

FINAL DEGREE PROJECT

TFG TITLE: Design, development and testing of full-stack web service for
a trajectory computation algorithm.

DEGREE: Double Bachelor’s Degree in Aerospace Systems Engineering
and Telematics Engineering

AUTHOR: Maria Cáliz González

DIRECTOR: Xavier Prats Menéndez, David De La Torre Sangrà

DATE: July 6th, 2023

Resum

Aquest document proporciona un informe complet del projecte de final de grau,
amb l'objectiu principal de dissenyar, desenvolupar i provar un servei web full-
stack complet per facilitar la interacció amigable amb un software de càlcul de
trajectòries anomenat Dynamo. El nucli d'aquest projecte rau en prendre un
software existent, complex i fer-lo més accessible i senzill d'utilitzar per a una
àmplia base d'usuaris a través del desenvolupament d'un servei web.

Aprofitant una àmplia gamma de tecnologies - Python, Flask, Vue.js, Tailwind
i MongoDB - i seguint metodologies modernes de desenvolupament de
software com Agile, s’ha dissenyat i implementat un servidor backend, una
interfície frontend i una estructura de base de dades. A més, s’ha integrat una
autenticació segura i un sistema eficient per a la gestió d'errors i validació, per
garantir una experiència segura i amigable per a l'usuari.

Un aspecte clau d'aquest projecte ha estat la necessitat de comprendre com
funciona Dynamo, tot i que no es va entrar en els detalls operatius del
programari en si. L'enfocament principal va restar en el seu procés de
configuració, proporcionant la base per al desenvolupament d'un servei web
que permet als usuaris configurar, executar i monitoritzar les simulacions de
forma intuïtiva. Això facilita una forma més senzilla per als usuaris de treure
partit del poder de Dynamo, independentment del seu coneixement del codi.
Per això, es va realitzar una captura de requisits del servei web amb
investigadors del grup de recerca ICARUS, garantint així que el servei web
desenvolupat s'adapti a les seves necessitats.

Tots els aspectes d'aquest projecte, des de la comprensió del procés de
configuració de Dynamo fins al desenvolupament del backend i del frontend
del servei web, es van abordar sistemàticament i es detallen en aquest
document.

Títol: Disseny, desenvolupament i testing d’un servei web full-stack per a un
algorisme de càlcul de trajectòries.

Autor: Maria Cáliz González

Director: Xavier Prats Menéndez, David De La Torre Sangrà

Data: 6 de juliol de 2023

Title: Design, development and testing of full-stack web service for a trajectory
computation algorithm.

Author: Maria Cáliz González

Director: Xavier Prats Menéndez

Date: July 6th, 2023

Overview

This document delivers a comprehensive report of the final degree project,
which had as its primary goal, the design, developing, and testing a full-stack
web service to facilitate user-friendly interaction with a trajectory computation
software called Dynamo. The crux of this project lies in taking an existing,
complex software and making it more accessible and simpler to use for a broad
user base through the development of a web service.

By leveraging a wide array of technologies - Python, Flask, Vue.js, Tailwind,
and MongoDB - and following modern software development methodologies
like Agile, a backend server, frontend interface, and a database structure were
designed and implemented. In addition, secure authentication and an efficient
system for error handling and validation were integrated to ensure a secure
and user-friendly experience.

A key aspect of this project has been the need to understand how Dynamo
functions, even though we did not go into the intricate operational details of the
software itself. The main focus remained on its configuration process, providing
the basis for developing a web service that allows users to intuitively configure,
run, and monitor their simulations. This facilitates a more straightforward way
for users to leverage the power of the Dynamo software, regardless of their
technical proficiency. For this reason, a web service requirements capture was
carried out with researchers from the ICARUS research group, thus ensuring
that the developed web service adapts to their needs.

All aspects of this project, from understanding Dynamo's configuration process
to the development of the backend and frontend of the web service, were
tackled systematically and are detailed in this document.

INDEX

INTRODUCTION ... 1

CHAPTER 1. OVERVIEW AND USED TECHNOLOGIES 4

1.1. Understanding Web Services ... 4
1.1.1. Types of Web Services .. 4

1.1.1.1. SOAP Web Service ... 4
1.1.1.2. RESTful Web Services ... 4

1.1.2. REST vs SOAP... 5

1.2. Technology Landscape ... 6
1.2.1. Server-Side Technologies .. 6

1.2.1.1. Backend languages for Web Development ... 6
1.2.1.2. Database Technologies for Web Development ... 8
1.2.1.3. Final decision for server side ... 9

1.2.2. Client-Side Technologies ... 10
1.2.2.1. Frontend languages for Web Development .. 10
1.2.2.2. Final decision for client side... 13

CHAPTER 2. ANALYSIS OF REQUIREMENTS ... 14

2.1. Dynamo Software .. 14

2.2. Requirements gathering methods .. 18
2.2.1. Software Requirement Specification (SRS) Document ... 21

2.3. Requirements gathering session... 22
2.3.1. Results of the session .. 26

2.3.1.1. Initial interview .. 26
2.3.1.2. Brainstorming .. 27

2.3.2. Emergence of new requirements ... 30

CHAPTER 3. BACKEND .. 32

3.1. Backend Design ... 32
3.1.1. User Management System .. 32
3.1.2. Simulation Management System .. 33
3.1.3. File Management System ... 34

3.2. Backend Implementation ... 36
3.2.1. Code structure .. 37

3.2.1.1. Setting up and Configuring Flask... 38
3.2.2. User Management System .. 40

3.2.2.1. Models.py .. 40
3.2.2.2. Controllers.py .. 42

3.2.3. Simulation Management System .. 45
3.2.3.1. Models.py .. 45
3.2.3.2. Controllers.py .. 46

3.3. Swagger .. 51

CHAPTER 4. Frontend .. 55

4.1. Frontend Design .. 55

4.2. Frontend Implementation .. 58
4.2.1. Code structure .. 58

4.2.2. User Management System .. 60
4.2.2.1. User Authentication process ... 60
4.1.1.1. Form Handling and User Profile .. 64

4.2.3. Simulation Management System .. 66
4.2.3.1. Code ... 66
4.2.2.2. Simulation interface .. 68
4.2.2.3. Simulation interface for advanced users ... 72

CHAPTER 5. TEST AND RESULTS .. 74

5.1. System outcomes .. 74

5.2. Fulfilled requirements ... 75

5.3. System bugs and issues .. 77

CHAPTER 6. FUTURE WORK AND CONCLUSIONS 78

6.1. Future Work .. 79

BIBLIOGRAPHY ... 81

USEFUL LINKS .. 83

 ... 87

ANNEXES.. 87

ANNEX A ... 88
SOFTWARE REQUIREMENT SPECIFICATION (SRS) ... 88
DYNAMO WEB SERVICES ... 88

Introduction 1

INTRODUCTION

This document describes the work developed for the final degree project whose
main objective is the design, development and testing of a full-stack web service
for a trajectory computation algorithm, Dynamo. The driving force behind this
project is to enhance user interaction with the Dynamo software, allowing them
to configure and execute simulations through a user-friendly, web-based
interface. Consequently, the intricate processes involved in trajectory
computation are simplified, making it accessible to a wider user base with varying
levels of technical proficiency.

The execution of this project involved a wide range of tasks and sub-tasks,
including the development of both a backend server and a frontend interface, the
design and implementation of database structures, the establishment of secure
authentication procedures, and the management of error handling and validation
systems, among others. The project utilizes a comprehensive tech stack,
including Python and Flask for the backend, Vue.js and Tailwind for the frontend,
along with MongoDB for the database. A deep understanding of these
technologies and their successful integration was crucial to build a unified and
robust system.

The project adopted contemporary software development methodologies such as
Agile, to ensure a structured and efficient development process. Regular
meetings and the use of project management tools like Trello were crucial for
effective communication, coordination, and tracking of project milestones.

The Dynamo software [1] is a robust and flexible tool, created by the
ICARUS research team at Universitat Politècnica de Catalunya (UPC). The
primary function of this software is to provide sophisticated computational
capabilities for flight trajectory optimization and prediction, forming an integral
part of the trajectory-based operations concept implementation. This software's
prowess lies in its ability to provide accurate and optimal flight trajectories for
various look-ahead times and operational contexts.

This document is organized into six main sections:

• 'Introduction' provides an overview of the project, its objectives, and the
technologies and methodologies used.

• Chapter 1, 'Overview and Used Technologies', details the nature of web
services, their types, and the technological landscape adopted in this
project.

• Chapter 2, 'Analysis of Requirements', outlines the process of gathering
project requirements.

• Chapter 3, 'Backend', focuses on the design and implementation of the
backend server.

• Chapter 4, 'Frontend', discusses the design and execution of the frontend
interface.

• Chapter 5, 'Test and Results', presents the results and outcomes of the
project, alongside the identification and handling of system bugs.

2 Design, development and testing of full-stack web service for a trajectory computation algorithm

• Lastly, Chapter 6, 'Future Work and Conclusions', wraps up the document,
outlining potential future work and summarizing the project's conclusions.

In terms of references, this document is divided into two sections for clarity and
ease of access. The 'Bibliography' section lists academic and technical
references, such as articles, books, and technical documents. These are
numbered with square brackets like so: [1], [2], [3], etc. The 'Useful Links' section
lists additional online resources that have been consulted during the development
of this project. These are also numbered but in a slightly different format: [‡1],
[‡2], [‡3], etc. This distinction ensures that both types of resources are easily
identifiable throughout the document.

4 Design, development and testing of full-stack web service for a trajectory computation algorithm

CHAPTER 1. OVERVIEW AND USED TECHNOLOGIES

This chapter aims to provide a comprehensive understanding of web services,
with a particular focus on a specific type. It also discusses the different
technologies available for building web services and explains why a particular set
of languages were chosen for the design and development of the project.

1.1. Understanding Web Services

Web services [‡1] are a standardized way for software applications to
communicate with each other over the Internet, no matter what infrastructure or
platform they are built on. Essentially, it is a method of communicating between
two electronic devices over a network. The main purpose of web services is to
ensure that applications can interact with each other, facilitating the exchange of
data and processes.

1.1.1. Types of Web Services

The two main categories of web services are SOAP (Simple Object Access
Protocol [‡2] and REST (Representational State Transfer) [2].

1.1.1.1. SOAP Web Service

SOAP is a protocol defined by the World Wide Web Consortium (W3C) for
exchanging structured information when implementing web services in computer
networks. It encodes its HTTP-based [3] calls using XML [4] and has built-in error
handling. As a protocol, SOAP is stricter and defines a standard set of rules that
must be followed, making it a suitable choice for applications where integrity and
confidentiality are critical. SOAP can operate over multiple protocols such as
HTTP, SMTP [5] and TCP [6], making it highly versatile. However, it can be more
complex and use more resources than REST.

1.1.1.2. RESTful Web Services

On the other hand, REST is an architectural style for building web services. It's
not limited to using XML to provide responses—you can also find REST-based
web services that return data in Command-Separated Value (CSV) [7],
JavaScript Object Notation (JSON) [8], and Really Simple Syndication (RSS) [9].
The point is that besides XML, any media format that can be used to represent
data can be used in REST.

Overview and used technologies 5

REST uses a client-server model, where server applications provide resources
or services, and client applications access those resources. The server does not
save data between requests, the session is saved on the client. This
statelessness and the ability to cache or store responses makes RESTful
services faster and more reliable. Thus, it is simpler, uses less bandwidth, and is
more flexible. REST uses standard HTTP methods such as GET, POST, PUT
and DELETE (see figure 1.1), making it a straightforward choice for web-based
interactions. [‡3]

Fig. 1.1 Web Service REST scheme

1.1.2. REST vs SOAP

The choice between SOAP and REST relies on the needs of the application, even
though both provide solutions to construct web services. However, due to its
simplicity, enhanced efficiency, and superior scalability, REST was chosen over
SOAP for this project. [‡4]

• Simplicity: RESTful web services are simple to use and comprehend. The
interaction between the client and the server is made simpler by the usage
of conventional HTTP methods. This ease of use extends to the debugging
and testing procedures as well, making it simple to identify and fix
problems.

• Performance: REST is faster than SOAP since it needs fewer bandwidth
and resources. Due to its heavy XML usage and verbose protocol, SOAP
uses more processing power and memory.

• Scalability: REST is inherently more scalable because it is stateless. As
all the information required to process a request is contained within the
request itself, RESTful services can be easily distributed across multiple
servers to meet high demand.

• Compatibility: In terms of flexibility and interoperability with web
technologies, REST is thought to be superior. It makes use of common
HTTP protocols and is compatible with a variety of data types outside only
XML. This makes REST services easier to integrate with already-existing
websites or apps since RESTful services may be used by any client that
comprehends HTTP, the web's standard protocol.

6 Design, development and testing of full-stack web service for a trajectory computation algorithm

The choice between REST and SOAP must always be made in the context of the
specific project requirements. For instance, if the application demands a higher
level of security, SOAP may be a more appropriate choice due to its support for
WS-Security. In contrast, if the application needs to be lightweight, flexible, and
compatible with the web, REST could be the better choice. In this project, given
the need for scalability, flexibility, and speed, REST was the chosen method.

1.2. Technology Landscape

Web development comprises a wide variety of technologies, each with its own
strengths and use-cases. This section will examine the various backend and
frontend languages and database technologies available for web development,
providing an overview of their advantages, limitations, and a comparison to
provide a clear picture of the current state of the art. We will focus primarily on
Python [‡5], Java [10], and JavaScript [11] for backend languages and SQL [12]
and NoSQL [13] for database technologies.

1.2.1. Server-Side Technologies

1.2.1.1. Backend languages for Web Development

The backend, or server-side, is the powerhouse of any web service. Although
users do not interact with it directly, it's in charge of a web application's logic,
server configuration, data administration, and general performance. Backend
languages play a role in this. They're the tools that developers use to build and
maintain the server-side of web applications, and they handle tasks such as
server connections, database interactions, and server logic. Choosing the right
backend language is crucial to the efficient operation of your web service, as it
can significantly impact speed, scalability, and ease of use. In this section, we will
explore several popular backend languages to determine the most suitable one
for our project.

• Python: Python is well-known for being a flexible language for creating
reliable online applications, and it provides outstanding readability, making
it a top choice for new programmers and quick deployments. With its
enormous library, Python, often referred to as the "Lego" of programming
languages, promotes code reuse and significantly lowers the requirement
to create individual components from scratch. Its extensive use in data
analysis, algorithm development, and machine learning is proof of its
adaptability. [‡6]

Python is open source, expressive, and simple to learn. High-level
programming is possible without the use of explicit memory management.
Python programs may run on a variety of operating systems with adequate
respect for system-specific capabilities thanks to their portability.

Overview and used technologies 7

Line by line interpretation of Python code eliminates the requirement for
compilation. Its broad standard library offers a wide range of modules and
functions, and its object-oriented methodology encourages code reuse.
Python enables dynamic typing, freeing the programmer from having to
declare the data types of variables. [‡7]

We may use some of Python's web development frameworks to extend
the capabilities of the basic language [‡8]:

o Django: Django [‡9] is a thorough and reliable framework that is
ideal for building complex web applications. The Django
programming language is effective and places a strong emphasis
on security by offering defense against frequent SQL injection and
cross-site request forgery threats. However, Django's extensive
features and configurations can lead to a steep learning curve for
new users.

o Flask: Flask [‡10] is a micro-framework, not requiring any particular
library or tools for web development. It is designed to enable quick
and easy development of lightweight applications. Flask is flexible
and comfortable for beginners, although its use of third-party
modules can potentially lead to security issues.

o FastAPI: FastAPI [‡11], a modern, fast, and robust framework, is

used for building APIs with Python (3.6 and above). It's one of the
fastest Python frameworks. FastAPI speeds up the creation of
programs and reduces bugs. Its autocomplete capability makes
creating and debugging applications easier. However, its relatively
small community and limited external resources can be a downside.

