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Abstract

In this manuscript we show the central role of the group inverse of the Lapla-
cian in the study of random walks on networks. Moreover, we take advantage
of the relation of group inverse and equilibrium measures and we obtain ex-
pressions for the mean first passage time and for Kemeny’s constant in terms of
equilibrium measures. For networks with symmetries we can obtain the analytic
expression of the above parameters such as distance bi-regular graphs or barbell
networks.

Our work context is a connected network Γ, that is, from any vertex we
can reach any other one. The set of vertices, or states, is V , with |V | = n, and
the set of edges E, with |E| = n. The conductance function assigns a weight to
each edge. Because we give an order on the vertex set, V , it is possible identify
operators with matrices and functions with vectors.

Given an initial state s0, we move randomly to a neighbor state, s1, and then
to s2, and so on. That process generate a sequence of states {s1, s2, . . . , st, . . .}
called random walk on Γ. In each step t we define a random variable Xt

that takes values on V . That sequence of random variables defines a discret
stochastic process time, and the probability associated with the movement
from an initial state si to another neighbor state sj is given by P

(
Xt+1 =

sj |Xt = si
)
=

cij
ki

,

i

j

P (Xt+1 = sj|Xt = si)

where ki is the degree of the state si. This probability does not depend of
the previous states,

P
(
Xt+1 = j|Xt = i,Xt−1 = it−1, . . . , X0 = i0

)
= P

(
Xt+1 = j|Xt = i

)
,



so the Markov property holds and the network is memoryless. The matrix with
entrances pij is called transition probability matrix, which is a stochastic matrix.
As P ≥ 0 and irreducible (connected network), exist a left eigenvector associated
with the dominant eigenvalue λ = 1 of P,

πππTP = πππT

This vector πππ is unique, and its components are all positive. We can nor-

malize the vector, so

n∑
i=1

πi = 1, and then πππ is a probability distribution vector.

In fact, πππ represents a stationary distribution: if, at t = 0, the system is in
the state j with probability πj , the probability of being in j for t > 0 is πj as well.

For our convenience, we can define Π as the matrix such that all its rows are
equal to vector πππ, Π = 111πππT. This matrix allows to study the long-term behavior
of the RW.

An important operator –matrix– for our work on RW is the combinatorial
Laplacian, defined as

L = Dk − A,

where Dk is the diagonal degree matrix and A =
(
cij

)n
i,j=1

the adjacency matrix,

with A = DkP. L is a symmetric Z-matrix and diagonally dominant, positive
semidefinite, singular and 0 is a simple eigenvalue whose associated eigenvectors
are constants, L111 = 000. The properties of L are transferred to its group inverse,
L#, which is the unique matrix such that satisfies the equations L · L# · L = L,
L# · L · L# = L#, L · L# = L# · L. So L# it is a symmetric and diagonally
dominant, positive semidefinite, and singular, with L#111 = 000 as well. Moreover,
group inverse can be characterized as follows

L L# = I− 1

n
J,

where J is the n-matrix with all its entries equal to 1. Sot it is clear than L# is
a 1-inverse.

Before introducing the Equilibrium measure, we state the Minimum Prin-
ciple as follows: if u ∈n satisfies ui ≥ 0 and (Lu)j ≥ 0, for any j ̸= i, then
uj ≥ 0, for all j = 1, . . . , n. Hence, it can be deduced that for each j ∈ V

there exists νj such that νjj = 0 and νji > 0 for any i ̸= j. νj-function is called
Equilibrium measure of V \ {j} and because we impose

L(νji ) = 111, for all i ̸= j,

this function can be seen as the measure that gives equal potential in each state
of V \ {j}. It can be proof, that the equilibrium measure of V holds

L(νji ) = 111− n111j ,

if we consider column j, and being 111j the j-th unit vector. By defining the

so-called equilibrium matrix for Γ, Eij = − 1

n
νji , j = 1, . . . , n, we have

LE = I− 1

n
J.



So, E can be seen as a 1-inverse of L.

It is possible to express the group inverse L# in terms of equilibrium mea-
sures.

The short-term behavior of the RW can be described by the mean first
passage time (MFPT), denoted by mij ; that is, the expected number of steps
to reach state j for the first time if we start at state i. Its expression is very
well known,

mij = pij +
∑
k ̸=j

pik
(
mkj + 1

)
= 1 +

∑
k ̸=j

pikmkj .

In a matrix form, we can write expression for mean first passage time as
(I − P)M = J − PD−1

π . Although ∆ = I − P is a singular matrix, because of

J−PD−1
π ⊥ ker

(
I−P

)T
, the system is compatible since J−PD−1

π ⊥ ker
(
I−P

)T
,

and any 1-inverse G̃ of the I− P solve the system. So,

M = G̃
(
J− PD−1

πππ

)
+111vT

is its general solution.

We can express the 1-inverse for the combinatorial Laplacian, G̃, in terms
of the 1-inverse of the probabilistic Laplacian, G, G = G̃D−1

k . So, if G is any
1-inverse of L, then:

M = GDkJ− J
(
GDkJ

)
d
+ vol(Γ)

(
D−1

k − G+ JGd

)
.

Of all possible 1-inverses, we choose those such that fulfill the property
Gk = g111, and in that case

M = vol(Γ)
(
D−1

k − G+ JGd

)
.

On the other hand, our research group has established the relationship be-
tween the group inverse of L, and any other 1-inverse G:

G = L# − 111τττT − L#πππ111T,

with g = −vol(Γ)⟨τττ ,πππ⟩. Moreover, there is another one symmetric positive
semidefinite 1-inverse such that zero is an eigenvalue with stationary distribution
as an associated eigenvector, Gπππ = 000,

Gπππ = L# + πππTL#πππJ−ΠL# − L#ΠT.

So,

M = vol(Γ)
(
D−1

k − L# + JL#d +ΠL# + L#ΠT − 2JDL#πππ

)
.

Moreover, it can be written a relation between the equilibrium measure and
the MFPT.

On the other side, Kemeny’s constant is a parameter that measures the time
for reaching a random state sj , starting from an initial one si, according to the



stationary distribution. It is remarkable that K is independent of the starting
state, si.

It is customary to take as the definition of the Kemeny’s constant the fol-
lowing:

K =
∑
j∈V

mijπj .

Some authors take as definition of Kemenys constant K ′ = 1−K. In that case,
it is taken t ≥ 0 in the definition of MFPT.

As we are interested in the combinatorial Laplacian, and its group inverse,
we have obtained the Kemeny’s constant in terms of L#:

K = 1 +111TL#d k−
1

vol(Γ)
kTL#k.

And, again, it is possible to write Kemeny’s constant in terms of the new
function defined before, equilibrium measures of V \ {j}, j = 1, . . . , n.

Finally, the case of the Wheel network will be introduced, as an example
of the power of the use of group inverse of L and the equilibrium measures
to calculate MFPT and Kemeny’s constant, specially when the network is not
simle enough.
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[1] Á. Carmona, A.M. Encinas, M.J. Jiménez, À. Mart́ın. Mean First
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