloring problems
in the usual graph vertex coloring setting in which some of the vertices have
already been colored. In this case, the remaining vertices do not have all colors
available but only a subset of them (the ones not already picked by colored
neighbors) and the subsets for each of the vertices can be different.

We can ask if there is an analogue of the four color theorem for list coloring.
In their paper from 1979, Erd&s, Rubin and Taylor conjectured the following:

Conjecture 1.3.4 ([10]). 1. There exists a planar graph G with x¢(G) > 5.
2. For all planar graphs G, x¢(G) < 5.

The first part of the conjecture was proved by Voigt [30] in 1993 providing
an example with 238 vertices. One year later, Thomassen proved the second
part of the conjecture:

Theorem 1.3.5 (Thomassen’s theorem [24]). For all planar graphs G, x¢(G) <
5.

Thomassen actually proved a stronger theorem:

Theorem 1.3.6 (Thomassen’s stronger theorem). Let G be a plane (embedded)
graph with outer walk C, and let L be a list assignment satisfying:

o |L(v)| > 5 for all internal vertices.

o |L(v)| > 3 for all v € V(C)\ {z,y} where x,y are a pair of adjacent
vertices.

o |[L(z)| = [L(y)| =1, L(z) # L(y).
Then G is L-colorable.

Proof. Suppose we have a counterexample with minimal |V (G)|. It is clear that
for [V(G)| < 3 the theorem is true, so we assume |V(G)| > 4.

First we prove that G is 2-connected. Assume it is not. Then, we have
two subgraphs G1,G2 C G with G1 UG2 = G and G; N Gy = {v}, with v a
cutvertex. Assume, without loss of generality, that =,y € G;. By minimality
of G, Gy is Ly, colorable. Let ¢ be a coloring of Gi. Now, let w be a
neighbor of v in the outer face of G5 and consider the list assignment L’ for
Gy for which L'(v) = {¢1(v)}, L'(w) = ¢ for some arbitrary ¢ € L(w), and
L'(u) = L(u) Yu € V(G2) \ {v,w}. Note that G2 and L’ satisfy the hypothesis
of the theorem. Therefore, by minimality of our counterexample, G5 has a L'-
coloring ¢». But now note that, since ¢1(v) = ¢2(v), the coloring ¢(u) = ¢;(u)
if u € V(G;) is well-defined and is an L-coloring of G, contradiction.

Hence, G is 2-connected and the outer walk C' is a cycle. Now we prove that
there is no chord in C'. The proof is similar to the above argument. Assume
there is a chord vw. Then, we have two subgraphs G, G2 C G with G1UG3 = G,

11



Figure 1.3: Tllustration of Thomassen’s reduction. At most 2 colors are erased
from the lists of u’s neighbors.

G1 NGy = {v,w} and z,y C G;. By minimality of G, G; has an L-coloring
¢1. If we set L'(v) = {$1(v)}, L' (w) = {¢p1(w)}, and L'(u) = L(u) for all other
vertices u € V(Gz) \ {v,w}, then Gy is L’-colorable and a coloring of G can be
constructed.
Now we have that G has no chords or cutvertices. Let u be the neighbor of
y in the outer face other than x and let v be the neighbor of u in the outer face
other than y (possibly v = x). Let {¢1,c2} C L(u) \ L(y). Now, let G’ be the
graph obtained by removing u from G and let L’ be the list assignment for G’
in which {¢1, co} are removed from the lists of the neighbors of u other than v.
G’ satisfies the hypothesis of the theorem: every vertex in the outer face has
list size at least 3, since each of those vertices is either a vertex previously in
the outer face of G all of which have their previous lists (the only neighbors of
u in the outer face are u and y, since G has no chords), or a previously interior
vertex, which has had at most 2 of its > 5 colors removed. So G’ has an L'-
coloring, which can be extended to an L-coloring of G' by coloring u with one
of ¢ or ¢ (whichever is not in use by v), contradiction.
O

We can also extend the notion of critical graphs to list coloring:

Definition 1.3.7. A graph is G is L-critical for some list assignment L if G has
no L-coloring but every proper subgraph H C G has an L-coloring. A graph is
k-list-critical if there exists a (k — 1)-list assignment L such that G is L-critical.
A graph is minimal k-list-critical if x¢(G) = k but x¢(H) < k for every proper
subgraph H C G.

Notice that here the analogous definition to k-critical graphs for the usual
coloring is the definition of minimal k-list-critical (terminology from [23], there
it is shown that such graphs are in fact the minimal k-list-critical ones with
respect to subgraph containment), and the actual definition of k-list-critical is
a little different than what one would immediately expect. The reason for this
is that in theoretical arguments it is usually more convenient to work with a

12



pair (G, L) of a graph with a fixed k-list-assignment, and therefore the concept
of L-critical graph is more useful.

There are also other criticality notions we will use. In coloring problems,
it is useful to consider when a precoloring of a subgraph does not extend to
the entire graph, that is, there is no coloring of the entire graph under certain
constraints which agrees with the coloring of the subgraph.

Definition 1.3.8 (Extending). Let G be a graph, T C G a subgraph, and L
a list assignment for G. For an L-coloring ¢ of T', we say that ¢ extends to an
L-coloring of G if there exists an L-coloring % of G s such that ¢(v) = ¥ (v) for
all v € V(T).

It is also interesting to consider graphs which are critical in this setting. To
do so, we use the following definition (from [20]):

Definition 1.3.9 (T-critical). Let G, T, L be as above. The graph G is T-
critical with respect to L if G # T and for every proper subgraph G’ C G such
that T C G, there exists an L-coloring of T' that extends to an L-coloring of
G’, but does not extend to an L-coloring of G. If the list assignment L is clear
from context, we just say T-critical.

Definition 1.3.10 (¢-critical). Let, G, T, L be as above. The graph G is
¢-critical for a coloring ¢ of T if ¢ extends to every proper subgraph of G
containing 7" but not to G.

In a way similar to the general notion of criticality, we have that graphs for
which colorings of T' do not extend contain a non-trivial T-critical subgraph:

Lemma 1.3.11. Let G be a graph, T a subgraph, and L a list assignment for
G. If there is an L-coloring ¢ of T that does not extend to G, then G contains
a subgraph H with T C H which is ¢-critical, and hence also T-critical with
respect to Ly, .

Proof. Let ¢ be the coloring of T' that does not extend and let H be a minimal
subgraph of G for which ¢ does not extend. Now note that H is ¢-critical by
construction. O

Lemma 1.3.12. Let G be a graph, T a subgraph, L a list assignment for G, and
H D T a subgraph of G which is minimal with respect to the following property:
for every L-coloring ¢ of T that extends to H, ¢ also extends to G. Then H is
T-critical.

Proof. Suppose not. Then, H contains a proper subgraph H’ so that every
L-coloring ¢ that extends to H' also extends to H and hence to G. But then
H’ is a smaller subgraph with that property, contradiction. O

We also have the following lemma from [20]:

Lemma 1.3.13. Let T be a subgraph of a graph G such that G is T-critical
with respect to a list assignment L. Let A, B C G be such that AUB = G and
T C A. Then G|V (B)] is A[V(A) NV (B)]-critical.
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Proof. Let G' = G[V(B)] and S = A[V(A)NV(B)]. If G’ = S there is nothing
to say, suppose otherwise that G’ # S and note that therefore G’ contains an
edge not in S (in fact, all isolated vertices of G’ must be in S). Suppose for
a contradiction that G’ is not S-critical. Then, by taking a maximal proper
subgraph that defies the defintion, there exists an edge e € E(G’) \ E(S) such
that every L-coloring of S that extends to G’ \ e also extends to G’. Since G
is T-critical and e ¢ E(T), there exists a coloring ¢, of T' that extends to an
L-coloring ¢ of G \ e, but does not extend to an L-coloring of G. However, by
the choice of e, the restriction ¢, extends to an L-coloring ¢’ of G’. Let ¢” be
such that ¢ (v) = ¢/'(v) Vv € V(G') and ¢"(v) = ¢(v) Vv € V(G) \ V(G’). Now,
since AU B =G, ¢ is an L-coloring of G extending ¢;,, a contradiction. [

For us, it will be more useful in this form:

Lemma 1.3.14 (Gluing Lemma). Let T be a subgraph of a graph G such that
G is T-critical with respect to a list assignment L. Let A, B C G be such that
AUB =G. Then G[V(B)] is (A[V(A) NV (B)] U T)-critical.

Proof. Apply 1.3.13to A’ = AUT and B’ = B. O

The reason we decided to name it “Gluing lemma” in this work is that it is
useful to visualize the graph G as made of two separate pieces, A and B, which
are glued together along A[V(A) NV (B)]. In our approach we will frequently
use the fact that all T-critical graphs can be “decomposed” in this way.

We will also use the following simple lemmas:

Lemma 1.3.15 (Extension Lemma). Let G be a T-critical graph. If T is a
subgraph with T CT' C G, then G is T'-critical.

Proof. For any subgraph H with T'C 7" C H C G, there exists a coloring ¢;,.
of T' that extends to a coloring ¢ of H but not to G' by T-criticality. Then, ¢y,
is a coloring of T” that extends to H but not to G. O

Lemma 1.3.16 (Duplication Lemma). Let G be a T-critical graph with respect
to a list assignment L and let G' be a graph , T' C G’ be a subgraph, L' be a
list assignment for G' and f : V(G') — V(G) be a function such that:

1. is an isomorphism between G'[V(G')\ V(T")] and G[V(G) \

fTv(G/)\v(T/)
V(T)].

2. For allv e V(T"), f(v) e V(T) and f is surjective.
3. L'(v) = L(f(v)) for allv e V(G’).

4. For every v € V(G), the image of the set N(v) NV (T") under f is equal
to N(f(v)) NV (T).

Then, G is T'-critical with respect to L.
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Proof. Let H' be any subgraph with 77 C H’ C G’ and let H be the image
of H' under f. H can be seen to satisfy ' C H C G, and by T-criticality
there is a coloring ¢, that extends to a coloring ¢ of H but does not extend
to G. Consider the L'-coloring ¢ of H' defined by 1 (v) = ¢(f(v)). Then, v¥;_,
is a coloring that extends to H’ but does not extend to G’, because if it did
extend to a coloring ¢’ of G’ then ¢;, would extend to G by setting the color
Y (f~1(v)) to each vertex v € V(G) \ V(T). O

Often, in list coloring we want to impose some restriction on the sizes of the
lists, but we don’t want the same sizes for all the vertices as in k-list-colorability.
We will use the following terminology:

Definition 1.3.17. Let G be a graph and f : V(G) — N a function. We say a
list assignment L is a f-list-assignment if |L(v)| > f(v) for all v € V(G). We
say G is f-list-colorable if G is L-colorable for every f-list-assignment L. We
say G is f-list-critical if G is L-critical for some f-list-assignment L.

And when drawing graphs whose vertices have prescribed list sizes by such
an f, we will use the pictorial notation of Figure 1.4 to denote the list sizes of

the vertices.
o o AU

1 2 3 4 5

Figure 1.4: Shapes used for the vertices of the graphs according to their list
sizes.

Finally, we can ask if there are results for list coloring of graphs on surfaces
as there were for the usual coloring. The argument of Heawood also works for
list coloring, so for every surface ¥ the graphs embedded in ¥ are all H(X)-list-
colorable.