• Java: Java, a high-level, object-oriented, general-purpose language,
adheres to the 'write once, run anywhere' philosophy. Because of the Java
virtual machine (JVM), Java code does not need to be built for every
system type where it will be used. Java uses ideas like polymorphism,
abstraction, encapsulation, and inheritance. It is an effective tool for web
development because of its security features, robustness, portability,
multi-threading, and distributed computing characteristics. [‡12]

• JavaScript: JavaScript, particularly its Node.js runtime environment, is
another powerful option for backend development. Node.js offers
simplicity, freedom in app development, and simultaneous request
handling. However, it also presents challenges like frequent API changes,
longer development time, and unsuitability for heavy-computing apps.
[‡12]

• PySpark: PySpark is the Python API for Apache Spark. It enables
distributed processing of large data tasks across multiple nodes. One of
the key features of PySpark is its 'parallelize' function. This function allows
for the splitting of data into an RDD (Resilient Distributed Dataset) [14] -

8 Design, development and testing of full-stack web service for a trajectory computation algorithm

the primary data structure of Spark, which can then be processed in
parallel across a cluster. [‡13]

The core features of Apache Spark, and by extension PySpark, include:

o In-memory computation for faster data processing by storing data
in the server's RAM.

o The ability to work with various cluster managers, offering flexibility
in the distribution and management of processing tasks.

o Fault tolerance, ensuring that if a node (a computer in the cluster)
fails, the system can recover without loss of data or a system-wide
failure.

o The creation of immutable data structures (specifically, RDDs),
meaning that once an RDD is created, it cannot be modified.
Transformations applied to an RDD create a new one, leaving the
original unchanged.

1.2.1.2. Database Technologies for Web Development

Database technologies are essential for web development. They ensure efficient
data storage, retrieval, and manipulation. In this project we are considering two
of the major database technologies available in the market: SQL and NoSQL.
The choice largely depends on the requirements of the specific application. [‡14]

• SQL: SQL (Structured Query Language) databases are relational,
meaning they have predefined relationships between their elements.
Examples of SQL databases include DB2 [‡15], Postgres [‡16], Oracle
[‡17], and MySQL [‡18]. SQL databases ensure no duplication of records,
support a larger community, guarantee atomicity of information, and have
a standard system for database operations. Some of the main advantages
of these databases are:

o Greater support as they have been on the market for a long time
(larger community)

o Atomicity of information. When performing any operation on the
database, if any problem arises, the operation is not performed.

o It has a well-defined standard system (SQL) for operations with the
database, such as inserts, updates, or queries. This system is easy
to understand as it adapts to common language.

• NoSQL: NoSQL (Not Only SQL) databases, unlike SQL databases, don't
require predefined relationships between their elements. They are non-
relational and handle data organized as documents. Examples of NoSQL
databases include MongoDB [‡19], Cassandra [‡20], and CouchDB [‡21].
NoSQL databases offer versatility, low cost, horizontal scalability, and the
ability to store data of any type at any time. Some advantages of using
NoSQL databases are:

o Versatile databases that allow you to add information or make
changes to the system without the need to add extra configurations.

Overview and used technologies 9

o Open-source NoSQL databases do not require a license fee and do
not need very powerful hardware to run.

o Support horizontal growth, that is, by supporting distributed
structures, new operating nodes can be installed that balance the
workload. Its expansion is easier due to this horizontal scaling.

o Allow saving data of any type, at any time, without requiring
verification.

1.2.1.3. Final decision for server side

After thorough research, it is clear that any of the languages and databases
discussed above could suit our API development. However, each language and
database have unique advantages that make it better suited to specific
circumstances. Personal experience also plays a crucial role in technology
selection. For instance, if a developer is more comfortable and experienced with
Python, they would likely choose it over Java.

Considering all factors, it has been decided to use Python for backend
development. This decision is based on Python's simplicity, versatility, and my
familiarity with it. Among Python's frameworks, we will use Flask, as it is flexible
and scalable and is also beginner-friendly and makes the development process
faster, ideal for a project that requires quick iterations and adaptations. As for the
database, MongoDB, a NoSQL database, would be a suitable choice given its
speed and capacity to handle thousands of user requests per second.

Fig. 1.2 Python and mongo DB logos

10 Design, development and testing of full-stack web service for a trajectory computation algorithm

1.2.2. Client-Side Technologies

In this section, we'll delve into client-side technologies that are crucial to the
design and functionality of any web application. We'll discuss frontend
programming languages and make a final decision on which technology best suits
our needs.

1.2.2.1. Frontend languages for Web Development

In web development, the frontend is the visible part of the platform where users
interact and access content, therefore, the frontend is made up of all client-side
technologies. An ideal user experience, immersion, and usability are some of the
goals that a good frontend developer strives for, and in the modern era, there are
a wide variety of frameworks, preprocessors, or libraries to help you achieve
them. That is why, in this section, we will analyze and compare some of the main
technologies that currently exist to develop a high-quality frontend. By doing this,
we will be able to choose the most appropriate technology according to our case.

Any web page on the Internet is built, at a minimum, by HTML [‡22] (a markup
language) and CSS [‡23] (a style language). HTML defines the meaning and
structure of the web content while CSS allows you to style the page and build a
more pleasant visual interface for the user. However, using only and exclusively
HTML and CSS on a page, limits us considerably. Although it is true that with
these two languages we can do a wide range of things, there are others that
would be totally impossible, or at least much easier to do if we had a programming
language. This is where JavaScript [15] and TypeScript [16] come in, the
leading programming languages in web development. These languages are
responsible for providing interactivity to development, programming the behavior
of the elements to provide dynamism to the interface. Create animations, objects,
cookies, data validation in the forms, etc.
In addition to the programming languages that define the "language" and how the
code will be written, it is important to highlight the importance of development
frameworks. A series of pre-written tools and libraries that make everyday tasks
easier for developers to avoid running them from scratch. Therefore, it may be
claimed that libraries oversee finding solutions by making the code more
readable, whereas frameworks provide a framework for programming in a
particular language. Next, we analyze the most used frameworks currently.

We have considered two libraries based on JavaScript: React [‡24] and Vue.js
[‡25].

• React: React, developed, and maintained by Facebook, is a JavaScript
library for building user interfaces, especially single-page applications.
It allows developers to create large web applications that can change
data without reloading the page. One of React's unique features is the
virtual DOM which enhances performance by limiting direct
manipulation of the DOM and batch updating. However, it often
requires additional libraries to develop more complex applications.

Overview and used technologies 11

• Vue.js: Vue.js is a progressive JavaScript framework used to create
user interfaces. It is designed to be incrementally adoptable, making it
easy to integrate with other libraries or existing projects. Vue.js also
emphasizes a flexible architecture that allows the application to scale
between a library and a full-featured framework. Its simplicity and
smaller size make it quicker and easier to learn than Angular or React.

We have considered Angular [‡26] as the library based on TypeScript:

• Angular: Angular, developed by Google, is a TypeScript-based open-
source framework that enables the development of single-page
applications. Angular provides a robust framework that supports a wide
array of features like two-way data binding, dependency injection, and
declarative templates. Although powerful, Angular has a steep learning
curve, and its performance can be slower compared to Vue and React.

An overview table of the benefits and drawbacks of different technologies has
been created to aid in thorough comprehension and to help an informed decision-
making process.

Table 1.1. Advantages and disadvantages of frontend technologies

Technology Advantages Disadvantages

React

Popularity: React is one of the most
popular JavaScript frameworks on the
market, which means there are plenty of
resources available online and plenty of
experienced developers available.

Integration with other Facebook
products: React is a Facebook product,
which means it is integrated with other
Facebook products like GraphQL.

Customization – React offers a great
deal of freedom for developers to
customize and build apps to fit their
specific needs.

Complexity – React can
be a more complex
framework and can have a
tougher learning curve
than Vue.

Lack of features: React is
a simpler framework and
focuses on views, which
means that it may be
missing some features that
are available in other
frameworks.

Ease learning: Vue has a simple and
easy to understand syntax, which means
that developers can start developing
applications quickly.

Less popular: Although
Vue is a popular
framework, it is still not as
widely used as React or
Angular. This means that
there may be fewer online
resources available and

12 Design, development and testing of full-stack web service for a trajectory computation algorithm

Vue.js Performance: Vue is a very lightweight
framework and has been optimized for
fast and smooth performance.

Community: The Vue community is very
active and constantly growing, which
means that developers can easily find
solutions to problems, tutorials, and
documentation online.

Flexibility: Vue is highly customizable
and flexible, which means that
developers can build applications that fit
their specific needs.

fewer experienced
developers available.

Less maturity: Since Vue
is a newer framework, it
may not be as mature as
React or Angular and may
not have all the features
and tools that these
frameworks offer.

Angular

Lots of features: Angular is a very
mature framework and offers a lot of
features and tools for developers.

Popularity: Angular is one of the most
popular JavaScript frameworks on the
market, which means there are plenty of
resources available online and plenty of
experienced developers available.

Integration with other Google
products: Angular is a Google product,
which means it is integrated with other
Google products like Firebase. Although
the other frameworks can also be
integrated.

Complexity: Angular is a
very complex framework
and can have a harder
learning curve than Vue or
React.

Performance: Angular
can be heavier and less
resource efficient than Vue
or React.

While libraries like React, Vue, and Angular form the structure and logic of our
front-end, styling frameworks give it the polished, professional look and feel.
Styling frameworks provide ready-to-use CSS components that we can use to
design our user interface. Some of these frameworks are:

• TailwindCSS [‡27]: Is a utility-first CSS framework. Unlike other CSS
frameworks that provide pre-designed components, Tailwind allows
developers to create custom designs without leaving their HTML file.
Tailwind doesn't come with a pre-built set of themes. You can
customize your design as you wish. Since you don't have to switch
back and forth between different files, using this framework can lead to
faster development.

• Bootstrap [‡28], on the other hand, is the most popular CSS
framework. It provides a series of ready-made components such as
navbars, modals, or cards that you can use straight out of the box.
Thus, this framework allows developers to ensure consistency
regardless of who's working on the project.

Overview and used technologies 13

There are also alternative CSS frameworks, including Semantic UI [‡29],
Foundation [‡30], and Bulma [‡31]. Each has its own unique features and
advantages, but they all aim to speed up the development process and make
web pages look good and work well.

1.2.2.2. Final decision for client side

The appropriate technological stack must be chosen in order to meet the project's
unique requirements. Vue.js was consequently selected as the front-end
framework because of its flexible and adaptable structure. The learning curve for
Vue.js is known for being low, especially when compared to rival frameworks like
React and Angular. This results in quicker acceptance, simpler coding, and
therefore more effective project development.

Furthermore, Vue.js has a solid reputation for adaptability, enabling it to be
smoothly integrated with other libraries or ongoing projects. This adaptability is
especially helpful in our case because the Web Service we are developing might
need to interface with some software programs to do computations and trajectory
improvements.

Moving to styling frameworks, TailwindCSS is our choice because it strikes a
balance between customization and speed. Tailwind CSS enables the
opportunity to make unique designs without leaving the HTML file, in contrast to
other CSS frameworks that impose specific design decisions.

By combining Vue.js and TailwindCSS, we are setting up our project with a
powerful, yet flexible technological foundation. While TailwindCSS provides the
effectiveness and complete flexibility needed to build a specifically designed,
responsive user experience, Vue.js offers the adaptable structure and ease-of-
use we require.

Fig. 1.3 Vue.js and Tailwind CSS logos

14 Design, development and testing of full-stack web service for a trajectory computation algorithm

CHAPTER 2. ANALYSIS OF REQUIREMENTS

The aim of this chapter is to delve into the process of requirement gathering and
analysis that was critical in shaping the Dynamo Web Services project.
Understanding the requirements is fundamental to the success of any software
development project. It is the foundation upon which the design and development
phases rest. Therefore, thorough analysis of the project requirements ensures
that the developed software effectively meets the needs it was designed for.

In this chapter, we initially explore the different methods employed for
requirements gathering (Section 2.1), highlighting the most important ones.
Subsequently, the outcomes from the Requirements Gathering Session (Section
2.2) are presented, followed by a discussion on the emergence of new
requirements as the project evolved (Section 2.2.1).
Through the course of this chapter, the readers will gain an understanding of the
integral role that requirements analysis plays in software development, and how
it has directly contributed to the development of the Dynamo Web Services
project.

2.1. Dynamo Software

To manage configuration settings for each simulation, it uses XML files. These
XML files offer a powerful yet adaptable system to handle various flight
parameters. This project's focus extends to these Dynamo configuration XML
files, which contain seven main blocks: <description>, <output>, <paths>,
<logger>, <flight>, <ATM>, and <weather>. Understanding these blocks is
essential as they are the foundation of our project's functionality, which involves
adjusting the configuration file values to set up the simulations. Therefore, a deep
understanding of how the Dynamo configuration files operate is crucial to the
successful implementation of our web service.

A snapshot of the structure of these XML configuration files is given below (see
figure 2.1):

Analysis of requirements 15

Fig. 2.1 Example of configuration XML file

• <description>: Contains a string that provides a brief description of the
simulation setup or any other relevant information.

• <paths>: This section consists of different paths that Dynamo will use to
find the input datafiles and write the outputs. Key elements include:

o <output>: Path to store the output files of the simulation.
o <logger>: Location where the logger should write its output files.
o <aircraft>: It contains paths to two critical components:

16 Design, development and testing of full-stack web service for a trajectory computation algorithm

▪ <APM>: Path to Aircraft Performance Models.
▪ <BADA4>: Path to Base of Aircraft Data (BADA), a

comprehensive model of aircraft performance. The version
attribute here specifies the version of BADA to be used.

o Other paths specified include lateral and vertical flight plans
(<route> and <profile>, respectively), meteorological data (<grib>,
<NetCDF>), data for navigation (<graph>, <sectors>) and others.

• <logger>: This block provides options for the level of detail to be logged
during the simulation. The more detailed the logger configuration, the more
insights can be gained about the simulation run:

o <log_id>: A string identifier for the logger.
o <max_log_level>: Specifies the maximum log level (FATAL,

ERROR, WARNING, INFO, LOG, DEBUG, TRACE).
o <terminal>: Configuration for logging to the command terminal.
o <file>: Configuration for file logging, with separate instances for

different types of logs.
• <output>: Specifies the output files generated by the simulation:

o Each type of output (e.g., <KML>, <FDR>, <vertical_meteo>) has
specific attributes and nested elements to define the output file,
whether a post-processing script should run on it, and the verbosity
level of the data.

• <flight>: Encapsulates flight-specific parameters, such as:
o <ID>: Unique identifier for the flight.
o <callsign>: The callsign for the flight.
o <aircraft>: Contains details about the aircraft used for simulation.
o <lateral> and <vertical>: Specify the paths to the flight plan files, as

well as other options for route and profile.
o <cost>: Holds parameters used to configure the cost function for

the flight.
• <ATM>: Details about Air Traffic Management. The nested <ASM>

(AirSpace Management) block contains <lateral> and <vertical> blocks to
specify air traffic management details for each flight profile phase (climb,
cruise, descent).

• <weather>: Configures the meteorological conditions for the simulation:
o <atmosphere>: Specifies the atmospheric model, as well as the

associated data sources.
o <winds>: Specifies the winds model, as well as the associated data

sources.
o <origin> and <destination>: Configure weather conditions (QNH,

transition level) at the departure and arrival airports.

These seven blocks constitute the fundamental structure of the Dynamo
configuration XML files. It's through the manipulation of these elements that users
can set-up the simulations to their exact requirements, giving Dynamo its
flexibility and adaptability.

