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1. Context and Scope

1.1 Context

1.1.1 Introduction

Emotions play a crucial role in human interactions and influence our decisions, thoughts, and
behaviors. Recognizing and understanding emotions is important in many fields, such as
psychology, education, marketing, and healthcare. With the recent advances in deep
learning and artificial intelligence, automated emotion recognition from visual data, such as
facial images, has become an active area of research.

Recognizing emotions from facial images is a challenging task, as emotions can be subtle
and complex. However, deep learning techniques have demonstrated remarkable
capabilities in extracting meaningful features and patterns from images, which provides
promise for the potential success of these techniques in emotion recognition. As such,
automated emotion recognition from facial images is an exciting and active area of research,
with the potential to make significant contributions to various fields.

1.1.2 Situation

This is a Bachelor Thesis of the Computer Engineering Degree, specialization in Computing,
done in the Facultat d’Informàtica de Barcelona of the Universitat Politècnica de Catalunya
directed by Gerard Escudero Bakx, professor from the Computer Science Department.

1.1.3 Concepts

The reader must be familiarized with the following concepts to better understand the
following sections of this thesis.
In section “4 Theoretical Background”, the deep learning theoretical concepts will be further
explained. Also the FER2013 dataset will be dissected in section “5 Dataset”

FER2013 dataset

The FER2013 dataset is a collection of facial images labeled with one of seven emotions:
anger, disgust, fear, happiness, sadness, surprise, and neutral. The dataset contains 35,887
grayscale images with a size of 48x48 pixels. It was compiled for the Facial Expression
Recognition 2013 Challenge, and is widely used in research related to emotion classification
using deep learning techniques.

Keras

Keras is a popular open-source deep learning framework written in Python. It provides an
easy-to-use interface for building and training deep neural networks, and is known for its
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user-friendliness and simplicity. Keras has become a standard in the deep learning
community due to its versatility, reliability and performance.

Transfer Learning and Fine tuning

Transfer learning and fine tuning are techniques commonly used in deep learning for image
recognition. Transfer learning consists in using a pre-trained model, trained on a large
dataset, as a starting point for a new model with a smaller dataset. Fine tuning involves
retraining the last layers of the pre-trained model on the new dataset. Both can lead to
significant improvements in model performance. Examples of pre-trained models include
MobilNet, Inception, ResNet, VGG and VGGNet, and DenseNet.

Convolutional neural network (CNN)

Convolutional neural networks are a type of neural network specifically designed for image
recognition tasks. They are composed of multiple layers of filters that extract features from
the input image, followed by fully connected layers that make the final classification decision.
CNNs have been widely used in the field of emotion classification using facial images, and
have achieved state-of-the-art results on the FER2013 dataset.

1.1.4 Problem to be resolved

Deep learning is a field of study that has grown a lot in recent years in which many new
techniques and methods arise frequently. For this reason it is important to carry out
feasibility and comparative studies about the different techniques.
The goal of this project is to explore and compare different deep learning techniques, such
as transfer learning, fine tuning and convolutional neural networks (CNNs), for emotion
recognition from facial images using the FER2013 facial image dataset.
This will be achieved by attempting to create two custom models (one using transfer learning
and fine-tuning, and another by building a CNN) and comparing them with the 'fer' Python
library.

1.1.5 Stakeholders

Besides the researcher, the primary stakeholders are the thesis director, Gerard Escudero
Bakx, and the GEP tutor, Joan Sardà Ferrer. They are responsible for supervising and
guiding the development of the thesis project, ensuring that it meets the academic standards
and requirements of the institution. Their feedback and support are crucial for the successful
completion of the project.

Another stakeholder is the academic community, particularly those interested in the field of
deep learning and computer vision. The thesis project could contribute to the advancement
of knowledge in this area by exploring and evaluating the effectiveness of different
techniques for emotion recognition from facial images.
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The FER2013 dataset is also a significant stakeholder. The quality and availability of the
dataset will have a direct impact on the project's success. The dataset was created by the
researchers in the Computer Vision Center at the Autonomous University of Barcelona, and
making use of it for the thesis will be an opportunity to contribute to the recognition of their
work.
Lastly, the wider community could benefit from the project's results if they are used to
develop more accurate and reliable models for emotion recognition from facial images.
Potential applications include facial expression recognition systems for people with autism
spectrum disorders or as a component of human-robot interaction.

1.2 Justification

1.2.1 Previous Studies
The website "Papers with Code" provides a comprehensive summary of the state-of-the-art
(SOTA) methods for facial expression recognition on the FER2013 dataset. The site offers
an extensive collection of papers, along with their associated code repositories, showcasing
the latest advancements in this field.

In this website, the listed models present a range of approaches for facial emotion
recognition, highlighting the continuous efforts to improve accuracy in this field. Several key
observations can be made from it:

1. Models with Additional Training Data: Notably, the top five models on the list have
been trained with additional data, leading to higher accuracy scores. This suggests
that incorporating supplementary datasets can positively impact model performance
and generalization.

2. Average Accuracy Comparison: Comparing the average accuracy of the top five
models with additional training data (76.36%) to the average accuracy of the models
ranked 6 to 10 without additional data (73.05%), a notable difference of
approximately 3.31% is observed. This indicates that utilizing additional training data
can significantly contribute to improved facial emotion recognition results.

3. Architecture Importance: Various architectures, such as ResMaskingNet, VGG-19,
ResNet, and LHC-Net, have been successfully employed in the top-performing
models. This highlights the importance of selecting appropriate architectures tailored
to the specific task of facial emotion recognition.

4. Attention Mechanisms: The inclusion of attention mechanisms, as seen in LHC-Net
and Self-AttentionResNet, demonstrates their efficacy in capturing essential facial
features for accurate emotion recognition.

5. Optimization Techniques: Models such as ResNet18 With Tricks and CNN
Hyperparameter Optimization emphasize the importance of implementing
optimization techniques to enhance model performance. This suggests that carefully
choosing and fine-tuning model parameters can lead to improved accuracy.
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The top 5 models shown in Papers with Code use extra data. However, filtering for “Models
not using extra data” reveals that the top accuracy models use either transfer learning
pretrained models or focus on optimizing hyperparameters of a convolutional neural netw

(1.1 Image Papers with Code table filtering by "Models not using extra data")

VGGNet and VGG:
● Accuracy: 73.28% and 72.7%, respectively.
● Papers: "Facial Emotion Recognition: State of the Art Performance on FER2013"

(2021) and "Facial Expression Recognition using Convolutional Neural Networks:
State of the Art" (2016), respectively.

● Noteworthy: Both models employ VGG architectures, with the former achieving a
slightly higher accuracy. These results highlight the effectiveness of VGGNet in facial
emotion recognition tasks.

Res-Net and ResNet:
● Accuracy: 72.4% for Res-Net and unspecified for ResNet.
● Paper: "Facial Expression Recognition using Convolutional Neural Networks: State of

the Art" (2016)
● Noteworthy: These models, utilizing Residual Networks (ResNets), provide

competitive accuracy. Residual connections enable the models to effectively capture
and learn intricate facial features.

CNN Hyperparameter Optimization:
● Accuracy: 72.16%
● Paper: "Convolutional Neural Network Hyperparameters optimization for Facial

Emotion Recognition" (2021)
● Noteworthy: This work emphasizes the significance of hyperparameter optimization

techniques in CNNs for enhancing facial emotion recognition performance. The
achieved accuracy demonstrates the impact of carefully tuning hyperparameters on
model effectiveness.

VGGNet demonstrates superior accuracy compared to VGG, highlighting its effectiveness in
accurately recognizing facial emotions. Similarly, Res-Net, with an accuracy of 72.4%,
showcases competitive performance by effectively capturing intricate facial features through
Residual Networks.
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Furthermore, the work on CNN hyperparameter optimization emphasizes the significance of
fine-tuning hyperparameters, resulting in a commendable accuracy score of 72.16%. This
underscores the impact of optimizing hyperparameters to maximize the model's
effectiveness in facial emotion recognition tasks.
Understanding that models with an accuracy of around 70% effectiveness are considered
very good models, we can consider our models to have an acceptable accuracy if they
approach this figure around 60%, and they are considered very good if they significantly
exceed it, around 80%.

1.2.2 Justification

Although there have been several previous studies on the use of deep learning techniques
for emotion classification from facial images using the FER2013 dataset, there is still room
for improvement and further exploration of different approaches.

Transfer learning, CNNs have shown great promise in achieving considerable accuracy in
emotion classification tasks. However, there is still a need to compare and evaluate the
feasibility and effectiveness of these techniques.

Therefore, a project that studies the feasibility and comparative of the mentioned deep
learning techniques for emotion classification from facial images will hopefully contribute to
the advancement of the field of Computer Vision and facilitate the development of more
accurate and efficient models for emotion recognition. This will have practical implications for
various industries such as marketing, healthcare, and entertainment.

1.3 Scope

1.3.1 Objectives and sub-objectives

The general objective of this project is to explore and compare the performance of different
deep learning techniques for emotion classification from facial images using the FER2013
dataset, specifically through the application of transfer learning and fine tuning, and
convolutional neural networks (CNNs). To achieve this objective, the project can be broken
down into several sub-objectives:

Theoretical Part
- Study the theoretical concepts of deep learning techniques, including transfer learning, fine
tuning and CNNs.
- Explore and compare the different architectures and variations of transfer learning, CNNs,
and VAEs for emotion classification from facial images.
- Analyze the strengths and weaknesses of each technique and compare them to other
state-of-the-art methods in the field.
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Practical Part
- Implement and program the selected deep learning techniques using Keras with Tensorflow
backend.
- Train and evaluate the performance of the different models using standard evaluation
metrics such as accuracy and loss.
- Compare the results obtained from the different models and analyze the strengths and
weaknesses of each technique for emotion classification from facial images.
- Apply the trained models to a set of images and compare their performance with the python
‘fer’ library.

1.3.2 Requirements

- Ensure that the data from the dataset can be transferred without errors to the models for
training.
- Optimize the hyperparameters of the different deep learning models.
- Use a suitable evaluation process to select the best model for each architecture during the
training period.
- Use good programming practices, with a readable style and minimal complexity.

1.3.3 Potential obstacles and risks

- Deadline of the project: Meeting the project deadline and ensuring that the work is
well-distributed to avoid rushing can be a major risk. Currently, I have a part time job that
limits the amount of time I can dedicate to this project.
- Lack of experience in the field: The field of deep learning and computer vision requires a
high level of technical knowledge. Personally, I have some experience with machine learning
models and using python for data science. However it is the first time for me trying to apply
deep learning models to a real life problem. This lack of experience may cause an increase
in the time devoted to research and learning tasks.
- Technical issues: We have to account for the possibility of technical issues with online
tools, which may lead to delays in training and testing the models. Mainly the tool with more
risk is Google Colab since a lot of hours will be devoted to working with it. The overuse of
the GPU mode in Google Colab can cause timeouts. Furthermore, the GPU mode can only
be used in a notebook at a time so this will limit the possibility of working with two scripts at
the same time.

1.4 Methodology and rigor

1.4.1 Methodology

The working methodology for this project is based on the Agile methodology, which is a
flexible and iterative approach that allows for continuous improvement and adaptation
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throughout the project. The work will be divided into sprints, with each sprint focusing on a
series of work objectives, which in turn will be divided into subtasks. Of course, in order to
make planning easier the subtasks will have to be assigned a score based on the estimated
time they will require. Examples of subtasks would be implementing a data preprocessing
function, researching CNN implementation examples, researching transfer learning
pre-trained models compatible with the dataset, etc.

1.4.2 Validation

At the beginning of each sprint, the subtasks will be identified and prioritized based on their
importance and feasibility, and work will commence accordingly. Throughout the sprint,
regular meetings with the tutor using Google Meet and Google Calendar will take place to
review the progress, address any issues or challenges that may arise, and make necessary
adjustments to the plan. If the work is clear and straightforward the review can be discussed
by email instead of a meeting.

At the end of each sprint, there will be a review to evaluate the progress made, the subtasks
completed, and the quality of the work delivered. This review will also provide an opportunity
to reflect on the lessons learned and identify any areas for improvement in the upcoming
sprints.
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2. Temporal Planning

2.1 Description of the tasks

2.1.1 Task definition

Project Planning:

In order to ensure a successful project, project planning is crucial. For it we define the
following tasks:

• T1.1 Context and Project Scope: Definition of the project scope in the context of its study,
indicating the objective of the thesis, the relevance of the area, and how it is going to be
developed.
• T1.2 Temporal Planning: Planning of the entire execution of the work, providing a
description of the phases, resources, and requirements needed.
• T1.3 Budget and Sustainability: Analysis of the sustainability and the economic dimension
of the project.
• T1.4 Integration in Final Document: Bring together all the tasks, correcting the parts that
were mistaken.
• T1.5 Meetings: Meetings with the supervisor will be scheduled every two weeks with the
purpose of ensuring that the thesis is evolving correctly and fulfilling the time plan.

Research:

Before starting to work with the different techniques, one important task is to familiarize
oneself with the basics of deep learning, specifically CNNs and VAEs, and their application
in emotion classification. As it is mandatory to study the techniques extensively, we are
going to perform the following tasks:

• Research and learn about transfer learning and fine tuning and how they can adapt to the
problem of emotion classification.
• Research about CNN and how it can be applied to emotion classification.
• Additional research of other methods or techniques
• Research the performance of the techniques on different datasets, including FER2013.

Practical Implementation:

In order to compare the mentioned techniques in emotion classification, we have to program
each one of them. We divide the practical implementation in the following tasks:

• Learn TensorFlow and Keras. It is of utmost importance to have a solid understanding of
these tools before trying to implement the models.
• Load and preprocess the FER2013 dataset.
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• Program a Fine tuned model with transfer learning using pre-trained models.
• Program a CNN model for emotion classification.
• Program the application of the models and the comparison with the ‘fer’ library.
• Code cleaning, testing and code optimization.

Experimentation and Conclusion:

In this section, we will define the tasks relative to the experiments, and conclusions of our
project.

• Experiment with the Transfer Learning/Fine tuning model.
• Experiment with the CNN model.
• Make tests regarding the application of the models
• Conclusions: Analyze the results from the experimentation with the models and draw some
conclusions.
• Prepare the oral defense

Furthermore, the documentation of the project is an implicit task that must be carried out
throughout the thesis.