We have the analogous result that K (x) is the only obstruction for (H (%) —
1)-list-colorability:

Theorem 1.3.18 ([16]). For a surface ¥ with g(¥) > 1, ¥ # Na, Ky (x) is the
only minimal H(X)-list-critical graph embeddable in 3.

And Postle proved in his PhD thesis in 2012 the result analogous to Thomassen’s:

Theorem 1.3.19 ([18]). For k > 6 there exist only finitely many k-list-critical
graphs embeddable in a given surface X.

The goal we set out for this thesis is to find the explicit list of 6-list-critical
graphs for the torus.
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Chapter 2

Critical Graphs on the
Torus

In this chapter we delve into the details of critical and list-critical graphs on
the torus, including Postle’s approach for list-critical graphs on surfaces and
Thomassen’s approach for 6-critical graphs on the torus. From studying these,
we develop our own, computer-aided approach for 6-list-critical graphs on the
torus.

2.1 An Overview of Postle’s Approach

Here we briefly explain Postle’s approach in [18] to obtain the result on the
finiteness of 6-list-critical graphs in general surfaces, mentioning specially those
intermediate results or definitions we will also use in our approach. The re-
sults obtained by Postle are very non-explicit in the sense that the (unspecified)
constant in the size bounds for the graphs he obtains is extremely large and
hence useless for our purpose of finding an explicit characterization. Neverthe-
less, given that our approach is primarily guided by this work we consider it of
interest to provide a exposition of the main argument.

The results developed in [18] in 2012 have been published successively in
journal articles afterwards, often with improvements in exposition or in the
strength of the result. We refer to the corresponding published article in the
discussion of each particular result.

2.1.1 Notation and Terminology

Postle works mainly in a setting similar to the hypothesis of Thomassen’s
stronger theorem: list assignments L which have list sizes of length at least
5 for interior vertices and at least 3 for exterior vertices with some exceptions.
This setting is encapsulated in the concept of canvas.
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Definition 2.1.1 (Canvas). We say that (G, S, L) is a canvas if G is a connected
plane graph with outer walk C, S is a subgraph of C, and L is a list assignment
such that |L(v)| > 5Vv € V(G)\V(C) and |L(v)| > 3Vv € V(C)\V(S). If S is
a path, we say (G, S, L) is a path-canvas or a wedge. If S = C and C'is a cycle,
then (G, C, L) is a cycle-canvas.

Note: in some places like [20], the term “canvas” is used for what Postle
calls in [18] “cycle-canvas”.
We can restate Thomassen’s Stronger Theorem in these terms:

Theorem 2.1.2. If (G, P,L) is a path-canvas and |V (P)| < 2, then G is L-
colorable.

Definition 2.1.3 (Critical canvas). We say that a canvas (G, S, L) is critical if
it is S-critical with respect to L.

In the context of canvases, we usually talk of separating vertices or separating
subgraphs as graphs which, when removed, disconnect vertices of S from other
vertices in S.

2.1.2 Variations on Thomassen’s Condition

Much of the technical work on Postle’s thesis relies in a careful study of what
happens if one varies the condition on Theorem 1.3.6. One of the most elegant
(and also useful) results is the following strengthening to Thomassen’s Stronger
Theorem, originally conjectured by Hutchinson in [15].

Theorem 2.1.4 (Two Lists of Size Two Theorem [19]). If G is a plane graph
with outer cycle C, vi,vy € C and L is a list assignment with |L(v)| > 5 for all
v e V(G)\V(C), |L(v)| > 3 for allv € V(C)\ {v1,v2}, and |L(v1)| = |L(v2)| =
2, then G is L-colorable.

Or, in the language of canvases:

Theorem 2.1.5. If (G, S, L) is a canvas with |V(S)| = 2 and |L(v)| > 2 for
v €S, then G is L-colorable.

This theorem is not true when one of the two vertices has list of size 1. In
fact, Postle characterizes exactly when it fails:

Definition 2.1.6 (Coloring Harmonica). Let G be a plane graph and L a list
assignment for G. Given an edge wv and a vertex w both from the outer face
of G, we say that (G, L) is a coloring harmonica from uv to w if either:

e G is a triangle with vertex set {u,v,w} and L(u) = L(v) = L(w) with
|L(u)| =2, or

e There exists a vertex z incident with the outer face of G such that wvz is
a triangle in G, L(u) = L(v) C L(z), |L(u)| = |L(v)| = 2, |L(z)| = 3, and
the pair (G’, L) is a coloring harmonica from z to w, where G’ is obtained
by deleting one or both of the vertices u, v and L’ is obtained from L by
L'(z) = L(z)\ L(u) and L'(z) = L(x) for all other vertices z # = € V(G’).
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Given two vertices u, w in the outer face of G, we say (G, L) is a coloring
harmonica from u to w if there exist vertices x,y incident with the outer face
of G such that uzy is a triangle in G, |L(u)| = 1, L(x) \ L(u) = L(y) \ L(u),
|L(z) \ L(u)| = 2, and (G’,L’) is a coloring harmonica from zy to w, where
G’ is obtained from G by removing u, and L’ is obtained from L by seting
L'(x) =L'(y) = L(z) \ L(u) and L'(z) = L(z) for every z € V(G') \ {=,y}.

We say that (G, L) is a coloring harmonica if it is a coloring harmonica from
uv to w or a coloring harmonica from u to w for some wu, v, w as specified earlier.

{1,2,3} {2,3,4}

u
{1}

{5.6,7} {6.7}
Figure 2.1: Example of coloring harmonica from u to w (taken from [21])

See the example in Figure 2.1 (from [21]) for some clarity with respect to
this mutually recursive definition. Note that the definition makes it clear that
graphs which contain a coloring harmonica as a subgraph are not L-colorable.

Theorem 2.1.7 (One List of Size One and One List of Size Two Theorem
[21]). Let G be a plane graph with outer cycle C, let py,ps € V(C), and let L
be a list assignment with |L(v)| > 5 for allv € V(G) \ V(C), |L(v)| > 3 for all
v € V(C)\ {p1,p2}, |L(p1)| > 1 and |L(p2)| > 2. Then G is L-colorable if and
only if the pair (G, L) does not contain a coloring harmonica from py to ps.

Studying conditions of the sizes of the lists in the boundary in which the
graph is not L-colorable like this one is also useful, because such conditions
arise when dealing when reductions and therefore characterizing which are the
critical graphs in such settings can give fruitful results.

Thomassen already studied when does the coloring of a path of length 2 not
extend:

Definition 2.1.8 (Bellows). We say that a path-canvas (G, P,L) with P =
pop1p2 is a bellows (terminology from [18]) or a generalized wheel (terminology
from [27]) if either:

e ( has no interior vertices and its edge set consists of the edges of the outer
cycle plus all edges from p; to vertices of the outer cycle. In this case, we
say that (G, P, L) is a fan.
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e (G has one interior vertex u and its edge set consists of the edges of the
outer cycle plus all edges from u to vertices of the outer cycle. In this
case, we say that (G, P, L) is a turbofan.

e (G can be formed by gluing two smaller bellows from the edges pips and
pop1 respectively.

Theorem 2.1.9 ([27], Theorem 3). If T = (G, P, L) is a path-canvas with path
length 2, then G is L-colorable unless T has a bellows as a subcanvas.

Postle studies when the coloring of two paths of length 1 does not extend.
He finds the following obstruction:

Definition 2.1.10 (Accordion). We say that a canvas T = (G, P, U Py, L)
with P;, P, distinct paths of length 1 is an accordion with ends Py, Py if T is a
bellows with P; U P, path of length 2 or T is the gluing of two smaller accordions
T, = (G1, PLUU, L) with ends P;,U and T = (GQ, P,uUl, L) with ends U, P,
along a chord U = ujug where |L(uq)|, |L(ug)| < 3.

The main result he obtains is that if the two paths are sufficiently far apart,
then the graph contains a proportionally large accordion or a coloring harmonica
as a subgraph.

Theorem 2.1.11 (Bottleneck Theorem, loosely stated). If T'= (G, P U Py, L)
is a canvas with P, Py distinct edges of C with d(P, Py) > 14, then either there
exists an L-coloring of G, or there exists a subcanvas (Go, Uy UUs, L) of T where
de, (U1, Usz) = Q(da (P, Py)) which is an accordion or a coloring harmonica.

This result, along with coloring and structural properties of accordions and
harmonicas, is often used as a technical lemma when proving the following
results.

2.1.3 Linear Bound on Critical Cycle-Canvases

Postle proves the following result:

Theorem 2.1.12 ([20]). Let G be a plane graph with outer cycle C and L a
5-list-assignment for G. Let H be a minimal subgraph of G such that every L-

coloring of C' that extends to an L-coloring of H also extends to an L-coloring
of G. Then H has at most 19|V (C)| vertices.

Or, equivalently stated in the language of critical canvases:
Theorem 2.1.13. If (G, C, L) is a critical cycle-canvas, then |V (G)| < 19|V (C)|.

The equivalence of the two statements is given by Lemma 1.3.12. This result
is interesting in its own right because by Lemma 1.3.14, all faces of a T-critical
graph which do not separate vertices from T are in fact critical cycle-canvases,
and therefore what the result tells us is that for such graphs there is only finitely
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many kinds of faces that can appear for each given cycle length. This gives us
a lot of information of how critical graphs look like.

A first observation that can be made is that critical cycle-canvases (in which
C' is indeed a simple cycle) are 2-connected, so each face is bounded by a cycle:

Lemma 2.1.14. If (G,C, L) is a critical cycle-canvas, then it is 2-connected.

Proof. If G is not 2-connected, then there exist subgraphs A, B such that AUB =
G with [V(A)NV(B)| <1and |[V(B)\V(A)| > 1. Assume C' C A and apply
Lemma 1.3.14 to get that B is A[V(A) NV (B)]-critical, contradicting Theorem
1.3.6. O

The key result in Postle’s proof of the linear bound for cycles is the following
theorem about the structure of critical cycle-canvases:

Theorem 2.1.15 (Cycle Chord or Tripod Theorem). If (G,C, L) is a critical
cycle-canvas, then either

1. C has a chord in G, or

2. there exists a vertex v € V(G) \ V(C) with at least three neighbors on C
such that at most one of the faces of G[{v} UV (C)] includes a vertex or
edge of G.

Using this result, Postle carefully examines what happens near the boundary
cycle in order to define some quantities related to sums of lengths of faces and
proves that certain inequalities with those quantites are mantained when adding
tripods in critical canvases.

2.1.4 The Two Precolored Triangles Theorem

Next, Postle proves the following theorem:

Theorem 2.1.16. There exists d such that the following holds. Let G be a
planar graph and Ty, Ts triangles in G at distance at least d. Let L be a 5-list-
assignment of G. Then, every L-coloring of Ty UTy extends to an L-coloring of

G.

(Postle refers to the graphs with two precolored triangles and all other ver-
tices with list sizes at least 5 as prism-canvases, even though they are not a type
of canvas).

The value of d that Postle obtains is not explicitly stated, but it is on the
order of 100. However, we conjecture that 4 or 5 suffices.

Conjecture 2.1.17. Let G be a planar graph and Ty, T5 triangles in G with
distance between them at least 5. Let L be a 5-list-assignment of G. Then, every
L-coloring of Ty U Ty extends to an L-coloring of G.

