
SafeLS: an Open Source Implementation of a
Lockstep NOEL-V RISC-V Core

Marcel Sarraseca†,‡, Sergi Alcaide†, Francisco Fuentes†,⋆, Juan Carlos Rodriguez†,
Feng Chang†, Ilham Lasfar†, Ramon Canal†,‡, Francisco J. Cazorla†, Jaume Abella†

† Barcelona Supercomputing Center (BSC). Barcelona, Spain
‡ Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
⋆ Universitat Autònoma de Barcelona (UAB), Barcelona, Spain

Abstract—Microcontrollers running safety-critical applications
with high integrity requirements must provide appropriate safety
measures to manage random hardware faults. For instance,
automotive safety regulations (e.g., ISO26262) impose the use
of diverse redundancy for items at the highest automotive safety
integrity level (ASIL), ASIL-D. In the case of computing cores,
this is realized with dual core lockstep (DCLS).

The advent of the RISC-V ISA has made open source hardware
gain popularity. However, there are few industrial open source
SoCs meeting the requirements of safety-critical systems, and, to
our knowledge, none of them provides lockstep cores.

This paper presents the realization of a RISC-V open source
lockstep core based on Gaisler’s NOEL-V core for the space do-
main, as well as its integration in the SELENE SoC that provides
a complete microcontroller synthesizable on FPGA successfully
assessed against space, automotive and railway safety-critical
applications in the past.

I. INTRODUCTION

The development process of safety-critical systems must
follow domain-specific guidelines and standards. In the case of
the automotive domain, for instance, the main functional safety
standard is ISO26262 [20]. In the context of ISO26262, four
Automotive Safety Integrity Levels (ASIL) are defined, from
ASIL-A (lowest, yet some, integrity requirements) to ASIL-D
(highest integrity requirements). An additional level without
safety requirements, Quality Managed (QM), is also defined.

ASIL-D is normally imposed for systems such as braking,
steering and acceleration due to the severity of the conse-
quences of a malfunction, the high exposure to a failure of
those systems (i.e., they are used during a large fraction of
the system operation), and the lack of controllability of the car
upon a failure. ISO26262 imposes the use of safety measures
to avoid failures caused due to random hardware faults, and, in
the case of computing cores executing ASIL-D functionalities,
the default solution is using Dual Core LockStep (DCLS).
DCLS, or simply lockstep, consists of using two cores to run
an instruction flow redundantly and transparently to the user,
which only perceives the existence of one core. In automotive
DCLS solutions, cores execute instructions redundantly with
some staggering to guarantee that the state of both cores is
different in electrical terms at any point in time to avoid
the so-called Common Cause Failures (CCFs) [20]. CCFs are
failures caused by a single fault affecting redundant elements
analogously (e.g., a fault affecting the clock or power signals)
so that, if their states are identical, they can experience iden-
tical errors that cannot be detected by means of comparison.

Lockstep enforces different (diverse) states, and hence, even
if a single fault can lead redundant cores to error, those errors
will naturally differ and will be detectable. Lockstep cores
have been realized in commercial designs and used in cars for
a long time, e.g. Infineon AURIX microcontroller family [19],
some STmicroelectronics products [39], and more recently
NXP S32 platform products such as the S32G [28].

RISC-V Instruction Set Architecture (ISA) has gained pop-
ularity recently as a way to design and share open-source
hardware IPs. Some chip and IP vendors, such as SiFive, have
already delivered processors implementing lockstep, such as
the SiFive E6-AD [36]. However, even those RISC-V-based
designs are not open source.

This paper aims at closing this gap and delivering an open-
source lockstep RISC-V realization, which we refer to as
Safe LockStep or SafeLS for short. The SafeLS is based on
a commercial open source RISC-V core for safety-critical
applications, the Gaisler’s NOEL-V core [10]. Moreover, we
integrate it as part of an open source RISC-V based SoC
already proven viable for automotive, space and railway
applications, the SELENE SoC [14], [18]. In particular, the
contributions of this work are as follows:

• We present the realization of the SafeLS, describing the
technical decisions taken and the rationale behind them.

• We integrate the SafeLS as part of the SELENE SoC
showing that it can operate transparently to the end user,
analogously to non-lockstep cores.

