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In this article, a controller for the non-linear dynamics of a caster wheels vehicle is designed,
using the method of dynamic feedback linearization. Numerical simulations of the performance of
the controller are included.
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The aim of this article is to design a non-linear con-
troller for the dynamical system arising from the equa-
tions of motion of a caster wheels vehicle (given the initial
position of the vehicle and the desired final position).

I. INTRODUCTION

In this first part, the basics of the dynamic feedback
linearization techniques that will be used later will be
reviewed.

In linear control theory, there exists a characteriza-
tion of controllable systems based on the controllability
matrix [1]. However, finding out whether a non-linear
system is controllable and, if it is so, designing a control,
still remains an open problem.

The models considered are expressed in affine form:

ẋ = f(x) +

m∑
k=1

gk(x)uk (1)

where x ∈ Rn is the vector of state variables and uk ∈
R, k = 1, . . .m are the control variables. Consider that
f(x), gk(x) ∈ Rn are known vector functions of the state
variables. The aim consists in choosing the control func-
tions uk(x), k = 1, . . .m such that x goes from the start-
ing state x0 to a certain final state xf . Notice, however,
that in some cases this is not possible.

If the system was single input (m = 1) we would wish
to find a diffeomorphism T : Rn → Rn for the state
variables y = T (x), together with a feedback law ū =
α(x)+β(x)u, such that, in the new state variables y, the
system reads:

ẏ =


0 1 0 0 . . .
0 0 1 0 . . .

...
. . .

0 . . . 0 0 1
0 . . . 0 0 0

 y +


0
0
...
0
1

u (2)
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This is called Brunovsky canonical form. A system is said
to be static feedback linearizable (SFL) if there exists such
a diffeomorphism T (and a feedback law) that turns the
system into (2) [2]. The system (2) is clearly controllable,
since the last state variable is accessible via a control,
and the variable yi has access to the variable yi−1, for
i = 2, . . . , n.
In the multi-input case (m > 1), it is desirable to find

the diffeomorphism T that decouples the system into m
independent subsystems, such that each subsystem looks
like (2) and each state variable is not involved in any
other subsystem but its own.
Since the state variables belong to a differentiable man-

ifold, let us introduce several tools that come in handy.
A distribution D generated by a set of vector

fields {X1, . . . , Xr} is the set of all vector fields over
a manifold that can be generated by linear combi-
natons of {X1, . . . , Xr} using any set of functions
{F1, . . . , Fr} over the manifold as coefficients: D =
{
∑r

i=1 Fi(x)Xi(x), for any set of functions F1, . . . , Fr}.
Also recall the concept of Lie derivative of functions

and vector fields (an introduction to the topic can be
found in [3]). Notice, as a particular case, that the
temporal derivative of a function of the state variables
is equivalent to computing the following Lie derivative:
ḣ(x) = Lfh(x) +

∑m
i=1 Lgih(x)ui.

A distribution D generated by the vector fields
{X1, . . . , Xr} is said to be involutive if [Xi, Xj ] = 0 for
any pair of generating fields, i, j = 1, . . . , r.
All in all, the algorithm we follow to static feedback

linearize systems in affine form is:

1. Compute the following distributions:

• D0 =< g1, g2, . . . , gm >

• D1 =< g1, g2, . . . gm, adfg1, . . . adfgm >

• . . .

• Dk =< g1, g2, . . . , adfg1, . . . adfgm, . . . ,
gm, adkfg1, . . . ad

k
fgm >

up to k ∈ N such that Dk = Rn. Note that the
notation adrfgi stands for the r-th Lie bracket of
the vector fields gi with respect to f , i.e. adrfgi :=

[f, [. . .(r) , [f, gi] . . . ].
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2. Check that all these distributions are involutive.
Otherwise, the system will not linearizable.

3. If di is the dimension of Di, define r0 = d0, r1 =
d1−d0, . . . , rk = dk−dk−1; and let kj , j = 1, . . . ,m
be the number of ri, i = 1, . . . , k that are greater or
equal to j.