20



The argument that Postle uses to prove his result is as follows. First, he
proves that one can precolor a path between the two triangles in such a way
that, when deleting the path and deleting the corresponding colors from the lists
of neighboring vertices, all remaining non-precolored vertices have lists of size
at least 3. The proof of this begins with the simple observation that each vertex
outside a shortest path has at most 3 neighbors inside the path. Using planarity
properties, a shortest path can be found so that it can be colored in such a way
that the vertices with 3 neighbors inside the path only see two different colors
from their lists.

After precoloring and deleting the path between the two triangles, a canvas
(G, Py U Py, L) is obtained. If there was a precoloring of the triangles that did
not extend, then the canvas contains a critical canvas, and by Theorem 2.1.11
it contains a proportionally long accordion or harmonica. Postle proves that
this (together with some technical details related to how the path between the
triangles was chosen) implies that in the original graph there must be a long
chain of separating triangles so that the graph between each separating triangle
pertains to one of three very specific types, which he calls tetrahedral, octahedral
or hexadecahedral bands.

Finally, he proves that for a sufficiently long chain of this type, any precolor-
ing of the innermost and outermost triangles extends to the whole chain. This
proves the theorem, because of the following observation:

Proposition 2.1.18. Let G be a plane graph with L a list assignment, T,
Ty two facial triangles with Th bounding the infinite face of G, and T|, T,
two triangles such that T| is a separating triangle between Ty and T4 and T4
is a separating triangle between T| and T. Denote by G[Ty,Ty] the subgraph
comprised between the two triangles Ty, Ty. If there exists some L-coloring of
Ty UT, that does not extend to G, then there exists some L-coloring of T{ U T}
that does not extend to G[T7,T4].

Proof. By Theorem 1.3.6, the coloring on T} extends to G[Ty,T}] and the color-
ing on T3 extends to G[T4, Tz]. The coloring of T U T4 given by this extensions
can not extend to G[TY,Ty] by the assumption that the original coloring of
T, UT5 did not extend to G. O

2.1.5 Cylinder-Canvases and Hyperbolic Families

Finally, Postle generalizes the previous setting of critical prism-canvases to crit-
ical cylinder-canvases, where a cylinder-canvas is like a prism-canvas but the
precolored cycles can have length greater than 3. It generalizes Theorem 2.1.16
by showing that for every pair of cycle lengths, there exists a distance d (de-
pending logarithmically on the cycle sizes) so that all critical cylinder-canvases
have the cycles at distance at most d. It also generalizes Theorem 2.1.12 by
showing that critical cylinder-canvases have a bound on their size linear in the
sum of the cycle lengths.

Then, he defines hyperbolic families: families of graphs embedded in surfaces
which have certain properties related to having planar graphs resulting from
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performing excisions in the surface always having bounded size. We do not
delve into the details because the topological arguments for the general case are
not of interest for us, but we will explain some similar operations on the torus
in the section explaining our approach.

The idea here is that the linear bounds on the cycle-canvases and the cylinder-
canvases make the 6-list-critical graphs on the torus be an hyperbolic family.
Then, the result we want about the finiteness of 6-list-critical graphs is proven
for the more general setting of hyperbolic families. In fact, it is proven that
the number of vertices of graphs in such a family embeddable in a surface is
bounded linearly by the genus of the surface.

The general setting of hyperbolic surfaces allows Postle to prove more prop-
erties and bounds for 6-list-critical graphs on surfaces, such as:

Theorem 2.1.19. Let G be a graph 2-cell-embedded in a surface ¥ and let L
be a 5-list-assignment. If ew(G) > O(log g(X)), then G is L-colorable.

2.2 Critical Graphs on the Torus for (usual) Ver-
tex Coloring

In this section we discuss the result from Thomassen in [25] that characterizes
the critical graphs for 5-coloring (not 5-list-coloring) on the torus.

2.2.1 The Critical Graphs

Theorem 2.2.1 ([25]). A graph G embeddable on the torus is 5-colorable if and
only if it does not contain the following subgraphs:

o K.

o O3+ Cs.

o Ky + Hy, where H7 is a T-vertex graph known as the Moser spindle.
o 111, where Th1 is a triangulation of the torus with 11 vertices.

Where + denotes the join of two graphs: their disjoint union with all pairs of
vertices from different graphs joined by edges.

If a graph is not 5-colorable, it is not 5-list-colorable, so all graphs that
contain any of the above subgraphs are not 5-list-colorable. We conjecture that
this characterizes the 5-list-colorable graphs on the torus too:

Conjecture 2.2.2. A graph G embeddable on the torus is 5-list-colorable if and
only if it does not contain the following subgraphs: Kg, C3+ Cs5, Ko+ Hy, T11.

This means that those are the minimal 6-list-critical graphs on the torus.
Note that there may be additional 6-list-critical graphs embeddable on the torus,
but what we are conjecturing is that they all contain those subgraphs. For
example:
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)Y/

K C3+ Cs

Ky + Hy T

Figure 2.2: 6-critical graphs embedded on the torus.

Observation 2.2.3. K7 is 6-list-critical.

Proof. Consider the following 5-list-assignment for K7: L(v;) = L(vs) = L(vs) =
L(vy) = L(vs) = {1,2,3,4,5}, L(vg) = L(vy) = {1,2,3,4,6}. K7 is not
L-colorable, since there are only 6 available colors. But any subgraph is L-
colorable. Let’s give a coloring ¢ for K7 \ vv;. If 4,5 < 5, then setting
o(vi) = ¢(v;) = 5 and ¢(v7) = 6 leaves 4 vertices to be colored with 4 col-
ors. If i <5 and j > 6, then setting ¢(v;) = ¢(v;) = 1, p(v13—;) = 6 leaves 4
vertices to be colored with 4 colors. If {i,j} = {6, 7}, then ¢(v;) = ¢(v;) =6
leaves 5 vertices to be colored with 5 colors.

Hence, K7 is L-critical for a 5-list-assignment L, and is therefore 6-list-
critical. O

2.2.2 An Overview of Thomassen’s Approach

Thomassen’s article where he characterizes the graphs on the torus ([25]) pre-
dates his result on finitely many 6-critical graphs for all surfaces ([26]). For
the characterization of 6-critical graphs on the torus, he only uses elementary,
relatively straighforward arguments that work on specifically in the torus. We
briefly summarize his approach here in order to discuss which arguments can be
reused for the list-coloring case.

First, Thomassen considers the case when the minimum degree is at least 6.

Proposition 2.2.4. If a graph G embedded on the torus has §(G) > 6, then:

23



1. G is 6-regular.

2. G is a triangulation of the torus.

Proof. We apply Euler’s formula: let V, E, F' be the number of vertices, edges
and faces in the embedding, respectively. We have that 6(G) > 6 — V < %E
with equality iff G is 6-regular, and F' < 2 F with equality iff G is a triangulation.
Then 0 =V —E+ F < %E —F+ gE = 0, so we have equality on both
inequalities. U

Using the proposition above, Thomassen then proves the following:

Proposition 2.2.5 (3.2 in [25]). Let G be a 6-regular graph on the torus. If
G contains a vertex v, such that {v} U N(v) induces a nonplanar graph, then
G = K7 or G is obtained from Kg or Ky by deleting the edges of a 1-reqular or
2-regular subgraph.

The study of 6-regular graphs on the torus without vertices whose neighbor-
hood induces a nonplanar graph was already done by Thomassen in his previous
paper [28], in the context of finding all tilings of the torus in order to prove a
conjecture by Babai about vertex-transitive graphs.

He obtains the following result:

Theorem 2.2.6. Let G be a graph embedded on the torus with 6(G) > 6. Then
G is 5-colorable unless G = Ky or G = T1;.

This part of the argument is the one that can be generalized to list coloring,
but it is not useful to our approach, so we don’t delve into the details.

Let us now describe Thomassen’s argument for general graphs.

He assumes a minimum counterexample G to Theorem 2.2.1 (the counterex-
ample has minimum number of vertices, maximum number of edges restricted
to that, and some other assumptions about details we will not discuss here). By
the previous result, there must be a vertex vy € V(Gp) with degree < 5, and
the degree of vy is in fact equal to 5 by minimality of the counterexample.

Consider two vertices x,y € N(vg) which are not adjacent (if all the vertices
of N(vg) were adjacent, then Gy would contain K, a contradiction). Let Gy
be the graph obtained from Gy \ {vo} by identifying the vertices  and y. G,
can be embedded in the torus by modifying the embedding of Gy. If Gy were
5-colorable, then we would have a 5-coloring of GGy by assigning the same color
to x and y and coloring vy with a color not appearing in its 5 neighbors. Hence,
Gy is not 5-colorable and by minimality of our counterexample it contains K,
03 + 05, K2 + H7 or Tll-

The above argument works for all pairs z, y of non-adjacent vertices in N (vp),
so potentially we can have many different obstructions for each of the corre-
sponding G, subgraphs. But we can prove that, by minimality, there can
not be much else in Gy apart from these obstructions arising from all the G,
subgraphs. More precisely:
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Proposition 2.2.7. For any non-adjacent x,y € N(vg), let G;y a copy of Kg,
C3+Cs, Ko+ H7 orThy in Gy, and let Ggy be the induced subgraph of Gizy by
the vertex set of G, Then G consists of vo, N(vo), the edges between vertices
of {vo} UN(vp), and the union over all non-adjacent x,y € N(vg) of the graph
obtained from G’I/y by splitting the contracted vertex into x and y.

Proof. We will prove that the graph described above, which is a subgraph of
G, is not 5-colorable. This means, by the assumptions of minimality of vertices
and maximality of edges, that Gy is in fact equal to that subgraph.
If the subgraph had a 5-coloring, then two non-adjacent vertices x,y of
N (vg) would have the same color. But by then identifying the two vertices we
can get a 5-coloring of Ggy, which contains the non-5-colorable subgraph G;y,
contradiction.
O

Note that, since the maximum number of vertices in a critical graph is 11,
this means that G has at most (11—1)- (g) + 6 = 106 vertices, and hence what
remains is a finite problem.

Thomassen uses some more arguments to narrow down the remaining pos-
sibilities for Gg, but we can already see an important point of failure of this
argument for list-coloring: in the proof of Proposition 2.2.7, it is used that a
necessary and sufficient condition for a coloring of Go \ {vo} to extend to v is
that two neighbors of vy have the same color. In list coloring, this condition
is not necessary. So we cannot conclude that the minimum counterexample is
the union of the graphs induced by the obstructions in G, and the argument
breaks down here.

2.3 Our Approach

The bounds on the size of 6-list-critical graphs on the torus given by Postle’s
approach are way too large to be of any use to us in our search of the explicit list
for the torus. However, we can take inspiration in his approach and in particular
in how it was useful to carefully study critical canvases. The key modification
is that, instead of proving abstract bounds for sizes of critical canvases as in
Theorem 2.1.12; we will be working with the explicit, full list of critical canvases
of a certain type and size.

In order to obtain those canvases, we will be using computer search, so this
will be a computer-aided proof, like the Four Color Theorem’s (but using very
different techniques). The reason we consider it feasible to perform this search
is that results like Theorem 2.1.15 give very structured descriptions of critical
canvases - so we don’t face enormously huge space of searching among all the
planar graphs with a given size bound, but instead have a much more restricted
search space.

