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This paper provides a control strategy for achieving precise motion control of a rigid ball trapped
between two parallel plates. The model equations provide a driftless system which, after applying
dynamic feedback, is transformed into Brunovsky form. This enables us to design a controller for
the linear system and to find the inputs for the original system by inverting the dynamic feedback.
To assess the effectiveness of our approach, we conduct simulations to test the control strategy. The
results demonstrate that our proposed strategy successfully achieves the desired motion control of
the rigid ball given certain initial conditions.

I. INTRODUCTION

Certain systems that can be mathematically modelled
can be challenging to control. Different techniques can
be used to tackle the same problem. In this paper we
will consider the model proposed by Sampei, Mizuno,
and Ishikawa [1]. However, while they tried to control
it by using time-state control form, we will instead at-
tempt to use the control strategy of differential flatness
[2], that consists in linearizing the system through a dy-
namic system feedback. We use prolongations[3], which
is a particular case of dynamic feedback.

II. SYSTEM

A. Model of the system

The model of the system that we will try to control can
be seen in figure 1. It is parallel to the floor and consists
of two arms with fixed roots connected to a board. Each
of the arms is made up of two links connected by a free
joint. The first link of each arm can be rotated at a
certain angular velocity by motors 1 and 2 respectively.
The angular velocity of the board can be controlled by
motor 3. A rigid ball is placed between the board and

FIG. 1: Model of the system [1]

the floor, and it can only move when it is rolled by the
board. It is assumed that the ball does not slide and that
the board is large enough so that the ball will always
remain under it.

B. State and input variables

The following variables will define the state of our system:

(xb, yb) : Position of the ball relative to the centre
of the board
(xe, ye) : Coordinates of the centre of the board
(q1, q2) : Angle of the first link of each arm

θe : Angle of the board
(xg, yg) : Coordinates of the goal point

The origin of coordinates is defined at motor 1. The
notation used to describe the state of the system x can
be seen below,

x =


x1

x2

x3

x4

x5

 =


xb

yb
xe − xg

ye − yg
θe


and the input u,

u =

u1

u2

u3

 =

ẋe

ẏe
θ̇e


C. State equations of the system

The state equation of the system ẋ can be found by de-
ducing how the derivative of each of the variables be-
haves. Given that xg and yg are constant, the derivatives
of x3, x4, and x5 can be directly related to the input vec-
tor. ẋ3

ẋ4

ẋ5

 =

ẋe

ẏe
θ̇e

 =

u1

u2

u3


The position of the ball relative to the board is only

directly affected by the board, both by its linear and an-
gular velocity. For the derivation, only xb is considered,
as yb is equivalent. The total velocity is the sum of these
two contributions.

ẋb = ˙xblin + ˙xbang
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The point at the top of the ball, the one in contact
with the board, moves twice as fast in relation to the
floor as the centre of mass of the ball vcm. This is
because its velocity is the sum of the velocity of the
centre of mass and the velocity of the rolling, which
must also be vcm in order for the point in contact with
the floor to be stationary in relation to the floor.

Considering only the contribution of the linear velocity
ẋe. Given that the point on top of the ball is always in
contact with the board, it must have the same velocity
relative to the floor ẋe. The velocity of the centre of
mass is half of that vcm = 1

2 ẋe. ẋb corresponds to the
difference between the velocity of the board and the ball.

The contribution of the linear velocity of the board is

˙xblin =
1

2
ẋe − ẋe = −1

2
ẋe

In the case of the contribution of the angular velocity,
the x-component of the velocity at the top of the ball in
contact with the board must also be 2vcmx

.The velocity
of the board at that point is 2vcmx

= vangx = wry =

−θ̇eyb. The negative sign is due to the direction in which
θe is defined. The angular velocity of the board does not
move its centre, so only the velocity of the centre of mass
of the ball needs to be considered.