• We assess performance and hardware costs showing that
the SafeLS introduces completely negligible performance
degradation – typically below 0.001% – and also low
hardware costs with respect to the use of two cores
redundantly without any lockstep mechanism to enforce
staggering.

The SafeLS is currently fully functional, integrated into the
SELENE SoC, and has also been extended with appropriate
continuous integration support and documentation, so it will
be shared as an open-source IP in the following weeks and,
in any case, before the conference, along with other already-
public SafeX components [4] in the webpage https://bsccaos.
github.io/.

The remaining of this paper is organized as follows. Sec-
tion II provides some background on redundancy and diversity.
Section III presents SafeLS and its integration in the SELENE
SoC. Section IV evaluates the performance and hardware cost
of SafeLS. Section V reviews some related work. Section VI
draws the main conclusions and future prospects of this work.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of 
any copyrighted component of this work in other works. DOI 10.1109/IOLTS59296.2023.10224867



II. BACKGROUND

The development process of safety-critical systems imposes
a series of steps for the design, implementation, verification
and validation of the system so that the risk of software errors
of any type, and systematic hardware errors causing a failure
are deemed as residual, and hence, no safety measure is re-
quired during operation to manage their occurrence. However,
radiation (e.g., particle strikes) and other types of electrical
disturbance (e.g., crosstalk) can produce random hardware
faults, which cannot be avoided and require appropriate safety
measures to either prevent errors to occur or to correct them.
Those safety measures are intended to make the risk of a
failure due to random hardware errors become residual, as
for any other type of failure.

Redundancy is the basis of many safety measures. For
instance, data storage is often protected against errors by using
Error Correction Codes (ECC) [9], such as, for instance, Single
Error Correction Double Error Detection (SECDED) codes.
Similarly, data transmission may rely on Cyclic Redundancy
Checking (CRC) or on transmitting ECC-protected data to
protect data exchange end-to-end against undetected errors that
could become a failure otherwise. In the case of computing
cores, the usual solution in safety-critical systems is using
modular redundancy, such as Double Modular Redundancy
(DMR) [13], [22], [25], [38] or Triple Modular Redundancy
(TMR) [21], [23]. DMR is well-suited for detection and
recovery through restoring a correct state (e.g., restart, or
checkpoint recovery). TMR, instead, can be used to achieve
fault tolerance by means of voting if faults lead to a single
error, or to achieve error detection, as for DMR, if faults can
lead to multiple errors as long as those differ. Note that, in both
cases, if a fault leads to identical errors in two cores, those
could not be detected by means of comparison in the case of
DMR, or would lead to choosing as good the erroneous result
in the case of TMR. As explained before, those failures caused
by a single fault despite redundancy are referred to as CCFs.

Lockstep mechanisms are the usual solution to avoid CCFs.
However, such lockstepping can be applied at a variety of
granularities, each one with its pros and cons [17]. The
granularity depends on the particular Sphere of Replication
(SoR) used. The SoR determines the scope at which errors
are detected. Any error occurring within the SoR can only be
detected when propagated beyond the SoR.

DCLS sets the SoR at the core level, meaning that dupli-
cation and comparison occur at that scope. This is the SoR
used in our work and illustrated in Figure 1. As shown, in
this case, input that should be sent to one core is sent to
both redundant cores, and their outputs are compared so that
a single instance of those outputs is effectively sent. This
specific SoR, DCLS, has been realized in multiple commercial
products, as indicated before [19], [39].

The SoR can be set at a finer granularity (e.g., core stage
level) [27], [38], which has some pros and cons. The pros
are that detection occurs much earlier than in the case of
DCLS, where an error may take longer to be detected since
erroneous data may potentially spend millions of cycles in the
core before crossing its boundaries [16]. The main cons relate
to the high degree of intrusiveness of this approach if applied
to existing cores, since all their pipeline stages need to be

Fig. 1. High-level schematic of DCLS based on Gaisler’s NOEL-V core.

modified, and critical paths are likely to be affected. Also, it
may detect errors that would be masked at coarser granularities
(e.g., values never used, or not altering the result anyway)

One could also use a much coarser SoR by, for instance,
using redundant servers [7]. This approach is onerous in terms
of procurement costs and brings reliability concerns due to the
existence of multiple physical devices, and the error exposure
of the physical interconnects and interfaces across redundant
servers. On the other hand, it provides the highest degree of
independence, especially if those servers are different (e.g.,
different hardware, different ISA, etc.). This solution may be
the preferred one for domains such as avionics, but DCLS,
instead, is the one preferred choice for automotive, and the
target of our work.

