
Computers & Graphics 114 (2023) 306–315

a

b

O

w
a
t
I
e

t
a
f
r
a
m
o
c
b

s
u
m
a
i
w
t

(

h
0

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Special Section on CEIG 2023

Real-time rendering and physics of complex dynamic terrainsmodeled
as CSG trees of DEMs carvedwith spheres
Jesús Alonso a, Robert Joan-Arinyo b, Antoni Chica b,∗

Edifici ETSEIB, Diagonal 647, 8a planta, 08028 Barcelona, Spain
ViRVIG - Research Center for Visualization, Virtual Reality and Graphics Interaction, UPC - Universitat Politècnica de Catalunya, Room 138 -
mega Building, C. Jordi Girona, 1-3, 08034 Barcelona, Spain

a r t i c l e i n f o

Article history:
Received 20 May 2023
Accepted 14 June 2023
Available online 21 June 2023

Keywords:
Terrain modeling
CSG
Terrain erosion

a b s t r a c t

We present a novel proposal for modeling complex dynamic terrains that offers real-time rendering,
dynamic updates and physical interaction of entities simultaneously. We can capture any feature from
landscapes including tunnels, overhangs and caves, and we can conduct a total destruction of the
terrain. Our approach is based on a Constructive Solid Geometry tree, where a set of spheres are
subtracted from a base Digital Elevation Model. Erosions on terrain are easily and efficiently carried
out with a spherical sculpting tool with pixel-perfect accuracy. Real-time rendering performance is
achieved by applying a one-direction CPU–GPU communication strategy and using the standard depth
and stencil buffer functionalities provided by any graphics processor.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Terrains are essential in many computer graphics applications
here landscapes play a paramount role. Well-known examples
re simulators, games and movies. In games, for example, the
errain tends to be the dominant visual element of the scene.
n general, terrains are composed of a huge amount of data that
ntail expensive rendering and interacting processes.
Terrain modeling and rendering have been widely studied in

he literature, aiming at achieving both real-time performance
nd accuracy. There is a large number of publications concerning,
or example, procedural methods for synthetic terrain generation,
eal-time rendering of terrains, realistic rendering of terrains by
dding features or eroding terrains. Most previously proposed
ethods to model and edit terrains with tunnels, caves and
verhangs only account for scenarios where the terrain does not
hange over time. The most relevant merits of these works will
e detailed in Section 2.
In this work, we report on an algorithm for rendering land-

capes generated by sculpting Digital Elevation Models (DEM)
sing a sphere as a sculpting tool. The DEM maintains an un-
odified version of the terrain surface while spheres dynamically
pplied to the terrain model carvings and erosion. The landscape
s actually modeled as a Constructive Solid Geometry (CSG) tree
here the DEM is the deepest node, and the spheres are sub-
ractive nodes. The model easily captures tunnels, overhangs and

∗ Corresponding author.
E-mail addresses: jalonso@cs.upc.edu (J. Alonso), achica@cs.upc.edu

A. Chica).
ttps://doi.org/10.1016/j.cag.2023.06.019
097-8493/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

nc-nd/4.0/).
terrain erosion. The rendering algorithm works on landscapes
with an arbitrary number of spheres, does not require replacing
spheres with polyhedral approximations, and avoids evaluating
the landscape surface. We show how the described approach
performs by applying it to synthetic and real terrain examples.

The paper is organized as follows. We first in Section 2 review
the work related to the problem we are dealing with that has
been described in the literature. Then in Section 3, we define
the geometric model used in our approach. Next, we present our
approach in Section 4, the validity of the model in Section 5, and
the physics system in Section 6. Experimental results are given in
Section 7. Finally, we offer a short discussion in Section 8.

2. Previous work

Noticeable progress has been made toward developing tech-
niques to model terrains with caves and overhangs [1]. However,
when it comes to destruction, erosion or sculpting techniques
that require real-time updating and great accuracy for both ren-
dering and physics collisions, the number of published works is
rather scarce. In what follows we overview those works which
are closely related to the work described here. We group them
according to one of the following topics: (i) DEM and triangulated
irregular networks (TIN) hybrid models, (ii) layered and voxel
models, (iii) L-systems and patterns, (iv) geology applications,
(v) games, (vi) game engine tools and (vii) CSG.