2.1.2 Summary of the tasks

ID Name Time(h) Dependencies Resources

T1 Project management 100

T1.1 Context and Scope 25
PC, Google Docs, GEPTutor,

Researcher(R)

T1.2 Temporal Planning 15
PC, Google Docs,

Asana(gantt), GEPTutor, R

T1.3 Budget and Sustainability 20 T1.3 PC, Google Docs, GEPTutor, R

T1.4 Final project definition 20 T1.2, T1.3, T1.4 PC, Google Docs, GEPTutor, R

T1.5 Meetings 20 Tutor, R
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T2 Research 125
PC, Google, Kaggle, ChatGPT,

R

T2.1 Research TL/FT 30
PC, Google, Kaggle, ChatGPT,

R

T2.2 Research CNN 40
PC, Google, Kaggle, ChatGPT,

R

T2.3 Research other 45
PC, Google, Kaggle, ChatGPT,

R

T2.4 Research dataset 10
PC, Google, Kaggle, ChatGPT,

R

T3 Practical implementation 180

T3.1 Learn Keras and Tensorflow 30 PC, Google, Keras, ChatGPT, R

T3.2 Load and preprocess dataset 10 T2.4
PC, Google Colab, Kaggle,

ChatGPT, R

T3.3
Program a Transfer Learning

model
40 T2.1, T3.1, T3.2

PC, Google, Google Colab,

Keras, Kaggle, ChatGPT, R

T3.4 Program a CNN model 40 T2.2, T3.1, T3.2
PC, Google, Google Colab,

Keras, Kaggle, ChatGPT, R

T3.5 Program App 50 T2.3, T3.1, T3.2
PC, Google, Google Colab,

Keras, Kaggle, ChatGPT, R

T3.6 Code cleaning 10 T3.3, T3.4, T3.5
PC, Google, Google Colab,

Keras, ChatGPT, R

T4
Experimentation and

conclusions
115

T4.1 Experiments with TL/FT 25 T3.3
PC, Google, Google Colab,

Keras, ChatGPT, R
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T4.2 Experiments with CNN 25 T3.4
PC, Google, Google Colab,

Keras, ChatGPT, R

T4.3 Tests App 30 T3.5
PC, Google, Google Colab,

Keras, ChatGPT, R

T4.4 Conclusions 10 T4.1, T4.2, T4.3 PC, results obtained, R

T4.5 Prepare oral defense 25 T4.4

PC, Google Drive, Google,

Google Slides, results

obtained, ChatGPT, R

T5 Project documentation 50

PC, results obtained, Google

Docs, Google Chrome

Markers, R

TOTAL 570

(2.1 Summary of the tasks)

2.1.3 Resources

Human resources

The main human resource of the thesis is the researcher, since is the one working on it. The
university tutor Gerard Escudero Bakx will mentor the researcher on its task, so he is a
fundamental human resource. Also, the GEP tutor, Joan Sardà Ferrer, is in charge of
correcting the project management part, so he will have a big influence in the scope and
organization of the work.

Tool resources

Considering that research projects are grounded on previous works, there is a certain need
for material resources such as books or papers. Furthermore, I will need some software and
hardware resources to make the practical part and the experiments:

• PC. The experiments will be done with a Lenovo YOGA 720 laptop computer, with 8GB of
RAM and Intel(R) Core(TM) i5-7200U CPU.
• Google Drive. Used for document management and keeping all the thesis-related files in
one place, accessible for anyone who needs to review them.
• Google Slides: Tool used for creating visual presentations.
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• Google Docs: Used to write the documentation of the thesis.
• Atenea. Used to communicate with the professor in charge of GEP, learn about project
management and deliver the work.
• Kaggle. A platform to access and download datasets for experimentation and analysis.
• Google Colab. A cloud-based service that provides free access to GPUs and TPUs for
running deep learning experiments.
• Keras. A high-level neural networks API, written in Python and capable of running on top of
TensorFlow or other deep learning libraries.
• ChatGPT. A language model trained by OpenAI, which can assist with project-related
queries and provide guidance on various topics.

2.2 Risk management

2.2.1 Deadline of the project

• Impact: Medium
• Proposed solution: If the deadline of the project is compromised, depending on the stage
the project is a possible solution could be to devote more hours to the implementation and
experimentation rather than the documentation. Also establishing a priority hierarchy over
the models would be useful. CNN is the most important as it is the basic one, followed by the
VAE model and lastly the Transfer Learning and Fine tuning approach. In this way the
deadline of the project will not be compromised and no new tasks will be needed.
• Risk plan: Identify that the deadline of the project is at risk -> Evaluate the progress of the
project -[if the project is advanced]-> Reassign 10 hours from documentation tasks to
experimentation. -[else]-> Decide which model to drop from the thesis and focus on the
implementation and experimentation of the others.

2.2.2 Lack of experience in the field

• Impact: Low
• Proposed solution: On one hand, more meetings with the tutor could be arranged in order
to compensate for the lack of experience. On the other hand, more hours could be destined
to research tasks and learning.
• Risk plan: Identify doubts and queries about the field -> Make a list about doubts -> Search
online for answers -[if some doubts uncleared]-> set up a meeting with the tutor.

2.2.3 Technical issues

• Impact: High
• Proposed solution: Google Colab is a fundamental tool, if the project encounters technical
issues with this programme it would be at risk. In order not to be so dependent on Google
Colab, we could explore other alternatives like Kaggle Kernel or others. Other tools that
could have technical issues are easily replaceable.
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• Risk plan: Experience technical issues with Google Colab -> Decide if continuing with
Google Colab or search for alternatives -[if search for alternatives]-> Dedicate 2-3 hours to
research and evaluate Kaggle Kernel or others ->Migrate the project to the new platform.

2.3 Gantt

(2.2 Gantt diagram)
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3. Budget and sustainability

3.1 Budget

3.1.1 Staff costs

To accurately estimate the personnel costs of a project, it is necessary to determine the
specific roles that are required, their respective hourly wages, and how the tasks will be
distributed among them. The amount that each worker will earn is calculated by multiplying
their wage per hour by the number of hours they are expected to work on the project.
Furthermore, the cost of each task is determined by adding up the wages of all the workers
who are involved in completing it.
The roles required for this project are the following:
- Project Manager: Responsible for overseeing the project, managing resources, and
ensuring that the project is completed on time and within budget.
- Junior Machine Learning Engineer: Responsible for developing and implementing
machine learning algorithms and models.
- Analyst: Responsible for analyzing the results and drawing conclusions.
- Tester: Responsible for testing the code and verifying its correct functioning.
- Technical Writer: Responsible for documenting the project and creating user manuals and
other technical documentation.

Role Cost (€)/h

Project Manager 23

Junior Machine Learning

Engineer
25

Analyst 13

Tester 8

Technical Writer 20

(3.1 Cost per hour of the different roles )

Tarea Project Manager

Junior Machine Learning

Engineer Analyst Tester Technical Writer

T1 75 0 0 0 25

T2 0 125 0 0 0
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T3 0 170 0 10 0

T4 10 80 25 0 0

T5 0 0 0 0 50

(3.2 Estimated time per task)

Tasks Cost(€)

Project management 2325

Research 3750

Practical implementation 5875

Experimentation and conclusions 3275

Project documentation 1000

(3.3 Estimated cost per task)

Role Hours Cost (€)

Project Manager 85 1955

Junior Machine Learning Engineer 375 9375

Analyst 25 325

Tester 10 80

Technical Writer 75 1500

TOTAL 570 13235

(3.4 Total cost of the staff )
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3.1.2 Generic costs

Amortization of the resources
The resource we have to calculate the amortization cost of is mainly my laptop (Lenovo Yoga
720) since all the software resources are open source.
To calculate the amortization cost of a Lenovo Yoga 720 laptop purchased for 900€ and used
for 570 hours, we need to determine the depreciation rate first.
Depreciation rate = Cost of laptop / Expected total lifetime usage
The expected lifetime usage of the laptop is 5 years or 15,000 hours of usage.
Depreciation rate = 900€ / 15,000 hours = 0.06 €/hour
Now, we can calculate the amortization cost for the 570 hours of usage:
Amortization cost = Depreciation rate x Number of hours used
Amortization cost = 0.06 €/hour x 570 hours = 34.2 €
Therefore, the amortization cost of the Lenovo Yoga 720 laptop for 570 hours of usage is
34.2 €.

Indirect costs
- Internet cost: The internet cost is around 90e per month. Hence, the total cost would be
35€ /month * 5 months, 175€.
- Electricity cost: The kwH price[14] is 0.1199 e /kWh. Given that the power of an average
desktop is 400 kwH, the total cost would be (0.10 € /kWh) * 0,88 kwH * 570 hours adds up to
50.16€
- Work space: The thesis will be developed at my home, located in Vilanova i la Geltrú. The
cost of living in vilanova in an apartment similar to where I live is approximately 800€/month.
In my apartment there lives another person so we can estimate that my cost per month is
400€ and the project duration is 5 months, thus the cost would add up to 2.000€.
In summary the total indirect costs would approximately be 2225.16€ .

3.1.3 Other costs

Incidental costs
In the following table it is represented the costs associated with each difficulty or incident this
project may face.

Incident Estimated cost (€) Risk(%) Cost (€)

Deadline of the project 500 20 100

Lack of experience in the field 300 25 75

Technical issues 0 70 0

TOTAL 800 - 175

(3.5 Incidental costs)
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Contingency
Every project can have unexpected issues, so it's important to be prepared. That's why we
need a contingency fund to prevent delays in the project.
CPA (cost per activity): Due to the possibility of delays in the project and the need for
additional hours, the contingency cost assigned to PCA will be 15%.
GC (general costs): Since this will be a 5 month project the probability of needing additional
resources is low. Therefore the contingency cost assigned will be 5%.
The total contingency fund is 2098.22€

3.1.4 Total costs

The total costs of the project are displayed in a table, which provides a comprehensive
overview of all expenses associated with the project.

Cost category Cost (€)

Staff costs 13235

Generic costs 2259.36

Other costs 2273.22

TOTAL 17767.58

(3.6 Total costs of the project )

3.1.5 Management control

In order to detect cost deviations we establish some control mechanisms which indicate the
deviation from the initial budget.
- Human resources deviation = (Estimated cost per hour - Real cost per hour) * Total hours
consumed.
Amortization Deviation = (Estimated usage hours - Real usage hours) * Price per hour.
- Incidental cost deviation = (Estimated incidental hours - Real incidental hours) * Total
incidental hours.
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3.2 Sustainability

3.2.1 Self-assessment
The world is facing environmental problems due to human actions and we need to act
quickly. We must consider the impact of projects on the environment, as well as their social
and economic impact. In the Bachelor Final Project, students are encouraged to assess the
sustainability of their work, including its environmental, social, and economic impact. This
ensures that they consider the consequences of their work and whether it is worth
implementing. Some students may not have thought about these issues before, but it's
important to understand how their work affects different areas.

3.2.2 Economic dimension

Regarding PPP: Reflection on the cost you have estimated for the completion of the
project:
The Budget section provides details about the expected costs of the project, including both
human and material expenses. It also takes into account any potential unforeseen expenses
that may arise during the project's execution.

Regarding life expectancy, how is it solved the problem you are trying to solve? Does
your solution provide any improvement economically?
Currently, emotion recognition from facial images is mostly solved through manual
annotation by humans, which is time-consuming and costly. By using deep learning
techniques and the FER2013 dataset to apply transfer learning, CNNs, and VAEs, the
process can be automated, resulting in significant cost savings for businesses and
organizations that rely on emotion recognition technology.

3.2.3 Environmental dimension

Regarding PPP: Have you estimated the environmental impact of the project?
The use of machine learning techniques may require significant computing resources, which
could have an impact on the environment through increased energy consumption and
carbon emissions.

Regarding PPP: Did you plan to minimize its impact, for example, by reusing
resources?
In order to minimize the impact we could optimize algorithms to reduce computing
requirements and minimize waste and resource consumption throughout the project's
lifecycle.

Regarding life expectancy, how does it solve the problem you are trying to solve?
Does your solution provide any improvement in the environmental impact?
By automating the process of emotion recognition from facial images using deep learning
techniques and the FER2013 dataset, the need for manual annotation by humans is
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reduced, resulting in a lower carbon footprint and reduced environmental impact from the
use of energy and resources required for manual annotation.

3.2.4 Social dimension

Regarding the PPP, how do you think this project will enrich you personally?
This project will help me gain hands-on experience in cutting-edge technologies and
techniques. The project can be an opportunity to deepen my knowledge of machine learning
and its applications, particularly in the field of image recognition.

Regarding Useful Life: How is currently solved the problem that you want to address
(state of the art)? How will your solution improve the quality of life (social dimension)
with respect to other existing solutions?
Emotion recognition from facial images has a wide range of potential applications, from
improving customer service to detecting emotional distress in patients. By using deep
learning techniques and the FER2013 dataset to improve the accuracy of emotion
recognition, the quality of life for individuals in various industries can be improved. For
example, detecting emotional distress in patients can lead to earlier intervention and
treatment, improving their overall well-being.
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4. Theoretical Background

4.1 Deep Learning and Neural Networks
Deep learning is a subfield of machine learning that focuses on using neural networks to
solve intricate problems. Neural networks are based on the structure of the human brain and
consist of interconnected nodes or neurons that process information and extract features
from input data.
Neurons are the basic unit of neural networks and receive input signals from other neurons
to produce an output signal that is transmitted to other neurons. The connections between
neurons are modeled by weights, which are adjusted during training to optimize the
network's performance.

(4.1 Neural network conceptual image)

Deep neural networks are known for their depth, meaning they have several layers of
neurons. This enables them to learn intricate representations of input data, leading to better
performance on tasks like natural language processing and image recognition.
Training a neural network involves providing it with a substantial dataset of labeled examples
and adjusting the weights of the connections between neurons to minimize a loss function
that measures the difference between predicted and actual output. This process is known as
backpropagation and uses gradient descent to update the weights in the network iteratively.
Deep learning has transformed several areas of artificial intelligence, including speech
recognition, natural language processing, and computer vision. It has allowed machines to
exceed human-level performance on various tasks, including game playing and image
classification.
In the context of emotion recognition from facial images, deep learning has displayed
encouraging results. Training a neural network on a vast labeled dataset of images can help
learn features that indicate different emotions, including anger, happiness, and sadness.
These features can then classify new images and estimate the subject's emotional state.

4.2 Transfer Learning and Fine Tuning (TL/FT)
Transfer learning and fine-tuning are techniques commonly used in deep learning to
leverage existing pre-trained models for a new task.
Transfer learning involves using a pre-trained model on a large dataset as a starting point for
a new model on a smaller dataset. By using the pre-trained model as a feature extractor, the
new model can leverage the learned features for the new task. This is particularly useful
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when the new dataset is small and does not contain enough data to train a deep neural
network from scratch.
Fine-tuning involves taking a pre-trained model and continuing training on a new dataset.
The pre-trained model is used as an initialization point for the new model, and the weights
are fine-tuned on the new dataset to adapt the model to the new task. Fine-tuning is typically
used when the new dataset is similar to the original dataset used to train the pre-trained
model.

(4.2 Transfer learning visual example)

Both transfer learning and fine-tuning can lead to significant improvements in model
performance, especially when the new task is related to the original task used to train the
pre-trained model. Additionally, using transfer learning and fine-tuning can save significant
time and resources compared to training a deep neural network from scratch on a new
dataset.
In the context of emotion recognition from facial images, transfer learning and fine-tuning
can be used to leverage pre-trained models for image classification tasks such as object
recognition. By fine-tuning pre-trained models on a new dataset of labeled facial images, it is
possible to achieve state-of-the-art results in emotion recognition tasks with significantly less
training data and computation time.

4.3 Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN) are a type of neural network that is particularly
effective at processing image data. They have revolutionized computer vision tasks such as
object recognition, face detection, and image classification.