Dynamo requires a set of specific inputs to operate optimally (see figure 2.2).
These include aircraft performance data, which consists of mathematical models
that describe the forces acting on the aircraft, such as thrust, drag, and fuel flow.

Analysis of requirements 17

This data can be sourced from various places, like the Base of Aircraft Data
(BADA) [17] or directly from flight tests. In addition to performance data, Dynamo
utilizes weather data, either in the form of standard atmospheric models like the
International Standard Atmosphere (ISA) [18] or real-world weather data in GRIB
(GRIdded Binary or General Regularly-distributed Information in Binary form) [19]
format.

Operator parameters are also a crucial part of the inputs Dynamo needs. These
parameters reflect the relative importance of time and fuel costs and include the
cost index, payload, and flight plan. Furthermore, Dynamo requires Concepts of
Operation (ConOps) [23] inputs, both horizontal and vertical, which specify how
the lateral route and speed, and altitude profiles are to be generated.

Once these inputs are processed, Dynamo's advanced algorithms generate
optimized flight trajectories. It employs a lateral and vertical profile
prediction/optimization module to calculate the optimal route and vertical profile.
The process involves minimizing a cost function that incorporates fuel, time, and
route charges.

Fig. 2.2 DYNAMO architecture [1]

Dynamo's capabilities have been demonstrated in a variety of applications and
assessments. For instance, in the APACHE Project [24], it was used to create
realistic traffic scenarios for various vertical and horizontal ConOps using realistic
aircraft performance models and weather data. Over one million trajectories were
optimized, showcasing Dynamo's scalability and computational efficiency.

In the FASTOP Project, Dynamo was used for real-time on-board optimization
during Continuous Descent Operations (CDO), demonstrating its versatility and
practical applicability. The software was embedded on-board a research flight
management system (FMS), where it computed optimal vertical profiles while
satisfying ATC time constraints and standard operational procedures. [25]

Furthermore, an integral part of Dynamo's functioning is its output generation. It
provides comprehensive reports containing the predicted and optimized flight
trajectories, including altitude and speed profiles, fuel usage, and other essential

18 Design, development and testing of full-stack web service for a trajectory computation algorithm

flight parameters. This data proves to be invaluable for further analysis and
decision-making.

In conclusion, Dynamo is a sophisticated and comprehensive tool, developed to
optimize and predict flight trajectories. Its ability to handle a vast range of inputs,
perform complex calculations, and generate detailed outputs makes it an
invaluable asset in air traffic management research.

While this document will not delve into the intricate details of Dynamo's operation,
it emphasizes understanding its configuration process. Our goal is to create a
web service that allows users to configure, run, and manage their simulations
seamlessly and efficiently. The mechanisms of these configuration files,
particularly the seven blocks mentioned above, will be discussed in detail
throughout this document.

2.2. Requirements gathering methods

Gathering requirements is a crucial phase in software development, since it
allows us to identify and understand customer needs to ensure that the final
product meets their expectations. Some of the most used methodologies [‡32]
for gathering requirements for a software development project are described
below. [‡33]

• User Participation Requirements Analysis: This approach focuses on
directly involving the user in the requirements gathering process to ensure
that their needs are understood and considered.

• Use Case Based Requirements Analysis: This method focuses on
describing how a user will interact with the software through detailed
scenarios called "use cases".

• Model-Based Requirements Engineering: This methodology is based on

the creation of visual models that represent the requirements and allow a
better understanding and communication between team members and the
client.

• Prototype-Based Requirements Analysis: This approach focuses on

creating basic prototypes that illustrate how the software will work and
allow the customer to visualize and validate their requirements.

• Brainstorming Requirements Gathering: This methodology is based on the

idea that the generation of ideas and solutions can be improved through
dialogue and group collaboration. The BRG process typically begins with
a brainstorming session where the development team, customers, and
stakeholders come together to discuss and brainstorm software
requirements. During the session, participants are encouraged to share
their ideas without judging or censoring others' suggestions. Once the
ideas have been generated, the team categorizes, groups, and prioritizes
them to determine the most important and urgent requirements. The team

Analysis of requirements 19

then creates a detailed plan for the development and implementation of
each requirement. The BRG is an effective way to involve stakeholders
and customers in the requirements capture process, which can improve
understanding and satisfaction with the final product. However, it can also
be an intensive process in terms of time and resources, and it can be
difficult to ensure that all ideas are objectively considered and prioritized.
[26]

Focusing on what large development companies use, it's hard to say for sure
exactly what requirements capture methodologies are being used, as this can
vary depending on the project and company in question. However, we also found
another type of methodology, apart from those already described above, that is
commonly used in the software development industry: Agile and Scrum
methodologies.

The Agile [27] methodology is an iterative and adaptive approach to software
development that focuses on collaboration and the continuous delivery of small
functional pieces of software. The agile methodology was formally introduced in
2001 with the publication of the Agile Manifesto [‡34] and has become
increasingly popular in the software development industry.

Agile methodologies are based on the following values and principles:

• Individuals and interactions over processes and tools
• Software working on exhaustive documentation.
• Collaboration with the client on contract negotiation
• Reaction to changes on follow-up to a plan.

In an agile project, the development team works in short, regular sprints,
delivering small, functional increments of the software rather than waiting for a
complete product before delivery. This allows for greater flexibility and enables
the team to adapt to changing customer needs throughout the development
process.

Some of the more popular agile methods include Scrum [28], Kanban [29], XP
(Extreme Programming) [30], and Lean Software Development [31]. Each agile
method has its own unique approaches and practices, but they all share the same
basic philosophy of an iterative and adaptive approach to software development.

• Scrum: Scrum is a framework for the management and development of
agile projects. It is based on the concept of "sprints" or work cycles of a
fixed duration and on constant collaboration and communication between
team members. Scrum has well-defined roles, such as Product Owner,
Scrum Master, and Development Team, and uses several artifacts, such
as the Product Backlog and Sprint Backlog, to organize work and ensure
that it is moving in the right direction. correct.

• Kanban: Kanban is a visual management system used to optimize
workflow in an agile project. Use visual dashboards that show the current
status of tasks and limit the amount of work in progress to reduce wait time

20 Design, development and testing of full-stack web service for a trajectory computation algorithm

and increase efficiency. The development team and the project
management team work together to continuously improve the process and
eliminate bottlenecks.

• XP (Extreme Programming): XP is an agile software development
methodology that focuses on quality and speed. It is based on several
practices such as pair programming, test-driven development, continuous
integration, and constant refactoring. XP's goal is to deliver high-quality
software quickly and consistently.

• Lean Software Development: Lean Software Development is an agile
approach based on Lean Manufacturing principles. Focuses on waste
reduction and continuous process improvement. It uses techniques such
as customer feedback-driven development, workflow optimization, and
continuous delivery of small features to improve software quality and
increase customer satisfaction.

It is important to note that these methods are not mutually exclusive and are often
combined to adapt to the needs and particularities of each project. Thus, many
large companies use a combination of requirement capture methodologies and
tailor their approach based on the specific needs of each project. It is important
to note that the choice of the appropriate methodology depends on various factors
such as the type of project, the complexity of the software and the client's
preferences.

For our specific case1, we chose the Brainstorming methodology, we also
presented some visual models, and, at the same time, we have been following
the Agile methodology. This means, then, that we conducted meetings in which
small software increments were presented, to verify that we have a good
approach to the product, and if not, we can rectify it in time. Also, during the
process of this project, apart from the weekly technical meetings in which
progress has been made at the structure and design level, a first meeting was
held with most of the team members to capture the general requirements. After
some time doing and developing the work based on these requirements, a
second meeting was convened with the group to evaluate the project's current
status and determine which requirements had been fulfilled to date.

Finally, also comment, that apart from the weekly meet meetings, we also used
Trello [‡35], which is a project and task management tool that can be used to
implement agile project management methodologies, such as Scrum or Kanban.
Therefore, it is not an agile method itself, but rather a tool that can be used to
implement agile methodologies.

Trello allows the creation of boards to organize tasks and projects at different
stages of the workflow, assign tasks to team members, set deadlines, and
communicate through comments. This functionality is very useful for
implementing the agile philosophy of continuous iteration and adaptation in
software development. Additionally, Trello allows for integration with other

1 See requirements gathering session section.

Analysis of requirements 21

software tools, making it easy to automate workflows and track project progress
in real time.

2.2.1. Software Requirement Specification (SRS) Document

The Software Requirement Specification (SRS) Document [32] is an
indispensable tool in the field of software engineering, acting as a blueprint for
the software to be developed. It is a detailed, comprehensive description of the
intended purpose, functionality, performance, and interfaces of a software
system. Often considered the cornerstone of software documentation, it is
primarily used to ensure that the software developer and the customer are on the
same page regarding the software's characteristics, functions, and constraints.

The concept of the SRS document can be traced back to the structured analysis
movement of the late 1970s and early 1980s, particularly drawing from the work
of academics and practitioners such as Edsger W. Dijkstra, Tom DeMarco, and
Larry Constantine, who advocated for a more systematic approach to software
development. Over time, the SRS document has become a standard practice in
the industry and is often seen as an essential part of software development,
irrespective of methodology. [33]

The SRS document typically consists of several key sections:

1. Introduction: An overview of the software's context, including a brief
description, product scope, and its intended audience and use.

2. Functional Requirements: Detailed description of system services,
capabilities, and actions the software must perform under specific
situations.

3. External Interface Requirements: This section outlines the software,
hardware, user, and communication interfaces requirements.

4. Non-Functional Requirements: Covers performance, design
constraints, standards compliance, security, and other quality attributes
that do not pertain to specific functionalities.

5. Use Cases: Detailed accounts of the system’s interactions with users or
other systems.

For this project, the SRS document acted as a crucial guide in the design,
development, and testing of the Dynamo Web Services software. By articulating
the functional and non-functional requirements, external interfaces, and use
cases, we were able to capture and understand the intended behavior of the web
service. This helped shape our approach to ensure alignment with user needs
and expectations. Thus, we used the principles of this document to base the
questions and guide the requirements gathering session, as you will see in the
next section.

22 Design, development and testing of full-stack web service for a trajectory computation algorithm

The SRS document for Dynamo Web Services, structured and organized
according to the IEEE's recommended practice for Software Requirements
Specifications (IEEE Std 830-1998) [34], is available in the annex of this report.

For a more comprehensive understanding of the SRS document and its
application in software development, readers can refer to Karl E. Wiegers's book
"Software Requirements" (Microsoft Press, 2003) [35], and the IEEE's "Guide to
the Software Engineering Body of Knowledge (SWEBOK)" [36].

2.3. Requirements gathering session

To accurately grasp the requirements of the product, specifically for "Dynamo
Web Services," a group session was conducted, unfolding in distinct parts. This
section presents how the session was prepared and the results we obtained from
it:

• Group Interview: This comprises a series of inquiries directed at the
“customer” group with the aim to straightforwardly clarify some of the basic
requirements and functions that will form part of the project. Questions
were formulated with the intention of addressing various points of the
Software Requirement Specification Document (see Section 2.1.1). This
document seeks to clarify what the primary objectives and benefits that
customers will gain from using the website, to whom the product will be
targeted, and to briefly describe what will be the main features and
functions it will fulfill. Some of the questions asked were:

o Who is the intended customer base for the product?
o What benefits will these customers gain by using Dynamo Web?
o What kind of permissions would you like to grant to users?
o What purchase options would you like to provide?
o Do you want to include a section functioning as a tutorial/demo?
o Would you like to upload an example? (Such as turbofan type)
o Will the user be able to upload their own xml file?

• Brainstorming: With this segment, the aim was to delve deeper into the
requirements that might not have been fully accounted for or clearly
defined during the initial interview. It was a dynamic activity in which the
entire group participated, using a whiteboard and post-it notes of various
colors depending on the topic under consideration. The different themes
or "chapters" into which this activity was divided were user and
permissions management, simulations management, inputs and
visualization, outputs and visualization, and documentation/tutorials.

o User and permissions management: This involved functionalities
related to users and their permissions, such as the ability to create
a profile, edit it, delete the account, and purchase "premium"
functionalities (this is where user permissions came into play,

Analysis of requirements 23

determining which functionalities would require payment or
constitute a Premium user), etc.

o Simulation management: This concerned functionalities such as
creating a new simulation, the ability to consult the results of a
previous simulation, etc.

o Inputs and visualization: This involved ideas for different ways of
introducing inputs, for example via forms, directly uploading an xml
file, etc.

o Outputs and visualization: This related to functions concerning the
results and their display, for instance, being able to decide if you
only wanted a specific result, not all the graphs at once.

o Documentation/tutorials: This involved proposing ideas and
deciding whether to include a section on the website dedicated to
providing a brief tutorial on how it works, or information sections of
some kind.

Participants were, firstly thought, divided into pairs, each of which was given a
set amount of time (5-10 minutes) to write down any functionalities they could
think of related to the specific topic, before moving on to the next block. This
process continued until all pairs had cycled through all the blocks. Figures 2.1-
2.3 present an illustrative example of this process:

Fig. 2.3. Whiteboard with the different sections

24 Design, development and testing of full-stack web service for a trajectory computation algorithm

Fig. 2.4. 1st Round example

Fig. 2.5. 2nd Round example

The objective of this activity was to enable a brainstorming session among all
participants, potentially giving rise to functionalities or needs that may not have

Analysis of requirements 25

occurred to us individually. It was about seeing from different perspectives how
the user would like to interact with the website and how the clients/owners of the
website wanted it organized and what functionalities they wished to offer.

After all the post-it note sections were filled out, the group moved on to the next
phase. This consisted of a group discussion aimed at prioritizing the most
important functionalities or characteristics. Consequently, the post-it notes were
reorganized from most to least important.

• Mockup Presentation: With the aim of visually representing the
functionalities mentioned in the previous sections, we showcased
mockups of what the organization of the Dynamo website could potentially
look like (see figures 2.6 -2.7). Additionally, if necessary, we utilized a
whiteboard to create small diagrams of the desired web organization, in
terms of both results visualization and all other aspects (user profile, input
introduction, visualization of previous simulations, etc.).

Fig. 2.6. Mockup 1

26 Design, development and testing of full-stack web service for a trajectory computation algorithm

Fig. 2.7. Mockup 2

2.3.1. Results of the session

Following the session, we were able to compile a comprehensive list of various
requirements that will be considered and prioritized based on their importance.
There were also certain topics that needed further discussion as they were not
completely clarified, such as the decision on whether there would be premium
features, that is, those functions for which one would need to pay or subscribe.

2.3.1.1. Initial interview

Regarding the initial interview, we garnered several key insights:

• There will be free functions.
• The primary language of the website will be English, although the

possibility of translating it into other languages, such as Catalan, was also
considered.

• All users will need to register.
• There will be different types of licenses, for example:

o Providing access for only 200 trajectories.
o Providing access only for simulations with a specific airplane model.
o Licenses with a start and end date.

• Help tools, a Help section, or features like hovering the cursor over the
data input window to provide basic information will be incorporated.

Analysis of requirements 27

• There might be some demonstrations through videos.
• When entering the website to create a new simulation, some default

example data will be selected.
• There will be basic and advanced users.
• Notifications will be sent to users when their simulations are complete (for

example, an email to the user). This option is considered especially for
batch processing or when a user has simulated X number of trajectories.
Users will be able to configure notifications and decide when to receive
them.

• A contact section will be included.
• Users can access previous simulations and, additionally, if they have not

finished configuring something, it can be saved so they can complete it
when they log back in. This feature does not apply to free users.

• WARNINGS: These would serve to double-check user decisions, for
example: "Are you sure you want to conduct this simulation with this
airplane?" before executing the simulation.

During the interview/discussion, various themes and requirements emerged,
which we later sorted into sections and clarified some ideas during the
subsequent part (the brainstorming with post-it notes). Everyone was able to post
their personal ideas on the whiteboard, which we then collectively discussed.