III. SAFELS DESIGN

This section presents SafeLS, our realization of the lockstep
version of Gaisler’s NOEL-V core, and its integration in the
SELENE SoC.

A. SafeLS Realization

To realize the lockstep version of the NOEL-V core, we
have reviewed its implementation and have determined that
there are two main alternatives to generate the lockstep version
of the core with limited intrusiveness:

• FullCore. Setting the SoR at the boundary of the full
core, including the first level (L1) cache memories and
memory management unit (MMU).

• CachesExcluded. Setting the SoR at the boundary of the
core, but excluding L1 caches and the MMU, which can
be protected with ECC.

The former choice, FullCore, has the advantage of not intro-
ducing logic in between the core and L1 caches, which would
increase cache latency. Note that L1 cache latency, both for
instructions and data, is typically critical for performance due
to the fact that both caches are accessed every few cycles in the
vast majority of the programs. Instead, increasing the latency
for accesses beyond the L1 cache has, in general, a lower
impact on performance since those occur much less frequently.
The disadvantage of FullCore w.r.t. CachesExcluded relates to
the fact that L1 caches and the MMU are replicated along with
the computing core itself.



Fig. 2. SELENE SoC with SafeLS integrated for one core (now two in lockstep).

Fig. 3. Schematic of SafeLS as integrated into the SELENE SoC.

As expected, CachesExcluded pros and cons are com-
plementary to those of FullCore, with L1 cache latencies
impacted by as many cycles as used for staggering (e.g.,
typically 2-3 cycles), but reducing replication costs by not
having to replicate L1 caches and the MMU.

In our particular realization of SafeLS, we have opted for
the former, hence replicating caches but attempting to mitigate
performance degradation. Part of our future work consists of
realizing the latter option to offer different tradeoffs to users
willing to integrate the SafeLS into their designs.

Given the FullCore SoR, the input and output signals for
the SoR are as follows:

1) AHB-related inputs (ahb_mst_in_type,
ahb_slv_in_type, ahb_slv_out_vector),
and outputs (ahb_mst_out_type). These sets of
signals connect the NOEL-V core with an AMBA
Advanced High-performance Bus (AHB) interface,
including incoming and outgoing data and addresses,
and protocol interfacing signals. As shown in Figure 2,
the AHB interface connects cores with a shared L2
cache.

2) Interrupt-related inputs (nv_irq_in_type), and out-
puts (nv_irq_out_type). These sets of signals serve
the purpose of interfacing incoming interrupts, as well
as those generated by the core itself.

3) Debug inputs (nv_debug_in_type), and outputs

(nv_debug_out_type). These sets of signals include
NOEL-V specific signals about its internal state and for
its external control relevant for debugging purposes.

4) Tracing-related outputs (nv_etrace_out_type).
These signals provide detailed information about the
execution in the NOEL-V core intended to be collected
by an external interface (e.g., a tracing unit) to record
or output them.

To realize SafeLS, we have followed the scheme in Fig-
ure 1 for all input and output signals so that input signals
are delivered immediately to the main core and with some
programmable delay (N cycles) to the shadow cores. Analo-
gously, outputs of the head core are delayed by N cycles, and
compared against those of the shadow core as soon as they
arrive, and delivered if the comparison is successful1. Upon a
faulty comparison, an error signal is triggered. It is up to the
SoC where SafeLS is integrated to manage the error.