4. Findm functions h1, . . . , hm such that dhi ⊥ Dki−2

and such that h1, . . . , hm are differentially indepen-
dent. This step consists in solving a system of par-
tial differential equations.

5. The diffeomorphism is given by the hi, i = 1, . . . ,m
functions and their Lie derivatives:

y =



h1(x)
Lfh1(x)

...

Lk1−1
f h1(x)

h2

...

Lk2−1
f h2(x)

...
hk

...

Lkm−1
f hm(x)



(3)

Moreover, the feedback control law is:

W =


Lk1

f h1(x)

Lk2

f h2(x)
...

Lkm

f hm(x)

+


∑m

i=1 LgiL
k1−1
f h1(x)ui∑m

i=1 LgiL
k2−1
f h2(x)ui

...∑m
i=1 LgiL

km−1
f hm(x)ui

 (4)

As remarked in step 2, a system may not be lineariz-
able through this algorithm. Luckily, there exist tech-
niques to transform a system into an equivalent one that
is static feedback linearizable. The whole process is called
dynamic feedback linearization.
A prolongation of a system like (1) consists in setting

some controls uk as state variables as follows:
For a given control variable ui, add the new state vari-

ables z1, . . . , zr to the system:

z1 = ui

ż1 = z2

ż2 = z3

. . .

żr = v

where v is the new control. This prolongation can be
applied for as many control variables as wished and for
any r ∈ N.

II. KINEMATIC MODELS

The kinematic model of a mobile vehicle with two
caster wheels will be presented in order to study the effect
of adding an offset in one wheel to the control of the sys-
tem. In particular, it will be considered that each wheel
has two rotating axes along the normal vector and par-
allel vector to the ground plane. Coordinates (x, y) will
refer to the connection of the front caster wheel with the
board in the inertial frame, θ to the angular orientation
of the board and θi to the angular orientation of the front
(i = 1) and back (i = 2) caster wheels with respect to
the vehicle. The mobile vehicle is assumed to be a rigid
body, the caster wheels are assumed to not slip on the
ground and the height of the vehicle is assumed to remain
constant. The connections of the caster wheels with the
board are equally spaced to the center of the board by a
distance a. The parameter γ2 is defined as l2 sinβ2, the
distance offset to the back caster wheel, where β2 corre-
sponds to the angle offset of the back caster wheel with
respect to the perpendicular position. Fig. 1 provides a
schematic of the vehicle.

FIG. 1. Schematic of the mobile vehicle with two caster
wheels and offsets.

The dynamic equations of the system are presented in
(5). Two variations of the problem will be studied:

• Model 1: γ2 = 0

• Model 2: γ2 ̸= 0


ẋ
ẏ

θ̇

θ̇1
θ̇2

 =


0 0 cos(θ + θ1)
0 0 sin(θ + θ1)

0 −γ2

γ2+2a cos θ2

sin(θ1−θ2)
γ2+2a cos θ2

1 0 0
0 1 0


u1

u2

uR

 (5)

III. CONTROL DESIGN

In both systems it is easy to check that they are not
SFL since the distribution D0 =< g1, g2, g3 > generated
by the control functions is not involutive, in both cases
because [g1, g3] is not generated by D0. That means that
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it is necessary to find a prolongation to get an SFL sys-
tem.