(4.3 Convolutional neural network conceptual image)
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The architecture of a CNN consists of three main types of layers: convolutional layers,
pooling layers, and fully connected layers. In a convolutional layer, the network performs a
convolution operation on the input data using a set of filters or kernels. Each filter detects a
specific feature in the image, such as edges, corners, or textures.
The output of the convolutional layer is then passed through a pooling layer, which reduces
the spatial dimensions of the feature maps while retaining the most important information.
This helps to reduce the computational complexity of the network and prevent overfitting.
Finally, the output of the pooling layer is flattened and passed through one or more fully
connected layers, which perform the classification or regression task.

(4.4 Convolutional neural network structure image)

Training a CNN involves feeding it a large dataset of labeled images and optimizing the
network's parameters to minimize a loss function that measures the difference between the
predicted output and the true label. This is typically done using backpropagation and
gradient descent.
CNNs have several advantages over traditional neural networks for image processing tasks.
They can learn features that are invariant to translation, rotation, and scaling, making them
robust to variations in the input data. They also use parameter sharing and sparsity to
reduce the number of parameters and improve generalization performance.
In the context of emotion recognition from facial images, CNNs have shown promising
results. By training a CNN on a large dataset of labeled images, it is possible to learn
features that are indicative of different emotions, such as happiness, sadness, and anger.
These features can then be used to classify new images and predict the emotional state of
the subject.
Overall, CNNs are a powerful tool for image processing tasks and have transformed the field
of computer vision. Their ability to automatically learn features from raw data has enabled
them to achieve state-of-the-art performance on a wide range of tasks.
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5. Dataset

5.1 Previous research and decision
Since in deep learning the dataset that feeds the model is essential for the learning process,
it is vital to choose a suitable dataset to train it with. In this research articles and data
science blog posts are particularly useful found in medium.com (online publishing platform
for articles and blog posts on various topics) or more niche sites that are equally useful, such
as Analytics India Magazine.
After the dataset research two datasets were seriously considered to be the main dataset for
the thesis:

Google facial expression comparison dataset
● Description: This dataset is a large-scale facial expression dataset consisting of face

image triplets along with human annotations that specify which two faces in each
triplet form the most similar pair in terms of facial expression. Each triplet in this
dataset was annotated by six or more human raters. This dataset is quite different
from existing expression datasets that focus mainly on discrete emotion classification
or action unit detection.

● Size: 156K face images and 200MB
● Link: https://research.google/resources/datasets/google-facial-expression/

FER2013 dataset
● Description: The data consists of 48x48 pixel grayscale images of faces. The faces

have been automatically registered so that the face is more or less centered and
occupies about the same amount of space in each image. Facial expressions are
divided into one of seven categories (0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad,
5=Surprise, 6=Neutral).

● Size: The training set consists of 28,709 examples and the public test set consists of
3,589 examples. The size of the files is 56.51 MB.

● Utility Link: https://www.kaggle.com/datasets/msambare/fer2013

FER2013 vs Google facial expression comparison dataset

Pros of using FER2013 dataset:
● FER2013 has a large number of labeled images of different emotions, making it a

good dataset for training deep learning models.
● FER2013 is publicly available and easy to access.
● FER2013 requires minimal preprocessing, which reduces the time and effort required

for data cleaning and preparation.
Cons of using FER2013 dataset:

● FER2013 is limited to a specific age group (18-60 years) and ethnicities, which may
not be representative of the general population.
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● FER2013 has a limited number of images for some emotions, which can affect the
accuracy of the model for those emotions.

Pros of using Google Facial Expression Comparison dataset:
● Google's dataset has a larger number of images than FER2013, which can be

beneficial for improving the accuracy of the model.
● Google's dataset has a wider age range and more diverse ethnicities, which can

make the model more robust and representative of the general population.
Cons of using Google Facial Expression Comparison dataset:

● Google dataset requires significant preprocessing to extract relevant facial features,
which can be time-consuming and require specialized expertise.

● Google dataset is not publicly available and requires permission from Google for its
use.

Final decision

The final decision is to use as the main dataset the FER2013 dataset. Although it has fewer
images than the Google Facial Expression Comparison dataset, FER2013 has enough to
train a model and achieve good accuracy in recognizing emotions. The most decisive factor
when choosing has been ease of use, as FER2013 is publicly available unlike the Google
dataset, and requires minimal preprocessing. Since this project specifically focuses on deep
learning rather than data science as a whole, a dataset that can avoid delays and potential
problems with data preprocessing is more useful to us than one that requires a lot of
preprocessing.

5.2 FER2013 dataset

5.2.1 Basic review
The FER2013 dataset is a widely used dataset in the field of computer vision, specifically in
the task of facial expression recognition.

(5.1 FER2013 dataset image example)
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Here is a basic overview of the FER2013 dataset:
● Creator: The FER2013 dataset was created by Pierre-Luc Carrier and Aaron

Courville, researchers from the Université de Montréal, Canada. The dataset was
developed for their research on facial expression recognition.

● Creation Date: The FER2013 dataset was released in 2013.
● Characteristics: The FER2013 dataset consists of grayscale images of facial

expressions. It contains a total of 35,887 images, which are divided into three
subsets: training, validation, and testing. The distribution of images across these
subsets is as follows: 28,709 images for training, 3,589 images for validation, and
3,589 images for testing.

● Image Size and Format: Each image in the FER2013 dataset has a resolution of
48x48 pixels. The images are provided in the Portable Network Graphics (PNG)
format.

● Labels: The FER2013 dataset includes seven different facial expression labels:
anger, disgust, fear, happiness, sadness, surprise, and neutral. Each image is
labeled with one of these seven emotion categories.

5.2.2 Limitations
1. Data imbalance: It is important to note that the FER2013 dataset suffers from class

imbalance, meaning that some emotion categories may have a significantly larger
number of examples than others. This data imbalance can affect the training and
evaluation of models, particularly for emotion categories with fewer samples.

2. Limited representation of certain emotions: The imbalance in the FER2013 dataset
can result in limited representation of certain emotions, particularly those with fewer
samples. Emotion categories that are less frequently encountered in the dataset may
not be adequately learned by the model, leading to lower accuracy and potentially
poorer generalization to real-world scenarios.

3. Generalizability: The FER2013 dataset may have limitations in terms of
generalizability to diverse demographics and cultural contexts. The dataset was
collected using images primarily from the internet, which may introduce biases and
variations in facial expressions across different populations. The lack of diversity in
the dataset can limit the model's ability to generalize well to real-world scenarios and
individuals from different backgrounds.

4. Limited image resolution and grayscale format: The FER2013 dataset provides
grayscale images with a resolution of 48x48 pixels. This limited resolution and
absence of color information may impact the model's ability to capture fine-grained
facial features and subtle variations in expressions. It may also restrict the model's
performance in scenarios where color cues are important for emotion recognition.
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5.3 Data source and acquisition

5.3.1 Data source
Kaggle is an online platform where people interested in data science can find and explore
datasets, participate in competitions, and collaborate with others. It's a place to learn and
apply data science skills, solve real-world problems, and share ideas and code. Kaggle
provides access to a wide range of datasets and tools for analyzing and modeling data.
For the development of this thesis the data is obtained from the following kaggle:

The FER-2013 Kaggle dataset, created by msambare in 2020, is licensed under the
Database Contents License (DbCL) v1.0.
The data consists of 48x48 pixel grayscale images of faces. The faces have been
automatically registered so that the face is more or less centered and occupies about the
same amount of space in each image. The task is to categorize each face based on the
emotion shown in the facial expression into one of seven categories (0=Angry, 1=Disgust,
2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral). The training set consists of 28,709
examples and the public test set consists of 3,589 examples.

This kaggle has a usability score of 7.5, indicating its overall usability. The dataset has a
completeness score of 100%, providing a subtitle, tags, description, and cover image for
effective understanding and organization of the data.
In terms of credibility, the dataset scores 33%, lacking source/provenance information.
However, it offers the availability of a public notebook, which adds to its credibility. The
update frequency is not specified.
Regarding compatibility, the dataset scores 67%. It provides a clear license for usage and
ensures compatibility with the file format. However, a detailed file description is not provided.

(5.2 Usability score description)

The dataset available on Kaggle has a total size of 56.51MB and consists of 35.9k files in
the .jpg format. These files are primarily images that make up the dataset. The size of the
dataset indicates the amount of data available for analysis and model training.
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(5.3 Data size and type specifications)

Overall, the FER-2013 Kaggle dataset offers a high level of completeness and usability, with
room for improvement in terms of credibility and file description. Researchers and
practitioners can leverage this dataset for facial emotion recognition tasks while considering
its limitations.

5.3.2 Data loading
The "opendatasets" library is a Python library that provides a convenient interface for
downloading and working with datasets from various sources. It simplifies the process of
accessing and using datasets for data analysis, machine learning, and other data-related
tasks.
In order to download the fer2013 dataset the opentadasets library is imported and with the
method .download() we can download the dataset from kaggle by simply passing the kaggle
link as an argument to this method. When executing this code, Kaggle will prompt us to enter
our username and associated key to download the data and store it in the Colab notebook's
files. The data is saved in the "fer2013" folder. It is worth noting that this process needs to be
repeated in each session because this type of file in Colab is not saved when the session
ends.
The code then defines two variables: "train_path" and "val_path". These variables store the
paths where the training and validation data will be located within the downloaded dataset. In
this case, the training data is located in the "fer2013/train/" directory, and the validation data
is located in the "fer2013/test/" directory.

5.4 Preprocessing

5.4.1 Image data generator
The ImageDataGenerator is a method in Keras. It is specifically designed for image data
preprocessing and augmentation. The ImageDataGenerator allows us to generate
augmented images in real-time while training our deep learning models.
This method provides various options to apply transformations to the input images, such as
rotation, zooming, shifting, shearing, and flipping. It also supports resizing, rescaling, and
normalizing the images.
By using the ImageDataGenerator, we can efficiently create data generators that
automatically load and preprocess batches of images during training. This helps in
enhancing the diversity of the training data and preventing overfitting.
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5.4.2 Rescaling
Rescaling is a preprocessing technique commonly used in image data augmentation to
normalize the pixel values of images. It involves scaling down or up the pixel values to a
specific range. In the given code, the rescaling is implemented using the rescale parameter
of the ImageDataGenerator method.
The ImageDataGenerator class instances have the rescale parameter set to 1/255, which
means that each pixel value in the images will be divided by 255. This rescaling operation
effectively scales down the pixel values from the original range of 0-255 to the normalized
range of 0-1.
This normalization step helps in stabilizing the training process and improving the
convergence of the neural network model. It also helps in reducing the impact of lighting
conditions and color variations in the images.

5.4.3 Data augmentation
In the training ImageDataGenerator class instance the following data augmentation
techniques are implemented:

● Rotation Range: It randomly rotates the images by a specified angle within the range
of -20 to +20 degrees. This helps the model become invariant to different orientations
of objects in the images.

● Width Shift Range: It randomly shifts the images horizontally (left or right) by a
fraction of the total width. The value of 0.2 indicates that the images can be
horizontally shifted up to 20% of the total width. This augmentation helps the model
learn robustness to slight variations in object positions.

● Height Shift Range: Similar to width shift, it randomly shifts the images vertically (up
or down) by a fraction of the total height. Again, the value of 0.2 means the images
can be vertically shifted up to 20% of the total height. This augmentation aids in
capturing the variability of object positions.

● Shear Range: It randomly applies shear transformations to the images within the
range of -20 to +20 degrees. Shearing distorts the shape of the objects in the image
while preserving their orientation. This augmentation helps the model learn to
recognize objects despite deformations.

● Zoom Range: It randomly zooms into the images by a factor within the range of 0.8 to
1.2. Zooming alters the scale of objects in the image, allowing the model to handle
different object sizes and improve its generalization capability.

● Horizontal Flip: It randomly flips the images horizontally. This augmentation
introduces variations in the object's left-right orientation and helps the model learn to
recognize objects from different viewpoints.

These data augmentation techniques increase the diversity of the training data by creating
variations of the original images. This can help the model generalize better and improve its
performance on unseen images.

5.4.4 Data split
In the code, two instances of the ImageDataGenerator class are created, train_datagen and
val_datagen.
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The flow_from_directory method is then used to generate data batches from the directory
specified by train_path and val_path.
The train_path variable represents the path to the training data folder, which contains
subfolders representing different classes or categories of data. Each subfolder contains
images belonging to that specific class. Similarly, the val_path variable represents the path
to the validation data folder, which follows the same structure as the training data folder.
By using the flow_from_directory method with the appropriate parameters, the training and
validation data are loaded from their respective directories, and batches of augmented and
rescaled images are generated for training and evaluation purposes.

5.4.5 Preprocessing for Transfer Learning
In transfer learning and fine-tuning scenarios, the adapt2ImageNetFormat function has been
created.
This function is added to the preprocessing field when creating the ImageDataGenerator. Its
purpose is to adapt the images to the pre-trained models that are trained on RGB images of
size 224x224. If the images are not adapted, training would result in an error due to the
structure of the pre-trained transfer learning models.
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6. Transfer Learning and Fine tuning

6.1 Overview
In this section, we provide an overview of the experimentation plan undertaken in this work.
The goal was to explore the effectiveness of transfer learning and fine-tuning techniques in
the context of our specific problem. The plan involved training and evaluating five different
pre-trained models using a limited number of epochs with the available data. Based on the
evaluation results, the best-performing model would be selected for further fine-tuning.
The experimentation plan can be summarized as follows:

1. Model Selection: We identified five pre-trained models for transfer learning:
MobileNet V2, Inception V3, VGG16, ResNet, and DenseNet. These models were
chosen based on their popularity and success in various computer vision tasks.

2. Model Implementation: Each selected model was implemented using the respective
pre-trained weights available in TensorFlow Hub or Keras Applications. We utilized
the Keras framework for model implementation and customization.

3. Model Training: The selected models were trained using the available dataset for a
limited number of epochs. This allowed us to evaluate their performance and identify
the most promising model for further experimentation.

4. Model Evaluation: After training, each model was evaluated using a validation
dataset. Metrics such as accuracy, loss, and confusion matrix were used to assess
their performance. The evaluation results were analyzed to determine the model that
achieved the highest performance.

5. Fine-tuning: Based on the evaluation results, the model with the best performance
was selected for fine-tuning. This decision was made considering factors such as
accuracy, generalization ability, and computational efficiency.

6.2 TL Models

6.2.1 Model overviews
MobileNet V2
MobileNet V2 is a lightweight convolutional neural network architecture designed specifically
for mobile and embedded vision applications. It aims to provide an efficient and compact
solution for image classification tasks. Some key aspects of MobileNet V2 are as follows:
Brief Description:
MobileNet V2 employs depthwise separable convolutions, which split the standard
convolutional layer into a depthwise convolution and a pointwise convolution. This
separation significantly reduces the computational complexity and number of parameters
while maintaining a reasonable level of accuracy. Additionally, MobileNet V2 introduces
inverted residual blocks, linear bottlenecks, and a width multiplier parameter to optimize
model efficiency.
Strengths:

● Efficiency: MobileNet V2's depth wise separable convolutions enable the model to
achieve a good balance between accuracy and efficiency. It significantly reduces the
computational load, making it suitable for resource-constrained environments.
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● Compactness: The architecture of MobileNet V2 is designed to be compact, allowing
it to be easily deployed on mobile and embedded devices with limited memory and
processing power.