B. SoC Integration

We have integrated SafeLS as part of the SELENE SoC,
which already includes 6 NOEL-V cores. For our first in-
tegration, we have replaced one of the default NOEL-V
cores with the SafeLS along with the two lockstep NOEL-
V cores. The SELENE SoC, shown in Figure 2, includes
an AMBA AHB to connect the cores to a shared L2 cache.
A SafeSU module [8], which provides multicore interference
observability and controllability, is also connected to the AHB.
An AMBA AXI interface allows connecting the L2 cache to
the memory controller, the I/O bridge, and some accelerators.
The picture also includes Gaisler’s Debug Support Unit (DSU)
and the Core Local Interrupt Controller (CLINT).

For our integration, we note that the SELENE SoC does
not use the core tracing signals. Hence, we drop their stag-
gering management from SafeLS. Instead, the SELENE SoC
includes a set of output signals directly fed into the SafeSU
(nv_counter_out_type), so they need to be managed
with duplication and staggering in the SafeLS, as for the other
signals.

1During integration we found timing constraints that prevent delaying the
outputs (our original design) and instead, the outputs from the main core are
delivered directly. Further details can be found later in Section III-C.



As shown in Figure 2, all cores are connected to the AHB,
the DSU, the CLINT and the SafeSU. External connections
for the SafeLS are analogous to those of each other core,
and duplication and staggering are managed internally in the
SafeLS transparently for the SoC.

The specific schematic of the SafeLS once integrated is
shown in Figure 3, where the main and shadow cores are
both NOEL-V cores. As shown, the SafeLS exports an error?
signal that is set upon a mismatch in the comparison between
the outcomes of both cores.

C. Integration Limitations and Future Work

Our integration of the SafeLS in the SELENE SoC has two
limitations that are part of our ongoing work. The first one
relates to the management of the error signal, which currently
is not exported to software. We are currently in the process of
making it a core interrupt, propagating it to the CLINT, and
capturing it at the software level whenever raised. We do not
foresee difficulties in this task since we have already achieved
such goal for the interrupts raised by the SafeSU.

The second limitation of the current SafeLS implementation
relates to the strong timing constraints imposed by the AHB
protocol implementation, which does not allow for delaying
AHB outputs of the cores. Hence, we cannot stagger those
outputs and compare them prior to delivering them to the AHB
interface since doing so leads to a platform crash. Instead,
signals from the main core are delivered immediately to pre-
serve original timings and staggering is used for comparison
and error detection. However, upon an error detection, the
potentially erroneous output of the master core has already
been delivered for a few cycles (i.e., as many as the number
of cycles used for staggering). This requires either means to
stop the propagation of such signal or, instead, modifying the
AHB interface module of the core so that some staggering
is allowed and those signals can be delivered to the AHB
interface only after successful comparison. We are currently
investigating the viability of the latter since it would allow
preserving the canonical implementation of DCLS.

IV. EVALUATION

A. Evaluation Framework

The SafeLS has been integrated as part of the SELENE
SoC and synthesized into a Xilinx Kintex UltraScale KCU105
evaluation kit.

For our evaluation, we use the TACLe benchmark suite [11],
which consists of a set of benchmarks with varying charac-
teristics, such as the size of their code, the duration of the
execution, and their cache locality, among other characteris-
tics. The target of the TACLe benchmarks is the evaluation of
critical real-time embedded systems, such as those intended for
the SELENE platform. Those benchmarks are self-contained
since their input data is already included in the source code
files. Therefore, no data needs to be read from the disk or
anywhere else explicitly, and they can be run straightforwardly
on bare-metal setups such as one used for our experiments

Such a bare-metal setup has been used with the goal of
having strong controllability on the experiments so that we
avoid uncontrollable sources of execution time variation that
would challenge our analysis of the results otherwise.

The rest of this section provides performance results as well
as some results on the hardware cost of SafeLS. While fault
injection results would also be desirable, there is no obvious
way to perform such fault injection without performing the
physical design of the processor and injecting faults at electri-
cal level. Injecting single faults in one of the cores at a higher
abstraction level would not test lockstep solutions since those
faults only need redundancy to be detected, even if no diversity
exists. However, injecting faults relevant to CCFs requires a
way to determine the electrical impact that a fault (e.g., in
the clock network) would have on two cores with different
state to inject the appropriate simultaneous logical faults in
both cores, but this is only viable using an electrical simulator
for the ASIC implementation of the design, which has not
been yet produced, although we aim at generating it in the
future. Radiation campaigns would also be possible even on
the FPGA implementation, but there would be no realistic way
to tell whether faults injected are relevant for CCFs or not.
Hence, useful fault injection campaigns are not doable yet,
and remain as future work to be conducted once the physical
design for an ASIC is synthesized.