Once we have generated some critical canvases, our idea is to take advantage
of them in a way similar to Postle’s approach - but this time, since we will work
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Figure 2.3: Cutting K into a critical prism-canvas.

with the explicit canvases instead of loose bounds, the hope is that we can use
them to obtain also the explicit list of 6-list-critical graphs.

Since the torus is not a complicated surface, there are simple manipulations
that relate 6-list-critical graphs on the torus with critical prism-canvases and
cycle-canvases, as we will see now.

2.3.1 Cutting Through a Non-Contractible Cycle

Consider the torus S;. If one cuts through non-contractible curve one obtains
a cylinder, which can then be projected to the plane.

We can do this to get planar graphs from graphs 2-cell-embedded on the
torus: we can cut through a non-contractible cycle, duplicate the vertices on
the cycle so they appear on both sides of the resulting cylinder, and then project
this cylinder into the plane. See Figure 2.3 for an example with Kg, one of the
6-critical graphs embedded on the torus.

The reason why this is useful to us is the following observation:

Observation 2.3.1. Let G be a graph embedded on the torus, let G' be a graph
obtained by this procedure from G, let C1,Co be the two cycles of G; corre-
sponding to the mon-contractible cycle C' of G we cut through, let L be a list
assignment for G and let L' be the corresponding list assignment for G' (with
the same lists for all vertices, duplicated for Cy and Cy).

If G is L-critical, then G’ is (Cy U Cy)-critical with respect to the list assign-
ment L'.

Proof. Consider a subgraph (C; UCy) C H' C G’ and the corresponding sub-
graph C' C H C G. By L-criticality of G, H is L-colorable with a coloring
¢. Consider the corresponding coloring ¢’ of H’. Then, qS’[clUCz is a coloring
of (Cy U Cy) which extends to H' but not to G, since if it extended to G’ we
would have a L’-coloring of G’ in which the corresponding vertices of C; and Cs

have the same colors and therefore we would be able to retrieve an L-coloring
of G. O

This, together with Theorem 2.1.16, already places a restriction on how the
6-list-critical graphs on the torus can be: if the graph has a non-contractible
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Figure 2.4: Cutting the torus into the plane.

Figure 2.5: Cutting Ky into a critical cycle-canvas.

triangle, then it must also have a not too large non-contractible cycle not homo-
topically equivalent to the non-contractible triangle, since if the two precolored
triangles are at distance d in the resulting planar graph, then there is such a
non-contractible cycle of length < d + 1 in the original graph.

An interesting implication is also that we can do the process backwards: if
we have a critical prism-canvas, we can “fuse the two triangles” to get a graph
on the torus which is possibly 6-list-critical.

2.3.2 Cutting Across Two Non-Contractible Cycles

Instead of just cutting through one non-contractible cycle to get a cylinder and
project it to the plane, we can cut through two non-homotopically-equivalent
non-contractible cycles to get the plane, as in Figure 2.4. This can be thought
also as first cutting through a cycle to get a cylinder, and then cutting through
the cylinder to get the plane.

The idea here is again that we can use this to get critical planar graphs
from critical graphs on the torus, but now we get a cycle-canvas instead of a
prism-canvas. See Figure 2.5 for an example again with Kg.

Observation 2.3.2. Let G be a L-critical graph embedded on the torus with L
a 5-list-assignment, and let G’ be the corresponding planar graph resulting from
this procedure with outer face C' corresponding to the two cycles we cut through.
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Then (G',C, L) is a critical cycle-canvas.
Proof. Similar argument to the previous observation. O

If the cycles we cut through have lengths a and b, the resulting cycle-canvas
has cycle length 2(a 4+ b). This gives a bound for the sizes of 6-list-critical
graphs in terms of the sizes of their non-contractible cycles via Theorem 2.1.12.
However, here the more interesting idea is the possibility of running the process
backwards: that is, of generating candidates for 6-list-critical graphs from crit-
ical cycle-canvases. That is because, as we will see, we have a procedure for the
generation of all critical cycle-canvases by computer.

2.3.3 Our Plan for Graphs With a Non-Contractible Tri-
angle

Using the above two constructions, we can already devise a plan for finding
all 6-list-critical graphs on the torus which have at least one non-contractible
triangle.

1. Generate all critical cycle-canvases with small cycle sizes (ideally at least
up to size 14 or, better yet, 16). Also, depending on the approach followed
in the next step, it will also be necessary to generate small critical path-
canvases or other kinds of critical graphs.

2. Prove Conjecture 2.1.17. Here, we will try to take advantage of the
computer-generated graphs in order to obtain the tightest possible bound
instead of Postle’s loose bound.

3. By cutting through the non-contractible triangle of any 6-list-critical graph,
we obtain a critical prism-canvas, and therefore we can reconstruct all
possible candidates from either the list of all critical prism-canvases (if
we obtained such a list from the previous step) or a list of all critical
cycle-canvases of size < 16 (by cutting across the non-contractible trian-
gle and the other non-contractible cycle of length < 5 corresponding to the
shortest path between the two precolored triangles in the prism-canvas).

This plan only works for 6-list-critical graphs with edge-width 3, which is the
case for the 6-critical graphs for the previous section. We don’t expect to have
additional 6-list-critical graphs with larger edge-width, especially given Theorem
2.1.19, so our hope would be to find an argument independent of this plan to
prove that any 6-list-critical graph on the torus must have a non-contractible
triangle.

The rest of this thesis will be dedicated to describe how to carry out this plan.
For the first step, we will explain how to perform the computer generation of
such critical graphs in Chapters 3 and 4. Chapter 3 will be about the computer
representation of the canvases and the algorithms used for the generation of
candidates to be critical canvases, while Chapter 4 will be on how to test that
such candidates are indeed critical. The techniques explained in Chapters 3
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and 4 will be applicable not only to cycle-canvases but also to other types of
canvases or graphs with prescribed list sizes more generally.

For the second step, in Chapter 5 we will explain different approaches to
proving Conjecture 2.1.17 using the computer-generated graphs. As of the writ-
ing of this thesis, we have not been able find a proof of this results, because
there have been computational and conceptual obstacles in the approaches we
have tried. We will also discuss those setbacks.

Finally, in Chapter 6 we will summarize the computational results obtained
by the implementation of the ideas discussed in the previous chapters and we
will expose the partial results we have been able to obtain with respect to the
third step of the plan.
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Chapter 3

Generation of Critical
Graphs

In this chapter we describe algorithms for processing and generating critical
canvases via computer search.

3.1 Representation of Canvases

The first step is deciding how to represent canvases in our algorithms. Recall
that a canvas T is a tuple (G, S, L) where G is a plane graph, S is a subgraph
of the outer face and L is a list assignment for G satisfying some conditions.
Here, in each algorithm we will usually be working with one particular family
of canvases at a time, for example cycle-canvases or path-canvases with a fixed
size of cycle or path, so the information about the subgraph S can be “implicit”
in each different representation for each different algorithm instead of working
with a general representation that allows all canvases. Also, in some scenarios
we will be working with conditions on the list assignment L which are different
from the ones in the definition of canvas. In this section we intend to just expose
some general ideas about how the representation of graphs in this context can
be done, which will be afterwards applied in different scenarios.

The most important thing to state is that we will not be interested in storing
the list assignment L at all. This is because there is a significant combinato-
rial explosion in the number of list assignments to be considered and we are
interested in the graphs themselves, not the list assignments. Also, most of the
results we will be using such as Lemma 1.3.14 or Theorem 2.1.15 are directly
related to subgraphs and not list assignments, and while they are in theory
stated with respect to a fixed list assignment, it is more useful in practice to
not consider the list assignment at all.

Thus, when we generate all critical canvases (G, S, L), what we will actually
be doing is generate all pairs (G, S) such that there exists some list assignment L
so that (G, S, L) is a critical canvas. In some scenarios, we will also be interested
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Figure 3.1: Example of a DFS traversal transcript for a graph. It is the lexico-
graphically smallest transcript in this case.

in storing the prescribed size of the list assignment for each vertex: that is, we
will be storing a tuple (G, S, f) with f : V(G) — N so that we will only be
considering list assignments L with |L(v)| = f(v), but other than that we will
not store information about the actual list assignment.

We store the information of the graph G with an adjacency list. We will also
be interested in storing the planar embedding of the graph: to do so, we order
the edges in the adjacency list of each vertex according to their clockwise order
in the embedding (as in a rotation system). This information, together with the
information of which vertices are in the outer face, is enough to reconstruct the
embedding.

We will want to test when two canvases are isomorphic. More generally, we
will want to have a canonical form for each canvas, so that given a set of canvases
S and a new canvas T, we can check whether there is a canvas isomorphic to T’
in § by checking the presence of the corresponding canonical form of 7" in an
associative array with the canonical forms of the canvases in S.

In order to produce the canonical form, define the transcript of the DFS
traversal starting at edge u — v as the string generated by procedure dfsTran-
script in Algorithm 1. That is, we do a depth-first traversal of the graph fol-
lowing the edges on each vertex in clockwise order, assigning labels to vertices
based in the order in which we first visit them and storing information for each
edge we visit in the traversal: F for edges towards a new vertex in the traver-
sal, B for edges towards the immediately previous vertex in the traversal stack
(which signifies the end of the edges for the current vertex and the return to
the previous vertex of the stack) and the label of the other endpoint for other
edges. See Algorithm 1 for details.

We compute such string for all the edges of the outer face as starting edges,
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Algorithm 1: Canonization of Plane Graphs.

/* Returns lexicographically smallest DFS Transcript */
function canonicalForm(G)
s “H7;
for uv in outer face of G do
t + dfsTranscript(G, u, v);
if t <, s then
‘ s 1
end
end
return s;

nd

unction dfsTranscript(G, u, v)

s <; “77;

A  array(|V(G)));

Alu] + firstIdentifier();

; /* A is the array that stores identifiers of already
visited vertices, initially initialized with () for all
vertices */

for w neighbor of w in clockwise order starting with v do
‘ dfs(G, w, u, s, A);

end

return s;

end

function dfs(G, u, p, s, A)

if Afu] # () then

s < s+ Alul;
return;

end

Alu] < nextIdentifier();

s+ s+ ‘F’;

for v #

p neighbor of u in clockwise order starting in the next neighbor after p
do
‘ dfs(G, v, u, s, A);

end

s+ s+ ‘B’

end

= 0
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and we take the lexicographically smallest one as the canonical form. It is clear
that two plane graphs have the same canonical string if and only if they have
isomorphic (in terms of the rotation system) embeddings.

3.2 (Generation of Critical Cycle-Canvases

Our algorithm for the generation of critical cycle-canvases is based on Theorem
2.1.15. This theorem says that every critical cycle-canvas can either be decom-
posed into two smaller critical cycle-canvases through a chord in the outer face,
it can be decomposed into a “tripod”, a vertex v with at least 3 neighbors in C,
and a smaller critical cycle-canvas contained in the only nonempty face incident
with v. In these decompositions, it is possible that instead of a smaller critical
canvas we get an empty canvas, which is technically not critical.

This implies that we can generate all critical cycle-canvases from smaller
cycle-canvases by gluing cycle-canvases through outer face edges to get a canvas
with a chord, or by adding a tripod to the outside of a cycle-canvas. We then
have to check whether the resulting canvas is indeed critical, since the decom-
position into two smaller critical cycle-canvases is a necessary but not sufficient
condition for criticality. We will see how to do this in Chapter 4.