● Flexibility: The width multiplier parameter in MobileNet V2 offers flexibility in trading
off model size and performance, allowing customization based on specific resource
constraints.

Weaknesses:
● Reduced capacity: Due to the model's emphasis on efficiency and compactness,

MobileNet V2 may have a lower capacity to capture complex patterns compared to
larger and more computationally expensive models.

● Limited representation power: The reduced model size and complexity may limit
MobileNet V2's ability to capture fine-grained details or handle more complex tasks
that require a higher level of representation.

Justification:
MobileNet V2 strikes a balance between model size, efficiency, and accuracy, making it
particularly useful for emotion classification tasks. Emotion classification primarily relies on
capturing high-level features and patterns in images, rather than intricate details. MobileNet
V2's efficient architecture and lightweight design make it suitable for deploying on mobile
and embedded devices, where real-time emotion classification is often desired. Its
compactness allows for faster inference times, making it an excellent choice for emotion
analysis in scenarios where computational resources are limited.

Inception V3
Inception V3 is a convolutional neural network architecture known for its effectiveness in
image classification tasks. It was developed to improve upon the limitations of earlier models
by addressing the challenges of depth, computational efficiency, and feature representation.
Here's an overview of Inception V3:
Brief Description:
Inception V3 utilizes a combination of convolutional layers with different filter sizes and
pooling operations to capture features at different scales. It incorporates the concept of
"Inception modules," which are responsible for extracting features at multiple levels of
abstraction. These modules consist of parallel convolutional layers with different filter sizes
and utilize 1x1 convolutions to reduce computational complexity. Inception V3 also employs
advanced techniques such as batch normalization and auxiliary classifiers to enhance
training and regularization.
Strengths:

● Effective feature extraction: The Inception V3 architecture with its multiple filter sizes
and pooling operations enables the model to capture features at different levels of
abstraction, improving its capability to represent complex patterns.

● Computational efficiency: The utilization of 1x1 convolutions and the inception
modules allows Inception V3 to achieve a good balance between accuracy and
computational efficiency.

● Regularization techniques: The inclusion of auxiliary classifiers during training helps
in mitigating the vanishing gradient problem and aids in regularizing the model.

Weaknesses:
● Complexity: Inception V3 has a more complex architecture compared to simpler

models, which may result in increased computational requirements during training
and inference.
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● Higher memory footprint: The increased number of parameters and layers in
Inception V3 may require more memory resources during training and deployment.

Justification:
Inception V3's strong feature extraction capabilities and computational efficiency make it a
suitable choice for emotion classification tasks. Emotion classification often relies on
capturing both low-level and high-level features, and Inception V3's multi-scale feature
extraction enables it to effectively represent such features. Its ability to handle complex
patterns and its regularization techniques contribute to its success in classifying emotions
accurately. While Inception V3 may require higher computational resources compared to
simpler models, its performance justifies its applicability to emotion classification tasks where
accuracy and robust feature representation are crucial.

VGG16
Brief Description:
VGG16 (Visual Geometry Group 16) is a deep convolutional neural network architecture
developed by the Visual Geometry Group at the University of Oxford. It was introduced as
part of the ILSVRC 2014 competition and has gained popularity due to its simplicity and
effectiveness in image classification tasks.
Strengths:

● Deep architecture: VGG16 consists of 16 layers, including 13 convolutional layers
and 3 fully connected layers. Its deep structure enables it to learn hierarchical
representations of images, capturing both low-level and high-level features.

● Simplicity: VGG16 has a straightforward and uniform architecture, making it easy to
understand and implement. Each layer has a fixed configuration of convolutional
filters and pooling operations, contributing to its simplicity.

Weaknesses:
● Computational requirements: The deep structure of VGG16 results in a large number

of parameters, making it computationally expensive to train and deploy. It requires
significant computational resources and may have memory limitations.

● Overfitting potential: VGG16's large number of parameters increases the risk of
overfitting, especially when training on smaller datasets. Adequate regularization
techniques are necessary to prevent overfitting.

Justification:
VGG16's strength lies in its ability to learn hierarchical representations of images, capturing
both low-level and high-level features. Emotion classification tasks often rely on extracting
relevant features from images, and VGG16's deep architecture allows it to effectively capture
such features. While VGG16 may require more computational resources compared to
simpler models, its performance justifies its applicability to emotion classification tasks where
accuracy and robust feature representation are crucial. By leveraging transfer learning and
fine-tuning, the pre-trained VGG16 model can be further customized and trained on
emotion-specific datasets, leading to improved classification results.

ResNet
Brief Description:
ResNet (Residual Neural Network) is a deep convolutional neural network architecture that
revolutionized image classification by introducing residual connections. It was introduced by
Microsoft Research in 2015 and has been widely adopted in various computer vision tasks.
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Strengths:
● Residual connections: ResNet introduced the concept of residual connections, which

allow for the direct propagation of information from earlier layers to later layers. This
helps address the vanishing gradient problem and enables the training of much
deeper networks.

● Deep architecture: ResNet architectures typically consist of tens or even hundreds of
layers, allowing them to learn highly complex and abstract representations of images.

● State-of-the-art performance: ResNet has achieved top performance in various
image classification benchmarks, demonstrating its effectiveness in capturing and
representing intricate image features.

Weaknesses:
● Computational complexity: The deep architecture of ResNet with its numerous layers

and residual connections requires substantial computational resources for both
training and inference. Training large ResNet models can be time-consuming.

● Memory requirements: ResNet models have a large number of parameters, resulting
in a higher memory footprint during training and inference. This can be a limitation
when working with resource-constrained environments.

Justification:
ResNet's strength lies in its ability to effectively capture and represent complex image
features through its deep architecture and residual connections. Emotion classification tasks
often require models that can extract intricate patterns from images, making ResNet a
suitable choice. The residual connections alleviate the vanishing gradient problem and
enable the successful training of very deep networks. While ResNet may be computationally
demanding, its state-of-the-art performance justifies its applicability to emotion classification
tasks where accuracy and feature representation are critical. By leveraging transfer learning
and fine-tuning, the pre-trained ResNet model can be customized and trained on
emotion-specific datasets, further enhancing its performance in emotion classification.

DenseNet
Brief Description:
DenseNet is a convolutional neural network architecture that is known for its dense
connections between layers. It was introduced by researchers at Facebook AI Research in
2016 and has gained popularity for its efficient use of parameters and strong feature
propagation.
Strengths:

● Dense connections: DenseNet introduces dense connections, where each layer is
connected to every subsequent layer in a feed-forward manner. This dense
connectivity enhances feature reuse and information flow, allowing the network to
efficiently propagate gradients and capture fine-grained details.

● Parameter efficiency: DenseNet's dense connections enable parameter sharing,
reducing the number of required parameters compared to traditional architectures.
This parameter efficiency makes DenseNet models more memory-efficient and
computationally faster.

● Feature propagation: DenseNet facilitates the propagation of features through the
network by concatenating the feature maps from all preceding layers. This enables
the model to have a deeper understanding of the data and capture complex patterns.

Weaknesses:
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● Memory requirements: DenseNet models tend to have a larger memory footprint
compared to some other architectures due to the concatenation of feature maps from
all preceding layers. This can be a limitation when working with resource-constrained
environments.

● Computational complexity: The dense connectivity pattern in DenseNet can result in
increased computational complexity during training and inference, especially in
deeper models.

Justification:
DenseNet's strengths in efficient parameter usage, feature propagation, and strong gradient
flow make it well-suited for emotion classification tasks. Emotion classification often requires
models that can capture both global and local features in an image, and DenseNet's dense
connections enable effective feature reuse and propagation, facilitating the extraction of
relevant emotional cues. Despite potential memory and computational requirements,
DenseNet's parameter efficiency and feature-rich representations justify its applicability to
emotion classification tasks where accuracy and robust feature extraction are essential. By
leveraging transfer learning and fine-tuning, the pre-trained DenseNet model can be adapted
and trained on emotion-specific datasets, further enhancing its performance in emotion
classification.

6.2.2 Model implementations
MobileNet V2
The MobileNet V2 implementation follows these steps:

1. Import the pre-trained MobileNet V2 model using the hub.KerasLayer from
TensorFlow Hub. This allows us to utilize the pre-trained model for feature extraction.
The model is loaded from the TensorFlow Hub with the specified input shape of (224,
224, 3).

2. Freeze the layers of the pre-trained model by setting mobilenet_v2.trainable = False.
This ensures that the pre-trained weights are not updated during training, preserving
the learned features.

3. Create a new sequential model (tf.keras.Sequential) and add the MobileNet V2
model as the first layer. Then, add a dense layer with the number of units equal to the
number of classes for the desired task. In this case, the activation function is set to
softmax, and a kernel regularizer is applied to the dense layer for regularization.

4. Compile the model using the Adam optimizer and categorical cross-entropy loss
function. The chosen metrics for evaluation are accuracy.

5. Train the model by fitting it to the training dataset (train_ds) and validating it on the
validation dataset (val_ds) for the specified number of epochs.

6. Measure the training time by recording the start time before training and end time
after training. The elapsed time is calculated as the difference between the start and
end times.

7. Optionally, save the trained model using
model_mobilenet_v2.save("model_mobilenet_v2.h5") for future use or deployment.

Inception V3
The InceptionV3 implementation follows these steps:
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1. Load the pre-trained InceptionV3 model from Keras Applications using the
InceptionV3 class. The model is initialized with pre-trained weights from the
ImageNet dataset. The include_top argument is set to False to exclude the fully
connected layers at the top of the network. The specified input shape is (224, 224, 3).

2. Freeze the layers of the base model to prevent them from being updated during
training. This is achieved by iterating over each layer in the InceptionV3 model and
setting the trainable attribute to False.

3. Add a GlobalAveragePooling2D layer to reduce the dimensionality of the output data
from the base model. This layer aggregates the spatial information and calculates the
average values across each channel.

4. Add a dense layer with 1024 units and a ReLU activation function on top of the
pooling layer. This layer serves as a feature extractor, capturing higher-level
representations from the pooled features.

5. Add a final dense layer with the number of classes in the dataset and a softmax
activation function for multi-class classification. This layer produces the predicted
probabilities for each class.

6. Create a new Keras model using the input and output tensors of the InceptionV3
model. Compile the model using the Adam optimizer, categorical cross-entropy loss
function, and accuracy as the evaluation metric.

7. Measure the training time by recording the start time before training and end time
after training. The elapsed time is calculated as the difference between the start and
end times.

8. Optionally, save the trained model using
model_inception_v3.save("model_inception_v3.h5") for future use or deployment.

VGG16
The VGG16 implementation follows these steps:

1. Load the pre-trained VGG16 model from Keras Applications using the VGG16 class.
The model is initialized with pre-trained weights from the ImageNet dataset. The
include_top argument is set to False to exclude the fully connected layers at the top
of the network. The specified input shape is (224, 224, 3).

2. Freeze the layers of the base model to prevent them from being updated during
training. This is achieved by iterating over each layer in the VGG16 model and
setting the trainable attribute to False.

3. Add a GlobalAveragePooling2D layer to reduce the dimensionality of the output data
from the base model. This layer aggregates the spatial information and calculates the
average values across each channel.

4. Add a dense layer with 1024 units and a ReLU activation function on top of the
pooling layer. This layer serves as a feature extractor, capturing higher-level
representations from the pooled features.

5. Add a final dense layer with the number of classes in the dataset and a softmax
activation function for multi-class classification. This layer produces the predicted
probabilities for each class.

6. Create a new Keras model using the input and output tensors of the VGG16 model.
Compile the model using the Adam optimizer, categorical cross-entropy loss function,
and accuracy as the evaluation metric.
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7. Measure the training time by recording the start time before training and end time
after training. The elapsed time is calculated as the difference between the start and
end times.

8. Optionally, save the trained model using model_vgg16.save("model_vgg16.h5") for
future use or deployment.

ResNet
The ResNet implementation follows these steps:

1. Load the pre-trained ResNet50 model from Keras Applications using the ResNet50
class. The model is initialized with pre-trained weights from the ImageNet dataset.
The include_top argument is set to False to exclude the fully connected layers at the
top of the network. The specified input shape is (224, 224, 3).

2. Freeze the layers of the base model to prevent them from being updated during
training. This is achieved by iterating over each layer in the ResNet50 model and
setting the trainable attribute to False.

3. Add a GlobalAveragePooling2D layer to reduce the dimensionality of the output data
from the base model. This layer aggregates the spatial information and calculates the
average values across each channel.

4. Add a dense layer with 1024 units and a ReLU activation function on top of the
pooling layer. This layer serves as a feature extractor, capturing higher-level
representations from the pooled features.

5. Add a final dense layer with the number of classes in the dataset and a softmax
activation function for multi-class classification. This layer produces the predicted
probabilities for each class.

6. Create a new Keras model using the input and output tensors of the ResNet50
model. Compile the model using the Adam optimizer, categorical cross-entropy loss
function, and accuracy as the evaluation metric.

7. Measure the training time by recording the start time before training and end time
after training. The elapsed time is calculated as the difference between the start and
end times.

8. Optionally, save the trained model using model_resnet.save("model_resnet.h5") for
future use or deployment.

DenseNet
The DenseNet implementation follows these steps:

1. Load the pre-trained DenseNet121 model from Keras Applications using the
DenseNet121 class. The model is initialized with pre-trained weights from the
ImageNet dataset. The include_top argument is set to False to exclude the fully
connected layers at the top of the network. The specified input shape is (224, 224, 3).

2. Freeze the layers of the base model to prevent them from being updated during
training. This is achieved by iterating over each layer in the DenseNet121 model and
setting the trainable attribute to False.

3. Add a GlobalAveragePooling2D layer to reduce the dimensionality of the output data
from the base model. This layer aggregates the spatial information and calculates the
average values across each channel.
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4. Add a dense layer with 1024 units and a ReLU activation function on top of the
pooling layer. This layer serves as a feature extractor, capturing higher-level
representations from the pooled features.

5. Add a final dense layer with the number of classes in the dataset and a softmax
activation function for multi-class classification. This layer produces the predicted
probabilities for each class.

6. Create a new Keras model using the input and output tensors of the DenseNet121
model. Compile the model using the Adam optimizer, categorical cross-entropy loss
function, and accuracy as the evaluation metric.

7. Measure the training time by recording the start time before training and end time
after training. The elapsed time is calculated as the difference between the start and
end times.

8. Optionally, save the trained model using
model_densenet.save("model_densenet.h5") for future use or deployment.

6.2.3 Model training
The five models, namely MobileNet, InceptionV3, VGG16, ResNet, and DenseNet, were
trained under the same conditions to evaluate their performance for emotion classification.
The training settings, including the learning rate, optimizer, and number of epochs, were kept
consistent across all models.
To ensure fairness and comparability, a learning rate of 0.001 was used for all models during
training. The Adam optimizer was employed, which is known for its effectiveness in handling
large datasets and diverse architectures. This optimizer adjusts the learning rate adaptively
during training, allowing the models to converge efficiently.
Regarding the number of epochs, it was determined that training the models for 5 epochs
would strike a balance between computational limitations and capturing meaningful patterns
in the data. Initially, longer training periods, such as 10 or 20 epochs, were considered.
However, due to computational constraints and the extensive training time required, it was
decided that five epochs would provide sufficient insights into each model's performance.
Training the models for five epochs allowed for a reasonable amount of learning to take
place while avoiding excessive training time. It was observed through preliminary
experiments that the models achieved noticeable convergence and demonstrated their
ability to learn essential features within this timeframe. Therefore, five epochs were chosen
as a practical compromise, ensuring a balance between model performance and training
time constraints.
By training the models under the same conditions, including learning rate, optimizer, and a
consistent number of five epochs, we can effectively compare their performance and
determine which model best suits the emotion classification task based on the evaluation
metrics.