B. Performance Results

In general, lockstep execution is expected to cause some
tiny performance degradation due to the introduced latency
for staggering purposes that has an impact when entering or
leaving the SoR. In our case, this would have an impact on
L1 cache misses, which are the events traversing the SoR.
However, due to the difficulties to introduce some delay in
the AHB-related output signals, output signals are delivered
immediately by the main core and comparison for error
detection occurs in parallel. Hence, no delay is introduced in
the delivery of the core outputs beyond L1 caches, and hence,
we only expect non-lockstep-related performance variations.

We have run each TACLe benchmark 1,000 times in the
original setup (baseline) and the SafeLS setup and collected
execution times. Slowdowns using the SafeLS in terms of
average and median execution times are reported in Table I.
Results are rounded using two decimals for the percentages,
so some sporadic cases with tiny variations in the range
(-0.005%, 0.005%) appear as 0.00%.

First, we note that 46 out of the 51 benchmarks either
experience no execution time variation, or it is negligible, so
their variation is rounded to 0.00%. Out of the remaining
5 benchmarks, 2 of them (adpcm_enc and huff_dec)
experience some small variation in some runs2 that leads to
tiny – yet visible – average execution time variation. However,
when we compare the median for those two benchmarks,
we see no variation at all. Hence, we consider them also as
benchmarks without relevant variation.

Three other benchmarks, namely anagram, huff_enc
and susan, experience different degrees of variation, and
such variations are in the order of few thousands of cycles.
To further contextualize such variation, Figure 4 shows the
normalized execution time span for the baseline between
µ−2·σ and µ+2·σ, where µ stands for the average execution
time and σ for the standard deviation. If we assume a Normal

2Such variation can be caused by an unfortunate DRAM refresh or a
spurious Ethernet packet generating timing interference in the AXI bus or
memory controller.



TABLE I
TACLE BENCHMARK PERFORMANCE RESULTS.

Benchmark Average Median Average Median
Baseline SafeLS Baseline SafeLS Slowdown Slowdown