2.3.1.2. Brainstorming

Continuing with the session, regarding the brainstorming and the part of the post
it (see figure 2.8), these are the requirements that we collected:

Fig. 2.8. Whiteboard with post its during brainstorming

28 Design, development and testing of full-stack web service for a trajectory computation algorithm

Inputs:

• A button at the top to switch to META mode (batch simulation mode) ->
Individual simulation, batch simulation.This means that at the top of the
page, users have the option to choose whether they want to perform an
individual simulation, a batch simulation, or an all.ft simulation. Depending
on the chosen option, different features will be displayed on the screen.

• Advanced and Simple User: Advanced or simpler settings. Advanced
options are not initially displayed; they can be found on a separate tab or
by clicking a button.

• Option to upload XML directly (advanced).
• When selecting an airplane model, a picture and relevant information

should be displayed.
• Upload any file (weather data, etc.).
• Allow graphs and weather data from different geographic areas.
• Responsive web: adaptable to smartphones, iPads.
• Edit Route.
• Weather files, pre-loaded.

Outputs:

• Select the desired output. Choose which results we want to obtain.
• Route with Google Earth, API: on the same website with tabs.
• Include the usual graphs. (Option to export data)
• Interactive graphs.
• Interactive graphs that can be moved.
• Map with layers for drawing airways, weather data, sectors.

Simulations:

• Modes: dispatch, in-flight (you must enter the airplane's weight), optimize,
TP (depending on the choice, different inputs are required).

• META mode (list of flights) [configure warnings, e.g., send me an email
every 10k].

• Visual management, errors, fatal, info. Graphically see which errors have
occurred.

• Save simulations.
• List of inputs - "MICRO BATCH". Ability to send a list of inputs to simulate

different simulations at once.
• View the status of simulations.
• Notifications and email when finished.
• Folder explorer with each user's info
• DEBUG MODE depending on the user (to choose the logger level).

Documentation

Analysis of requirements 29

• Completed and explained examples: optimization example, other

examples (to have a default one).
• Contact section.
• Credits section.
• HELP section manual.
• Educational explanations / potential student users -> have a section on

how things are calculated.
• Feedback, bugs, new feature request.

Users

• All users register and login.
• Permissions to see logger level.
• Activate features according to licenses: batch mode, etc.
• Licenses linked to the use of modules: only being able to make 100

trajectories or only being able to use a type of airplane.
• Educational licenses, from one date to another.
• User folder management.
• Certain users can upload their models: APM, weather data (Advanced).
• Video or demo before registration.
• Register and get a free month.

Following the above list of requirements, it's crucial to note that this does not
imply that all these ideas will be implemented as part of the final product. This
session was an open forum for brainstorming, where everyone could share their
ideas to provide a comprehensive vision of possible features. The goal was not
to commit to every proposal, but to stimulate creative thinking and explore a broad
range of possibilities.

It was expected that some of these initial ideas will change over time, reflecting
the dynamic nature of product development. This reflective process was made
explicit during a second session that we held with the entire Dynamo team several
months later.

This follow-up session served as a critical milestone in our project timeline,
providing us with a clear sense of our accomplishments and highlighting the
objectives that still needed to be addressed. Interestingly, this session also
sparked the emergence of new objectives that were not identified in the initial
brainstorming.

Furthermore, it's worth mentioning that our weekly technical meetings have been
instrumental in this ongoing development process. They have not only allowed
for continuous feedback but also provided an opportunity to bring up new
requirements that were not initially considered. Conversely, these discussions
have also led to the reevaluation and sometimes dismissal of some of the initial
requirements.

30 Design, development and testing of full-stack web service for a trajectory computation algorithm

Besides, a dedicated section detailing our results will be provided in the Results
chapter. This section will specifically enumerate the requirements that have
ultimately been met, serving as evidence of what we have achieved throughout
our project development.

2.3.2. Emergence of new requirements

Over the course of a software development project, it is typical for new
requirements to emerge as the project evolves, and the team becomes more
familiar with the user needs and the capabilities of the software. This is a natural
part of the Agile development process, which encourages the ongoing refinement
of requirements based on feedback and insights gained throughout the project.

After several months into the development of Dynamo Web Services, and
following many weekly technical meetings, the entire team convened for a
comprehensive review session. This meeting was designed to assess the
progress made, review the implemented requirements, and discuss any
necessary adjustments to the project's direction. A demonstration of the current
system was conducted to provide a tangible understanding of its functionalities
and interface, and it was during this demo when new requirements started to
surface. These were essentially enhancements and modifications that were not
originally anticipated but were recognized as valuable additions to improve the
system's usability, efficiency, and overall user experience.

The newly identified requirements that emerged from this interactive session
were as follows:

1. Stop Simulation Button: The user's need for control over the simulation
process was underscored with the requirement of a function to interrupt a
running simulation. The ability to halt the computational operation at any
time gives the user additional flexibility and authority over the process,
enhancing the interactive nature of the system.

2. Asynchronous Simulation Execution: Another pivotal requirement that
emerged was the capability for asynchronous execution of simulations. It
became evident that such a feature would significantly augment the
system's computational efficiency and would allow for better utilization of
resources. It was suggested that the system should support running up to
five simulations simultaneously, a number arrived at considering the trade-
off between computational load and performance.

3. Dynamo Execution Option: An interactive element for choosing the
desired execution option for Dynamo - c3po or r2d2 - was identified as a
necessary feature. By providing this choice through a simple user interface
component like a radio button, users can customize their simulations
according to their specific needs without wrestling with complicated
configurations.

4. Mandatory Form Fields: To enhance the robustness of the simulation
configuration process, it was suggested that all form fields should be
marked as required. This feature ensures that simulations are only initiated

Analysis of requirements 31

when all necessary information is provided, thereby avoiding potential
errors or inconsistencies due to incomplete or incorrect data.

5. Email Notifications: The final new requirement identified during this
session was the ability for the system to send out email notifications upon
completion of simulations. This feature, intended to enhance user
convenience, would allow users to be notified as soon as their simulations
are ready, eliminating the need to continuously check the system for
results. Users could choose to enable or disable these notifications as per
their preference via a checkbox in the application.

These emergent requirements underscored the importance of regular review
sessions, as they provided an opportunity to reassess the project's direction
based on practical, hands-on experience with the system. In response to these
newly identified needs, the project team had to adapt their approach and
incorporate these additional features into the development process.

As a closing remark, it is important to note that the aforementioned points
represent proposals for new requirements and do not mean that the final result
of the project has fulfilled 100% of these proposed requirements. The extent to
which these proposed requirements have been met will be evaluated throughout
the course of this document and finally assessed in the Results chapter.

32 Design, development and testing of full-stack web service for a trajectory computation algorithm

CHAPTER 3. BACKEND

This chapter focuses on the design and implementation of the backend
architecture for Dynamo. The backends’ primary role is to manage simulation
creation and configurations, handle user interactions, and maintain a specific file
structure for storage and retrieval of simulations.

3.1. Backend Design

The design of the backend is primarily focused on effectively managing users and
simulations. These two integral aspects of the system function in tandem to
provide the necessary services to the Dynamo tool.

3.1.1. User Management System

The User Management System is designed around a specific structure in the
MongoDB database (see figure 3.1). For each user, the following details are
stored:

• User ID: A unique identifier automatically generated for each user.
• Username: The chosen username of the user, a unique field that

differentiates each user in the system.
• Email: The user's email address for potential communication and

notification purposes.
• Simulations: An array storing the unique identifiers of the simulations

associated with the user, aiding in efficient retrieval and linkage of user-
specific simulations.

• Role: Indicates the user's role within the system. This could be 'user' for a
regular user or 'admin' for an administrator who has additional privileges,
such as managing other users.

• Permissions: Defines the user's system permissions, which could be
'basic_user' or 'advanced_user'. A basic user has access to the standard
functionality of the system, while an advanced user enjoys additional
features such as uploading their own XML configuration files.

• Password: The user's password, securely hashed and stored for ensuring
privacy and security.

The structure of the User Management System allows the application to handle
all user-related actions efficiently and maintains the integrity and security of the
user data.

Backend 33

Fig. 3.1. A user on the database

3.1.2. Simulation Management System

In parallel to user management, the Simulation Management System plays a vital
role in handling the core functionality of the Dynamo tool. Each simulation is
represented in the MongoDB database with the following structure (see figure
3.2):

• Simulation ID: A unique identifier assigned to each simulation.
• Name: The name assigned to the simulation by the user.
• User ID: The unique identifier of the user who initiated the simulation,

linking the simulation to the specific user.
• Status: Indicates the current status of the simulation, which can be

'configuring', 'running', 'completed', etc.
• Creation Date: The timestamp indicating when the simulation was created.
• Description: A brief user-generated description of the simulation.
• Dynamo Version: The version of Dynamo used for the simulation.
• Hachi: The identifier for the specific version of Dynamo's internal solver

used in the simulation.
• Permissions: Any permissions associated with the simulation.
• Parameters: Various parameters essential for the configuration and

execution of the simulation.

The parameters include specific settings and options required by Dynamo for
accurately configuring and running the simulation. These parameters define
output preferences, flight and ATM configurations, weather, and route
configurations, as well as initial conditions. These are captured from user inputs
and are used to generate the necessary XML configuration files that Dynamo
requires to perform its calculations and optimizations.

34 Design, development and testing of full-stack web service for a trajectory computation algorithm

Fig. 3.2. A simulation on the database

3.1.3. File Management System

Our project relies on a well-organized directory structure to manage simulations,
user data, code, configuration files, and necessary utilities for the Dynamo
software (see figure 3.3). The structure of directories and subdirectories is of
utmost importance for efficient data management and easy access to necessary
files. The following provides a detailed description of this hierarchy:

The root directory of our project is called 'web-icarus'. Within web-icarus, there
are several subdirectories designed to separate different types of data and
functionality.

1. The 'admin' directory: Currently, this directory is reserved for future
functionalities. Its primary purpose is to store files or utilities that may be
useful for administrative tasks.

2. The 'cases' directory: This directory is used to store and manage the
simulations created by the users. For each user, a unique directory labeled
as 'USER_{username}' is created. Within this user-specific directory,
individual simulation directories are created with the naming convention

Backend 35

'{creation_date}_{simulation_id}'. Each of these simulation directories
further contain three subdirectories:

o 'config': This subdirectory stores the configuration file for each
specific simulation. The user will modify this file to set up the
simulation as per their requirements.

o 'log': This is where Dynamo's log files generated during a simulation
run are stored.

o 'output': Upon completion of a simulation, Dynamo generates
output files that are stored here.

This ‘cases’ folder also contains the config xml template files that will be
used to create the simulations of these users.

3. The 'code' directory: This directory houses the code repositories for both

the frontend and backend of the application, namely 'kokyaku' for frontend
and 'oshiri' for the backend.

4. The 'config' directory: This directory stores the configuration files for the
backend, frontend, and database. These include details like paths and
ports for connections.

5. The 'data' directory: This directory is used to store data files necessary for

Dynamo's simulations. These can include meteorology files, aircraft APM
files, among others.

6. The 'releases' directory: This directory stores the release files for both

Dynamo and additional utilities for running Dynamo, located in 'common'.

7. Finally, the 'user_data' directory: This directory is specifically for storing
files uploaded by the users and moving the deleted simulations of the
users.

In summary, our directory structure is designed to compartmentalize different
types of data and files required for user simulations and the functioning of our
application, while ensuring easy access and efficient management.

The subsequent sections will dive deeper into how these design decisions were
realized into a fully functional backend system. They will explore the practical
application of the design, discussing how the chosen technologies were
employed to create an efficient backend system.

36 Design, development and testing of full-stack web service for a trajectory computation algorithm

Fig. 3.3. Web Service directory structure

3.2. Backend Implementation

The backend implementation of our project plays a pivotal role in ensuring
efficient management of user data and simulations, smooth communication
between the frontend and the database, and proper functioning of the Dynamo
software. The backend of our system was developed using Python, leveraging
the capabilities of Flask as a web framework and PyMongo as a MongoDB driver.

In essence, our backend serves as a bridge that connects the user interface with
the MongoDB database and the Dynamo software. It processes requests from
the frontend, retrieves or modifies data in the database as needed, and manages
the simulations based on user actions.

Throughout this chapter, we will delve into the specifics of how this backend
system has been built and set into operation. We will break down the
implementation process into several subsections that will cover two primary
components of the backend: the User Management System and the Simulation
Management System. For each of these, we will discuss how we set up the

Backend 37

database models, the endpoint design, and the interaction with the file system
and Dynamo software.

It is important to note that the implementation of the backend goes hand in hand
with the design that we've discussed in the previous chapter. We will see the
practical realization of the design considerations and get to understand how each
element plays an important role in our system.

3.2.1. Code structure

The backend of our project, residing in the WService folder, is divided into three
main directories: Users, Simulations, Utils, and config.py and app.py files (see
figure 3.4). In this section, we will delve into an overview of the content and
functionality of each directory and file.

The WService directory is the core of our backend, where all the main
functionalities reside. This directory contains two main subdirectories, simulation,
and users, and two important Python scripts, app.py and config.py.

• Users: This directory is dedicated to handling user-specific operations. It
contains two Python files: controllers.py and models.py.

o controllers.py is responsible for handling HTTP requests
concerning users. This includes creating new users, checking user
existence, saving user details to the database, and updating user
permissions.

o models.py is where the User class is defined, including its
initialization, methods for hashing passwords, converting users to
dictionaries, and saving them to the MongoDB database.

• Simulations: This directory would be analogous to the user’s directory but
oriented towards handling simulation-specific operations.

• Utils: This directory is where we keep helper functions like
assignCommonRelease, releasesSearcher, which help assign the correct
dynamo release with its corresponding common release, and
replaceXMLkeys, which helps modify XML files.

• app.py: This file is where our Flask application is set up. It imports
necessary modules, enables CORS (Cross-Origin Resource Sharing),
sets up the Flask-RESTX API with our users and simulations namespaces,
configures the JWT (JSON Web Tokens) extension, and sets up the secret
keys necessary for session encryption and token verification.

• config.py: Contains the configuration settings for the Flask application.
This includes secret keys needed for the app, as well as the MongoDB
URI and database name. The secret keys are used to sign and verify
JSON Web Tokens (JWT), encrypt session data, and other sensitive
information. The MongoDB URI and database name are used to connect
to the MongoDB database where our user and simulation data are stored.

38 Design, development and testing of full-stack web service for a trajectory computation algorithm

Fig. 3.4. Backend code directory structure

You can also notice that three scripts have been added (install_backend.sh,
start_backend.sh, stop_backend.sh). These scripts are used to install all
dependencies and execute the project.

In the next sections, we will go into more detail about how these files and
directories work together to implement the backend functionality of our project
(see figure 3.5).

3.2.1.1. Setting up and Configuring Flask

The app.py file serves as the entry point for the Flask application and is
responsible for setting up and coordinating the main elements of the project. Here
is an in-depth walkthrough:

These are the libraries necessary for the functionality of the Flask application.

• flask: This is the main Flask library that provides the core framework for
building web applications in Python. Here it's used to create the
application.

• flask_restx: This Flask extension is used for building RESTful APIs, it
includes tools for easy creation of routes, parsing arguments and
generating API documentation.

Backend 39

• config: This file (usually a config.py at the project's root) contains sensitive
data such as secret keys and database URI. The keys SECRET_KEY and
SECRET_JWT are imported, which will be used later for configuring the
Flask application and the JWT extension.

• flask_cors: This stands for "Cross-Origin Resource Sharing" and allows
requests to be made from different domains. This is necessary in many
modern web applications where the front-end and the back end are hosted
on different servers or domains.