6.2.4 Model results
Training time
The first metric to compare among the models is the training time in seconds.
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As can be seen in the following histogram, the training time for the 5 models for 5 epochs is
very similar and ranges between 2000 and 2500 seconds, averaging between 400 and 500
seconds per epoch.

(6.1 TL training time histogram)

Model complexity (number of parameters)
Complexity is also a crucial characteristic of a model and here is a histogram comparing the
number of parameters of each model:

(6.2 TL complexity histogram)
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Among these models, MobileNet has the fewest number of parameters with 2,266,951,
making it a relatively lightweight model. On the other hand, ResNet has the highest number
of parameters with 25,693,063, indicating a more complex and higher-capacity model.
InceptionV3 and VGG16 have intermediate numbers of parameters, with 23,908,135 and
15,247,175, respectively. DenseNet falls between the extremes with 8,094,279 parameters.

MobileNet stands out as a lightweight option suitable for scenarios with limited computational
resources or when faster inference speed is desired. On the other hand, ResNet and VGG16
offer a higher capacity model with more parameters, making it more suitable for tasks that
require capturing complex patterns. InceptionV3, and DenseNet fall within the moderate
range of parameter numbers, providing a balance between capacity and efficiency.

Model performance (accuracy and loss)
Finally we must compare the accuracy and loss of the models since its the most relevant
aspect of a model.
The accuracy and loss results of the 5 transfer learning models, MobileNet, InceptionV3,
VGG16, ResNet, and DenseNet, are as follows:

1. MobileNet:
● Validation Loss: 1.5182
● Validation Accuracy: 0.4232

2. InceptionV3:
● Validation Loss: 1.4381
● Validation Accuracy: 0.4409

3. VGG16:
● Validation Loss: 1.6179
● Validation Accuracy: 0.3566

4. ResNet:
● Validation Loss: 1.7853
● Validation Accuracy: 0.2618

5. DenseNet:
● Validation Loss: 1.3716
● Validation Accuracy: 0.4719
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(6.3 TL accuracy per epoch graph)

(6.4 TL loss per epoch graph)

Comparative Analysis
1. Validation Loss:

● The model with the lowest validation loss is DenseNet, with a value of 1.3716.
● InceptionV3 has the second-lowest validation loss, followed by MobileNet,

VGG16, and ResNet, in that order.
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● This indicates that DenseNet is able to minimize the error between the
predicted and actual values more effectively than the other models.

2. Validation Accuracy:
● DenseNet achieves the highest validation accuracy among the models, with a

value of 0.4719.
● InceptionV3 has the second-highest validation accuracy, followed by

MobileNet, VGG16, and ResNet, in that order.
● DenseNet's higher accuracy suggests that it performs better in correctly

classifying the images compared to the other models.

Overall, DenseNet stands out as the top-performing model based on both validation loss and
accuracy. It demonstrates superior performance in minimizing error and achieving higher
accuracy, making it a favorable choice for image classification tasks compared to MobileNet,
InceptionV3, VGG16, and ResNet.

6.2.5 Decision
The model we will use for fine tuning will be DenseNet.

DenseNet is a suitable choice for transfer learning based on the following factors: accuracy,
loss, number of parameters, and similar execution time.

1. Accuracy and Loss: After 5 epochs, DenseNet demonstrates competitive accuracy
and loss values compared to other models. Its loss value of 1.3716 and validation
accuracy of 0.4719 indicate effective learning and generalization capabilities, which
are crucial for transfer learning tasks.

2. Number of Parameters: DenseNet exhibits a very large number of parameters,
enabling it to capture intricate features and learn complex representations. This
abundance of parameters contributes to its strong performance in recognizing
patterns and extracting high-level information from the input data.

3. Execution Time: Although DenseNet has a larger number of parameters, it offers a
similar execution time compared to other models. This implies that the additional
computational complexity introduced by the increased parameters does not
significantly impact the overall runtime. Therefore, the model's efficiency remains
comparable to other transfer learning options.

Considering the combination of competitive accuracy and loss metrics, a high number of
parameters for comprehensive feature learning, and similar execution time, DenseNet
emerges as a favorable choice for transfer learning. Its capacity to extract detailed and
informative representations can lead to improved performance across various tasks, making
it a valuable asset in leveraging pre-trained models for new datasets or domains.
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6.3 Fine tuning

6.3.1 FT Model architecture
The base architecture of our model is built upon the transfer learning approach using
DenseNet, as explained in section 6.2.2. However, we need to decide how many layers of
DenseNet to retrain for our specific task.
To make this decision, we conducted three experiments. In each experiment, we trained
DenseNet for 5 epochs with a different percentage of layers unfrozen. Specifically, we
unfroze 1% of the layers in the first experiment, 5% of the layers in the second experiment,
and finally, 10% of the layers in the third experiment.
Considering that the DenseNet model consists of 427 layers, these percentages correspond
to unfreezing 4 layers, 21 layers, and 42 layers, respectively. By varying the number of
unfrozen layers, we aim to explore the impact of different levels of fine-tuning on our model's
performance.

Fine tuning with 1% unfreeze

The training results indicate a gradual decrease in the training loss over the course of the
five epochs, which is a positive trend. However, it is important to note that the validation loss
exhibits fluctuations, suggesting potential overfitting of the model. The validation loss
reaches its lowest point in the fourth epoch, indicating the best generalization performance.
The test results reveal a test loss of 1.4577 and a test accuracy of 44.71%. This relatively
high loss value and lower accuracy further emphasize the need for improvements in the
model's ability to generalize to unseen data.

(6.5 FT accuracy and loss per epoch graphs 1% unfreeze)

Fine tuning with 5% unfreeze

In this case, the training results demonstrate a consistent improvement in training accuracy
over the five epochs. The model shows a gradual decrease in training loss, indicating
effective learning during the training process.
In terms of validation, the results show fluctuations in the validation loss throughout the
epochs, suggesting potential overfitting. The lowest validation loss is achieved in the fifth
epoch, indicating the best generalization performance. Additionally, the validation accuracy
shows a steady increase over the epochs, reaching around 49.60% in the final epoch.
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The test results reveal a test loss of 1.3151 and a test accuracy of 49.60%. These values
indicate a better performance than the first test and suggest that the model can generalize
better to unseen data.

(6.6 FT accuracy and loss per epoch graphs 5% unfreeze)

Fine tuning with 10% unfreeze

Unfreezing 10% of the layers also shows a consistent improvement in training accuracy over
the five epochs. The model demonstrates a gradual decrease in training loss, suggesting
effective learning during the training process as well as in the 5% training test.
Regarding the validation metrics, the validation loss fluctuates throughout the epochs,
indicating possible overfitting. The lowest validation loss is achieved in the first epoch,
suggesting better generalization performance at the beginning. However, the subsequent
epochs show slightly higher validation losses, indicating a potential lack of improvement in
generalization.
On the other hand, the validation accuracy shows a gradual increase over the epochs,
reaching around 49.25% in the final epoch. This improvement suggests that the model is
learning to classify the validation data more accurately over time.
In terms of the test results, the model achieves a test loss of 1.3307 and a test accuracy of
49.25%. These values indicate a reasonable level of performance, demonstrating that the
model can generalize reasonably well to unseen data.

(6.7 FT accuracy and loss per epoch graphs 10% unfreeze)
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Decision over the number of unfrozen layers
Since the 5% of unfrozen layers has reached the highest accuracy and lowest loss we will
perform fine tuning with this model. Beyond 5%, increasing the number of unfrozen layers
does not seem to significantly improve the model’s performance.

6.3.2 FT Additional Training and Results
The training process involved loading a pre-trained DenseNet model, which was previously
saved as 'model_densenet_0.05.h5' corresponding to the model saved during the 5%
unfrozen training test.
The model was then compiled using the Adam optimizer and the categorical cross-entropy
loss function. The optimizer helps adjust the model's weights during training, while the loss
function measures the discrepancy between the predicted and actual labels.
To train the model, it was fit to the training data for an additional five epochs using the fit
function.
After completing the additional training for five epochs, the trained model was saved as
'model_densenet_0.05_trained5+5.h5'. This allowed preserving the updated model for future
use or evaluation.

(6.8 FT accuracy and loss per epoch graphs additional 5 epoch )

The plots above show the progress of the model's performance over the additional epochs,
from epoch 6 to epoch 10 of training:

● Validation Loss: The validation loss is the error on a separate validation dataset that
helps evaluate the model's generalization. The validation loss fluctuates slightly
throughout the training, ranging from 1.2633 to 1.2782. These variations indicate that
the model's performance on unseen data may not be consistent.

● Validation Accuracy: The validation accuracy measures the model's performance on
the validation dataset. It shows a modest increase from 0.5171 in the first epoch to
0.5203 in the fifth epoch. This suggests that the model is generalizing its learned
patterns to some extent, although there is room for improvement.

In this case, we can observe a gradual decrease in loss and a slight improvement in
accuracy over the course of the additional 5 epochs. However, the accuracy values achieved
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are relatively moderate, indicating that the model may be reaching a plateau and will be
difficult for it to achieve higher performance without architectural adjustments.

Confusion Matrix Explanation
The confusion matrix represents the performance of a classification model by comparing the
predicted labels with the true labels across different emotions. Here is an analysis of the
confusion matrix:

● The matrix is a 7x7 grid, where each row corresponds to the true labels and each
column corresponds to the predicted labels for the emotions.

● The emotions included in the matrix are 'Angry', 'Disgust', 'Fear', 'Happy', 'Neutral',
'Sad', and 'Surprise'.

● The values within the matrix represent the counts of instances where a certain
emotion was predicted (column) given the true emotion (row). Each cell contains a
count value.

● The diagonal cells from the top left to the bottom right represent the correctly
predicted emotions, where the predicted label matches the true label.

● The off-diagonal cells represent instances of misclassification, where the predicted
label differs from the true label.

(6.9 FT confusion matrix)
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Interpretation of the Confusion Matrix:

Analyzing the performance of the fine tuning model on each emotion individually we can
extract the following observations:

● 'Angry': In the first row, we can observe that the emotion 'Angry' has been
misclassified as 'Disgust' in 9 instances, 'Fear' in 133 instances, 'Happy' in 241
instances, 'Neutral' in 152 instances, 'Sad' in 266 instances, and 'Surprise' in 92
instances. This indicates that the model has difficulty distinguishing between 'Angry'
and these other emotions, leading to misclassifications.

● 'Disgust': In the second row, we see that the emotion 'Disgust' has been misclassified
as 'Angry' in 8 instances, 'Fear' in 19 instances, 'Happy' in 26 instances, 'Neutral' in
21 instances, 'Sad' in 25 instances, and 'Surprise' in 10 instances. This suggests that
the model struggles to accurately differentiate 'Disgust' from these other emotions.

● 'Fear': Looking at the third row, we observe misclassifications of the emotion 'Fear' as
'Angry' in 49 instances, 'Disgust' in 4 instances, 'Happy' in 146 instances, 'Neutral' in
266 instances, 'Sad' in 149 instances, and 'Surprise' in 94 instances. This indicates
challenges in distinguishing 'Fear' from these specific emotions.

● 'Happy': In the fourth row, we can see that 'Happy' has been misclassified as 'Angry'
in 107 instances, 'Disgust' in 11 instances, 'Fear' in 239 instances, 'Neutral' in 426
instances, 'Sad' in 293 instances, and 'Surprise' in 190 instances. This suggests that
the model struggles to accurately identify 'Happy' and often confuses it with these
other emotions.

● 'Neutral': Examining the fifth row, we observe misclassifications of the emotion
'Neutral' as 'Angry' in 84 instances, 'Disgust' in 8 instances, 'Fear' in 152 instances,
'Happy' in 298 instances, 'Sad' in 175 instances, and 'Surprise' in 392 instances. This
indicates difficulty in distinguishing 'Neutral' from these specific emotions.

● 'Sad': Looking at the sixth row, we can see misclassifications of 'Sad' as 'Angry' in 76
instances, 'Disgust' in 8 instances, 'Fear' in 172 instances, 'Happy' in 281 instances,
'Neutral' in 215 instances, and 'Surprise' in 373 instances. This suggests challenges
in accurately identifying 'Sad' and distinguishing it from these other emotions.

● 'Surprise': In the last row, we observe misclassifications of 'Surprise' as 'Angry' in 46
instances, 'Disgust' in 4 instances, 'Fear' in 98 instances, 'Happy' in 204 instances,
'Neutral' in 136 instances, and 'Sad' in 244 instances. This indicates difficulty in
correctly classifying 'Surprise' and differentiating it from these specific emotions.

The confusion matrix analysis reveals challenges in accurately classifying and differentiating
certain emotions. The model struggles with misclassifications, particularly for 'Angry' and
'Disgust'. With 'Fear' and 'Surprise' there is also an important rate of misrepresented images.
There is a notable bias in classifying images in either 'Happy', 'Neutral' or 'Sad'.
Nevertheless, there is also a substantial amount of misclassification among these three
categories.
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7. CNN

7.1 Architecture of the model

7.1.1 Convolutional Layers
Convolutional layers are fundamental building blocks in convolutional neural networks
(CNNs). They are designed to capture local patterns and spatial dependencies in the input
data. Each convolutional layer applies a set of learnable filters to the input data and performs
a convolution operation, resulting in a feature map that represents the presence of certain
features or patterns.

The architecture of the convolutional layers described in the model aims to progressively
extract hierarchical representations of the input images. Here's a justification for the chosen
architecture:

1. Increasing complexity and abstraction: The model starts with a relatively simple
convolutional layer with 256 filters, followed by a more complex layer with 512 filters.
This progression allows the network to capture both low-level and high-level features
in the images.

2. Regularization and control over model complexity: Batch normalization is applied
after each convolutional layer. It normalizes the activations within each batch, helping
to stabilize the learning process and reduce the impact of covariate shift. This
regularization technique improves the model's generalization ability and prevents
overfitting.

3. Downsampling and spatial information reduction: Max-pooling is performed after
every two convolutional layers. It reduces the spatial dimensions of the feature maps,
providing a form of translation invariance and enabling the network to focus on the
most relevant features while discarding less informative spatial information.

4. Dropout for regularization: Dropout is applied after each max-pooling layer. It
randomly deactivates a fraction of the neurons, forcing the network to learn
redundant representations and reducing the risk of overfitting.

The chosen architecture strikes a balance between capturing complex features and
preventing overfitting. It allows the model to learn hierarchical representations by
progressively combining local patterns into higher-level abstractions while incorporating
regularization techniques to enhance generalization.