˙xbang
= −1

2
ybθ̇e

Combining both contributions, the behaviour of the
derivatives is obtained.

ẋb = −1

2
ybθ̇e −

1

2
ẋe = −1

2
x2u3 −

1

2
u1

ẏb =
1

2
xbθ̇e −

1

2
ẏe =

1

2
x1u3 −

1

2
u2

The changed sign of the angular component of ẏb is
once again due to the direction of θe. Combining all of
the results yields the state equation of the system.

ẋ =


ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

 =


ẋb

ẏb
ẋe

ẏe
θ̇e

 = u1


− 1

2
0
1
0
0

+u2


0
−1
2
0
1
0

+u3


− 1

2x2
1
2x1

0
0
0


III. MATHEMATICAL RESULTS FOR

NON-LINEAR CONTROL

A. Non-Linear Control and Brunovsky Form

Definition 1 A Control System is a system of differ-
ential equations. Expressed in affine form:

ẋ = F (x) +

m∑
i=1

Gi(x) · ui

where x ∈ Rn are the state variables, ui ∈ R are the
control variables (i ∈ {1, ...,m}), F : Rn → Rn is called
the drift vector field and Gi : Rn → Rn are called the
input vector fields.

In order to be able to provide a control strategy for a
control system, it is useful to transform it into Brunovsky
form. The transformation can use non-linear changes of
variables and dynamic state feedback.

Definition 2 A system is written in Brunovsky Form
if it has the following structure (zi are the state variables
and vi the control variables):

żi = zi+1 for i ∈ {k1 + ...+ kj−1 + 1, ..., k1 + ...+ kj}

żk1+...+kj
= vj ∀j ∈ {1, ...,m} (1)

In Subsection (III B 2) we will show that once the sys-
tem is in Brunovsky Form, a good control strategy can
be easily calculated.

Some Differential Geometry concepts and basic results
(Lie derivatives, Lie brackets, Distributions, the Frobe-
nius Theorem...) are used throughout the paper. They
can be found in Appendix A.

B. Results for Non-Linear Control

1. Condition for static feedback linearization

Given a multi input control system written as in Defini-
tion 1, consider the distributions:

D0 =< G1, ..., Gm >

D1 =< D0, adFG1, ..., adFGm >

...

Dn−1 =< Dn−2, ad
n−1
F G1, ..., ad

n−1
F Gm >

Then, the control system is static feedback linearizable
iff: i) dim(Di) = ctt ∀i ≤ n− 1, ii) dim(Dn−1) = n, iii)
Di is involutive ∀i ≤ n− 1.

2. Algorithm to find the control strategy in Brunovsky Form

The algorithm to be implemented is the following:

1. Construct the distributions given in (III B 1) and
check their involutivity

2. Define the indices

ro = d0 ri = di − di−1 ∀1 ≤ i ≤ k

Where di is the dimension of Di.

kj = #{ri | ri ≥ j}

3. Find functions (h1, ..., hm) such that dhi ⊥ Dki−2

and are differentially independent from (h1, .., hi−1)
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4. The change of variable is provided by,

z =



h1(x)
Lfh1(x)

...

Lk1−1
f h1(x)

...
hm(x)

Lfhm(x)
...

Lkm−1
f hm(x)


And the feedback law is given by,

v=

 Lr1
f h1(x)

...
Lrm
f hm(x)

 +

 Lg1L
r1−1
f h1(x) ... LgmLr1−1

f h1(x)
...

...
Lg1L

rm−1
f hm(x) ... LgmLrm−1

f hm(x)

 u

To design the control strategy for the system in
Brunovsky form, it is important to notice that the system
is formed by m independent subsystems. In this chapter
we will derive the control strategy for one of the subsys-
tems (we will define its dimension to be k) without loss
of generality.