• flask_jwt_extended: This library is used to secure routes and handle user
authentication and authorization using JSON Web Tokens (JWT).

After importing the needed libraries our code continue as follows:

Fig. 3.5. app.py file

The Flask class is instantiated with the name of the module (__name__) passed
as the argument. This object, app, is the core of the Flask application. The CORS
function is used to apply CORS to the application. This allows requests from any
domain, enhancing the flexibility and compatibility of your API.

It is also setting up Flask-restx, An Api object is created from the Flask
application object. This is the core of the Flask-RestX extension, which aids in

40 Design, development and testing of full-stack web service for a trajectory computation algorithm

the building of RESTful APIs. The User and Simulation controllers are imported
and added as namespaces to the Api object. This is useful for grouping related
routes and helps in maintaining a clean and organized codebase.

The application is configured to use JWT for user authentication. The secret key
for JWT is set as SECRET_JWT, which is used to sign and verify tokens. The
SECRET_KEY is set for the Flask application. This key is used by Flask and its
extensions to keep data secure. For example, it is used to sign session cookies
for protection against cookie data tampering.

The last block of code checks if this file is the main program (i.e., it's not being
imported by another Python file). If it is, it starts running the Flask application with
debugging enabled. The debugging mode helps during the development stage
by providing detailed error pages when something goes wrong.

3.2.2. User Management System

The user management system plays a crucial role in our application. It allows for
the registration, authentication, and management of users, alongside providing
the necessary permissions. Users can be registered as either an "admin" or a
"user" depending on their role, with each having different levels of access.

3.2.2.1. Models.py

We now present our models.py file (see figures 3.6-3.9), where the User class
is defined and the interaction with the MongoDB database is handled.

Fig. 3.6. User’s models.py file

The above lines import the required libraries. MongoDB is used for data storage
and bcrypt is used for password hashing to improve security. MONGO_URI and
MONGO_DB are imported from the config.py file, these are the details necessary
to connect with the MongoDB database. The connection to the MongoDB
database is established using the MongoClient object. The MONGO_URI and
MONGO_DB, from the config.py file, are used to specify the database details.

Backend 41

Fig. 3.7. User’s models.py file. Part 2

The User class is defined to represent a user in the system. Each user has a
username, email, password, simulations, role, and permissions. The __init__
method initializes a new instance of the User class. The hashed_password
parameter is used to differentiate between a password that is already hashed and
one that is not. The hash_password method hashes the password using bcrypt,
providing additional security for user data.

The to_dict method converts the User object into a dictionary. This is used when
storing the user in the database or when returning the user's data in a response.

Fig. 3.8. User’s models.py file. Part 3

42 Design, development and testing of full-stack web service for a trajectory computation algorithm

The from_dict method creates a user object from a dictionary. This is used when
retrieving user data from the database. Finally, the save method saves the User
object to the MongoDB database.

Fig. 3.9. User’s models.py file. Part 4

The get method retrieves a user from the database using their _id and the
get_by_username using their username. We have also get_by_email and
get_all users.

Finally, this file also has methods for deleting the user from the database, the
check_password method, which checks whether the provided password
matches the hashed password in the database and the get_user_id method
retrieves the _id of the user from the database, which is used as a unique
identifier for each user.

3.2.2.2. Controllers.py

The controllers in our application handle the interactions between the user and
the system, taking user inputs, manipulating the data as required, and then
sending a response back to the user. For our user management system, the
controller primarily provides the routes for user registration, authentication, and
updates, as well as managing user permissions.

The controllers.py file is where the application routes and their corresponding
handlers are defined. Flask-RESTx, an extension for Flask that adds support for
quickly building REST APIs, is being used to manage these routes and
responses. Here we go through the controllers.py file (see figure 3.10).

Backend 43

Fig. 3.10. User’s controller.py file.

A namespace is created for our user-related routes. This makes it easier to
organize and manage routes and allows for logical grouping of related routes.
The user_model object is defined, which represents the structure of a user. The
fields of the user_model correspond to the properties of our User class.

A parser is created to get the "Authorization" header from incoming requests. This
is used for token-based authentication.

Thereafter, various routes are defined:

1. User Registration: A POST route at the / endpoint is created to handle
user registration. This route receives a request with the new user's details,
creates a User object with those details, and saves the object to the
database. The same endpoint but using a GET route, list all registered
users (see figure 3.11).

Fig. 3.11. User’s controller.py file. Endpoint to create a new user

44 Design, development and testing of full-stack web service for a trajectory computation algorithm

2. Admin Registration: A POST route at the /admin endpoint is used to
create an administrator user.

3. User Permissions Updating: A PUT route at the
/[username]/permissions endpoint is used to update the permissions of a
user.

4. User Detail Retrieval: A GET route at the /[user_id] endpoint is used to
retrieve details of a specific user.

5. User Login: A POST route at the /login endpoint is used to authenticate
a user and provide a token for further access to protected routes (see
figure 3.12).

Fig. 3.12. User’s controller.py file. Login endpoint.

6. User Update & Deletion: PUT and DELETE routes, at the /[username]
endpoint, are used to update and delete a user, respectively.

7. User Authentication: A GET route at the /auth endpoint is used to verify
a user's authentication.

8. Simulation List Retrieval: A GET route at the /[user_id]/simulations
endpoint is used to retrieve a list of a user's simulations.

9. Protected Route Access: A GET route at the /protected endpoint checks
if the current user is authenticated.

Backend 45

3.2.3. Simulation Management System

The Simulation Management System is responsible for handling the creation,
storage, retrieval, and manipulation of simulation data. This part of the system
would manage different simulations that users might create and store in the
system, including their various parameters, statuses, and related information.

3.2.3.1. Models.py

In our simulation management system, each simulation is represented as an
instance of the Simulation class, defined in our models.py file (see figure 3.13).

Fig. 3.13. Simulation’s model.py file.

The Simulation class is initialized with several attributes: name, user_id, status,
created, description, dynamo_version, hachi, permissions, and parameters.
These attributes store information about the simulation.

Similar as we do with the users’ controllers, we have several methods:

• The save method is used to save a simulation to the database. The
insert_one function from PyMongo is used to insert the simulation's
dictionary representation (self.__dict__) into the 'simulations' collection in
the database.

• The from_dict method takes a dictionary and returns a Simulation object
with attributes set based on the dictionary.

• The get method retrieves a simulation from the database using its ID.

• The get_by_user_id method retrieves all simulations for a specific user
from the database using the user's ID.

• The get_all method retrieves all simulations from the database.

46 Design, development and testing of full-stack web service for a trajectory computation algorithm

• The update_status method updates the status (configuring, running,
completed) of a simulation in the database using the simulation's ID and
the new status.

• The update_parameters method updates the parameters of a simulation
in the database. This is thought to be used when a user is configuring a
simulation and modifying some parameters, such as the Flight
configuration, ATM configuration, etc.

• The delete_simulation method deletes a simulation from the database
using the simulation's ID.

• The to_dict method converts a Simulation object to a dictionary.

• The get_simu_id method returns the simulation's ID as a string.

3.2.3.2. Controllers.py

The simulation controller (see figure 3.14) is responsible for managing the
creation, retrieval, and deletion of simulations. More generally, the business logic
associated with simulations is handled here. Each method within this controller
interacts with the database and carries out CRUD (Create, Read, Update, Delete)
operations on simulation data.

Fig. 3.14. Simulation’s controller.py file.

This sets up a namespace for all simulation-related routes under "/simulations".
All routes in this namespace will be prefixed with "/simulations". Simulation and
parameters model definitions are schemas for simulation objects and their
parameters. They are used to validate incoming data when creating a new
simulation.

In the same way as with the user controllers here we also have different
resources to manage the routes.

1. SimulationList resource: This class is used to handle GET requests to
"/simulations". It retrieves and returns all simulations from the MongoDB
database.

Backend 47

2. createSimulation resource (see figure 3.15): This class is used to handle
POST requests to "/simulations/string:user_id/new", where
<string:user_id> is the ID of the user who owns the simulation. It receives
data from the request, validates it against the simulation model, creates a
new Simulation object, and saves it to the database. It also creates
necessary folders and files for the simulation, assigns a dynamo version
and a common release, and finally returns the created simulation's ID. This
folder creation follows the structure defined in section 3.1.3.

Fig.3.15. Create Simulation Resource

48 Design, development and testing of full-stack web service for a trajectory computation algorithm

1. getSimulation resource: This class is used to handle GET requests to
"/simulations/string:user_id/string: simulation_id/get_one", where
<string:user_id> and <string: simulation_id> are the IDs of the user and the
simulation respectively. It retrieves and returns the specified simulation.
2. UserSimulationList resource: This class is used to handle GET requests
to "/simulations/string:user_id/simulations", where <string: user_id> is the ID of
the user. It retrieves and returns all simulations owned by the specified user.
3. deleteSimulation resource: This class is used to handle DELETE
requests to "/simulations/string: user_id/string: simulation_id/string: created",
where <string: user_id>, <string: simulation_id> and <string: created> are
the IDs of the user, the simulation, and the created timestamp respectively. It
moves the simulation's directory to a "deleted_simulations" directory and then
deletes the simulation from the database.
4. SimulationThread class (see figure 3.16): This class inherits from
threading.Thread and overrides its run and stop methods to allow the
simulation to run in a separate process. It uses the subprocess module to
execute the simulation command, and provides a method to terminate the
process. This class is especially handy when simulations take a long time to
complete and you don't want to block the server.

Fig. 3.16. Simulation’s controller.py file. SimulationThread class

5. runSoftware route (see figure 3.17): This endpoint allows the user to run
the Dynamo software. This involves locating the correct Dynamo release,
updating the simulation status to "running", and starting the simulation in a
separate thread. The unique process_id is then returned as a response.

Backend 49

Fig.3.17. Run Software Resource

50 Design, development and testing of full-stack web service for a trajectory computation algorithm

6. stopSoftware route (see figure 3.18): This allows the user to stop a
running Dynamo software process by providing the process_id. It fetches the
corresponding process and stops it, also updating the simulation status back to
"configuring". The process is then removed from the processes dictionary.

Fig. 3.18. Stop Software Resource

7. SimulationStatus route: This route provides the current status of a
simulation.
8. uploadXML route (see figure 3.19): This route lets the user upload an XML
configuration file for the simulation. The file is saved to a specific location.

Fig. 3.19. Upload XML Files Resource

Backend 51

9. uploadMultipleFiles route: This endpoint provides the functionality to
upload multiple files at once. The files are stored in a dedicated directory.
10. replaceXML route: This route is used to replace specific keywords in an
XML configuration file with the user-defined parameters.
11. downloadZIP route: This route enables users to download a ZIP file
containing the results of a simulation. The results are zipped up into a single file
which can be downloaded by the user.
12. getImages route: This endpoint is used to fetch all images resulting from
a simulation. These images are returned as base64-encoded strings that can be
decoded and displayed on the frontend.
13. MeteoFiles route: This route returns a list of all the meteorological files
available in the "meteo" directory.
14. get_config_files route: This route allows users to fetch the configuration
files for a simulation. The filenames are returned as a list.

In summary, this simulation controller provides a comprehensive set of features
to manage and control complex simulations. It provides users with the ability to
initiate and stop simulations, check the status, upload necessary configuration
files, replace parameters, and finally fetch and download the results.

3.3. Swagger

Swagger is a powerful tool for designing, building, documenting, and using
RESTful web services. It can automatically generate an interactive user interface
that represents your application's API documentation. This documentation
includes all information about the routes, methods, parameters, responses, and
other details of your APIs.

Thus, to conclude the backend section, it's important to note that Dynamo Web
Services provides the added convenience of a built-in Swagger UI. This allows
for a streamlined, interactive exploration of the APIs exposed by the backend.

In order to access the swagger, once the application is running locally, simply
navigate to http://localhost:5000/. This will open up the Swagger

interface (see figure 3.20), a window into the inner workings of the application's
APIs, straight from your browser.

52 Design, development and testing of full-stack web service for a trajectory computation algorithm

Fig. 3.20. Swagger Interface

Within the Swagger UI, you will find all the API routes the application has to
offer (see figure 3.21). Each of these routes comes with an explanation of what
they do, their HTTP methods (GET, POST, etc.), and any parameters they might
require. This is particularly useful for understanding the structure and utility of
each API.

Fig. 3.21. Swagger Interface. User Endpoints

Backend 53

What sets Swagger apart is its interactive nature. From the UI, it's possible to
send requests to your APIs directly. Every API route has a 'Try it out' button,
which, when clicked, allows you to provide necessary parameters and make a
request (see figure 3.21). The server's response can be viewed immediately, right
on the same interface.

Fig. 3.21. Swagger Server Response. Code 200.

As you can see in the figure above, Swagger UI also offers insight into the
response formats for each API. This is illustrated through example responses,
providing an understanding of what to expect when integrating the APIs into other
parts of the application or when troubleshooting.

In addition, Swagger UI provides comprehensive definitions for the data models
(see figure 3.22). This greatly helps in understanding the type of data the APIs is
expecting or what they may return.

54 Design, development and testing of full-stack web service for a trajectory computation algorithm

Fig. 3.22. Swagger Simulation Model

To sum it up, the integration of Swagger UI within this backend simplifies the
process of understanding and interacting with the API. This tool serves as a
handy, intuitive interface that aids in effective debugging and testing of the
application. In essence, it acts as a bridge between a person and the application,
making backend API interaction a seamless process.

Frontend 55

CHAPTER 4. Frontend

As we shift focus from the application's backend to its frontend, it is important to
recognize that the visual aspect of a software is just as important to its success
as its underlying functionality. The frontend, or application's "face," is a
representation of the user interface (UI) that users interact with. It is a potent
synthesis of design, functionality, and user experience. The design and
implementation of the frontend are covered in detail in this chapter, where we
also go over some of its key components.

My frontend journey started with a course from Zero to Mastery Academy [‡36]
on Vue 3 and Tailwind CSS, which served as an introduction to this progressive
JavaScript framework. Vue 3 was chosen for its ease of integration, scalability,
and its reactivity system, which all contribute to an efficient development process
and a high-performing end product.

Together, Vue 3 and Tailwind provide the foundation for our frontend, contributing
to an efficient and effective user experience. As such, the frontend was designed
with an emphasis on clarity, simplicity, and ease of use.

Users are greeted by a registration and login screen when they first use the
application. They have access to a dashboard after successful authentication,
where they may keep track of their prior simulations and start new ones. This
user-friendly interface was shaped by a carefully chosen web template, resulting
in a smooth user experience.

In the following sections, we will delve deeper into the specifics of the frontend
design and its implementation, discussing in detail the User Management System
and Simulation Management System.

4.1. Frontend Design

The frontend design forms the critical point of interaction between the user and
the backend processing machinery. It is what the users see, touch, and interact
with directly. Thus, the effectiveness of a frontend design can be gauged by its
ability to provide a seamless, intuitive, and enjoyable user experience.

The process of designing our frontend started with creating wireframes and
design mock-ups (see figures 4.1-4.2) during the requirements gathering phase.
Mockplus RP [‡37], a renowned web-based design tool, was used for this
purpose. This tool is particularly suited for designing interactive prototypes swiftly
and with high precision, helping to capture the application's overall flow and
functionality from the early design stages.

The original idea was to create a simple area where users could sign up and log
in. Users would be welcomed with a comprehensive dashboard after getting
access. The center of user activity would be this dashboard, which was made to
be simple to use and intuitive.

56 Design, development and testing of full-stack web service for a trajectory computation algorithm

Fig. 4.1. Design for the Login page

Fig. 4.2. Design for the initial Dashboard

Frontend 57

The design of the dashboard was rooted in principles of simplicity and ease of
navigation. The aim was to create an intuitive, user-friendly environment where
information could be easily found, and new simulations could be conveniently
started. The layout was thoughtfully designed to display simulations and a
dedicated section for creating new ones.