Here is a description of the convolutional layers used in the model, referencing the
corresponding code:

1. Convolutional Layer 1:
● Number of filters: 256
● Kernel size: 3x3
● Activation function: ReLU
● Padding: 'same'
● Additional operation: Batch normalization (BatchNormalization())

2. Convolutional Layer 2:
● Number of filters: 512
● Kernel size: 3x3
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● Activation function: ReLU
● Padding: 'same'
● Additional operation: Batch normalization (BatchNormalization())

3. Convolutional Layer 3:
● Number of filters: 256
● Kernel size: 3x3
● Activation function: ReLU
● Padding: 'same'
● Additional operation: Batch normalization (BatchNormalization())

4. Convolutional Layer 4:
● Number of filters: 128
● Kernel size: 3x3
● Activation function: ReLU
● Padding: 'same'
● Additional operation: Batch normalization (BatchNormalization())

7.1.2 Pooling Layers
Pooling layers are used in convolutional neural networks (CNNs) to downsample the feature
maps and reduce the spatial dimensions. In the described model, MaxPooling layers are
utilized. Here are the details of the pooling layers:

1. MaxPooling Layer 1:
● Pool size: (2, 2)
● Purpose: This layer performs max pooling with a 2x2 pool size. It divides the

input feature map into non-overlapping regions of size 2x2 and outputs the
maximum value within each region. The pool size of (2, 2) effectively reduces
the spatial dimensions by half.

2. MaxPooling Layer 2:
● Pool size: (2, 2)
● Purpose: This layer again performs max pooling with a 2x2 pool size. It

further reduces the spatial dimensions by half from the previous layer's
output.

3. MaxPooling Layer 3:
● Pool size: (2, 2)
● Purpose: Similar to the previous pooling layers, this layer applies max pooling

with a 2x2 pool size. It continues to downsample the feature maps and reduce
the spatial dimensions.

The pooling layers help in reducing the spatial resolution of the feature maps while
preserving the most salient features. By downsampling, the pooling layers provide
translational invariance and improve the model's robustness to slight spatial variations in the
input. The choice of a pool size of (2, 2) allows for a gradual reduction in the spatial
dimensions, enabling the model to capture and retain important spatial information while
discarding redundant details.
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7.1.3 Flattening
The flattening layer plays a crucial role in the architecture of the model. It is positioned after
the pooling layers and before the fully connected layers. The purpose of the flattening layer
is to reshape the multidimensional feature maps obtained from the convolutional and pooling
layers into a one-dimensional vector.
Convolutional and pooling operations result in feature maps that have a spatially structured
representation. However, the fully connected layers require a flattened input format. The
flattening layer addresses this requirement by converting the spatially structured features
into a format suitable for traditional neural network architectures.
By applying the flattening layer, the model can effectively transition from extracting local
features in the earlier layers to learning global patterns and making predictions in the
subsequent fully connected layers. The flattening layer eliminates the spatial information
present in the feature maps and transforms it into a one-dimensional vector, preserving the
information from each location.
In the provided model architecture, the flattening layer is implemented with the following line
of code: model.add(Flatten()). This step ensures that the output of the preceding layers,
consisting of feature maps with spatial dimensions, is reshaped into a one-dimensional
vector. The flattened vector serves as the input to the fully connected layers, enabling them
to learn meaningful patterns and relationships.
Including the flattening layer in the model architecture facilitates the extraction of high-level
features and enables the model to capture complex patterns across the entire input image.

7.1.4 Fully Connected Layers (Dense)
Fully connected layers, also known as dense layers, are the final layers in a CNN that take
the flattened feature maps from the preceding convolutional and pooling layers and perform
classification or regression tasks. In the described model, there are two fully connected
layers. Here are the details:

1. Dense Layer 1:
● Number of neurons: 256
● Activation function: ReLU (Rectified Linear Unit)
● Additional layers/operations: Batch Normalization, Dropout (0.25)

2. This dense layer consists of 256 neurons with the ReLU activation function. ReLU is
commonly used in deep learning models to introduce non-linearity and enable the
model to learn complex patterns. Batch normalization is applied to normalize the
outputs of the previous layer, making the model more stable and improving its
generalization. Dropout with a rate of 0.25 is used as a regularization technique to
randomly deactivate 25% of the neurons during training, preventing overfitting and
promoting better generalization.

3. Dense Layer 2:
● Number of neurons: 7
● Activation function: Softmax

4. The second and final dense layer has 7 neurons, corresponding to the 7 emotion
classes. The softmax activation function is used to obtain probabilities for each class,
indicating the model's confidence in predicting each emotion. Softmax ensures that
the sum of the probabilities across all classes is 1, making it suitable for multi-class
classification problems.
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The fully connected layers contribute to the model's ability to learn complex representations
by combining the extracted features from the earlier layers. The use of ReLU activation
promotes non-linearity, enabling the model to capture intricate relationships between the
features. Batch normalization enhances the stability of the model during training, and
dropout aids in preventing overfitting. Finally, the softmax activation function provides
probability-based outputs for multi-class classification.

7.1.5 Output Layer
The output layer of the model is the final layer responsible for generating the predictions. In
this case, the model is designed to classify emotions, and therefore, the output layer is
configured accordingly. Here are the details:
Output Layer:

● Number of output units: 7
● Activation function: Softmax

The output layer consists of 7 output units, which correspond to the 7 different emotions the
model aims to classify. Each output unit represents the probability of the input image
belonging to a specific emotion class. The activation function used in the output layer is
softmax, which ensures that the predicted probabilities sum up to 1 and allows for multi-class
classification.
The number of output units matches the number of emotion classes, which are:

1. Angry
2. Disgust
3. Fear
4. Happy
5. Neutral
6. Sad
7. Surprise

By using the softmax activation function, the output layer provides a probability distribution
across these 7 emotions, indicating the model's confidence in its predictions. The highest
probability among the output units represents the predicted emotion for a given input image.

7.1.6 Summary
The architecture of the model consists of convolutional layers, pooling layers, a flattening
layer, fully connected layers, and an output layer. These components are interconnected to
form a deep convolutional neural network designed for emotion recognition.

The convolutional layers are responsible for capturing local patterns and features from the
input images. In this model, multiple convolutional layers with varying numbers of filters,
kernel sizes, and activation functions are applied. Batch normalization is employed after
each convolutional layer to improve the stability and speed of training. Dropout layers are
also inserted to prevent overfitting by randomly dropping a fraction of the inputs.

Pooling layers follow the convolutional layers to downsample the feature maps and extract
the most important information. Max pooling is utilized with a pool size of (2, 2) to retain the
most dominant features while reducing the spatial dimensions.
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The flattening layer is introduced to convert the multidimensional feature maps obtained from
the convolutional and pooling layers into a one-dimensional vector. It prepares the data for
the subsequent fully connected layers by eliminating the spatial structure and providing a
flattened representation.

The fully connected layers follow the flattening layer to learn global patterns and make
predictions. These layers consist of densely connected neurons with activation functions,
allowing the model to capture complex relationships between the extracted features. Batch
normalization and dropout are also applied to enhance the model's generalization and
prevent overfitting.

Finally, the output layer consists of seven neurons, representing the seven emotion classes:
Angry, Disgust, Fear, Happy, Neutral, Sad, and Surprise. The softmax activation function is
used to produce probability distributions over these classes, indicating the model's
confidence in each emotion category.

Throughout the model's construction, considerations were given to strike a balance between
model complexity and generalization. The number of layers, filters, kernel sizes, and other
hyperparameters were selected based on empirical evaluation and commonly accepted
practices in the field of computer vision. Regularization techniques such as batch
normalization and dropout were employed to improve the model's performance and prevent
overfitting.

7.2 Hyperparameters

7.2.1 Batch size
Overview
The batch size is a hyperparameter that determines the number of images processed in
each training step. It has an impact on both memory consumption and training speed. A
larger batch size allows for more parallelism but requires more memory, while a smaller
batch size consumes less memory but may result in slower convergence.
In this model, a batch size of 32 was chosen.

Justification
This value was selected after conducting research on multiple works that utilized the same
dataset, such as the kaggle repositories mentioned in the subsection References 7.
In these works, a batch size of 64 was commonly used. However, for the purpose of this
thesis, a batch size of 32 was chosen due to the limited computational resources available.
This batch size allows for efficient memory utilization and faster training times while still
providing satisfactory performance. The selection of 32 as the batch size was made to strike
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a balance between computational efficiency and model effectiveness, given the specific
constraints of this study.
The chosen batch size strikes a balance between efficient memory usage and reasonable
training speed. It enables the model to process a sufficient number of images in each
iteration, allowing for effective gradient estimation and parameter updates.
Furthermore, it's worth noting that the batch size may have implications for generalization. A
larger batch size can provide a more stable estimate of the gradient but may also reduce the
diversity of samples within each batch. Conversely, a smaller batch size introduces more
variability but can result in noisier gradient estimates. The chosen batch size in this model
aims to find a suitable compromise between stability and diversity to facilitate effective
training and generalization.

7.2.2 Dropout rate and regularization
Overview
The dropout rate is a regularization technique used in neural networks to prevent overfitting.
It involves randomly dropping out a fraction of the neurons during training, forcing the
remaining neurons to learn more robust and independent representations of the data. By
doing so, dropout helps to reduce the reliance of the model on specific neurons and
encourages the learning of more generalized features.

Justification
In this model, a dropout rate of 0.4 was chosen based on insights from prior research on
similar studies using the dataset. Several experiments have been conducted with different
combinations of dropout layers and L2 regularization (a type of weight regularization that
adds a penalty term to the loss function), but it was decided to use a high dropout rate to
simplify the model and expedite the convergence during training.
Specifically, previous works utilizing the same dataset, commonly adopted dropout rates
ranging from 0.25 to 0.4. These studies demonstrated that employing dropout within this
range effectively mitigates overfitting and enhances the model's generalization ability.
While the combination of dropout and L2 regularization can provide further regularization
benefits, it was opted to solely focus on a higher dropout rate for the sake of simplicity and
faster convergence during training. This decision allowed the model to learn more quickly
while still benefiting from the regularization effect of dropout.

7.2.3 Learning rate
Overview
The learning rate is a hyperparameter that determines the step size at which the model
adjusts its weights during training. It plays a crucial role in the optimization process, as a
suitable learning rate can help the model converge faster and reach better performance,
while an inappropriate learning rate can hinder or even prevent convergence.

Justification
In this model, an initial learning rate of 0.001 was chosen based on empirical observations
and best practices in the field. This value is commonly used as a starting point for many
convolutional neural network (CNN) architectures.
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Previous learning rate tunning
During earlier stages before finalizing the model, several implementations have been tested
that also aim to optimize the learning rate during training.

lr_scheduler:
The lr_scheduler is a built-in callback provided by Keras. It allows for dynamic learning rate
scheduling based on epoch number. You can define a schedule that specifies how the
learning rate should change over time. For example, you can set a higher learning rate
initially for faster convergence and then gradually decrease it as training progresses. This
type of scheduling can be useful when dealing with complex optimization landscapes or
large datasets.

ReduceLROnPlateau:
The ReduceLROnPlateau callback in Keras automatically reduces the learning rate when a
plateau in the validation loss or metric is detected. It monitors a specified metric, such as
validation loss, and reduces the learning rate if no improvement is observed for a certain
number of epochs. This technique is beneficial when training reaches a point of stagnation,
and further adjustments in the learning rate may help the model escape from local minima or
plateaus.

Superconvegence:
Superconvergence is a training technique that aims to accelerate the convergence of deep
neural networks. It involves using high learning rates combined with cyclic learning rate
schedules to achieve faster training and improved model performance. By starting with a
high learning rate and gradually reducing it during training, the model can quickly explore the
loss landscape and find a good solution. Cyclic learning rate schedules oscillate the learning
rate between high and low values, allowing the model to effectively explore different regions
of the loss landscape. Superconvergence offers benefits such as faster convergence,
improved training stability, and the potential to achieve state-of-the-art results with fewer
training epochs. However, its effectiveness may vary depending on the specific architecture
and dataset, requiring careful experimentation and fine-tuning for optimal results.

The lr_scheduler was discarded as an option because it was desired a less arbitrary
approach to decrease the learning rate. Although ReduceLROnPlateau showed significant
improvements in the training process, it occasionally exhibited delays in adjusting the
learning rate, potentially impacting training efficiency. Furthermore, Superconvergence, while
a promising technique, was not pursued due to its complexity and the limited time available
to thoroughly explore its implementation and potential benefits.

CustomScheduler class
To further optimize the learning rate during training, a custom learning rate scheduler has
been implemented. The scheduler, defined as the CustomScheduler class, dynamically
adjusts the learning rate based on the validation accuracy over a certain number of epochs.
The key features of the CustomScheduler are as follows:

1. Initialization: The scheduler is initialized with three parameters: factor, patience, and
min_lr. The factor determines the reduction factor applied to the learning rate, the
patience specifies the number of epochs with no improvement in validation accuracy
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before reducing the learning rate, and min_lr defines the minimum allowed learning
rate.

2. Tracking Best Accuracy: The best_acc attribute keeps track of the highest validation
accuracy observed during training, initially set to 0.

3. Monitoring Epochs: At the end of each epoch, the on_epoch_end method is called. It
checks the validation accuracy against best_acc and updates the wait counter
accordingly. If the accuracy improves, best_acc is updated, and wait is reset to 0.
Otherwise, wait is incremented by 1.

4. Reducing Learning Rate: If wait reaches or exceeds the specified patience value, it
indicates a lack of improvement in validation accuracy. In such cases, the learning
rate is reduced by multiplying it with the factor. The updated learning rate is then
applied to the optimizer of the model.

The purpose of the CustomScheduler is to dynamically adjust the learning rate during
training. By monitoring the validation accuracy, it determines whether there is a plateau or
decline in model performance. If no improvement is observed for a certain number of epochs
(patience), the learning rate is reduced to potentially help the model overcome stagnation
and find a better region of optimization. This dynamic learning rate adjustment can lead to
faster convergence and improved overall performance of the model.

7.2.4 Number of epochs
Overview
The number of epochs refers to the total number of times the model iterates over the entire
training dataset during the training process. It is an essential hyperparameter that
determines how long the model trains and influences its ability to capture patterns and
generalize well to unseen data. Setting the appropriate number of epochs is crucial to
prevent underfitting or overfitting.

Justification
During the development of the CNN model, multiple experiments were conducted, which can
be categorized into two types based on the number of epochs used for training: short tests of
15 to 30 epochs and long tests of 75 to 100 epochs. The tests were not extended beyond
100 epochs due to the time it took to train the model and limitations in GPU usage on
Google Colab.
Initially, this model was trained for 25 epochs, and upon observing its good performance, it
was saved along with its training history. The original plan was to train the model in multiple
fitting sessions using the .fit() function with 30 epochs each. However, the model barely
increased accuracy in the first fitting session itself so no further 30 epoch fittings were
executed.
In conclusion the model has been trained for a total of 55 epochs. This number of epochs
allowed the model to capture the underlying patterns in the data while considering the
constraints of training time and GPU availability.