Recalling Equation 1 from Definition 2, we see that
really what we have is the following differential equation:

z
(k)
i = vi.
Note that to control this system we are given an initial

position z(0) (initial position of the k variables) and a
final position z(T ) (k variables). In Brunovsky form,
this means that we have the initial conditions for the
variable zi and its k − 1 derivatives, and similarly for
the final conditions. The simplest function that satisfies
these conditions is the interpolating polynomial P2k−1(t)
of degree 2k − 1.
Once the interpolating polynomial P2k−1(t) is calcu-

lated, we can find how our control variable should behave
from the aforementioned differential equation. ui(t) :=
dk

dtk
P2k−1(t), which will be a polynomial of degree n− 1.
The final step is to reverse the transformations done

to vi to get the control strategy for ui.

IV. APPLICATION OF THE CONTROL
STRATEGY

A. Dynamical extension of the system

The model obtained in (II C) is not static feedback lin-
earizable as the following distribution is not involutive
(note that F=0):

D =< G1, G2, G3 >

[G1, G3] /∈ D

Therefore a dynamic extension is needed in order to
obtain the control of the system. Control u3 has been

renamed as the sixth coordinate, and its derivative will
correspond to the new control v. Physically, u3 corre-
sponds to the angular velocity of the table, and v to it’s
acceleration, which will be our new control variable. The
equations obtained after the dynamic extension are:

ẋ =


−1
2 x1x6
1
2x1x6

0
0
x6

0

+ u1


−1
2
0
1
0
0
0

+ u2


0
−1
2
0
1
0
0

+ ū3


0
0
0
0
0
1


Notice that the system is no longer driftless. With this

prolongation the conditions to be static feedback lineariz-
able (III B 1, dim(D) = n) are fullfilled and the algorithm
of linearization proposed in (III B 2) can be applied.
First, the dimensions of the following distributions are

computed:

D0 =< Ḡ1, Ḡ2,
∂

∂x6
> dim(D0) = 3

D1 =< Ḡ1, Ḡ2,
∂

∂x6
, [F, Ḡ1], [F, Ḡ2], [F,

∂

∂x6
] >

dim(D1) = 6 for x6 ̸= 0

Where the fields Ḡ1, Ḡ2 are the ones multiplying u1, u2.
The distributions are involutive, and therefore the sys-
tem can be linearized through a static feedback and a
linearization [4]. Which means that the order to which
the time derivatives of hi(x) are independent with the
inputs is 1. We find these functions searching for a set of
three functions such that their differential is contained in
the anhilator of D0 and are differentially independent. In
order to do so, mathematical software such as MAPLE
can be used to obtain the following ones:

h1 = x5; h2 = 2x1 + x3; h3 = 2x2 + x4

From that, the change of variable can be obtained:

z =



h1

ḣ1

h2

ḣ2

h3

ḣ3

 =


x5

x6

2x1 + x3

−x2x6

2x2 + x4

x1x6


On the other side, the new controls are related with

the former ones via regular feedback and are represented
in the following expression. This feedback is regular if
and only if x6 ̸= 0:

v1
v2
v3

 =

ḧ1

ḧ2

ḧ3

 =

 0
− 1

2x1x
2
6

− 1
2x2x

2
6

+

 0 0 1
0 1

2x6 −x2

− 1
2x6 0 x1

u1

u2

ū3
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B. Obtaining controls

With the new variables and controls the system can be
written in Brunowsky Form, which can be divided into
three different blocks, one for each control. Writing down
the first block (the other ones are similar):

(
ż1
ż2

)
=

(
0 1
0 0

)(
z1
z2

)
+

(
0
v1

)
Recalling from Section (III B 2), the interpolating poly-

nomial must be calculated. Since we have restrictions up
to the first derivative, we will use Hermite interpolation
(programmed at the end of the code). The second deriva-
tive of that polynomial will be the corresponding control.