If we are generating cycle-canvases with cycle length ¢, then a chord parti-
tions the cycle-canvas into two cycle-canvases of length a, b with a,b > 3 and
a+b=/~+2,s0a,b<{—1 and therefore if we have generated all cycle-canvases
with cycle length < ¢ we can generate all cycle-canvases with cycle length ¢ with
a chord. In the case of adding a tripod, though, if the vertex v of the tripod
is adjacent to only three adjacent vertices in the outer face, then the smaller
cycle-canvas has the same cycle length as the larger cycle-canvas.

In order to resolve this, what we do is first generate all the cycle-canvases
obtained from cycle-canvases with smaller cycle size, enqueue the resulting crit-
ical canvases, and then process the canvases from the queue and add tripods
to three consecutive vertices in all possible ways, enqueueing the new critical
cycle-canvases that are found. See Algorithm 2 for a detailed description.

Note that we only need to add tripods with 3 adjacent neighbors since ver-
tices with a larger number of neighbors in the outer face can be obtained by
first adding chords and then adding finally adding a tripod with 3 neighbors.
However, often we are interested in just generating chordless critical canvases.
In that case, we do need to add tripods of all sizes. The modified algorithm for
chordless critical cycle-canvases is Algorithm 3.

3.3 Generation of Critical Wedges

We are will be not only interested in generating critical cycle-canvases, but also
critical path-canvases or wedges. There are infinitely many of those for path
length greater than 1, but as we will see in coming sections, we will be able to
have a finite number of them if we impose additional conditions.
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Algorithm 2: Generation of Critical Cycle-Canvases.

/* Generate critical canvases of cycle size ¢, including empty one
*/
function generateCritical Cycle Canvases(?)
fori=3,...,/—1do
‘ S; < generateCriticalCycleCanvases(i);
end
S <« {emptyCycle(£) };
fora=3,...,/—1do
b—Cl—a+2
for G1 € S, do
for G2 € S, do
T + fuseChordSet(G1, G2);
; /* Set of cycle-canvases obtained by fusing (G; and
G2 along outer cycle edges in all possible ways */
for G €T do
if G ¢S AND isCritical(G) then
‘ S+ SU{G};
end

end

end

end

end

for k=3,...,/—1do

for G1 € Sk do

T + addTripodSet(G1,£ — k + 3, 3);

; /* Set of cycle-canvases obtained by adding a tripod
with 3 neighbors in the outer face to get a
cycle-canvas of length ¢ in all possible ways */

for G €T do

if G ¢S AND isCritical(G) then
‘ S+ SU{G};
end
end

end
end
Q < Queue(S);
while @ is not empty do
Gy + first(Q);
dequeue(Q);
T <+ addTripodSet(Ghi, 3, 3);
for G € T do
if G ¢S AND isCritical(G) then
S+ SU{G};
enqueue(Q, G);
end

end
end
return S;
end
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Algorithm 3: Generation of Chordless Critical Cycle-Canvases.

/* Generate chordless critical canvases of cycle size l,
including empty one */
function generateChordlessCritical CycleCanvases(t)
fori=3,...,—1do

| S; + generateChordlessCritical CycleCanvases(i);
end

S « {emptyCycle(?)};
for k=3,...,/—1do
for j=3,....—k+3do

for G, € S, do
T < addTripodSet(G1,¢ — k + 3, j);
for G € T do
if G ¢S AND isCritical(G) then
‘ S+ SU{G};
end
end
end
end
end

Q + Queue(S);
while @ is not empty do
Gy « first(Q);
dequeue(Q);
T <+ addTripodSet(G1, 3, 3);
for G €T do
if G¢ S AND isCritical(G) then
S+ SU{G};
enqueue(Q, G);
end
end

end
return S;
end
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Fortunately, we also have an analogue of Theorem 2.1.15 for wedges:

Theorem 3.3.1 (Wedge Chord or Tripod Theorem). If (G, P, L) is a 2-connected
critical wedge, then either

1. The outer walk C has a chord in G, or

2. there exists a vertez v € V(G) \ V(P) with at least three neighbors on P
such that at most one of the faces of G[{v} UV (P)] includes a vertex or
edge of G.

Proof. Assume not. Then, we will show that every L-coloring of P extends to
an L-coloring of G, contradiction. Let ¢ be any L-coloring of P, G’ = G\ P and
L'(v) = L(v) \ {¢(u) : u € V(P) neighbor of v} for each v € V(G’). Note that
|L'(v)| > 5 for every interior vertex of G’. Let C’ be the outer walk of G’ and
let v1, v2 be the two vertices of G’ that were adjacent to the two endpoints of P
in G. Note that |L'(v)| > 3 for all v € C"\ {v1,v2} since G was 2-connected and
had no chords, and |L(vy)|,|L(v2)| > 2. Hence, G’ is L’-colorable by Theorem
2.1.4. O

(This version of the theorem is slightly different than the one proved by
Postle in [18]).

Based on this theorem, we can design an algorithm to generate critical
wedges similar to the one used to generate critical canvases. The main ad-
ditional considerations we need to take into account are:

e We have to generate non-2-connected critical wedges by gluing smaller
critical wedges along the cutvertices. Observe that the cutvertices must
necessarily be part of P.

e Now adding a chord whose endpoint is the vertex next to the endpoints of
the precolored path produces a wedge with the same path length, so we
need to add those chords in the part of the algorithm using a queue.

e Chords with one endpoint in the precolored path and another endpoint
outside the precolored path need to be treated separately from chords with
two endpoints in the precolored path. Note that it is not possible to have
a chord with two endpoints outside the precolored path (or one endpoint
in an endpoint in the precolored path) because of Theorem 1.3.6.
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Algorithm 4: Generation of Critical Wedges.

/* Generate critical wedges of path size /¢, assuming those

of path size < ¢ have been already generated and are stored

in variable W, and the biconnected ones are in B;. */

function generateCritical Wedges(¢)

By «+ generateBiconnectedCritical Wedges(¥);

Wy < By U generateNonBiconnectedCritical Wedges(£);

end

function generateBiconnectedCritical Wedges(l)

S < emptyCycle(¢) U wedgesFromPathChords(¢) U
wedgesFromNonPathChords(¢) U wedgesFromTripods(£);

Q < Queue(S);

while @ is not empty do

G « first(Q);

dequeue(Q);

T <+ addTripodSet(G1, 3, 3);

T < T U addSizeTwoWedgesInEndpointsSet(G1 );

/* Set of wedges obtained by fusing wedges of size
two in the endpoints of wedge (G; in all possible
ways */
for G €T do

if G ¢S AND isCritical(G) then

S+ SU{G};
enqueue(Q, G);

end
end
end
return S;

b

end
function generateNonBiconnectedCritical Wedges(?)
S <+ emptyPath(¢);
fora=2,...,/—2do
b« {—a;
for G, € W, do
for G, € W, do
G + fuseEndpoints(G1, Ga);
if G ¢S AND isCritical(G) then

‘ S+ SU{G};
end
end
end
end
return S;
end
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Algorithm 5: Functions Generating Critical Wedges from Smaller
Path Lengths

function wedgesFromPathChords(€)

S}

fora=2,...,/—1do

for G’ € B, do

T + extendPathChordSet(G’, ¢ — a);

; /* Set of wedges obtained by adding ¢ — a consecutive new
precolored vertices between two adjacent precolored vertices
of G', making the previous edge of G’ a chord in the path.
*/

for G € T do

if G ¢S AND isCritical(G) then
| S« Su{G}
end
end

end

end
return S;
end
function wedgesFromNonPathChords(¢)
S {}h
fora=4,...,/—1do
b+ {l—a+3;
for G1 € B, do
for G2 € B, do
T = fuseChordSet(G1, G2);
for G € T do
if G ¢ S AND isCritical(G) then
‘ S+ SU{G};
end
end

end
end

end

return S;

end

function wedgesFromTripods(¢)
S+ {h

for k=3,...,—1do

for j=3,...,£—k+3do

for G’ € By do
T + addTripodSet(G’, ¢ — k + 3, j);
for G €T do
if G ¢ S AND isCritical(G) then
‘ S+ SU{G};
end
end
end
end
end
return S;

end
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Chapter 4
Criticality Testing

In this chapter we describe algorithms used to determine list-criticality of graphs.
Recall that we are not storing the explicit list assignment L for our graphs, so
what we want to check is whether there exists a L so that the graph is critical
with respect to that L. However, even if L was fixed, to determine criticality
would still be a computationally hard problem. What we will do instead is check
for weaker properties, and therefore admit some false positives, that is, some
graphs we identify as list-critical for which actually no suitable L exist. Our
hope is that the tests will be exhaustive enough so that finiteness results such
as Theorem 2.1.12 still hold for the weaker properties we are testing, and our
algorithms terminate. We will see that indeed, the algorithms described here
work very well in practice at discarding non-critical graphs.

We do not have a fixed list assignment for our graph, but we do have pre-
scribed list sizes f for each vertex. So in this section we will see how to test for
f-criticality.

4.1 Degree Properties

We can start with an easy observation:
Observation 4.1.1. In a f-list-critical graph, d(v) > f(v) for all vertices v.

So if we find a vertex with degree less than the prescribed list size, we can
conclude that the graph is not list-critical. However, this is a very weak test.
We can incorporate another test concerning the vertices with d(v) = |L(v)]:
there is the following result by Gallai showing that the subgraph induced by
those vertices must have a certain structure, generalizing the classical Brooks
theorem for vertex coloring:

Theorem 4.1.2 (Gallai [12]). Let G be a f-list-critical graph and let H be the
subgraph of H induced by the vertices with d(v) = f(v). Then each 2-connected
component of H is a complete graph or an odd cycle.
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Figure 4.1: Illustration of 4.2.1: from a subgraph, we get a graph with prescribed
list sizes.

Figure 4.2: Some colorable reducible configurations.

4.2 Reducible Configurations

The method of reducible configurations is a usual technique in graph coloring
problems. It consists in identifying subgraphs or other structures that can not
appear in critical graphs. We have the following observation:

Proposition 4.2.1. Let G be an f-list-critical graph, and let H be an induced
subgraph of G such that Vv € H, f(v) > de\u(v), where de g (v) is the number
of neighbors of v which are not in H. Then H is not g-list-colorable, where

g(v) = f(v) - dG\H(U)'

Proof. If G = H, it is immediate. Assume H C G, and let G be L-critical.
Let ¢ be a coloring of G \ H, and let L’ be the g-list-assignment of H given by
L'(v) = L(v) \ {¢(u) : u € Ng(v),u ¢ H}. Then H is not L’-colorable: since
otherwise, the L-coloring ¢ of G \ H would extend to G, contradiction. O

We can consider Observation 4.1.1 to be a particular case of Proposition
4.2.1. In Figure 4.2 we see a couple of examples of small graphs that are always
f-colorable, so one possible test we can add to our criticality testing procedure
is to search for occurrences of those graphs as induced subgraphs, and if one is
found then conclude that the graph is not critical.

However, there are also reducible configurations which are not f-colorable.

Definition 4.2.2. A graph G is said to be f-reducible if there is a proper
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Figure 4.3: A non-colorable reducible configuration.

subgraph H C G so that for all f-list-assignments L of G, if H is L,,-colorable
then G is L-colorable.