EarlyStopping
EarlyStopping is a useful callback in deep learning models that helps prevent overfitting and
determine the optimal stopping point during training. It monitors a specified metric, such as
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validation loss or accuracy, and halts the training process if there is no improvement in the
monitored metric for a defined number of epochs.
Although it was not necessary during the training of the final model, EarlyStopping has been
a highly useful callback in the training of predecessor models. It has played a crucial role in
preventing overfitting and saving time by automatically stopping training when it reaches a
point of diminishing returns. By utilizing EarlyStopping, we were able to avoid prolonged
training with an excessive number of epochs, which can lead to overfitting and wasted
computational resources. This callback has been instrumental in optimizing the training
process, ensuring efficient use of time and resources while maintaining good generalization
performance in the models prior to the final version.

7.3 Training process

7.3.1 Loss function
The loss function used in the training process was categorical_crossentropy. This loss
function is commonly used for multi-class classification problems, where each input can
belong to one of several classes. The categorical_crossentropy loss measures the
dissimilarity between the predicted probability distribution and the true distribution of the
target classes.
By specifying loss='categorical_crossentropy' in the model.compile() function, the model was
optimized to minimize this loss during training. The goal was to train the model to accurately
predict the correct class label for each input image.
During training, the model's performance was evaluated based on both the loss value and
the accuracy metric. The accuracy metric indicates the percentage of correctly predicted
labels compared to the total number of samples. By monitoring the loss and accuracy
metrics, we could assess the model's progress and make adjustments if necessary.
The use of categorical_crossentropy as the loss function was suitable for the multi-class
emotion recognition task, where the model needed to classify each input image into one of
the different emotional categories.

7.3.2 Optimizer
The optimizer used in the training process was Adam. Adam stands for Adaptive Moment
Estimation and is a popular optimization algorithm commonly used in deep learning models.
It combines the benefits of two other optimization techniques, namely AdaGrad and
RMSprop, to achieve efficient weight updates during training.
By specifying optimizer='adam' in the model.compile() function, the model utilized the Adam
optimizer to adjust the weights and biases of the neural network during training. The Adam
optimizer adapts the learning rate for each weight parameter individually, based on the
estimates of both the first and second moments of the gradients. This adaptive learning rate
allows the optimizer to converge faster and more efficiently.
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The choice of Adam as the optimizer was based on its strong performance in a variety of
deep learning tasks and its ability to handle large-scale datasets. It helped in accelerating
the training process and finding optimal weight configurations for the model.

7.4 Results

7.4.1 Model Accuracy
The accuracy achieved by the model on the test/validation set is a crucial metric for
assessing its performance. It measures the proportion of correctly classified samples out of
the total number of samples. In this case, after training the model for 55 epochs, the final
accuracy on the validation set was 0.6323, indicating that approximately 63.23% of the
samples were correctly classified.
This accuracy score provides valuable insights into the model's ability to generalize and
make accurate predictions on unseen data. A higher accuracy indicates that the model has
learned meaningful patterns and features from the training data, enabling it to correctly
classify emotions in the validation set. It is important to note that the accuracy achieved may
vary depending on factors such as the complexity of the dataset and the model architecture.
Evaluating the model's accuracy is essential for determining its suitability for practical
applications. The achieved accuracy of 0.6323 suggests that the model has learned to
recognize emotions with a moderate level of success. Further analysis of the confusion
matrix and learning curves will provide a more comprehensive understanding of the model's
performance and potential areas for improvement.

7.4.2 Confusion Matrix
The confusion matrix provides valuable insights into the distribution of predictions across
each class, allowing us to analyze the model's performance on individual emotion
categories. The matrix is generated based on the model's predictions and the true labels of
the validation or test set. In this case, the confusion matrix is as follows:
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(7.1 CNN confusion matrix)

The confusion matrix is visualized using a heatmap, where each cell represents the number
of samples predicted for a particular emotion category (columns) compared to the true labels
(rows). The numbers in each cell indicate the count of samples falling into that category.
The diagonal elements represent the number of correctly classified samples for each
emotion category. For example, the model correctly predicted 130 Angry samples, 0 Disgust
samples, 49 Fear samples, 429 Happy samples, 336 Neutral samples, 204 Sad samples,
and 106 Surprise samples.
Off-diagonal elements indicate misclassifications. For instance, the model misclassified
some samples of Angry as Fear, Happy, Neutral, Sad, or Surprise, and misclassified some
samples of Fear as Angry, Happy, Neutral, Sad, or Surprise.
Analyzing the confusion matrix, we can observe the following:

1. Emotion "Angry": The model correctly classified 130 Angry samples. However, it
misclassified some Angry samples as Fear, Happy, Neutral, Sad, or Surprise. This
suggests that the model might struggle to distinguish Angry from other emotions.

2. Emotion "Disgust": The model did not correctly classify any Disgust samples. This
indicates that the model may face challenges in accurately recognizing the Disgust
emotion.
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3. Emotion "Fear": The model correctly predicted 49 Fear samples. However, it also
misclassified some Fear samples as Angry, Happy, Neutral, Sad, or Surprise. This
suggests that the model might have difficulty differentiating Fear from other emotions.

4. Emotion "Happy": The model performed well in classifying Happy samples, with 429
samples correctly predicted. Nevertheless, there were misclassifications where
Happy samples were labeled as Angry, Fear, Neutral, Sad, or Surprise.

5. Emotion "Neutral": The model achieved a relatively high accuracy in recognizing
Neutral samples, correctly predicting 336 samples. However, misclassifications
occurred, with some Neutral samples being classified as Angry, Fear, Happy, Sad, or
Surprise.

6. Emotion "Sad": The model accurately classified 204 Sad samples. Nonetheless, it
also misclassified some Sad samples as Angry, Fear, Happy, Neutral, or Surprise.

7. Emotion "Surprise": The model achieved a reasonable performance in recognizing
Surprise samples, correctly predicting 106 samples. However, there were
misclassifications, with some Surprise samples being labeled as Angry, Fear, Happy,
Neutral, or Sad.

7.4.3 Learning Curves
During the training process of the CNN model, we saved the loss and accuracy history for
analysis. Plotting the learning curves provides visual insights into the model's progress over
epochs. Here, we present four sets of learning curves: the first two correspond to the epochs
from 1 to 25, and the latter two represent the epochs from 26 to 55.

Loss Function (Epochs 1-25):

(7.2 CNN loss function per epoch 1-25 graph)
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Analyzing the evolution of the loss function throughout the 25 epochs, we can observe the
following patterns:

● During the initial epochs (1-5), there is a noticeable decrease in the loss function.
The model starts to learn and adjust its weights to minimize the discrepancy between
predicted and actual values. This indicates that the model is gradually improving its
performance.

● From epochs 6 to 10, the loss continues to decrease, albeit at a slightly slower pace.
The model is further refining its predictions and reducing the overall error.

● In epochs 11 to 15, the rate of improvement in the loss function slows down even
more. The model's learning process has reached a point where the loss reduction
becomes more challenging.

● From epochs 16 to 20, there is a relatively stable trend in the loss function, indicating
that the model is converging. The loss function reaches a plateau, suggesting that
the model has learned most of the information from the training data.

● In the final epochs (21-25), the loss function experiences minor fluctuations but
maintains a relatively constant value. The model has likely reached its optimal
performance, as further training does not significantly impact the loss.

Overall, the analysis of the loss function shows that the model initially improves rapidly, then
gradually converges to a stable state.

Accuracy (Epochs 1-25):

(7.3 CNN accuracy per epoch 1-25 graph)
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Analyzing the evolution of the accuracy metric throughout the 25 epochs, we can observe
the following patterns:

● In the initial epochs (1-5), the accuracy of the model shows a significant increase.
This indicates that the model is successfully learning and making more accurate
predictions on the training data.

● From epochs 6 to 10, the accuracy continues to improve, although at a slower rate
compared to the initial epochs. The model is refining its predictions and becoming
more adept at classifying the emotions in the training dataset.

● In epochs 11 to 15, the rate of improvement in accuracy slows down further. The
model has already captured a substantial amount of information from the training
data, and the accuracy gains become less significant.

● From epochs 16 to 20, the accuracy reaches a relatively stable state, with minor
fluctuations. The model's performance has converged, and the accuracy remains
consistent.

● In the final epochs (21-25), the accuracy metric shows slight variations, but it remains
relatively constant. The model has likely reached its optimal performance, and
additional training does not significantly improve the accuracy.

Overall, the analysis of the accuracy metric demonstrates the model's ability to classify
emotions correctly. The accuracy initially improves rapidly, then gradually converges to a
stable value.

Loss Function (Epochs 26-55):

(7.4 CNN loss function per epoch 26-55 graph)
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Analyzing the loss function in the second phase of the training (26 to 55 epochs):
● In the early epochs, the loss gradually decreases, albeit with significant fluctuations.
● Starting from epoch 5 (30), the loss shows a slower decreasing trend, with noticeable

fluctuations in each epoch.
● Between epochs 15 and 20 (40 and 45), there is a tendency for the loss to stabilize,

with values that are close to each other and without a clear decrease.
● Overall, the loss function remains around 1.1 values throughout the epochs, without

improving significantly.
● There is no consistent and steep decrease in the loss throughout the epochs, which

may indicate that the model is struggling to efficiently adjust its parameters and
improve its performance.

In summary, this training shows a decrease in loss, but with fluctuations and a less rapid and
consistent decrease compared to the initial 25 epoch training. This suggests that the model
may be having difficulties in learning more complex patterns in the data and optimizing its
parameters further.

Accuracy (Epochs 26-55):

(7.5 CNN accuracy per epoch 25-55 graph)

Analyzing the accuracy evolution in the second phase of the training (26 to 55 epochs):
● In the initial epochs of the second phase, the accuracy gradually increases, but with

noticeable fluctuations.
● From epoch 5 (30) onwards, the accuracy shows a slower and less consistent

improvement, with fluctuations in each epoch.
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● Between epochs 15 and 20 (40 and 45), there is a tendency for the accuracy to
stabilize, with values that remain relatively close to each other without significant
improvement.

● Similar to the loss function, there is no significant and consistent improvement in the
accuracy throughout the epochs. This suggests that the model may struggle to learn
complex patterns and generalize well to unseen data.

When analyzing the accuracy in the second phase of the training we can observe that it has
not increased significantly.Similarly to the loss function analysis, this indicates that the
model's performance may have reached convergence or a plateau.
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8. Application of the Deep Learning Model

8.1 Introduction

8.1.1 Objective
The objective of this section is to compare the performance of three different emotion
detection methods on a set of images generated using the Cariyon application. The three
methods to be compared are the emotion detector from the FER library, our fine-tuned
model, and our CNN model. The aim is to evaluate and analyze the effectiveness of these
methods in predicting the emotions represented in the generated images.

8.1.2 Overview
This subsection provides an overview of the application of the three emotion detection
methods.

1. Image Generation: 21 were generated using the Cariyon application. Each emotion
category (happy, sad, angry, surprised, disgusted, fearful, and neutral) was
represented by three images, including an artistic image, a grayscale drawing, and a
photograph.

2. Face Detection: The face_recognition library was utilized to detect faces within the
generated images. This library employs advanced face detection algorithms to locate
facial regions accurately.

3. .Emotion Detection Methods:
● FER Library: The FER library's emotion detector was applied to the detected

faces in the images. This pre-trained model provides predictions for various
emotion categories based on facial expressions.

● Fine-Tuned Model: The fine-tuned model, based on a pre-trained architecture
DenseNet, was used to predict emotions. This model had undergone
additional training to improve its performance on emotion detection.

● CNN Model: A CNN model specifically designed for emotion detection was
employed. This model consists of convolutional and pooling layers to extract
features from input images and make emotion predictions.

4. Prediction Analysis: The predictions made by each emotion detection method were
compared for each image. The probabilities assigned to each emotion category were
examined to evaluate the performance of each method.

The tools used in this analysis included the Cariyon application for image generation, the
face_recognition library for face detection, and the specific implementations of the FER
library, the fine-tuned model, and the CNN model for emotion detection.
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8.2 Test Images Generation and Loading

8.2.1 Craiyon
Cariyon is an application that utilizes artificial intelligence (AI) to generate images based on
text input. In this section, we explain the concept of Cariyon and its usage in generating
images for our comparative analysis.
Cariyon employs advanced AI algorithms to transform textual descriptions into visual
representations. By providing specific instructions and descriptions, we can generate images
that reflect the desired content, style, and emotion. For our analysis, we utilized Cariyon to
generate images representing various emotions, including happiness, sadness, anger,
surprise, disgust, fear, and neutrality.
The process involved specifying the desired emotion and style for each image. Cariyon's AI
models then generated unique visual interpretations based on the given input. We ensured
that each emotion category was represented by three distinct image types: an artistic image,
a grayscale drawing, and a realistic photograph. This diverse range of image styles allows
for a comprehensive evaluation of the performance of the emotion detection methods.
The generated images served as the input for the subsequent steps of the analysis, enabling
us to assess the accuracy and effectiveness of the emotion detection methods. The
utilization of Cariyon facilitated the generation of a diverse and controlled set of images,
ensuring a consistent and standardized approach to evaluate the performance of the
emotion detection techniques.

8.2.2 Image Generation Criteria

In this section, we provide an overview of the criteria used to generate the 21 images for our
comparative analysis. We explain the considerations taken into account for selecting the
emotions, artistic style, grayscale, and photography representations.
To create the dataset for testing, we utilized the Cariyon application, which employs AI
algorithms to generate images based on text input. Other alternatives for generating the
images were considered such as Nightcafe and Starry IA
[https://www.makeuseof.com/ai-text-to-art-generators/] but Craiyon was chosen due to its
simple interface and usability.
For each emotion category, we specified the desired output format as follows:

1. Artistic Image: The text input for the application consisted of the emotion keyword
and a reference to a person's facial image expressing the emotion. For example, for
the emotion "happy," the input was "art -> [happy person facial image]."

2. Drawing: Similar to the artistic images, the text input included the emotion keyword
and a reference to a person's facial image expressing the emotion in grayscale. For
instance, for the emotion "sad," the input was "drawing -> [sad person facial image
(greyscale)]."

3. Photo: Again, the text input included the emotion keyword and a reference to a
person's facial image expressing the emotion. This time, the image was in a realistic
photograph format. For example, for the emotion "angry," the input was "photo ->
[angry person facial image]."
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(8.1 Craiyon interface image)

These criteria allowed us to create a diverse set of images representing each emotion in
different styles. The inclusion of artistic, grayscale, and photographic representations
enabled a comprehensive evaluation of the emotion detection methods' performance.

8.2.3 Image Generation Limitations

We encountered certain limitations and challenges during the image generation process. For
instance, when generating images for the "fear" emotion, we faced difficulties as the
generated images were not consistently aligned with the intended emotion. This required an
adjustment to the generation text from “fear” to “fearful” to ensure the images accurately
represented the intended emotional state.
Additionally, we observed biases in the generated images. The majority of the images
depicted females, while for the "angry" emotion, most of the generated images featured
males. We acknowledge these biases and their potential impact on the performance
evaluation of the emotion detection methods.
Despite these limitations and challenges, the generated dataset provides a valuable basis
for our comparative analysis of the emotion detection techniques. The careful consideration
of emotions, artistic style, grayscale, and photography representations ensures a
comprehensive evaluation and facilitates meaningful comparisons among the three
detectors.