For the new simulations, we adopted a form-based approach (see figure 4.3).
The form is broken down into different sections, or blocks, each corresponding to
the distinct components of the XML configuration files, as Flight Configuration,
ATM Configuration, and Weather.

Fig. 4.3. Design for the creation of new simulations page

The design idea behind this block-structure was to make the simulation creation
process as streamlined as possible. This breakdown not only mirrored the
structure of our configuration files but also allowed users to focus on one aspect
of the simulation at a time, enhancing the overall user experience.

In essence, the frontend design was focused on a seamless user experience,
utility, and simplicity in addition to aesthetics. We were able to visualize and refine
the design using tools like Mockplus RP, making sure it was user-centered and

58 Design, development and testing of full-stack web service for a trajectory computation algorithm

in line with the general objectives of our application. As we move forward into the
implementation details in the next sections, we'll see how these design
considerations materialized into a functional user interface.

4.2. Frontend Implementation

As we transition from the design phase into the implementation one, we turn our
attention to the means and methods used to bring the design concepts to life.
The frontend implementation is where the aesthetics meet functionality, and our
design concepts materialize into a tangible, interactive platform for our users.

For this project, I used a template provided by JustBoil.me as a foundation.
JustBoil.me is renowned for its high-quality, modern, and responsive templates
that provide an excellent starting point for web projects. The particular template
used for this project came bundled with a host of pre-designed components, such
as buttons and cards, easing the process of development by providing a head
start.

This template is available under the MIT License, a permissive free software
license. This means that it can be freely used, modified, and shared, allowing us
flexibility in tailoring the template to meet our specific requirements and ensuring
that no licensing issues hinder our project's progression.

In the following sections, we will go into more detail about the specifics of how
this template, along with the power of Vue 3 and Tailwind CSS, were used to
build the User Management System and the Simulation Management System.
We will also explore how these tools and resources allowed us to implement the
design considerations discussed earlier, ultimately leading to a frontend that is
both pleasing to the eye and practical to use.

4.2.1. Code structure

The frontend codebase for Dynamo Web Services, residing in the root directory,
is composed of a systematic hierarchy of files and folders (see figure 4.4). This
structured organization facilitates a clear understanding of the system's flow and
contributes to the maintainability and scalability of the software.

At the root level of the frontend directory, known as 'kokyaku', we encounter the
following significant elements:

• node_modules: This directory hosts the Node.js modules - the building
blocks of the application, installed via npm (Node Package Manager).
These are third-party modules that our application depends upon.

• public: This folder contains the static assets that are directly accessible to
the public. These are files that do not undergo any kind of processing and
are served as they are.

Frontend 59

• src: The 'src' or 'source' folder is where the core application logic resides.
It comprises Vue components, routes, stores, and other pertinent code
files that define the application.

At the top level, the project also contains configuration files like '.editorconfig',
'.eslintrc.cjs', 'jsconfig.json', 'postcss.config.js', 'tailwind.config.js', 'vite.config.js',
as well as package handling files such as 'package-lock.json' and 'package.json'.
Additionally, scripts for installing dependencies and executing the frontend
('install_frontend.sh', 'start_frontend.sh', 'stop_frontend.sh') are placed at this
level.

Fig. 4.4. Frontend directory structure

Delving into the 'src' directory, we find several key files and directories (see figure

4.5):

• App.vue: The root Vue component that serves as a starting point for our
application.

• colors.js, config.js, menuAside.js, menuNavBar.js, styles.js: These
files manage various aspects of the application, from colors and styles to
configurations and menu structures.

• main.js: This is the entry point of our Vue application.

Subdirectories within the 'src' directory include:

• components: This folder contains reusable Vue components that make
up the different parts of the application.

• css: All the style sheets related to the application are stored here.
• includes: This folder houses any included modules or libraries.

60 Design, development and testing of full-stack web service for a trajectory computation algorithm

• layouts: This directory contains layout components that structure the
application's UI.

• router: This is where we manage application routes using Vue Router.
• stores: Here we manage the application's state using Vuex.
• views: This folder contains Vue components that correspond to the

different views or pages in the application.

Fig. 4.5. Source directory

This structure forms the backbone of the frontend code for Dynamo Web
Services, providing a comprehensive and organized map of our codebase that
fosters efficient navigation and development.

4.2.2. User Management System

4.2.2.1. User Authentication process

The User Management System is a crucial aspect of any web application
requiring user registration and access control. Especially in the context of an API-
driven application, the implementation of authentication mechanisms is vital to
ensure that sensitive data is protected and that only authorized users have
access to it.

The entire process revolves around the principle of API authentication, which
fundamentally involves verifying the identity of a user or application attempting to
access the API. This typically involves the exchange of credentials, such as a
username and password, for a unique identifier known as an access token. This
token is then used to authorize the user for subsequent interactions with the API.

In our application, we have employed the "pinia" package to manage our state
and "axios" for handling HTTP requests. To maintain persistence across

Frontend 61

sessions, we save the user's information in local storage and the user's token in
cookies (see figures 4.6-4.7). This allows us to authenticate the user even when
the page is refreshed, thus improving the user experience.

Fig. 4.6. Frontend User store

62 Design, development and testing of full-stack web service for a trajectory computation algorithm

Fig. 4.7. Frontend User store. Part 2

The "axios" library simplifies making requests to the API. We create an instance
of axios, userApi, which is configured to communicate with our user management
backend service, as shown by the base URL of
http://localhost:5000/users.

Our user store incorporates several state variables to hold user data, such as
username, email, role, permissions, user_id, and token. Most of this data is stored
in local storage to preserve the user's login state across multiple sessions. The
token, which is received from the server upon successful login, is stored as a
cookie. This token is included in the Authorization header of subsequent axios
requests to the backend.

The actions register and authenticate make POST requests to the backend for
registering a new user and logging in an existing user, respectively. Upon
successful login, the backend returns a JWT token which is stored in a cookie.
This token is also set as the default Authorization header for userApi axios
instance, thus facilitating secure communication with the backend for subsequent
requests.

The signOut action clears all stored user data from local storage and removes
the JWT token from the cookie. Additionally, it removes the Authorization header
from userApi axios instance, effectively logging out the user from the application.

JWT (JSON Web Tokens) tokens are used for authentication and user
management. JWT is a standard for securely transmitting information between
parties as a JSON object. It consists of three parts: a header, a payload, and a
signature.

The header contains information about the type of token and the algorithm used
for signing it. The payload contains the claims, which are statements about an
entity (typically, the user) and additional metadata. The signature is used to verify
the message wasn't changed along the way and, in the case of tokens signed

http://localhost:5000/users

Frontend 63

with a private key, to verify that the sender of the JWT is who it says it is and to
ensure the message wasn't tampered with.

So, here a small schema (see figure 4.8) of how the procedure will be, being the
browser our Vue client:

Fig. 4.8. Browser-Server communication schema

The user only can access our website with a valid token. To verify whether a user
is authenticated correctly, we have a route in the API that can be accessed by
sending a request with the token inserted in the authentication header.

When the token is invalid or has expired (see figure 4.9), this information reaches
the Frontend and then the user will not be able to access any more of the
application's functionalities. If the token has expired, the user should log in again
with their correct credentials to regenerate a valid token. If the token is invalid,
surely the user has entered his credentials incorrectly or does not exist in the
database, therefore he will not be able to access the web page.

64 Design, development and testing of full-stack web service for a trajectory computation algorithm

Fig. 4.9. Response when token is expired

To sum up, our User Management System, developed with the help of modern
libraries such as axios, and pinia, ensures the persistent and secure handling of
user data. Moreover, by efficiently integrating frontend and backend through the
use of JWT tokens, we achieve seamless data transmission, thereby providing a
smooth and secure user experience.

4.1.1.1. Form Handling and User Profile

Moving on to the user interaction part of our application, here we will see form
handling and user profile management.

The forms in our application are not just simple input fields. They are intuitive,
user-friendly, and designed to ensure the integrity of the information provided by
the user. To achieve this, the forms implement various levels of error handling
and data validation. Fields that are required to create a new user or to
authenticate an existing one are marked as 'required', and the form submission
process ensures these fields are filled before proceeding. If a user attempts to
submit a form with empty required fields, an error message will be displayed, and
the form will not be submitted (see figure 4.10). This handling of form errors helps

Frontend 65

guide the users through the process, reduces the likelihood of failed submissions,
and enhances overall user experience.

Fig. 4.10. Register form

Additionally, there are checks in place to prevent the creation of multiple accounts
with the same username. When a user attempts to register with a username that
is already taken, an error message is triggered (see figure 4.11). This preemptive
error management ensures each user has a unique identity in the system and
minimizes potential confusion or data discrepancies down the line.

Fig. 4.11. Login form

A User Profile section is also available to users (see figure 4.12), where they can
view their personal data stored in the application, such as their username and
email. This data is pulled from local storage, where it was securely stored during
the authentication process. The user profile offers a personalized experience for

66 Design, development and testing of full-stack web service for a trajectory computation algorithm

users and promotes transparency by letting them view the data associated with
their account. There, users can also change or update their username or email.

Fig. 4.12. Profile page

By integrating intuitive forms with thorough error handling and a comprehensive
user profile section, our frontend not only ensures smooth user interaction but
also adheres to best practices in user data management. Up next, we will explore
another essential aspect of our frontend application, the Simulation Management
System.

4.2.3. Simulation Management System

4.2.3.1. Code

Given the comprehensive nature of the frontend code for the Simulation
Management System, only a specific segment is highlighted here to explain the
core logic and behavior. This particular segment focuses on how the system
handles the state management of simulation data. The full scope of the frontend
code extends beyond this, encompassing the creation and behavior of various
interface elements such as buttons, tables, images, and more.

This system employs a well-structured state management pattern, leveraging the
capabilities of Vuex - a state management library tailored for Vue.js applications.
Utilizing the defineStore function from Pinia, a store has been created (see figure
4.13) where the state of the simulation form and its configuration data is
maintained.

Frontend 67

Fig. 4.13. Simulation store

This state includes a form object which stores general attributes such as the
simulation's name, description, selected Dynamo version, and other related
properties. Apart from this, there is a formConfig object that encapsulates a more
intricate configuration setup for the simulation. This object is divided into multiple
sections, each detailing a particular aspect of the simulation configuration such
as flight_config for flight specifics, ATM_config for ATM details, and more.

On the Vue component responsible for the creation of the forms (see figure 4.14),
two-way data binding is facilitated between the store state properties and form
input fields using the v-model directive. This ensures a synchronous update
between the Vuex store state and form fields, providing an efficient and consistent
way to track changes. Whenever a field's value is updated, it gets reflected in the
Vuex store state and vice versa. This mechanism, thus, ensures that the state of

68 Design, development and testing of full-stack web service for a trajectory computation algorithm

the simulation form remains synchronized with the Vuex store and can be
accessed uniformly across the application.

Fig. 4.14. Part of the template for the New Simulation Page

4.2.2.2. Simulation interface

The Simulation Management System is a key component of our frontend
application. It provides users with an intuitive and flexible interface to create and
manage their simulations.

Upon navigating to the 'Create Simulation' page, users are presented with an
initial form that gathers basic information about the upcoming simulation (see
figure 4.15). Users are asked to provide a unique name for the simulation, a brief
description, the Dynamo version to be used, and a choice between executing
'c3po' or 'r2d2'.

Once the user clicks the 'Create' button, a series of forms are displayed for
configuring the simulation. The number and type of forms depend on the user's
previous selections. If the user opted for 'r2d2', an additional block appears to
input 'Initial Conditions'. Each form is structured to align with the structure of the
XML configuration files, making the transition between form-based configuration
and file-based configuration smoother for advanced users.

Frontend 69

Fig. 4.15. Initial form configuration

In this setup, users are allowed to save their progress and return to it later. This
allows for flexibility and convenience - users can work on setting up their
simulations in multiple sessions without losing previous configurations. Once all
forms have been filled, the user can then click 'RUN' to execute the simulation
(see figure 4.16).

Fig. 4.16. End of the configuration page

In our user-centric design, we have also incorporated the option for users to
select the outputs they wish to receive in the configuration forms. This ensures

70 Design, development and testing of full-stack web service for a trajectory computation algorithm

that the simulation generates only the desired data, tailored to the specific needs
and preferences of each user. With this feature, users have complete control over
the output of their simulations, ensuring they receive only the most relevant data
for their requirements.

Certainly, an additional feature of the Simulation Management System is the
ability to download the results once the simulation is complete (see figure 4.17).
This feature provides the user with a comprehensive set of data that includes all
the generated files such as XML, CSV, and others, encapsulating all the outputs
from the executed simulation.

Fig. 4.17. Download of the results of a simulation

Also, an integral part of the Simulation Management System is the ability to track
and manage your simulations. After initiating a simulation, or even just configuring
one, you can navigate to the 'Simulations' page. This page provides an overview
of all your simulations and their current state (figure 4.18).

There are three primary status a simulation can be in: ‘completed’, 'configuring',
and 'running'. For simulations marked as 'Complete', you can access the results
by clicking on the eye button. Once in the results page, users can view the PNG
files that represent graphics generated by Dynamo (see figure 4.19). However,
it's important to note that other file types are only accessible when you download
the full results.

Frontend 71

Fig. 4.18. Table with all the simulations of the user

Fig. 4.19. Results page

For those simulations still in the 'Configuring' state, clicking on the pencil button
takes you back to the configuration page. The state of this page reflects the exact
progress you made while setting up the simulation, with all the previously filled
fields preserved. This feature allows you to continue from where you left off,
making the process more user-friendly and efficient.

72 Design, development and testing of full-stack web service for a trajectory computation algorithm

Additionally, an extra feature has been implemented to enhance user experience
and understanding in case of failed simulations. Once a simulation is completed,
if something has gone wrong, users can navigate to the results section. Here,
they will be presented with a comprehensive error message generated by the
Dynamo software (see figure 4.20). This feature ensures transparency, allowing
users to understand the issues that might have occurred during the simulation.

Fig. 4.20. Results page with errors

Our Simulation Management System is designed to make the process of creating
and managing simulations straightforward and user-friendly, regardless of the
user's level of experience with the underlying technologies. This commitment to
usability, combined with flexibility in configuration options, enhances the user
experience, and facilitates efficient use of the simulations.

4.2.2.3. Simulation interface for advanced users

Advanced users have additional options at their disposal. In the initial form when
creating a simulation, they are presented with the option to configure the
simulation via forms or to directly upload their configuration file (see figure 4.21).
This advanced feature provides a higher level of customization, enabling
experienced users to exercise precise control over their simulation setup.

Frontend 73

Fig. 4.21. Initial form configuration for advanced users

On choosing to upload their configuration file, users are directed to a page where
they can upload their config.xml file as well as any other supporting files such as
weather, graph, or restricted sectors files (see figure 4.22). This page represents
a core feature of the interface for advanced users, allowing them to bypass the
standard form-based configuration and use their pre-prepared configuration files
instead.

When the advanced user selects the RUN button in this page, the system will
accept the uploaded files and begin the simulation process. The resulting
workflow ensures a quick and efficient process for experienced users, while still
preserving all the comprehensive features of the Simulation Management
System.

Fig. 4.22. Upload files for advanced users

74 Design, development and testing of full-stack web service for a trajectory computation algorithm

CHAPTER 5. TEST AND RESULTS

This chapter provides a detailed analysis of the final results and performance of
the system, following the completion of both the backend and frontend
development. It outlines the significant outcomes of our development efforts and
offers a thorough review of the finished system, focusing on the user interface
and experience, responsiveness across various devices, and user-customizable
features. Additionally, this chapter discusses the system's alignment with the
initial requirements and highlights some of the challenges and bugs encountered
during the development process.