In both models the prolongation is the same. It is
defined by taking z = uR as a new state variable. Let v
be the control of this new variable. Then the new system
is:



ẋ
ẏ

θ̇

θ̇1
θ̇2
ż

 =


cos(θ + θ1)z
sin(θ + θ1)z
sin(θ1−θ2)
γ2+2a cos θ2

z

0
0
0

+


0 0 0
0 0 0
0 −γ2

γ2+2a cos θ2
0

1 0 0
0 1 0
0 0 1


u1

u2

v


(6)

The corresponding distributions that are obtained
from that system are (using tangent space notation):

D0 =<
∂

∂θ1
,

γ2
γ2 + 2a · cos(θ2)

∂

∂θ
+

∂

∂θ2
,
∂

∂z
>

D1 =< D0,
−γ2 sin(θ + θ1)z

γ2 + 2a · cos(θ2)
∂

∂x
+

γ2 cos(θ + θ1)z

γ2 + 2a · cos(θ2)
∂

∂y
+

+
(γ2 cos(θ1 − θ2) + 2a · cos(θ1))z

(γ2 + 2a · cos(θ2))2
∂

∂θ
, sin(θ + θ1)z

∂

∂x
−

− cos(θ + θ1)z
∂

∂y
− cos(θ1 − θ2)z

γ2 + 2a · cos(θ2)
∂

∂θ
,− cos(θ + θ1)

∂

∂x
−

− sin(θ + θ1)
∂

∂y
− sin(θ1 − θ2)

γ2 + 2a · cos(θ2)
∂

∂θ
>

(7)

Clearly D0 is involutive, because no pair of the gi vec-
tors has a cross dependence between variables. Moreover,
the distribution D0 has constant rank if γ2+2a·cos(θ2) ̸=
0. D1 has 6 components, so we only need to check that
they are independent (that means that they span R6).
The determinant of the vectors is:

det(D1) = z2
2a · cos(θ1)

(γ2 + 2a · cos(θ2))2
(8)

According to equation (8), D1 = R6 if z ̸= 0 (meaning
the control uR ̸= 0), θ1 ̸= ±π/2 (meaning the front wheel
is not perpendicular to the orientation of the vehicle) and
θ2 ̸= arccos(−γ2/2a), which limits the maximum angle
of the back wheel and is also necessary for having the
vectors of both distributions be well defined. In case of
the model 1, with γ2 = 0, the last condition simplifies to
θ2 ̸= ±π/2
Therefore, under the restrictions listed above, with this

prolongation both models are SFL.
The diffeomorphism to obtain the Brunovsky canonical

form will now be constructed. According to the theory
explained above, one can find that r0 = d0 = 3, r1 =
d1 − d0 = 6− 3 = 3 (di = dimension of Di) ⇒ k1 = k2 =
k3 = 2. So it is necessary to find dh1, dh2, dh3 ⊥ D0

A. No offset

In this model, the functions hi are trivially obtained:

h1 = x h2 = y h3 = θ

Computing the temporal derivatives of the hi functions
we get the diffeomorphism:

y =


y1
ẏ1
y2
ẏ2
y3
ẏ3

 =



x
cos(θ + θ1)z

y
sin(θ + θ1)z

θ
sin(θ1−θ2)z
2a·cos(θ2)

 (9)

And the regular feedback law:

W =

w1

w2

w3

 =


− sin(θ+θ1) sin(θ1−θ2)z

2

2a·cos(θ2)
cos(θ+θ1) sin(θ1−θ2)z

2

2a·cos(θ2)
0

+

+

− sin(θ + θ1)z 0 cos(θ + θ1)
cos(θ + θ1)z 0 sin(θ + θ1)
cos(θ1−θ2)z
2a·cos(θ2)

cos(θ1)z
2a·cos2(θ2)

sin(θ1−θ2)
2a·cos(θ2)

u1

u2

v


(10)

Where wi = ÿi is the control in the Brunovsky form.
Then, by inverting the feedback law, it is possible to get
the original controls from the Brunovsky form ones (wi):

v =cos(θ + θ1)w1 + sin(θ + θ1)w2

u1 =− sin(θ + θ1)

z
w1 +

cos(θ + θ1)

z
w2 −

sin(θ1 − θ2)z

2a · cos(θ2)

u2 =
2a · cos2(θ2)
z · cos(θ1)

(
cos(θ1 − θ2)z

2a · cos(θ2)
u1 +

sin(θ1 − θ2)

2a · cos(θ2)
v − w3

)
(11)

Now, we have all the tools to make a MATLAB pro-
gram able to solve the initial and final values problem,
computing the values of the controls along time.