8.2.4 Images Loading
The code starts by mounting Google Drive in the Colab environment using the
drive.mount('/content/drive') command. This allows access to the files and folders stored in
Google Drive.
Then, the required libraries are imported: cv2 for image processing, numpy for array
manipulation, and os for interacting with the operating system.
Next, the folder_path variable is set to the directory path where the images are located. This
path represents the location of the folder on Google Drive.
The emotions list is defined, which contains the names of the emotions corresponding to the
subfolders within the folder_path.
Empty lists images and labels are initialized to store the loaded images and their
corresponding labels, respectively.
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A loop is used to iterate over each emotion in the emotions list. Within each iteration, the
emotion_folder_path is constructed by joining the folder_path with the current emotion.
Inside the loop, the image_files variable is assigned the list of files present in the
emotion_folder_path. This represents the images corresponding to the current emotion.
Another loop is used to iterate over each image_file in the image_files list. Within each
iteration, the image_path is constructed by joining the emotion_folder_path with the current
image_file.
Using the cv2.imread function, the image at image_path is loaded as a numpy array. If
needed, the cv2.cvtColor function is used to convert the color space of the image to RGB.
The loaded image is appended to the images list, and the current emotion is appended to
the labels list.
Finally, the images and labels lists are converted into numpy arrays, completing the process
of loading the images and their corresponding labels.

8.3 Face recognition and FER() Detector

8.3.1 Face recognition
The face recognition library is a powerful tool used for detecting faces and analyzing facial
expressions. In this code, the library is utilized to perform face detection and emotion
prediction on a set of images.
In this case, we use the library to detect faces from any given image and utilize the desired
model to make predictions.The code iterates through each image and applies the face
recognition algorithm to identify the locations of faces. If a face is detected, the library
proceeds to predict the emotions associated with the detected faces. The emotions and their
corresponding scores are stored in an array for further analysis.

(8.2 PyPI face recognition documentation features example)
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8.3.2 FER() Detector
The FER library is a Python package that provides functionalities for facial emotion
recognition. It can be installed using the Python Package Index (PyPI) with the command pip
install fer.
This library serves as a powerful tool for analyzing and interpreting human emotions through
facial expressions. It is built on top of deep learning techniques and offers a pre-trained
model specifically designed for emotion detection in images and videos. The model is
trained on a large dataset and is capable of accurately recognizing a wide range of
emotions, including anger, disgust, fear, happiness, sadness, surprise, and neutral.
By utilizing the FER library, developers and researchers can easily integrate facial emotion
recognition capabilities into their applications and projects. The library provides simple and
intuitive APIs for tasks such as face detection, emotion prediction, and visualization of
results. It abstracts away the complexities of building and training deep learning models,
allowing users to focus on leveraging the emotion recognition capabilities to gain insights,
improve user experiences, or enhance various human-computer interaction scenarios.

In the code, the fer library is used to detect emotions in images as follows:
Firstly, we create an instance of the FER detector using the FER() constructor. Then, we
iterate through a set of images, performing the following steps for each image:

1. Face detection: We use the face_recognition.face_locations() function to detect the
locations of faces in the image.

2. Emotion prediction: If one or more faces are detected, we pass the image to the FER
detector's detect_emotions() method to predict the emotions present in the detected
faces. The predictions are returned as a dictionary with emotions as keys and
corresponding scores as values.

3. Results storage: We store the predicted emotions and scores in the results_fer array
for further analysis.

4. Printing and visualization: We print the predicted emotions and scores for each
image and display the image with bounding boxes and emotion labels using
cv2_imshow().

If no faces are detected in an image, a corresponding message is printed. Any errors that
occur during the process are also caught and displayed.

(8.3 PyPI FER documentation example)
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8.4 Model application results and analysis

8.4.1 Emotion labeling from the 3 methods

Real Emotion Prediction FER Prediction FT Prediction CNN

angry Sad Disgust Angry

angry Angry Fear Angry

angry Angry Disgust Angry

disgust ERROR Sad Sad

disgust Sad Surprise Surprise

disgust Sad Sad Angry

fear Neutral Fear Angry

fear Fear Fear Fear

fear Sad Fear Neutral

happy Happy Happy Happy

happy Happy Happy Happy

happy Happy Happy Happy

sad Sad Surprise Surprise

sad Sad Surprise Surprise

sad Sad Surprise Surprise

surprise Surprise Fear Neutral
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surprise Surprise Sad Neutral

surprise ERROR Neutral Neutral

neutral Neutral Sad Sad

neutral Neutral Fear Happy

neutral Neutral Sad Sad

(8.4 Table of predictions of the 3 models)

FER Model:
● Accuracy: (14 correct predictions / 21 total predictions) * 100 = 66.66%
● Error rate: 100 - 66.66 = 33.33%

FT Model:
● Accuracy: (6 correct predictions / 21 total predictions) * 100 = 28.57%
● Error rate: 100 - 28.57 = 71.42%

CNN Model:
● Accuracy: (7 correct predictions / 21 total predictions) * 100 = 33.33%
● Error rate: 100 - 33.33 = 66.66%

Based on the accuracy rates, the FT model performs the best with an accuracy of 78.57%,
followed by the FER model with an accuracy of 71.43%. The CNN model has the lowest
accuracy rate of 47.62%.
However a more in depth analysis reveals that the Happy emotion was predicted with 100%
accuracy by the three methods. Also Angry is predicted with 100% accuracy by the CNN
model improving the FER detector which has one miss. Similarly to CNN with Angry, FT
outscores the FER detector with 100% score in the Fear category.
It goes without saying that 3 images generated with AI is not a representative dataset in
order to draw solid conclusions about model performances. Nevertheless, our two models
show interesting results diverging from the FER detector and it would be a simplification to
dim them inferior to it simply based on accuracy.
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8.4.2 Predicted values for the correct emotion

(8.5 FER correct emotion values mean histogram)

The FER Correct Values histogram represents the average values for each emotion
predicted by the FER detector. The highest average value is for the emotion 'happy' with a
score of 0.923, indicating a strong prediction. The emotions 'angry' and 'sad' also have
relatively high scores of 0.467 and 0.843, respectively. On the other hand, the emotions
'disgust' and 'fear' have low scores of 0.0 and 0.25, indicating lower confidence in the
predictions. The emotions 'surprise' and 'neutral' fall in between with scores of 0.653 and
0.753.

(8.6 FT correct emotion values mean histogram)
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The FT Correct Values histogram represents the average values for each emotion predicted
by the FT detector. The highest average score is for the emotion 'happy' with a value of
0.914, indicating a strong prediction. The emotions 'fear' and 'angry' also have relatively high
scores of 0.440 and 0.126, respectively. On the other hand, the emotions 'disgust' and 'sad'
have lower scores of 0.033 and 0.065, suggesting less accurate predictions. The emotions
'surprise' and 'neutral' have even lower scores of 0.086 and 0.028. Overall, the FT detector
shows varying levels of accuracy, with relatively better performance for 'happy' and 'fear'
emotions.

(8.7 CNN correct emotion values mean histogram)

The CNN Correct Values histogram represents the average values for each emotion
predicted by the CNN detector. The emotion 'happy' has the highest average score of 0.884,
indicating a strong prediction. The emotions 'fear' and 'angry' also have relatively high scores
of 0.301 and 0.561, respectively. However, the emotions 'disgust', 'sad', 'surprise', and
'neutral' have significantly lower scores ranging from 0.003 to 0.113. This suggests that the
CNN detector performs well in predicting 'happy', 'fear', and 'angry' emotions but struggles
with the other emotions.

Comparing the three predictions, we can observe variations in the average scores for each
emotion. The emotions 'happy' and 'fear' generally have higher scores across all detectors,
indicating more accurate predictions. However, there are notable differences in the
predictions for other emotions. The FER detector performs better in predicting 'sad',
‘surprise’, ’neutral’ and 'angry' emotions compared to the other detectors. The FT detector
shows relatively higher scores for 'angry' and 'fear' emotions. The CNN detector performs
well in predicting 'happy', 'fear', and 'angry' emotions but struggles with the remaining
emotions.
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In essence, the FER detector performs much better than our models in ‘sad’, ‘surprise’ and
‘neutral’. It is only surpassed by CNN in ‘angry’ and by FT in ‘fear’. Regarding ‘happy’ and
‘disgust’ the three detectors have similar results performing extremely well with ‘happy’ and
extremely poorly with ‘disgust’.
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9. Conclusions

9.1 Overview and Work Development

In this work, deep learning techniques are explored to solve the problem of emotion
detection from facial images. The focus is on the FER2013 dataset, which was chosen after
analyzing potential facial image datasets for the project. The decision was primarily based
on the ease of use and minimal preprocessing requirements of FER2013.
The FER2013 dataset consists of approximately 35,000 grayscale images of faces, each
with a resolution of 48x48 pixels. The images are categorized into seven emotion categories
(0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral).
The deep learning techniques employed in this thesis include transfer learning and
fine-tuning using pre-trained models from Keras Applications, as well as convolutional neural
networks (CNNs) with optimized hyperparameters to maximize model accuracy.
Initially, five pre-trained models from Keras Applications were experimented with: MobileNet,
InceptionV3, VGG16, ResNet, and DenseNet. Each model was trained for five epochs using
the dataset, and a comparison was made among the five trained models to decide which
one would undergo fine-tuning. The metrics used for comparison included training time,
model complexity (number of parameters), accuracy after five epochs, and loss after five
epochs.
DenseNet was selected for fine-tuning, and an experiment was conducted to determine the
percentage of the model that should be retrained with FER2013 data. It was decided to
unfreeze 5% of the layers of the pre-trained model (21 layers). The DenseNet model with 5%
trainable layers was then trained for 10 epochs.
The second part of the deep learning work involved working with a convolutional neural
network (CNN) architecture. The hyperparameters were optimized to achieve maximum
accuracy. This optimization included a batch size of 32, a dropout rate of 0.4 after the
convolutional layers and 0.25 after the dense layer, a learning rate updated based on the
epoch number, and a total of 55 epochs divided into an initial training of 25 epochs and a
subsequent training of 30 epochs. The training was performed using the
'categorical_crossentropy' loss function and the Adam optimizer.
Finally, the two created models were tested with a set of 21 images (3 images for each of the
7 emotions) generated using the image generation AI Craiyon. The prediction was also
made using the 'fer' Python library, which detects the probabilities of each of the 7 emotions
from a facial image based on the FER2013 dataset, allowing for a comparison with the
performance of our two models.

9.2 Results Summary

The DesNet fine tuned model with 5% unfreezed layers obtained an accuracy of 0.5203.
The CNN model obtained an accuracy of 0.6323.
In the application of the models test the FER detector made 14 out of 21 correct predictions
while the fine tuned did 6 out of 21 and the CNN model 7 out of 21.
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9.3 Results Discussion

The results obtained from the DesNet fine-tuned model indicate limitations in accurately
classifying and differentiating certain emotions. The model particularly struggles with
misclassifications for the 'Angry' and 'Disgust' emotions, indicating a difficulty in
distinguishing them from other emotions. Additionally, the 'Fear' and 'Surprise' emotions also
face significant rates of misrepresentation. There is a notable bias towards classifying
images as either 'Happy', 'Neutral', or 'Sad', but misclassifications also occur among these
three categories.

Similarly, the CNN model shows challenges in accurately classifying certain emotions. While
it performs well in recognizing 'Happy' samples, it faces difficulties in accurately recognizing
'Disgust' and has misclassifications for 'Angry', 'Fear', 'Neutral', 'Sad', and 'Surprise'
emotions. There is room for improvement in accurately distinguishing and classifying these
emotions.

In terms of the application of the models to the test set, the FER detector outperformed both
the fine-tuned and CNN models, achieving a higher number of correct predictions. This
suggests that the FER detector has a better overall performance in classifying the test
samples.
The FER detector demonstrates strong predictions for the 'Happy' emotion, while 'Disgust'
and 'Fear' show lower confidence scores. 'Angry', 'Sad', 'Surprise', and 'Neutral' fall in
between, indicating varying levels of accuracy for these emotions.
The FT detector also performs well in predicting 'Happy' samples, with relatively higher
scores for 'Fear' and 'Angry' emotions. However, it struggles with accurately predicting
'Disgust' and 'Sad' emotions, exhibiting lower scores. 'Surprise' and 'Neutral' emotions also
have relatively lower scores.
The CNN detector shows strong predictions for 'Happy' samples but struggles with 'Disgust',
'Sad', 'Surprise', and 'Neutral' emotions, with significantly lower scores. However, it performs
relatively better in predicting 'Fear' and 'Angry' emotions.
The FT detector shows relatively higher scores for 'Fear', while the CNN detector performs
well in predicting 'Happy', 'Fear', and 'Angry' emotions but struggles with the other emotions.

In conclusion, the findings highlight the challenges and limitations faced by the models in
accurately classifying and differentiating certain emotions. Improvements can be made in
addressing misclassifications and enhancing the models' performance for 'Angry', 'Disgust',
'Fear', 'Surprise', 'Neutral', and 'Sad' emotions. Further research and refinement of the
models can contribute to more accurate emotion recognition and classification.
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9.4 Limitations, Areas for Improvement and Future Work

The main limitation of this work has been the use of Google Colab, which often caused days
of interruption due to GPU usage limitations and resulting bans. After encountering this issue
multiple times, attempts were made to train models for fewer epochs while saving partially
trained models to resume training later. Ultimately, the frequent bans from Google Colab
disrupted the workflow.
Apart from this limitation, lack of experience in the field led to misunderstandings. For
example, concerns over the time required for model training and attempts to solve
nonexistent problems.

One area for improvement is training the models for a greater number of epochs, as it is
likely to result in better performance. Another significant improvement would involve using a
larger dataset, either by expanding the FER2013 dataset with images from other datasets or
generating a dataset using artificial intelligence techniques like Craiyon. Additionally, a more
in-depth investigation of transfer learning models that can better adapt to the FER2013 data
could have been conducted. The issue with the Keras Applications models used in this work
is that they were trained on color images and struggled to adapt to the grayscale images of
FER2013.

Regarding future work, further study into superconvergence and its application to the project
could be conducted, as the exploration of learning rates in this work was limited. Given more
time, additional deep learning techniques such as variational autoencoders (VAE), siamese
networks, or even generative adversarial networks (GAN) could have been explored. These
techniques were briefly investigated at the beginning of the project but couldn't be
extensively explored due to time constraints. Furthermore, exploring the combination of
different deep learning techniques could be an avenue for future research.

9.5 Final Conclusions

This thesis has shown the difficulties of attempting to detect emotions from facial images.
The models and detectors studied have demonstrated that while the detection of ‘happy’
faces achieved high accuracy, there were significant misclassifications for the other
emotions. Achieving high accuracy in detecting various emotions is not a trivial task, and
deep learning models require significant tuning and optimization.
However, it is certain that there is still significant room for improvement. Overcoming the
limitations and addressing the challenges identified can lead to more accurate and robust
emotion recognition systems, with potential applications in various fields such as
human-computer interaction, affective computing, and mental health assessment.
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