5.1. System outcomes

In this chapter, we delve into the culmination of all the aforementioned
development efforts and discuss the final outcomes of the system
implementation, while also addressing the system's adaptability for different
devices and screen sizes. In addition, we present the incorporation of user
interface customizations such as a 'dark mode' and explore some of the
challenges and bugs encountered throughout the development process.

Upon successful completion of the frontend and backend development, the
Simulation Management System offers a comprehensive dashboard to facilitate
the creation and management of simulations. The dashboard provides a
seamless and intuitive user experience, empowering users to configure
simulations, execute them, and examine the results all within a unified platform.

As a modern web application, a considerable emphasis has been placed on
ensuring that the interface is responsive, meaning that it adapts to different
screen sizes for optimal viewing and interaction (see figure 5.1). Whether
accessed from a desktop, a tablet, or a mobile device, the Simulation
Management System maintains a user-friendly interface and consistent
functionality across all devices.

Fig. 5.1. Responsive web

Test and results 75

Another aspect of the interface design is the provision for theme customization,
specifically, a 'dark mode' (see figure 5.2). This feature, increasingly popular in
contemporary digital platforms, offers an alternative color scheme that can
improve visual comfort for users in low-light conditions or those who simply prefer
a darker aesthetic for their applications.

Fig. 5.2. Dark mode dashboard

In the development process, we aimed to strike a balance between functional
requirements, user interface design, system responsiveness, and customization
features. The outcomes underline the success of the approach taken, with a
system that is not only efficient and functional but also adaptable and user centric.

5.2. Fulfilled requirements

During the course of this project, the primary focus was to address and fulfill as
many requirements as were initially established during our requirements
gathering sessions. It is crucial to mention that while our ultimate goal was to
meet all of these requirements, some challenges and time constraints inevitably
arose that prevented us from achieving this goal in its entirety. However,
significant strides were made towards satisfying the majority of the stipulated
requirements, resulting in a product that we believe encapsulates the key
objectives initially set out for the Dynamo Web Services platform.

Here is a summary of the requirements fulfilled:

• One of the essential requirements we managed to fulfill was the
authentication process for users. It was crucial for us to ensure that each

76 Design, development and testing of full-stack web service for a trajectory computation algorithm

user had to register and log in to gain access to the system. By doing so,
we managed to establish a secure environment, one that provides a
personalized and unique user experience.

• Another core requirement that was effectively addressed was the ability
for users to create, manage, and save their simulations. This feature was
designed with the goal to allow users to save their progress and resume
their work at their convenience, providing an optimal balance between
flexibility and functionality.

• We have implemented different permissions. For advanced users, the
option to upload files directly was implemented successfully. This function
bypasses the necessity of configuring simulations through form-based
inputs, marking a significant accomplishment towards our aim to cater to
diverse user needs and preferences.

• The Dynamo Web Services platform was also designed to be fully
responsive.

• Is possible for users to select the simulation outputs they desire to view.

• The system is designed to notify users of any errors during simulations
(showing the log errors if something fails), and they can visually track the
status of their simulations, fostering transparency and user control.

At this point, it is important to note that the above statements provide a high-level
summary of what has been achieved. The preceding sections in this document
offer a more in-depth look at how these accomplishments were realized and the
challenges encountered along the way.

While we have managed to fulfill a considerable number of the initial
requirements, there were a few that we could not accomplish within the project
timeframe:

• Notification of completed simulations via email.

• Incorporation of a 'Help' or 'Tutorial' section within the platform

• META/BATCH modes (list of flights)

• Route with Google Earth

• Interactive graphs

• Different types of licenses

• Website available in several languages

Despite the unfulfilled requirements, it is essential to emphasize the current state
of the Dynamo Web Services platform: a functional and an effective tool. The
platform, as it stands, significantly eases user interaction with the Dynamo
software, enabling trajectory simulation management with a high degree of
accessibility and intuitiveness.

While the initial project vision was ambitious, the unmet requirements in no way
undermine the value or usability of the system. The platform is already providing
substantial assistance to its users, thereby fulfilling its core mission.

Test and results 77

5.3. System bugs and issues

The current implementation of the Dynamo Web Services platform, while
operational and efficient, has demonstrated some minor issues during its testing
phase. It is important to note that these detected bugs do not critically impact the
application's performance or its overall usability. Instead, they reflect the natural
process of continuous refinement that is inherent to any software development
project. Below are the most significant bugs or issues identified, alongside
proposed improvements for future development iterations.

1. User Registration Flow: Currently, when a user completes the
registration process, they are not immediately redirected to the dashboard,
but instead, they are taken to the login form. For an enhanced user
experience, we propose an improvement where upon successful
registration, users are directly redirected to the dashboard. This approach
removes the need for users to manually navigate to the login form,
streamlining their onboarding process.

2. New Simulation Page Access: There is a minor navigation issue where
users, while already in the process of creating a new simulation, cannot
refresh the 'New Simulation' page directly from the sidebar to start a
different simulation. To mitigate this, users must navigate to another
section of the platform, such as 'Simulation List', before they can access a
fresh 'New Simulation' page. Future development efforts could focus on
implementing a mechanism that refreshes the 'New Simulation' page
whenever the corresponding sidebar button is clicked, regardless of the
current page.

3. Token Expiration Handling: Lastly, there is an issue related to user token

expiration. When the user's token expires, they are no longer able to
access the data, and tables appear empty. However, they still remain on
the dashboard. For improved user experience and system security, we
suggest redirecting users to the login page or an error page informing them
of the necessity to re-login when their session token expires. This would
provide users with clear information about their session status and the
actions they need to take.

Each of these identified bugs presents opportunities for further refinement and
improvement in the Dynamo Web Services platform. Addressing these issues in
future development cycles will ensure a more seamless and user-friendly platform
and underscores our commitment to continuous improvement and user
satisfaction.

78 Design, development and testing of full-stack web service for a trajectory computation algorithm

CHAPTER 6. FUTURE WORK AND CONCLUSIONS

The conception of the Dynamo Web Services project was motivated by an initial
challenge - the inherent complexity in the usage of the Dynamo software. As an
advanced trajectory computation tool, Dynamo’s intricate operation and user
interface presented a steep learning curve for users, particularly those lacking an
elevated level of technical expertise. Despite its powerful capabilities, Dynamo's
reach was restricted. The software needed a transformation that could enhance
its accessibility and intuitiveness. This need marked the starting point of our
project - to encapsulate the rich functionality of Dynamo within an intuitive web-
based application.

Beyond the software's complexity, a key need that prompted the creation of the
web service was the demand for remote execution of Dynamo. Users needed to
be able to conduct simulations without having to install the software on their own
machines, nor access the source code.

The project's primary objectives were clearly defined to address this challenge.
The first objective was to develop a robust and secure backend server. We
realized that a reliable, efficient, and secure processing environment was
needed, and Python, with its simplicity and expressiveness, seemed to be an
ideal choice. We combined Python with the Flask framework, known for its
flexibility and minimalism, to ensure the backend server was not only powerful,
but also adaptable and lightweight.

Parallel to the backend development, the second objective was to create an
intuitive and user-friendly frontend interface. The frontend interface served as a
medium to translate the complex functionalities of Dynamo into a format that
users can easily understand and interact with. For this crucial task, Vue.js and
Tailwind were chosen. Vue.js offered simplicity and versatility, while Tailwind
supplemented the interface design with its modern aesthetics and
responsiveness, ensuring a pleasant user experience.

Next, we needed to design and implement an effective database structure,
considering the need to store, manage, and retrieve vast amounts of data.
MongoDB, a NoSQL database known for its scalability, flexibility, and
performance advantages, emerged as the suitable choice for our project's
database requirements.

Finally, the establishment of secure authentication and comprehensive error-
handling systems were essential. We aimed to integrate robust security
measures, including user authentication and authorization, to ensure data
protection. A comprehensive error-handling system was also established to
assure the reliability and robustness of the system.

Reflecting on these objectives and the final outcome, it's clear that the project
has been successfully accomplished. The choices of Python and Flask for the
backend, Vue.js and Tailwind for the frontend, and MongoDB for the database

Future work and conclusions 79

proved to be effective, leading to the creation of an operational and full-stack web
application.

Throughout the development process, we adhered to Agile methodologies. This
iterative and user-centric approach ensured regular feedback and swift
adjustments, fostering an environment of continuous delivery of usable software.
This project reiterated the importance of clear communication, precise
requirements gathering, and user feedback, leading to an application that is not
only technically sound but also effective and user-friendly.

In conclusion, the journey from the initial problem to the accomplished objectives
signifies the successful transformation of Dynamo into a more accessible, web-
based application. The project underscored the value of technical growth,
effective development choices, and the application of appropriate methodologies.
The result is Dynamo Web Services, a solution that successfully bridges the gap
between complex trajectory computation and the wide-ranging user base that can
now leverage this tool with ease.

However, the nature of software development is an ongoing evolution towards a
new set of challenges and opportunities. There are always new horizons to
explore, capabilities to enhance, and bugs to resolve. It is in this context that we
consider our future work.

In terms of system enhancements, we have identified a number of valuable
features that would further elevate the user experience. Firstly, the
implementation of various user licenses, such as access for a specific number of
simulations or access restricted to certain types of airplanes, would allow for
greater flexibility and customization of the service. Secondly, the introduction of
the META batch mode, enabling users to manage a list of flights instead of a
single one, has been recognized as a crucial addition. Another significant area of
development lies in the integration of interactive graphs, a feature that has
already sparked interest for future research and it is being developed by other
student in its research project.

Addressing system bugs and improving user experience also form an integral
part of the future work agenda. Streamlining the user registration process, refining
the navigation system within the application, and improving the handling of token
expiration are all areas requiring dedicated attention in the forthcoming phases
of development.

Turning our attention to unfulfilled requirements, we recognize that not all initial
objectives have been fully actualized within the current phase of this project.
While the system is fully operational and provides substantial utility, aspects such
as comprehensive user notifications and advanced file management remain to
be incorporated. These represent areas for ongoing development, contributing to
the continuous evolution and enhancement of the system.

Reflecting on the personal growth and learnings throughout this project, it has
been a journey of significant value. It has offered a platform to apply and hone a
diverse set of skills from working with modern frontend and backend technologies

80 Design, development and testing of full-stack web service for a trajectory computation algorithm

to handling databases and user authentication, managing errors, and
implementing security measures. Beyond the technical learnings, the project also
emphasized the importance of other critical aspects of software development,
such as the role of clear and precise requirements gathering, user feedback,
rigorous testing, and iterative development in delivering an effective and user-
friendly software solution.

In conclusion, the Dynamo Web Services project serves as a testament to the
immense potential of leveraging technology to simplify complex tasks and widen
access to powerful tools. While this project phase has witnessed significant
accomplishments, the path forward presents exciting opportunities for further
growth and enhancements. As the technological landscape continues to evolve,
the 'Dynamo Web Services' project will adapt and grow to better serve its users,
always striving to offer a more accessible, intuitive, and user-friendly platform for
trajectory computation.

BIBLIOGRAPHY

[1] Dalmau, R., Melgosa, M., Vilardaga, S., Prats, X. “A Fast and Flexible
Aircraft Trajectory Predictor and Optimiser for ATM Research
Applications.” International Conference on Research in Air Transportation.
ICRAT 2018 - 8th International Conference for Research in Air
Transportation, 26-29 (2018)

[2] Richardson, L., & Ruby, S., "RESTful Web Services", O'Reilly Media,

Sebastopol, CA, USA (2007).

[3] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., &

Berners-Lee, T., "Hypertext Transfer Protocol -- HTTP/1.1", IETF RFC
2616, The Internet Engineering Task Force (1999).

[4] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., & Yergeau, F.,

"Extensible Markup Language (XML) 1.0", World Wide Web Consortium
Recommendation REC-xml-19980210 (1998)

[5] Klensin, J., "Simple Mail Transfer Protocol", IETF RFC 5321, The Internet

Engineering Task Force (2008).

[6] Postel, J., "Transmission Control Protocol", IETF RFC 793, The Internet

Engineering Task Force (1981).
[7] Shafranovich, Y., "Common Format and MIME Type for Comma-

Separated Values (CSV) Files", IETF RFC 4180, The Internet Engineering
Task Force (2005).

[8] Crockford, D., "The application/json Media Type for JavaScript Object

Notation (JSON)", IETF RFC 4627, The Internet Engineering Task Force
(2006).

[9] Winer, D., "RSS 2.0 Specification", RSS Advisory Board (2002).

[10] Gosling, J., Joy, B., Steele, G., Bracha, G., and Buckley, A., "The Java

Language Specification, Java SE 8 Edition", Addison-Wesley Professional
(2014).

[11] Flanagan, D., "JavaScript: The Definitive Guide: Activate Your Web

Pages", O'Reilly Media (2011).

[12] ISO/IEC 9075-1:2016 Information technology -- Database languages --

SQL -- Part 1: Framework (SQL/Framework), International Organization
for Standardization (2016).

[13] Pokorny, J., "NoSQL databases: a step to database scalability in web

environment", International Journal of Web Information Systems, Vol. 9,
No. 1, pp. 69-82 (2013).

82 Design, development and testing of full-stack web service for a trajectory computation algorithm

[14] Zaharia, M. et al., "Spark: Cluster Computing with Working Sets",
Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud
Computing, pp. 10-10, (2010).

[15] IEEE, "IEEE Recommended Practice for Software Requirements
Specifications - IEEE Std 830-1998", (1998).

[16] Karl E. Wiegers, "Software Requirements", 2nd edition, Microsoft Press,
(2003).

[17] IEEE, "Guide to the Software Engineering Body of Knowledge
(SWEBOK)", (2004).

[18] Flanagan, D. "JavaScript: The Definitive Guide: Master the World's Most-
Used Programming Language", O'Reilly Media, (2020).

[19] Rosen, N. "Pro TypeScript: Application-Scale JavaScript Development",
Apress, (2017).

[20] A. Nuic, D. Poles, and V. Mouillet, “Bada: An advanced aircraft
performance model for present and future atm systems,” Adaptative
Control and Signal Processing, vol. 24, pp. 850–866, 2010.

[21] International Civil Aviation Organization (ICAO), "Manual of the ICAO

Standard Atmosphere: extended to 80 kilometres (262 500 feet)", ICAO
Doc 7488-CD, Third Edition, International Civil Aviation Organization,
Montreal, Canada (1993).

[22] World Meteorological Organization, "The WMO Format for the

Representation of Meteorological Data", Manual on Codes (WMO-No.
306), World Meteorological Organization, Geneva, Switzerland (2015).

[23] "IEEE Guide for Information Technology - System Definition - Concept

of Operations (ConOps) Document," in IEEE Std 1362-1998 , vol., no.,
pp.1-24, 22 Dec. 1998

[24] APACHE Consortium, “Report on the availability of the APACHE

Framework,” Tech. Rep., June 2018, Deliverable D4.1. v01.00.00.

[25] X. Prats, M. Pe ́rez-Batlle, C. Barrado, S. Vilardaga, I. Bas, F. Birling, R.

Verhoeven, and A. Marsman, “Enhancement of a time and energy
management algorithm for continuous descent operations,” in 14th
Aviation Technology, Integration, and Operations (ATIO) Conference,
Atlanta, GA, 2014.

[26] I. Sommerville, "Software Engineering," 10th ed. Boston, MA, USA:
Pearson, (2016).

[27] Larman, C., & Vodde, B. “Scaling Lean & Agile Development: Thinking
and Organizational Tools for Large-Scale Scrum”. Pearson Education,
(2008).

[28] Schwaber, K., & Sutherland, J.”Scrum guide”. Scrum Alliance. (2017).

[29] Anderson, D. J. “Kanban: Successful evolutionary change for your
technology business.” Blue Hole Press. (2010).