It is only necessary to decide initial and final values of
the state variables in the original system, and then trans-
form these conditions through the diffeomorphism for y.
From these conditions, one can build an interpolating
polynomial, which will be used to build a trajectory for
the y variables in Brunovsky’s form. Then, the new con-
trol laws w are taken to be the ki-th derivatives of these
polynomials. Finally, as mentioned above, the original
controls u1, u2, v can be recovered using the equations in
(11).
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B. Offset in second wheel

In this model, the functions hi can be taken to be:

h1 = x h2 = y

h3 = θ +
γ2√

4a2 − γ2
2

log

√
4a2 − γ2

2 + (2a− γ2) tan(θ2/2)√
4a2 − γ2

2 − (2a− γ2) tan(θ2/2)

Where h3 is a solution of the partial differential equa-
tion:

∂h3

∂θ

(
−γ2

γ2 + 2a · cos(θ2)

)
+

∂h3

∂θ2
= 0

It is easy to check that h3 solves the equation and,
taking into account that 2a is the distance between axis
while γ2 is the offset distance of the caster wheel, it seems
safe to suppose that 2a > γ2, so all the square roots have
real solution.

As before, the new state functions y can be obtained
from the hi and their first derivatives. As h1 and h2 are
the same as in the previous case, y1 and y2 as the same
as before. The only changes are in y3 = h3 (the new one)
and in ẏ3. It can be checked that the derivative reduces
to:

ẏ3 =
sin(θ1 − θ2)z

γ2 + 2a · cos(θ2)

Computing the second derivative as before, one can ob-
tain W for the Brunovsky form system. Then, inverting
the relation, again one can find the original controls in
terms of the controls of the Brunovsky form: v has the
same form as in the previous model (see 11) and the new
controls u1 and u2 are:

u1 = − sin(θ + θ1)

z
w1 +

cos θ + θ1)

z
w2−

−
(

sin(θ1 − θ2)z

γ2 + 2a · cos(θ2)
− γ2

γ2 + 2a · cos(θ2)
u2

)
u2 = ũ2 ·

z · cos(θ1)
2a · cos2(θ2)

· (γ2 + 2a · cos(θ2))2

(γ2 cos(θ1 − θ2) + 2a · cos(θ1))
(12)

Where ũ2 is u2 from model 1 (11). As u2 only depends
on u1 and the state variables, substituting it in u1 one
can obtain u1 as a function of the state variables and the
Brunovsky form controls wi. As before, we have now all
the tools necessary to solve the problem of initial and
final values numerically.

IV. NUMERICAL SIMULATION

The previous controller has been implemented in Mat-
lab. To solve the system of ODE’s, the numerical in-

tegrator ode45 is used. This integrator is based on the
Dormand-Prince method (a combination of 4th and 5th
order Runge-Kutta). The chosen initial and final condi-
tions are

x0

y0
θ0
θ10
θ20
z0

 =


0
0
0
0
0
1

 ,


xf

yf
θf
θ1f
θ2f
zf

 =


5
10
0.9
0.3
0.5
1


together with parameters T = 2 and a = 5. After the
numerical simulation, the error of the final value of the
state variables in 2-norm is 7.83 ·10−4 for the first model
(γ2 = 0) and 1.35 · 10−3 for the second model (γ2 = 1).
Figure 2 shows the time evolution of both systems, which
is quite similar. One can observe that the trajectories are
quite smooth and monotonous (except for the angles of
the wheels θ1, θ2 and the control z = uR). In order to
implement the system in practice, the remaining controls
could be recovered from equations (11) and (12).

FIG. 2. Time-evolution of the model with γ2 = 0 (up) and
γ2 = 1 (down).
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