Proposition 4.2.3. Let G be an f-list-critical graph, and let H be an induced
subgraph of G' such that Vv € H, f(v) > dg\g(v), where dey g (v) is the number
of neighbors of v which are not in H. Then H is not g-reducible, where g(v) =

fv) — dG\H(U)'

Proof. Assume not, and let H' be the corresponding subgraph of H for which
all g-colorings extend. Let G be L-critical. There exists an L-coloring ¢ of
G\(H\ H'). Let L' be the g-list-assignment of H given by L' (v) = L(v)\{¢(u) :
u € Ng(v),u & H}. Note that ¢;,, is an L'-coloring of H’, so there must be an
L'-coloring ¢ of H. But then the coloring ® given by ®(v) = ¢ (v) for v € H,
®(v) = ¢(v) for v € G\ H is a L-coloring of G, contradiction. O

Observation 4.2.4. The graph depicted in Figure 4.3 with prescribed list sizes
f is f-reducible.

Proof. Let us characterize the f-list-assignments L for which the graph is not L-
colorable. First, note that if L(v) # L(w) or L(z) # L(y) one can precolor both
w and z so that the resulting graph with the corresponding colors removed from
the lists is a path with list sizes at least 2 in all vertices except in one endpoint,
with list size at least 1, so it is colorable. Therefore, we have L(v) = L(w) and
L(z) = L(y). Then, note that L(v), L(x) C L(u), since otherwise by coloring
one vertex with a color not in L(u) one can always color the graph. Therefore,
the f-list-assignments for which the graph is not L-colorable are those of the
form L(u) = {A, B,C, D}, L(v) = L(w) = {A, B}, L(z) = L(y) = {C, D}. But
for those list assignments the graph without edge wx is also not L-colorable, so
for any f-list-assignment L the graph is L-colorable if and only if the subgraph
without the edge wx is L-colorable. O

4.3 The Alon-Tarsi Method

While checking for the small reducible configurations we found in the previous
section is helpful, it is not good enough, because there are larger graphs which
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are always f-colorable but do not contain any of the reducible configurations.
One could augment the list of configurations to check by manually inspecting
those graphs when they are encountered, but this is ineffective and also ineffi-
cient because induced subgraph isomorphism testing starts being very expensive
with larger subgraphs. We would, then, like to have a systematic method to
find when graphs with prescribed list sizes f are f-list-colorable. Alon and Tarsi
provided a useful criterion:

Theorem 4.3.1 (Alon-Tarsi, [3]). Let G be a directed graph on vertices vy, ..., Un,
and let L be an assignment of lists to vertices of G such that |L(v;)| > d* (v;)+1
fori=1,... ,n. If G has a different number of even and odd spanning eulerian
subgraphs, then G has an L-coloring.

Here even and odd eulerian subgraphs refer to the number of edges. We
will explain the proof of this theorem here, since it will give us insight into
how to implement it in a more efficient way than enumerating all eulerian sub-
graphs. For the proof we will need an algebraic result known as Combinatorial
Nullstellensatz.

Theorem 4.3.2 (Combinatorial Nullstellensatz [2]). Let K be a field and p(x1, . . .
K[z1,...,z,] be a nonzero polynomial and let ty,...,t, be nonnegative integers
such that the degree of p is t1 + ...+ t, and the coefficient of [];—, x? inpis
nonzero. Let Sy,..., Sy be subsets of K such that |S;| > t; +1. Then there exist
ay € S1,...,a, €8S, such that p(ai,...,a,) #0.

4.3.1 Proof of the Alon-Tarsi Theorem

Definition 4.3.3. For a directed graph G with n vertices vy, ..., v,, we define
its graph polynomial pe(z1,...,x,) as:
pa(ar,..zn) = ] (25— ). (4.1)
50, €E(G)

Observation 4.3.4. If we associate each color with a different number (we work
in, say, C), then ¢ is a proper coloring of G if and only if p(d(v1), ..., d(vyn)) #
0.

Proposition 4.3.5. Let G be as in the hypothesis of the Alon-Tarsi theorem.

+ (0

If the coefficient of pe: at [[i, x? o) g non-zero, then G has an L-coloring.
Proof. The total degree of pg is |E(G)| = d*(v1) +...+d"(v,). By the Combi-
natorial Nullstellensatz, one can find ¢(v1) € L(vy),...,¢(v,) € L(vy,) so that
pa(p(v1), ..., d(vn)) # 0. O

7xn) €

Observation 4.3.6. Let G be a directed graph, and denote by xg = HWGE(G) x;.

Let Dy and Dy be two orientations of a graph, denote by |D1ADs| the number
of edges with different direction in the two orientations. We have:

pa(T1,...,an) = > (—1)IPACl (4.2)

D orientation of G
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{fr(vi)

Proposition 4.3.7. The absolute value of the coefficient of pg at H;L:l x
is the difference between odd and even eulerian spanning subgraphs of G.
Proof. Consider the set S = {D orientation of G : zp = H?:lx;ﬁ(v")}, that
is, the set of orientations which have the same indegrees as G. We claim that
this set is in bijection with the set of eulerian spanning subgraphs of G, with
a bijection maps orientations with even |DAG| to even spanning subgraphs
and orientations with odd |DAG| to odd spanning subgraphs. This implies the
result by (4.2).

The bijection is as follows: for each D € § map it to the subgraph with
edges given by the edges in G which have opposite orientation as edges in D.
Since the indegrees of D and G are the same, this subgraph is eulerian, and this
map is clearly invertible and hence a bijection. O

This concludes the proof of Theorem 4.3.1.

4.3.2 Implementation of the Alon-Tarsi Method

Here we will explain how to use Theorem 4.3.1 in practice to check the f-
colorability of a graph. The first thing we have to note is that Theorem 4.3.1
is stated with respect to a directed graph, but this is immaterial to our needs.
We only have the prescribed list sizes f, and for each such prescription there
can be different orientations of that satisfy the f(v) > d™(v)+ 1 condition, and
we could apply the theorem to each of those. So instead of using the combi-
natorial characterization of the theorem, what we will do is directly compute
the polynomial pg with respect to an arbitrary orientation of the graph, and if
any monomial []z{" with e; < f(i) has a nonzero coefficient we will conclude
f-colorability.

It will be convenient to think of the computation of the polynomial pg using
the expression (4.2). This way, we can compute the coefficients by enumerating
all orientations of the graph and summing the signs. See Algorithm 6 for the
implementation.

However, there are multiple improvements that can be made over this naive
implementation.

The most immediate one is that we only care about the coefficients of the
monomials corresponding to orientations with indegrees less than f(v) in each
vertex f (we call such orientations f-bounded orientations, and the coefficients of
the corresponding terms of the polynomial f-bounded coefficients). Therefore
we can store only coefficients of the polynomial corresponding to f-bounded
orientations. We would also like to generate only f-bounded orientations, so
that we do not have to iterate over all 2/F(%)! orientations of the graphs.

If we generate orientations by a orienting each edge one by one in a recursive
backtracking fashion, we want to know when to cut a branch that is not going
to lead to an f-bounded orientation. The easiest way is to cut a branch when
the branch trivially does not correspond anymore to an f-bounded orientation,
that is, when the indegree of some of the vertices already reaches f(v). It can be
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Algorithm 6: Naive Alon-Tarsi.

; /* Returns true if the Alon-Tarsi method determines that G
is f-colorable. */

function alonTarsi(G, f)

S < allOrientations(G);

/* allOrientations((G) generates all orientations of G
(e. g. Dby orienting each edge by recursive
backtracking) */
pa < emptyAssociativeArray();

/* We represent the polynomial ps by an associative

bl

bl

array mapping the array of n integers ei,...,e, to the
coefficient of [[z;' initialized to 0 on all values. */
for D e S do
s+ 1;

e < array(n);

for {u,v} € E(G) do

; /* We pick an arbitrary order for u,v in each edge
in order to determine an arbitrary orientation of
G (e. g. set u<wv in the integer labeling we
use to represent G). */

if uwl € E(D) then

‘ ey e, +1;
else
4 —8;
€y — €y + 1;
end
pcle] < pale] + s
end
for (e, c.) € pg do

/* Iterate over the coefficients of the polynomial
and if there is some nonzero coefficient of an
appropiate monomial, return success. */
if e, < f(v)Yv € V(G) then
if ¢, # 0 then
‘ return true;
end

b

end

end
return false;
end
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done in a more sophisticated way by reducing the problem of checking whether
a partial orientation can be extended to an f-bounded orientation to a problem
of maximum bipartite matching. This way, all the branches that do not lead
to an f-bounded orientation can be immediately discarded by this test, and we
can obtain an enumeration of all f-bounded orientations in polynomial time for
each f-bounded orientation.

However, it turns out it is more efficient to just do it in the trivial way since
the overhead of solving the bipartite matching subproblems is not worth the
more eager cutting of branches. The trivial branch cutting can be improved
by selecting the next edge that is going to be oriented following some heuristic
that makes it more likely for branches to be cut off earlier. For example, we
can orient first the edges that whose orientation is forced (because one of the
endpoints has already indegree f(v)—1) and then prioritize the ones whose both
endpoints have indegrees close to f(v).

Implementing the above improvements already makes a very substantial im-
pact in the execution time of the algorithm, but it is still slow when the number
of f-bounded orientations is very large and storing all the f-bounded coefficients
of the polynomial can also incur in a large memory usage.

There is a different approach which can work a bit better in practice, based
not on enumerating all orientations but on computing the contribution of each
edge to the polynomial separately. We can think of it as using (4.1) instead of
(4.2) and computing the product HWGE(G) (x; — ;) term by term. The impor-
tant ideas in making this be actually faster than the enumerating orientations
approach are:

e We truncate the partial results so that we don’t store non-f-bounded

coefficients: we only care about f-bounded coefficients, so we can just
avoid storing the other coefficients of the polynomial, not only in the final
result but also in the intermediate results we get after multiplying each
(x; — x;) term.
In a similar fashion to the previous discussion in which we were enu-
merating f-bounded orientations, given the intermediate polynomial after
multiplying some of the terms we can check whether each monomial will
have some contribution to a f-bounded coefficient in the final result —i.e.,
whether the partial orientations corresponding to the indegree sequence
corresponding to the monomial can be extended to a f-bounded orienta-
tions — by solving a bipartite matching problem. But, just as before, we
find that the overhead of performing this extendability test is not worth
the additional pruning and that it is more efficient in practice to just
discard non- f-bounded monomials.

e We also discard monomials whose coefficients are 0 in the intermediate
results and don’t store them in memory. This is the most important
optimization and it is what makes this approach better in practice than
the one about enumerating orientations, since in “hard-to-color” graphs
we expect that we will already start seeing many zeroes in intermediate
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results and this can contribute to an important reduction in time and
memory usage.

e As before, the order in which we process edges matters. We want to have
many truncations and zero coefficents early, so that we store fewer data
for our partial results. This can be done heuristically by prioritizing edges
with small values of f at their endpoints.

Further improvements are possible, but we do not describe them here since
this is already the implementation we have actually used for this project. For a
more detailed analysis and comparison of techniques for the efficient implemen-
tation of the Alon-Tarsi method, see [8].

Remember that the Alon-Tarsi method does not always detect colorable
graphs successfully. For example, the second graph in Figure 4.2 is not recog-
nized by Alon-Tarsi as a colorable graph. In addition, for bigger graphs Alon-
Tarsi is significantly slower than the search for fixed small induced subgraphs.
And remember that we also have non-colorable reducible configurations, for
which Alon-Tarsi does not apply. So it is still advisable to first check for the
small reducible configurations we found above before running Alon-Tarsi.