[30] Beck, K. “Extreme programming explained: embrace change.” Addison-
wesley professional. (2000).

[31] Poppendieck, M., & Poppendieck, T. “Lean software development: An
agile toolkit.” Addison-Wesley Professional. (2003).

[32] IEEE, "IEEE Guide to Software Requirements Specifications (Std 830-
1998)", IEEE, New York, NY, (1998).

[33] DeMarco, T, "Structured Analysis and System Specification", Yourdon,
(1978).

[34] IEEE, "IEEE Recommended Practice for Software Requirements
Specifications - IEEE Std 830-1998", (1998).

[35] Karl E. Wiegers, "Software Requirements", 2nd edition, Microsoft Press,
(2003).

[36] IEEE, "Guide to the Software Engineering Body of Knowledge
(SWEBOK)", (2004).

USEFUL LINKS

[‡1] World Wide Web Consortium (W3C), "Web Services Architecture", W3C,

Cambridge, MA, USA (2004). [online] Available in: https://www.w3.org/TR/ws-
arch/ [10-10-2022]

[‡2] World Wide Web Consortium (W3C), "SOAP Version 1.2 Part 1: Messaging

Framework (Second Edition)", W3C, Cambridge, MA, USA (2007). [online]
Available in: https://www.w3.org/TR/soap12-part1/ [10-10-2022]

[‡3] W3schools Tutorials, “REST Methods”. [online] Available in:

https://www.w3schools.in/restful-web-services/rest-methods [10-10-2022]

[‡4] SOAP vs REST: Difference Between Web Services [online] Available in:

https://www.guru99.com/comparison-between-web-services.html[10-10-
2022]

https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/soap12-part1/
https://www.w3schools.in/restful-web-services/rest-methods
https://www.guru99.com/comparison-between-web-services.html

84 Design, development and testing of full-stack web service for a trajectory computation algorithm

[‡5] Python Software Foundation, "Python Language Reference, version 3.x".
[online] Available at: https://docs.python.org/3/reference/ [15-10-2022]

[‡6] Applications for Python. [online] Available in:

https://www.python.org/about/apps/ [15-10-2022]

[‡7] What Is Python? [online] Available in: https://aws.amazon.com/es/what-

is/python/ [15-10-2022]

[‡8] Choosing between Django, Flask, and FastAPI [online] Available in:

https://www.section.io/engineering-education/choosing-between-django-
flask-and-fastapi/ [15-10-2022]

[‡9] Django Software Foundation, "Django: The web framework for perfectionists

with deadlines", Django Software Foundation, 2023. [Online]. Available in:
https://www.djangoproject.com/. [15-10-2022]

[‡10] Pallets, "Welcome to Flask — Flask Documentation (1.1.x)", Pallets, 2023.

[Online]. Available: https://flask.palletsprojects.com/en/1.1.x/ [15-10-2022]

[‡11] Starlette, "FastAPI", FastAPI, 2023. [Online]. Available:

https://fastapi.tiangolo.com/ [15-10-2022]

[‡12] 10 principales lenguajes de programación backend [online] Available in:

https://blog.back4app.com/es/lenguajes-de-
programaciobackend/#JavaScript [15-10-2022]

[‡13] PySpark Overview [online] Available in:

https://spark.apache.org/docs/latest/api/python/ [17-10-2022]

[‡14] NoSQL vs SQL [online] Available in: [19-10-2022]
https://pandorafms.com/blog/es/nosql-vs-sql-diferencias-y-cuando-elegir-cada-

una/

[‡15] IBM, "Db2 - Database Software - IBM", IBM, 2023. [Online]. Available:

https://www.ibm.com/products/db2-database [19-10-2022]

[‡16] PostgreSQL Global Development Group, "PostgreSQL: The world's most

advanced open source relational database", PostgreSQL, 2023. [Online].
Available: https://www.postgresql.org/ [19-10-2022]

[‡17] Oracle, "Database Software and Technology | Oracle", Oracle, 2023.

[Online]. Available: https://www.oracle.com/database/ [19-10-2022]

[‡18] Oracle, "MySQL :: The world's most popular open source database",

MySQL, 2023. [Online]. Available: https://www.mysql.com/ [19-10-2022]

[‡19] MongoDB, Inc., "MongoDB: The most popular database for modern apps",

MongoDB, 2023. [Online]. Available: https://www.mongodb.com/ [19-10-
2022]

https://docs.python.org/3/reference/
https://www.python.org/about/apps/
https://aws.amazon.com/es/what-is/python/
https://aws.amazon.com/es/what-is/python/
https://www.section.io/engineering-education/choosing-between-django-flask-and-fastapi/
https://www.section.io/engineering-education/choosing-between-django-flask-and-fastapi/
https://www.djangoproject.com/
https://flask.palletsprojects.com/en/1.1.x/
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://blog.back4app.com/es/lenguajes-de-programaciobackend/#JavaScript
https://blog.back4app.com/es/lenguajes-de-programaciobackend/#JavaScript
https://spark.apache.org/docs/latest/api/python/
https://pandorafms.com/blog/es/nosql-vs-sql-diferencias-y-cuando-elegir-cada-una/
https://pandorafms.com/blog/es/nosql-vs-sql-diferencias-y-cuando-elegir-cada-una/
https://www.ibm.com/products/db2-database
https://www.ibm.com/products/db2-database
https://www.postgresql.org/
https://www.oracle.com/database/
https://www.mysql.com/
https://www.mongodb.com/

[‡20] The Apache Software Foundation, "Apache Cassandra", Apache

Cassandra, 2023. [Online]. Available: https://cassandra.apache.org/ [19-10-
2022]

[‡21] The Apache Software Foundation, "Apache CouchDB", Apache CouchDB,

2023. [Online]. Available: https://couchdb.apache.org/ [19-10-2022]

[‡22] World Wide Web Consortium, "HTML: The Living Standard", W3C, 2023.

[Online]. Available: https://html.spec.whatwg.org/ [22-10-2022]

[‡23] World Wide Web Consortium, "Cascading Style Sheets", W3C, 2023.

[Online]. Available: https://www.w3.org/Style/CSS/ [22-10-2022]

[‡24] React - A JavaScript library for building user interfaces, [Online]. Available:

https://reactjs.org/ [3-11-2022]

[‡25] Vue.js - The Progressive JavaScript Framework, [Online]. Available:

https://vuejs.org/ [3-11-2022]

[‡26] Angular - One framework. Mobile & desktop, [Online]. Available:

https://angular.io/ [3-11-2022]

[‡27] Tailwind CSS - Rapidly build modern websites without ever leaving your

HTML. [Online]. Available: https://tailwindcss.com/ [10-11-2022]

[‡28] Bootstrap - The most popular HTML, CSS, and JS library in the world.

[Online]. Available: https://getbootstrap.com/ [10-11-2022]

[‡29] Semantic UI - User Interface is the language of the web. [Online]. Available:

https://semantic-ui.com/ [10-11-2022]

[‡30] Foundation - The most advanced responsive front-end framework in the

world. [Online]. Available: https://foundation.zurb.com/ [10-11-2022]

[‡31] Bulma: a modern CSS framework based on Flexbox. [Online]. Available:

https://bulma.io/ [10-11-2022]

[‡32] Requirements engineering - Wikipedia [Online] Available in:

https://en.wikipedia.org/wiki/Requirements_engineering [15-11-2022]

[‡33] Obtención de requerimientos. Técnicas y estrategias. [Online] Available:

https://sg.com.mx/revista/17/obtencion-requerimientos-tecnicas-y-estrategia

[15-11-2022]

[‡34] Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W.,

Fowler, M., ... & Kern, J. (2001). Manifesto for Agile Software Development.
[Online]. Available: http://agilemanifesto.org/ [15-11-2022]

https://cassandra.apache.org/
https://couchdb.apache.org/
https://html.spec.whatwg.org/
https://www.w3.org/Style/CSS/
https://reactjs.org/
https://reactjs.org/
https://vuejs.org/
https://vuejs.org/
https://angular.io/
https://angular.io/
https://tailwindcss.com/
https://getbootstrap.com/
https://semantic-ui.com/
https://semantic-ui.com/
https://foundation.zurb.com/
https://bulma.io/
https://bulma.io/
https://en.wikipedia.org/wiki/Requirements_engineering
https://sg.com.mx/revista/17/obtencion-requerimientos-tecnicas-y-estrategia
http://agilemanifesto.org/

86 Design, development and testing of full-stack web service for a trajectory computation algorithm

[‡35] Trello, Inc. (2023). Trello. [Online] Available: https://www.trello.com [15-11-
2022]

[‡36] Complete Vue Developer 2023: Zero to Mastery (Pinia, Vitest). [Online]

Available in: https://zerotomastery.io/courses/learn-vue-js/ [10-10-2022]

[‡37] Mockplus. Design + Collaboration. [Online]. Available in:
https://zerotomastery.io/courses/learn-vue-js/ [25-09-2022]

https://www.trello.com/
https://www.trello.com/
https://zerotomastery.io/courses/learn-vue-js/
https://zerotomastery.io/courses/learn-vue-js/

ANNEXES

TFG TITLE: Design, development and testing of full-stack web service for
a trajectory computation algorithm.

DEGREE: Double Bachelor’s Degree in Aerospace Systems Engineering
and Telematics Engineering

AUTHOR: Maria Cáliz González

DIRECTOR: Xavier Prats Menéndez, David De La Torre Sangrà

DATE: July 6th, 2023

88 Design, development and testing of full-stack web service for a trajectory computation algorithm

ANNEX A

SOFTWARE REQUIREMENT SPECIFICATION (SRS)

DYNAMO WEB SERVICES

INTRODUCTION

1. General description

The software, named "Dynamo Web Services," aims to provide an
extensive and user-friendly web interface for interacting with a complex
trajectory computation software known as Dynamo. This web service
simplifies the intricacies of Dynamo by offering an intuitive interface that
incorporates a variety of functionalities ranging from user authentication
and simulation configuration to data visualization and error handling.

2. Product scope

Dynamo Web Services has a two-fold objective: to augment the
user interaction with Dynamo, and to democratize the usage of Dynamo
to a wider user base by simplifying its complex functionalities. The
software empowers users to configure, execute, and monitor simulations
in Dynamo without delving into the complexities of its XML configuration
process.

3. Product value

Dynamo Web Services brings substantial value to its users. The software
serves as a bridge, making the powerful computation capabilities of
Dynamo accessible to users without the need to comprehend its
intricacies. This opens doors for users to focus more on the results of the
simulations, enhancing productivity and fostering innovation.

4. Intended audience

Dynamo Web Services is designed for a broad spectrum of users. This
ranges from academic researchers and students in the aviation and data
science fields to professionals in the aviation industry. It is particularly
beneficial for those who are keen on utilizing the computational prowess
of Dynamo but are daunted by its complex configuration process.

5. Intended use

Users interact with Dynamo Web Services through a web interface. They
are able to create an account, log in, configure and run simulations,
monitor simulation status, and view the results. Furthermore, users can
manage their simulations, download result files, and have a streamlined,
easy-to-use experience when running complex simulations.

FUNCTIONAL REQUIREMENTS

1. User Authentication: The system should support user registration,
login, and profile management. It should enforce appropriate
access control measures for different types of users (e.g., standard
users and advanced users).

2. Simulation Configuration: Users should be able to configure their
simulations by filling out forms or uploading pre-configured XML
files. Form inputs should be validated to ensure correctness and
completeness.

3. Simulation Execution and Monitoring: The software should allow
users to execute their configured simulations, monitor the status of
running simulations, and stop simulations if necessary.

4. Data Visualization: The software should present simulation results
in a user-friendly manner. This includes tabular displays, charts,
and maps, among other visualizations.

5. File Management: The system should manage the files associated
with each simulation. This includes storing input configuration files,
output result files, and allowing users to download these files.

6. Error Handling: The software should handle errors gracefully and
provide clear and useful error messages to the users.

EXTERNAL INTERFACE REQUIREMENTS

The software leverages Vue.js to create a highly interactive and user-
friendly web interface. The backend is powered by Flask and Python,
which handle incoming requests, manage simulation executions, and
facilitate data exchange with Dynamo. MongoDB is used to persistently
store user data and simulation configurations. The software's external
interface features well-designed screen layouts, clear navigation menus,
and intuitive controls, all built with the Tailwind CSS framework.

90 Design, development and testing of full-stack web service for a trajectory computation algorithm

NON-FUNCTIONAL REQUIREMENTS

1. Security: The system should implement secure authentication
protocols, encrypt sensitive data, and enforce strict access control
measures.

2. Usability: The software should be user-friendly and easy to
navigate, even for users without previous experience with Dynamo
or trajectory computation software.

3. Performance: The system should quickly respond to user
requests, execute simulations efficiently, and present data without
noticeable delays.

4. Scalability: The software should be designed to handle a growing
number of users and simulations without degrading performance.

5. Responsiveness: The user interface should be responsive,
meaning it should provide a seamless experience across different
screen sizes and devices.

USE CASES

• An "End User" interacts with the system by registering an account, logging
in, creating and configuring a simulation, executing the simulation,
monitoring its status, and viewing the results. The user interface guides
the user through each step, facilitating a smooth and intuitive interaction
with the system.

• An "Advanced User" enjoys the privileges of an End User and also has the
ability to upload pre-configured XML files for running simulations.

• An "Admin User" has the authority to manage user accounts, control
system-wide settings, and has full access to all simulations and their
corresponding data.

	INTRODUCTION
	CHAPTER 1. OVERVIEW AND USED TECHNOLOGIES
	1.1. Understanding Web Services
	1.1.1. Types of Web Services
	1.1.1.1. SOAP Web Service
	1.1.1.2. RESTful Web Services

	1.1.2. REST vs SOAP

	1.2. Technology Landscape
	1.2.1. Server-Side Technologies
	1.2.1.1. Backend languages for Web Development
	1.2.1.2. Database Technologies for Web Development
	1.2.1.3. Final decision for server side

	1.2.2. Client-Side Technologies
	1.2.2.1. Frontend languages for Web Development
	1.2.2.2. Final decision for client side

	CHAPTER 2. ANALYSIS OF REQUIREMENTS
	2.1. Dynamo Software
	2.2. Requirements gathering methods
	2.2.1. Software Requirement Specification (SRS) Document

	2.3. Requirements gathering session
	2.3.1. Results of the session
	2.3.1.1. Initial interview
	2.3.1.2. Brainstorming

	2.3.2. Emergence of new requirements

	CHAPTER 3. BACKEND
	3.1. Backend Design
	3.1.1. User Management System
	3.1.2. Simulation Management System
	3.1.3. File Management System

	3.2. Backend Implementation
	3.2.1. Code structure
	3.2.1.1. Setting up and Configuring Flask

	3.2.2. User Management System
	3.2.2.1. Models.py
	3.2.2.2. Controllers.py

	3.2.3. Simulation Management System
	3.2.3.1. Models.py
	3.2.3.2. Controllers.py

	3.3. Swagger

	CHAPTER 4. Frontend
	4.1. Frontend Design
	4.2. Frontend Implementation
	4.2.1. Code structure
	4.2.2. User Management System
	4.2.2.1. User Authentication process
	4.1.1.1. Form Handling and User Profile

	4.2.3. Simulation Management System
	4.2.3.1. Code
	4.2.2.2. Simulation interface
	4.2.2.3. Simulation interface for advanced users

	CHAPTER 5. TEST AND RESULTS
	5.1. System outcomes
	5.2. Fulfilled requirements
	5.3. System bugs and issues

	CHAPTER 6. FUTURE WORK AND CONCLUSIONS
	BIBLIOGRAPHY
	USEFUL LINKS

	ANNEXES
	ANNEX A
	SOFTWARE REQUIREMENT SPECIFICATION (SRS)
	DYNAMO WEB SERVICES