adpcm dec 2781.3 2781.2 2781 2781 0.00% 0.00%
adpcm enc 2610.3 2610.1 2610 2610 -0.01% 0.00%
ammunition 81774773.2 81774772.0 81774773 81774775 0.00% 0.00%
anagram 2210278.7 2212262.4 2205501 2186305 0.09% -0.87%
audiobeam 852056.6 852056.4 852056 852056 0.00% 0.00%
binarysearch 102.0 102.0 102 102 0.00% 0.00%
bitcount 5288.0 5288.0 5288 5288 0.00% 0.00%
bitonic 10605.0 10605.0 10605 10605 0.00% 0.00%
bsort 42221.0 42221.0 42221 42221 0.00% 0.00%
cjpeg transupp 608984.0 608981.8 608984 608982 0.00% 0.00%
complex updates 3617.0 3617.0 3617 3617 0.00% 0.00%
cosf 74897.1 74897.1 74897 74897 0.00% 0.00%
countnegative 2183.0 2183.0 2183 2183 0.00% 0.00%
cubic 3131397.7 3131397.8 3131397 3131397 0.00% 0.00%
deg2rad 32304.0 32304.0 32304 32304 0.00% 0.00%
dijkstra 28796202.7 28796186.9 28796202 28796191 0.00% 0.00%
epic 8943689.1 8943685.8 8943689 8943686 0.00% 0.00%
fac 262.0 262.0 262 262 0.00% 0.00%
fft 226849.5 226849.7 226850 226850 0.00% 0.00%
filterbank 10231901.5 10231905.6 10231874 10231874 0.00% 0.00%
fir2dim 6359.0 6359.0 6359 6359 0.00% 0.00%
fmref 1676951.4 1676952.1 1676951 1676951 0.00% 0.00%
g723 enc 281155.3 281155.4 281155 281155 0.00% 0.00%
gsm dec 801039.5 801039.6 801039 801039 0.00% 0.00%
gsm enc 2385299.5 2385302.5 2385299 2385298 0.00% 0.00%
h264 dec 20873.0 20873.0 20873 20873 0.00% 0.00%
huff dec 105823.1 105845.5 105823 105823 0.02% 0.00%
huff enc 173974757.3 177349199.9 173860540 175598319 1.94% 1.00%
iir 576.0 576.0 576 576 0.00% 0.00%
insertsort 561.0 561.0 561 561 0.00% 0.00%
isqrt 302296.0 302296.0 302296 302296 0.00% 0.00%
jfdctint 1411.0 1411.0 1411 1411 0.00% 0.00%
lms 575062.2 575062.2 575062 575062 0.00% 0.00%
ludcmp 8170.0 8170.0 8170 8170 0.00% 0.00%
matrix1 3443.0 3443.0 3443 3443 0.00% 0.00%
md5 5271591.1 5271591.9 5271592 5271592 0.00% 0.00%
minver 4398.0 4398.0 4398 4398 0.00% 0.00%
mpeg2 135541717.3 135541725.4 135541715 135541723 0.00% 0.00%
ndes 40734.1 40734.1 40734 40734 0.00% 0.00%
petrinet 1749.0 1749.0 1749 1749 0.00% 0.00%
pm 27534356.0 27534355.6 27534356 27534356 0.00% 0.00%
prime 334.0 334.0 334 334 0.00% 0.00%
quicksort 1226731.4 1226738.5 1226731 1226732 0.00% 0.00%
rad2deg 32263.0 32263.0 32263 32263 0.00% 0.00%
recursion 62.0 62.0 62 62 0.00% 0.00%
rijndael dec 2499778.6 2499777.5 2499780 2499778 0.00% 0.00%
rijndael enc 2310337.2 2310335.0 2310337 2310336 0.00% 0.00%
sha 842333.0 842337.0 842333 842333 0.00% 0.00%
st 362919.9 362919.9 362920 362920 0.00% 0.00%
statemate 38484.8 38484.8 38486 38486 0.00% 0.00%
susan 21877833.7 21889178.8 21872248 21873156 0.05% 0.00%

distribution, such span includes 95% of the execution time
values. Such region is depicted in blue for the benchmarks
in the plot. The internal black line traversing those regions
corresponds to the average execution for SafeLS. As shown,
it falls within the 95% central region in the three cases, hence
showing that statistically it cannot be claimed that SafeLS
execution times are different from those of the baseline case.

When analyzing the causes of such variation, we can only
conclude that it occurs mostly due to DRAM refresh inter-
ference, which is particularly relevant for these benchmarks
because they are the ones accessing DRAM memory more

frequently, and hence, are more exposed to DRAM access
interference.

All in all, we can conclude that SafeLS is neutral in terms
of performance impact in the context of its integration in the
SELENE SoC.

C. Hardware Overheads

We have measured the cost of SafeLS in the FPGA mea-
suring the LUTs required. The SafeLS module requires 4,714
LUTs out of the 102,508 required by the group consisting of
the SafeLS and the two redundant cores. Note that the cost



Fig. 4. 95% central Gaussian execution time distribution.

of one of the seven cores in the SoC ranges between 47,557
and 49,468 LUTs despite being identical, based on the Vivado
Toolchain, which may need to introduce some differences to
meet the FPGA frequency constraints (100 MHz). Therefore,
the cost of SafeLS is below 10% of a NOEL-V core, and below
5% of the lockstep pair. If we consider the full SoC with the 7
cores, it requires 439,349 LUTs, so SafeLS requires less than
1.1% of all the LUTs in the SoC to make 2 of the 7 cores run
in lockstep.

V. RELATED WORK

Execution redundancy has been deeply studied in the litera-
ture. Solutions based on redundant multi-threading have been
proposed to deal with transient faults [29], [32]. Redundancy
across different cores has been shown to be also effective to
deal with both, transient and permanent faults [13], [22], [25].
Some authors have also proposed solutions trading off redun-
dancy and error detection capabilities [12], [24]. However,
those works do not provide support against CCFs.