4.4 Recursive Colorability Testing

We know that if our graph has a reducible configuration as an induced subgraph,
then it can not be f-critical. And we can determine whether a induced subgraph
is an always-colorable reducible configuration using the Alon-Tarsi method. So
one possible idea would be to apply Alon-Tarsi on every induced subgraph to
check if our graph has any reducible configuration. We can easily see that this is
not very efficient — we run the already slow Alon-Tarsi method on an exponential
number of graphs. On the other extreme, we can run the Alon-Tarsi method
only on the entire graph, falsifying f-criticality only if it is f-colorable. This is
not good, either — we can easily imagine graphs which are not f-colorable but
are not f-critical either, because they contain some reducible configuration as
an induced subgraph.

In fact, as Figure 4.4 shows, this scenario can happen very easily when, for
example, generating critical cycle-canvases, because it suffices to have a triangle
with list sizes 2 to make the graph non-f-colorable. The specific reducible
configuration that appears in Figure 4.4 is one of the small ones that we can
check specifically before running Alon-Tarsi, but the more general scenario of
having a reducible configuration plus a non-colorable subgraph does also often
happen with larger reducible configurations and it is important that we deal
with it automatically, using Alon-Tarsi to detect the reducible configuration.

What we do is the following: if Alon-Tarsi returns a negative answer to being
applied to the entire graph, we try to find a minimal non-colorable subgraph
which is causing this negative answer (such as the triangle in Figure 4.4). We
do that by arbitrarily removing vertices and checking whether the graph is still
non- f-colorable, and doing so until we have a graph which becomes f-colorable
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Algorithm 7: Optimized Alon-Tarsi with truncated multiplication.

; /* Returns true if the Alon-Tarsi method determines that G
is f-colorable. */
function alonTarsi(G, f)
pe + emptyAssociativeArray();
E + sortEdges(E(G), f);
; /* sortEdges sorts the edges according to some
heuristic, e.g. increasing by sum of values of f at
endpoints */
for {u,v} € E do
q + emptyAssociativeArray/();
; /* q:pG(xu—'rv) */
for (e, c.) € pg do
if e, +1 < f(u) then
T e
Ty = Ty + 1;
q[r] < qlr] + ce;
end
if e, + 1 < f(v) then
T e
Ty < Ty + 1;
qlr] < qlr] = ce;
end
end
pa <+ emptyAssociativeArray();
; /* Update pg with the nonzero coefficients of g */
. for (e, ce) € q¢ do
if ¢, # 0 then
‘ pG[e] & Ce;
end

end

nd
or (e,c.) € pg do
if c. # 0 then

‘ return true;
end
end
return false;

= 0

end
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Figure 4.4: An example of a non- f-colorable graph with a reducible configura-
tion obtained from a cycle-canvas.

when any vertex is removed. Then we remove subgraph H (and reduce the list
sizes of vertices neighboring H correspondingly, like when considering reducible
configurations) and recursively apply the test to the remaining graph. We see
that this works for the graph in Figure 4.4: first, the triangle is removed and then
the reducible configuration is identified. This recursive approach also handles
more general cases when there are multiple non-colorable subgraphs obstructing
the colorability of the entire graph. Overall, the results of using this heuristic
are very satisfactory.
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Algorithm 8: Recursive Colorability Testing.

function containsColorableSubgraph(G)

if G is empty then

‘ return false;

end

if alonTarsi(G) then

‘ return true;

end

H + minimalNonColorable(G);

return containsColorableSubgraph(precolorSubgraph(G, H));

; /* precolorSubgraph(G, H) returns the graph G removing
the subgraph H and decrementing the list sizes of the
neighbors of vertices of H appropiately. */

end
function minimalNonColorable(G)
for v € V(G) do
if not alonTarsi(remove Vertez(G,v)) then
| return minimalNonColorable(removeVertex(G,v));
end
end
return G,
end
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Chapter 5

Approaches to the Two
Precolored Triangles
Theorem

In this chapter we explain different approaches to proving Conjecture 2.1.17.

5.1 Cycle-Canvas Strangulation

We can generate all critical prism-canvases whose two triangles are at distance
d from critical cycle-canvases with cycle size 2d + 6. Here is how:

Proposition 5.1.1. Let G be a plane graph (T U Ty)-critical with respect to
some list assignment L, where T1 and Ty are two triangles and P is a shortest
path between them of length d. Let G' be the graph obtained by “duplicating”
the d + 1 vertices of path P, so that the edges of the path P are duplicated and
the other neighbors of the duplicated vertices are now neighbors of the vertex
corresponding to the side of the path in which the neighbors were in (see Figure
5.1). Let C be the corresponding cycle of length 2d+6 that is newly formed with
the duplicated vertices and the vertices of the triangles. Then G’ is C-critical
(with respect to the naturally corresponding list assignment L’ ).

Proof. By the Extension Lemma (1.3.15), G is (T} U T» U P)-critical. Now, the
result follows by the Duplication Lemma (1.3.16). O

Now, we use this result in the backwards direction: from critical cycle-
canvases of cycle size 2d + 6, we generate candidates for critical prism-canvases
by identifying d+ 1 consecutive vertices in the precolored cycle with the opposite
segment of d + 1 consecutive vertices in the precolored cycle (it is useful to
visualize the“inverted” canvas, so that the precolored cycle is no longer the
outer face but a cycle bounding an interior face). Note that from each cycle-
canvas there are d + 3 ways to identify the vertices. After criticality testing all
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Figure 5.1: Critical cycle-canvas from critical prism-canvas.

candidates from all cycle-canvases of size 2d + 6, we obtain all critical prism-
canvases of distance d.

This can serve to get the list of all critical prism-canvases with the triangles
at a certain distance, which is useful for a part of our plan and to experimentally
determine the value of the right distance constant in Conjecture 2.1.17. However
it is not useful, just by itself, to prove that there are no such critical prism-
canvases for large enough distances.

5.2 The Forbidden 3-3 Setting

Recall Postle’s approach: Postle, like Thomassen, works in a setting where
the vertices of the outer face of the graphs are allowed to have lists of size 3.
For proving the Two Precolored Triangles Theorem, this is useful because a
shortest path between the triangles can be precolored to obtain a graph with
two precolored paths of length 1 and vertices with list size at least 3 in the
outer face. The problem is that there are infinitely many critical graphs in such
a setting. The question is: can we find some restriction on the list sizes so that:

1. It is restrictive enough so that there are only finitely many (P UP;)-critical
graphs, where Py, P, are paths of length 1 in the outer face, but

2. It is not too restrictive, so it is useful and allows reductions like in the
proof of Thomassen’s Theorem.

The setting we propose is: require vertices in the outer face to have list size
at least 3, and also additionally require that no two adjacent non-precolored
vertices have list size less than 4. Note that in this setting, we cannot have the
infinte amount of bellows that prevented path-canvases with path length 2 from
being colorable, or the coloring harmonicas that prevented canvases with a path
of length 1 and a path of length 0 from being colorable.

In fact, this setting was first introduced in [7] to prove that there are only
finitely many P-critical graphs in this setting, where P is a path of length 2,
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and as we will see there are also only finitely many critical graphs for longer
path lengths and for two paths of length 1.

Definition 5.2.1. We say that (G, S, L) is a 3-3-forbidden canvas if G is a
connected plane graph with outer walk C, S is a subgraph of C, and L is a list
assignment such that |L(v)| > 5Vv € V(G)\V(C), |L(v)| > 3Vv € V(C)\V(S)
and for all wv € E(G) with u,v € V(S) we have that max{|L(u)|, |L(v)|} > 4.
If S is a path, we say (G, S, L) is a 3-3-forbidden wedge (or just wedge in this
section). If S = P; U P, with P, P, paths of length at most 1, we say that
(G, S,L) is a 3-8-forbidden biwedge. We say that (G,S,L) is critical if G is
S-critical with respect to L.

Since in our program we do not store the list assignments for the graphs but
we do store the prescribed list sizes for each vertex (that is, whether a vertex
can have a list size of 3 or is forced to have > 4 colors), we will sometimes abuse
terminology use the terms critical wedge and critical biwedge to refer to those
graphs with prescribed list sizes but not with a fixed list assignment.

5.2.1 The Forbidden 3-3 Reduction

Before we state the reduction that we can use in this setting, we need the
following result:

Proposition 5.2.2. There are only two critical 3-3-forbidden wedges with path
length 2:

1. The three-vertex graph consisting of P = popip2 with an additional edge
joining po and ps.

2. The four vertex graph consisting of P plus one vertex with list of size three
joined to all three vertices of P.

This is proven in [7] using the reduction we are about to describe, but note
that we can also prove it by generating critical wedges using the algorithm in
Section 3.3 and seeing that it halts after generating only these two graphs.

Definition 5.2.3. We say that a 3-3-forbidden canvas (G, S, L) is reducible if
the following holds:

1. It is 2-connected.
2. The outer cycle has no chords.

3. There is a precolored vertex pg € S so that the next four vertices vy, vo,
v3, ¥4 in clockwise order in the outer cycle are not in S.

Let (G, S, L) be a critical reducible 3-3-forbidden canvas, and consider the
list sizes of the vertices vy, vg, v3, v4 as in the definition of reducible. We are
going to consider different cases according to those list sizes, and in each case we

will select a subset X of those vertices and a L-coloring on some of the vertices
in X.
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Figure 5.2: Illustration for the cases in the reduction (from [7])

X1 If |L(va)| > 4 and |L(v3)| > 4, then X = {v1} and ¢(v1) € L(v1) \ L(po)
is chosen arbitrarily.

X2 If |[L(vg)| > 4 and |L(v3)| = 3, then X = {v1,v2} and ¢ is chosen so that
6(v2) € L(v2) \ L(vs) and 6(vr) € L(v1) \ (L(po) U {6(v2)}).

(
) €
X3 If |L(vz)| = 3, and either |L(vy4)| # 3 or |L(vs)| > 5, then X = {v2} and
¢(va) € L(v2) is chosen arbitrarily.

(

X4 If |L(ve)| = 3, |L(vs)| = 4 and |L(v4)| = 3, then:

X4a If vy, v and vs do not have a common neighbor or |L(vy)| > 5,
then X = {vy,v3} and ¢ is chosen so that ¢(vs) € L(vs) \ L(v4) and
¢(v2) € L(v2) \ {o(v3)}.

X4b If v, v2 and vz have a common neighbor and |L(vi)| = 4, then
X = {v1,v2,v3} and ¢ is chosen so that ¢(vs) € L(vs)\ L(vyg), ¢(v1) €
L(v1)\L(po) and either at least one of ¢(v1) and ¢(v3) does not belong
to L(vs) or ¢(v1) = ¢(v3). The vertex vq is left uncolored.

Let G’ = G\ X and let L’ be the list assignment obtained from L by removing
the colors of the vertices of X according to ¢ from the lists of their neighbors
(if a vertex of X is not colored according to ¢, we do not remove any colors
for it). By the choice of X and ¢, any L’-coloring of G’ can be extended to an
L-coloring of G, thus G’ is not L’-colorable.
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Figure 5.3: Fusing wedges along the shortest path of the biwedge.