Going back to the original coordinates, the desired con-
trols are obtained. As we have seen, it is important to
notice that when the original controls are obtained by
inverting the expression (1), x6 will be dividing some
terms, this means that this coordinate can never be zero
or the system will explode (this was also seen when defin-
ing D1, where dim(D1) = 6 if x6 ̸= 0). In consequence,
our system cannot rotate in both directions, as it would
have to go from positive to negative angular velocities,
thus passing through zero.

The simulation of the system has been carried out with
Matlab. Its code can be found in Appendix B. Given the
coordinates of the initial position of the ball and table,
the program follows the algorithm presented in the previ-
ous sections to find the expression of the controls. With
that expressions numerical integration of the system is
performed to obtain the trajectories of each variable, the
graphical solution is plotted:

FIG. 2: Simulation of the trajectories of x with initial
conditions: x1 = −2cm, x2 = 5cm, x3 = 10cm,
x4 = 6cm, x5 = −17, x6 = 2.5/s, and T = 20s.

In the figure 2, all variables converge to the desired
position (0, except for x6, but this variable was artificially
generated, and set to the value x6(T ) = 1). Additionally,
the angular velocity is always positive, which prevents the
system from collapsing.

1. Necessary condition for initial values

However this doesn’t happen for all initial and final po-
sitions. To obtain the set of initial conditions for which
this control strategy works properly, one has to examine
the polynomials obtained from the interpolation.
Recalling that ż1 = z2, our goal is to prevent this vari-

able passing through zero, that is, preventing the poly-
nomial corresponding to (z1(t)) from having a change of
sign in the derivative on the interval t0 <= t <= tf .
With our change of variables, we have z2(t) = x6(t) and
z1(t) = x5(t).
Let’s check the case x6 > 0. Having a positive x6

means that x5(t) is increasing (ẋ5(t) = ż1(t) = z2(t) =
x6(t) > 0). We also know from our model definition that
the final value of x5(T ) = 0. This will only happen if
x5(0) < 0.
After making a similar argument for the case x6 < 0,

we can express the necessary condition our initial con-
ditions must satisfy in order for our control strategy to
work: x5(0) must be of opposite sign to x6(0).

V. CONCLUSION

In conclusion, we have presented an effective control
strategy for the system presented, modified by a dynam-
ical extension. The mathematical machinery developed
to reach a solution has been proven to be a good
resource to tackle the problem. Although it contains
some restrictions that have to be taken into account,
mainly that the new variable can never be zero, by
choosing appropriate initial and final conditions the
controls obtained lead our system to the desired position.

New methods for interpolation can broaden the set of
initial and final conditions for our problem. For exam-
ple, we can use polynomials of superior degrees that give
us more freedom to find solutions for conditions that fail
when using only degree three, non-polynomic interpola-
tions can also be explored.
The method we have applied in this system can be ap-
plied to other problems with similar dynamic equations.
If the system is driftless with three controls, and the fol-
lowing conditions are fullfilled:

[G1, G2] ∈< G1, G2 >

dim < G1, G2, G3, [G1, G3], G2, G3 >= 5

Then it can be proven that one can always proceed as
shown in our system and obtain effective controls.
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A. Differential Geometry concepts and results

Definition 3 The Lie derivative of a function f :
Rn → R with respect to a vector field F : Rn → Rn

is given by:

(£F f)(·) = ∇F (·)f(·)

where ∇v indicates the derivative in direction v ∈ Rn

Definition 4 The Lie Bracket between two vector
fields F,G : Rn → Rn is another vector field [F,G] :
Rn → Rn given by:

[F,G](·) = ∇F (·)G(·)−∇G(·)F (·)

Where ∇v is applied to each component of the vector field
separately.

The Lie Bracket will also be denoted by [F,G] = adFG.
With multiple iterations written as [F, [F,G]] = ad2FG
and so on

Definition 5 A Distribution D is the subspace gener-
ated by a set of vector fields F1, ..., Fd:

D(·) =< F1(·), ..., Fd(·) >

A Distribution is Involutive if [Fi, Fj ] ∈ D ∀i, j.