While previous works require some form of hardware
support, other authors have investigated software-only solu-
tions to achieve redundancy, also without explicit support for
diversity [15], [26], [30], [33]–[35], [37].

Some of our past work includes a hardware module,
SafeDE [6], or a software library counterpart [3], intended to
enforce staggering across cores executing a task redundantly.
While those solutions flexibly allow disabling or enabling
diverse redundant execution, they run redundant user-visible
processes, which, therefore, duplicate memory requirements
and I/O interactions. The latter can change the functional
behavior of the system, and hence, generally disallows the use
of those solutions transparently, as opposed to DCLS, which
we realize in this paper with an open source implementation
in a commercial SoC for safety-critical systems.

Diverse redundancy in GPUs has also been the target
of some software-only solutions for NVIDIA [2] and Intel
GPUs [5], as well as of some works with hardware support [1].

Finally, some solutions to perform recovery with only dual
core diverse redundancy have also been investigated in the
literature [31].

VI. CONCLUSIONS AND FUTURE WORK

Lockstep execution is mandatory in safety-critical systems
with high integrity levels, such as ASIL-D automotive systems,
due to the need for diverse redundant execution and reduced
procurement costs. While lockstepping can be realized at
different spheres of replication, DCLS has been proven a
very effective tradeoff used in abundant automotive microcon-
trollers. However, to our knowledge, open-source implemen-
tations using commercial cores and industrially-viable SoCs
have not been realized so far.

Our SafeLS design covers this gap by realizing a DCLS
version of Gaisler’s NOEL-V core for safety-critical systems.
Moreover, we integrate SafeLS in a Gaisler technology-based
open source SoC (the SELENE SoC), and show that its inte-
gration is highly efficient, incurs tiny hardware costs compared
to the pure core replication (without lockstep support), and
causes insignificant performance degradation. We will release
SafeLS in a public repository in the next few weeks prior
to the conference when a more exhaustive test campaign is
complete, and aim at having the error signal properly driven
to the interrupt controller.

As explained before, part of our future work consists of
tailoring the AHB interface module to allow staggering AHB
signals produced by the core so that comparison is possible
prior to deliver the core outputs. This will make easier error
management. Once this solution is in place, we plan to
generate the physical design and perform fault injection of
faults relevant for CCFs, such as faults in the clock and power
grid networks.

ACKNOWLEDGEMENTS

This work is part of the European Union’s Horizon 2020
Programme under project KDT Joint Undertaking (JU) under
grant agreement No 101112274 (ISOLDE). This work has also
been partially supported by the Spanish Ministry of Science
and Innovation under grant PID2019-107255GB-C21 funded
by MCIN/AEI/10.13039/501100011033.

REFERENCES

[1] S. Alcaide et al. High-integrity gpu designs for critical real-time
automotive systems. In DATE, 2019.

[2] S. Alcaide et al. Software-only Diverse Redundancy on GPUs for
Autonomous Driving Platforms. In IOLTS, 2019.

[3] S. Alcaide et al. Software-only based diverse redundancy for asil-d
automotive applications on embedded hpc platforms. In DFT, 2020.

[4] S. Alcaide et al. SafeX: Open source hardware and software components
for safety-critical systems. In 2022 Forum on Specification and Design
Languages (FDL), pages 1–4, 2022.

[5] N. Andriotis et al. A software-only approach to enable diverse redun-
dancy on Intel GPUs for safety-related kernels. In SAC, 2023.

[6] F. Bas et al. SafeDE: a flexible diversity enforcement hardware module
for light-lockstepping. In IOLTS, 2021.

[7] D. Bernick et al. Nonstop/spl reg/ advanced architecture. In 2005 Inter-
national Conference on Dependable Systems and Networks (DSN’05),
pages 12–21, 2005.

[8] G. Cabo et al. Safesu: an extended statistics unit for multicore timing
interference. In 2021 IEEE European Test Symposium (ETS), pages 1–4,
2021.

[9] C.L. Chen and M.Y. Hsiao. Error-correcting codes for semiconductor
memory applications: A state of the art review. IBM Journal of Research
and Development, 28(2):124–134, 1984.