This can imply one of these two options:

1. (G', S, L) contains a critical 3-3-forbidden canvas as a subgraph (and one
which is smaller than (G, S, L)).

2. (G',S,L') is not a 3-3-forbidden canvas.

The second option can only happen if G’ contains two adjacent vertices with
list size 3. Let us call those vertices u, v. Because G had no chords and because
Lemma 1.3.14 and Proposition 5.2.2 applied to vertices of G with two neighbors
in X, we can conclude that u and v form a chord of the outer walk of G'.

5.2.2 Plan for Critical Biwedges
We will apply the above reduction to prove the following:

Conjecture 5.2.4. Let (G, Py U Py, f) be a tuple such that G is a plane graph,
Py, Py are two length one paths in the outer walk of G, and f is a list size
assignment as in the definition of 3-3-forbidden canvases. If there exists an f-
list-assignment L such that (G, Py U P, L) is a critical 3-3-forbidden biwedge,
then (G, Py U Py, f) € S, where S is an explicit finite set (to be determined
computationally) such that all the members of S satisfy d(Py, Py) < 4.

In order to prove this, we do the following:

We can generate all critical biwedges with distance between paths d by fusing
all pairs of critical wedges with path lengths d+ 1 or path lengths d and d+2 as
in Figure 5.3 and testing criticality. By Lemma 1.3.15 applied to the shortest
path between the two paths and Lemma 1.3.14, all critical biwedges can be
decomposed in this way.

We let S be the set of critical biwedges with distance between paths up to
4 obtained by that procedure.

To prove the conjecture, assume for a contradiction that there is a critical
biwedge (G, PLUP,, f) ¢ S, and choose such a counterexample with the smallest

V(G-
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Assume G has a chord or cutvertex. Then, by Lemma 1.3.14, G can be
decomposed into two smaller biwedges fused along the chord or cutvertex. We
should verify computationally the following statement:

Proposition 5.2.5. If any B1, Bo € S are fused along one of their precolored
paths to create a biwedge (G, Py U Py, f) with d(Py, P2) > 5, then (G, P U Py, f)
is mot critical.

So we conclude that G can not have a chord or cutvertex.

We must have d(Py, P,) > 5, since all critical biwedges with distance up to
4 are in §. Now, note that our biwedge is reducible. We apply the reduction. If
G contains as a subgraph a smaller critical biwedge, then that critical biwedge
is in S and therefore has distance at most 4 between precolored paths, so G
shoud have distance at most 4 between paths, contradiction.

Therefore we have that the resulting graph G’ after performing the reduction
has a chord uwv with two vertices of list size 3. And G’ is not L’-colorable, so there
exists a coloring of P; U P, that does not extend to G’, so G’ contains a subgraph
G" which is (P; U Py)-critical with respect to L. Now, G” is not a critical
biwedge because of the uv chord, but it by Lemma 1.3.14 it can be decomposed
into two critical smaller critical biwedges along the chord. Therefore, we must
verify computationally the following statement:

Proposition 5.2.6. If any By, By € S are fused along one of their precolored
paths to create a triple (G, Py U Py, f) with one chord between vertices with
prescribed list sizes 3 but no other adjacencies between vertices with
prescribed list size 3, then either (G, Py UPs, f) is not critical or d(Py, P2) <
4.

In order to reach a contradiction and conclude that such a counterexample
must not exist.

5.2.3 Approach for Critical Triangle-Wedges

We can not use Postle’s technique of precoloring a shortest path between the two
triangles to conclude the result for two triangles from the result for biwedges,
because the requirement that no two vertices adjacent vertices have list of size
3 is too strong for that.

Instead, what we can try is to use the reduction again. We generalize the
two precolored triangles setting as follows:

Definition 5.2.7. We say that (G,S = PUT, L) is a 3-3-forbidden triangle-
wedge if G is a connected plane graph with outer walk C, P is a path of length
1 of C, T is a triangle bounding a face of G (not necessarily incident with C)
, and L is a list assignment such that |L(v)| > 5Yv € V(G) \ (V(C) U V(T)),
|L(v)] > 3Vv € V(C) \ V(S) and for all wv € E(G) with u,v & V(S) we have
that max{|L(u)|, |L(v)|} > 4.
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Note that the critical prism-canvases can be retrieved from the critical 3-3-
forbidden triangle-wedges by selecting those whose outer face is a triangle with
list size 3 in the outer face.

We can try a similar strategy as with the biwedges in order to prove that
all the critical triangle-wedges belong to a critical set: construct all candidates
in which the triangle is at a small distance from the outer face, and then apply
the reduction to show that there are no critical graphs with a larger distance.

But the problem is, here constructing all the graphs for which the triangle
is at a small distance from the outer face is much more complicated than for
the biwedges. It also requires larger critical wedges as building blocks, which
we are less likely to be able to be computed in reasonable time. In theory, this
approach could be carried out with access to large computational resources, but
it seems like something smarter is needed.
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Chapter 6

Results and Further Study

In this chapter we describe the computational results we got by executing our
implementation of the techniques described in the previous chapters, and briefly
discuss next steps for working on the 6-list-critical graphs on the torus problem.

6.1 Computational Results

6.1.1 Generation of Cycle-Canvases

cl#fe [# |l | #

371 (7 [18 | 11 131221
401 |8 | 145 | 12| 1447449
502 |9 | 1260 | 13 16506284
6|5 | 10| 12518 || 14 | -

Table 6.1: Number of critical cycle-canvases by cycle size

In Table 6.1 we can see the number of chordless cycle-canvases generated
by our program for sizes from 3 to 13. We see an exponential growth in the
number of critical cycle-canvases, which is consistent with the linear number
of vertices bound of Theorem 2.1.12. The base of the exponent appears to be
approximately 10.

Note that the number corresponds to candidates for critical chordless cycle-
canvases (also including the empty cycle-canvases, which are considered critical
by our program for implementation ease), and the number of actual critical
canvases could be slightly lower, especially in the higher cycle sizes. (This
applies for all the tables in this chapter).

The generation of the critical cycle-canvases of cycle size 13 takes around 20
hours in our computer. Our program uses too much memory for cycle-canvases
of size 14, because of the need to store critical canvases in the queue and in the
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associative container used to eliminate duplicates. We see the following possible
improvements to ameliorate this:

e Process the cycle-canvases in a depth-first rather than breadth-first way:
that is, use a stack rather than a queue. Because the search space of
critical cycle-canvases is shallow with respect to the operation of adding
a tripod, this will use less memory.

e Do not store the found cycle-canvases, just print them. This brings up the
problem of how to handle duplicates: one possible way is to try to define a
“canonical” sequence of tripod operations to generate any possible cycle-
canvas, and only generate canvases through that canonical sequence of
operations. This requires analyzing the symmetries of the graphs.

e Alternatively, compress the information of the generated graphs as much
as possible while still retaining the ability to detect duplicates. Applying a
compression hash function to the DFS transcript is the simplest example.

Also, we can also improve the time performance of the program via paral-
lelization, since the program does criticality testing different graphs indepen-
dently, and therefore can easily be parallelized.

We did in fact implement some of the proposals above, but it was not enough
to achieve the generation of all critical cycle-canvases of cycle size 14 in our
computer. Nevertheless, we believe that generating cycle-canvases of cycle size
14 is feasible and can be achieved by carefully optimizing the time and memory
performance of our program or by running the program in a computer with
greater resources. However, the exponential growth in the number of critical
cycle-canvases suggests that the practical limit might be 14 or 15. In particular,
it is not feasible to generate all 10'° critical cycle-canvases of cycle size 16, which
means that if the appropiate constant in the Two Precolored Triangles Theorem
is 5, as we conjecture, we will not be able to verify it by canvas strangulation.

6.1.2 Generation of Prism-Canvases via Strangulation

Table 6.2: Number of critical prism-canvases by distance between triangles

Table 6.2 shows the number of prism-canvases obtained by canvas strangu-
lation of cycle-canvases of cycle sizes 8, 10, 12. The stark decline with prism-
canvases at distance 3 gives us hopes that the number will reach 0 by distance
5 (or even 4).

Processing the critical cycle-canvases of cycle size 12 to get the prism-
canvases at distance 3 takes about 30 minutes in our computer, approximately
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the same time the cycle-canvas search program takes to generate the canvases
of size 12. The same optimizations, in particular parallelization, can be applied
to this program to make it faster.

6.1.3 Forbidden 3-3 Setting Approaches

@U‘Y%WI\DH‘?\
[\
[\

Table 6.3: Number of critical 3-3-forbidden wedges by path length

d ‘ # 2 Paths ‘ # Path & Vertex
1] 22 1

2 | 212 10

3| 116 4

4| 14 0

Table 6.4: Number of critical 3-3-forbidden biwedges by distance between pre-
colored paths

Table 6.3 shows the number of critical 3-3 forbidden wedges by path length
up to length 6 and Table 6.4 shows the number of biwedges (both those with
two precolored paths of length one and those with one path of length one and
one path of length zero) generated from those wedges by the distance between
precolored paths up to distance 4. We computationally performed the proof
steps explained in Section 5.2.2 and therefore proved Conjecture 5.2.4, which
we now restate here as two theorems.

Theorem 6.1.1. There exist only finitely many 3-3-forbidden critical biwedges.

Theorem 6.1.2. Let G be a plane graph with outer walk C, let Py, Py be two
paths of length 1 in C, and let L be a list assignment for G. If all the following
conditions are satisfied:

1. |L(v)| > 5Yv e V(G) \ V(C).

2. |[L(w)| >3Yv e V(C)\ (V(P1) UV (P))

3. Py, Py are L-colorable.

4. There does not exist uv € E(GQ) with |L(u)| = |L(v)| = 3.
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b.

d(Py, Py) > 5.

then G is L-colorable.

6.2 Conclusions and Further Study

We hope that the work done in this thesis can serve as a first step in the quest
for finding the set of 6-list-critical graphs on the torus. Based on the results
we have gotten above and what we have studied about the problem, we outline
some possible next steps to be taken:

Implement the corresponding optimizations to the critical cycle-canvas
search and canvas strangulation programs in order to obtain the list of
critical cycle-canvases with cycle size 14 and the list of critical prism-
canvases with triangle distance 4. We discussed the details of what those
optimizations could be in the previous section.

Try to prove the Two Precolored Triangles Theorem with the tightest
bound. This is the main obstacle we have faced for our plan. Our ap-
proaches have not been successful: the 3-3-forbidden setting worked well
for the biwedges but it is not conceptually clear how to extend it to the
precolored triangle setting. Other approaches that we tried also had prob-
lems. Perhaps more work and more complex strategies can make these
approaches successful, or perhaps new ideas are needed here.

Implement gluing of prism-canvases along the precolored triangles to gen-
erate new candidates for critical prism-canvases with a separating triangle.
This may allow us to get some critical prism-canvases with higher distances
(if those exist) without having to strangulate cycle-canvases of large cycle
size.

Implement resconstruction of critical 6-list-critical graphs on the torus
from critical cycle-canvases and prism-canvases. This will allow us to see
if we have found any counterexample to Conjecture 2.2.2, and will at least
allow us to prove a weaker result about the colorability of graphs on the
torus with bounded distance between non-contractible triangles even if we
do not prove the Two Precolored Triangles Theorem with a good bound.

Think about what to do for graphs on the torus without non-contractible
triangles.
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