Definition 6 The Annihilator of a distribution D =<
F1, ..., Fd > is D⊥ =< ω1, ..., ωn−d > where ωi are 1-
forms such that ωi(Fj) = 0 ∀i, j.
An Annihilator D⊥ is generated by exact forms if ∀i

∃λi : Rn → R such that ωi = dλi.

Theorem 1 (Frobenius theorem) A Distribution D is
involutive iff its Annihilator D⊥ is generated by exact
forms.

Lemma 1 Given an involutive distribution D =<
G1, ..., Gd > invariant under the effect of a vector field F
(i.e. [F,G] ∈ D ∀G ∈ D), with non-changing dimension
dim(D) = d =⇒

=⇒ ∃z = ϕ(x) diffeomorphism such that:

F (x) = F (ϕ−1(x)) = F̄ (z⃗) =



F̄1(z⃗)
...

F̄d(z⃗)
F̄d+1(zd+1, ..., zn)

...
F̄n(zd+1, ..., zn)


Note that the last n− d components of F̄ only depend

on the last n− d components of z⃗.

B. Simulation code

%INITIAL CONDITIONS and final time T
T=20;
x1=-2;
x2=5;
x3=10;
x4=6;
x5=-17;
x6 =2.5;
x0=[x1;x2;x3;x4;x5;x6];

%Initial conditions for z
z1=x5;
z2=x6;
z3=2*x1+x3;
z4=-x2*x6;
z5=2*x2+x4;
z6=x1*x6;

%CONTROL STRATEGY
%Finding the interpolating polynomial
%subsystem 1
if (x6 >0) %since x6 cannot cross 0

[a0 ,a1 ,a2 ,a3]= hermite(z1,z2 ,0,1,T);
end
if (x6 <0) %since x6 cannot cross 0

[a0 ,a1 ,a2 ,a3]= hermite(z1,z2 ,0,-1,T);
end

%subsystem 2
[b0 ,b1 ,b2 ,b3]= hermite(z3,z4 ,0,0,T);

%subsystem 3
[c0 ,c1 ,c2 ,c3]= hermite(z5,z6 ,0,0,T);

% v_i = p_i ''(x)
v1 = @(t,x) 2*a2+6*a3*t;
v2 = @(t,x) 2*b2+6*b3*t;
v3 = @(t,x) 2*c2+6*c3*t;

%Reversing the change of variables
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u1=@(t,x) 2*x(1)*(v1(t,x))/x(6) -2*(v3(t
,x))/x(6)-x(2)*x(6);

u2=@(t,x) 2*x(2)*v1(t,x)/x(6) +2*v2(t,x)
/x(6)+x(1)*x(6);

u3=@(t,x) v1(t,x);

% INTEGRATION
% Defining our system
dxdt = @(t, x)

[ -0.5*u1(t,x) -0.5*x(2)*x(6);
-0.5*u2(t,x)+0.5*x(1)*x(6);
u1(t,x);
u2(t,x);
x(6);
u3(t,x)];

% Using a numerical integrator
[t, x] = ode45 (dxdt , [0 T], x0);

%PLOT
plot(t, x)
title('Evolution of the x variables

under the designed control ')

xlabel('time (s)')
ylabel('x')
legend (["x1(cm)" "x2(cm)" "x3(cm)" "x4

(cm)" "x5(deg)" "x6(deg/s)"])

%Function used to design the
interpolating pol.

function[c0,c1,c2,c3] = hermite(z0,dz0 ,
zf,dzf ,T)
f00 = dz0;
f01=(zf -z0)/T;
f11 = dzf;
f001=(f01 -f00)/T;
f011=(f11 -f01)/T;
f0011 =(f011 -f001)/T;

c0=z0;
c1=f00;
c2=f001 -f0011*T;
c3=f0011;

end
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