[10] Cobham Gaisler. NOEL-V Processor.
https://gaisler.com/index.php/products/processors/noel-v, 2012.

[11] H. Falk et al. TACLeBench: A benchmark collection to support worst-
case execution time research. In WCET Workshop, 2016.

[12] J. Fu et al. On-demand thread-level fault detection in a concurrent
programming environment. In SAMOS, 2013.



[13] M Gomaa et al. Transient-fault recovery for chip multiprocessors. In
ISCA, 2003.

[14] H2020 SELENE project consortium. SELENE hardware platform, 2021.
https://gitlab.com/selene-riscv-platform/selene-hardware (accessed Mar-
2023).

[15] F. Haas et al. Fault-tolerant execution on cots multi-core processors with
hardware transactional memory support. In ARCS, 2017.

[16] C. Hernandez and J. Abella. LiVe: Timely Error Detection in Light-
Lockstep Safety Critical Systems. In DAC, 2014.

[17] Carles Hernandez and Jaume Abella. Timely Error Detection for
Effective Recovery in Light-Lockstep Automotive Systems. IEEE
TCAD, 2015.

[18] C. Hernàndez et al. Selene: Self-monitored dependable platform for
high-performance safety-critical systems. In DSD, 2020.

[19] Infineon. AURIX Multicore 32-bit Microcontroller Family to Meet
Safety and Powertrain Requirements of Upcoming Vehicle Generations,
2012.

[20] International Standards Organization. ISO/DIS 26262. Road Vehicles –
Functional Safety, 2009.

[21] X. Iturbe et al. Addressing Functional Safety Challenges in Autonomous
Vehicles with the Arm Triple Core Lock-Step (TCLS) Architecture.
IEEE Design and Test, 2018.

[22] C. LaFrieda et al. Utilizing dynamically coupled cores to form a resilient
chip multiprocessor. In DSN, 2007.

[23] R.E. Lyons and W. Vanderkulk. The use of triple modular redundancy
to improve computer reliability. IBM Journal of Research and Devel-
opment, 6(2):200–209, 1962.

[24] B. H. Meyer et al. Cost-effective safety and fault localization using
distributed temporal redundancy. In CASES, 2011.

[25] S. S. Mukherjee et al. Detailed design and evaluation of redundant
multithreading alternatives. In ISCA, 2002.

[26] H. Mushtaq et al. Efficient software-based fault tolerance approach on
multicore platforms. In DATE, 2013.

[27] P.R. Nikiema et al. Design with low complexity fine-grained dual core
lock-step (DCLS) RISC-V processors. In SELSE, 2023.

[28] NXP. S32G2 Reference Manual, Rev. 7, 2023.
[29] S. K. Reinhardt et al. Transient fault detection via simultaneous

multithreading. In ISCA, 2000.
[30] G. A. Reis et al. SWIFT: Software implemented fault tolerance. In

CGO, 2005.
[31] P. Reviriego et al. Diverse double modular redundancy: A new direction

for soft-error detection and correction. IEEE Design Test, 2013.
[32] E. Rotenberg. AR-SMT: a microarchitectural approach to fault tolerance

in microprocessors. FTC, 1999.
[33] J. D. Scales et al. The design of a practical system for fault-tolerant

virtual machines. Operating Systems Review (ACM), 2010.
[34] A Shye et al. Using process-level redundancy to exploit multiple cores

for transient fault tolerance. In DSN, 2007.
[35] A. Shye et al. PLR: A software approach to transient fault tolerance for

multicore architectures. IEEE Transactions on Dependable and Secure
Computing, 2009.

[36] SiFive. SiFive Automotive E6-A. https://www.sifive.com/cores/
automotive-e6-a.

[37] H. So et al. Expert: Effective and flexible error protection by redundant
multithreading. DATE, 2018.

[38] L. Spainhower and T.A. Gregg. IBM S/390 parallel enterprise server
G5 fault tolerance: a historical perspective. IBM Journal of Research
and Development, 43(5/6):863–873, 1999.

[39] STMicroelectronics. SPC570Sx - 32-bit Power Architecture MCU for
Automotive Chassis and Safety Applications, 2018.