Early works proposed the use of hybrid models by mixing
DEM and TIN. For example, the work in [2] applies non-linear
deformations to an initial heightfield surface to create procedural
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.cag.2023.06.019
https://www.elsevier.com/locate/cag
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2023.06.019&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jalonso@cs.upc.edu
mailto:achica@cs.upc.edu
https://doi.org/10.1016/j.cag.2023.06.019
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

J. Alonso, R. Joan-Arinyo and A. Chica Computers & Graphics 114 (2023) 306–315

l
a
e
I
t
a
t
a

o
b
w
e
b
r
s

m
p
m .
A
c
m
a
i
c
o
t
r
r

t
i
p
d
r
g

i
u
r
m
i
t
s
s
m

c
r
m

g
t
i
a
u
s
H

h
f
c
e

r

a
n
r
T
t
f

T
r
[
s
d
H

m
t
r
t

3

andscapes with overhangs. The work described in [3] describes
data structure that captures the result of applying geotectonic
vents to a given DEM as a set of heightmaps blended with TIN.
n contrast, games simulate caves or tunnels by combining hollow
errains with mesh blended caverns. The main drawback of these
pproaches is that iteratively modifying a 3D irregular triangula-
ion results in unstable meshes. Thus they apply to terrains that
re basically static.
The techniques described in [4,5] model tunnels and terrain

verhangs by applying layered terrains while the work in [6] is
ased on a voxel model. Realistic static terrains can be obtained
ith these techniques and some optimizations can be done by
fficiently storing the data, see for example [7]. However, since
oth real-time updates and accuracy highly depends on the ter-
ain resolution, working with voxel or pseudo-voxel models are
erious drawbacks.
L-systems, grammars and patterns have also been applied to

odel caves. The work in [8] applies 3D models to generate
attern-based caves using predefined pattern images. Caves are
odeled as a combination of two simple independent heightmaps
base heightmap is generated by the grammar and a reflected

opy is used to represent the top part of the cave. Then the final
odel is a partial overlap of the two heightmaps. A method that
pplies L-systems and cellular automata to schematic input maps
s described in [9]. The output is an irregular 3D mesh. In [10]
aves are generated by combining L-systems, metaball carving
f a voxel data model and isosurface extraction. Due to the fact
hat these methods are globally defined, making local changes is
ather difficult. Besides, patterns can be clearly identified in the
enderings.

Literature devoted to capturing changes in geological struc-
ures focuses on the simulation of terrain formations, tecton-
cs, deformation mechanics, and erosion generated by natural
henomena. Thus they do not aim at rendering realistic and
ynamically changing 3D terrains at interactive frame rates. The
ecent work in [11] describes a new method aiming at modeling
eological dynamic behavior rendered in real-time.
Games are computer graphics applications where interaction

s crucial. In general, changes in the scenario are the result of the
ser–game interaction, thus a high frame rate when rendering the
esulting scene is a must, and computations to update the scene
ust be reduced as much as possible. Computation reduction

s achieved in different ways. Games described in [12,13] allow
o destroy objects, vehicles, trees, structures or buildings in the
cene. The terrain model is immutable, and changes on it are
imulated, for example, by texturing [14–16] or displacement
apping [17].
Recent games involving open-world scenarios like [18,19]

ombine DEM and 3D meshes. Heightmaps model the basic ter-
ain while caves and terrain irregularities are modeled with 3D
eshes.
Several different techniques can be found in the published

ames to modify the terrain model. Among them, we find games
hat simulate destruction using additional TIN, games that mod-
fy original DEM and voxel-based models. TIN meshes do not
llow friendly interaction because they are not built over a reg-
lar structure; thus, solving physics and visibility require expen-
ive computing resources. Therefore TIN is rarely used in games.
owever, the game described in [20] models erosion using TIN.
Games described in [21–23] modify terrains by updating the

eight values of a DEM. Clearly, these approaches do not allow
or creating overhangs and tunnels. Trails, footprints or tire tracks
an also be easily associated with DEM using shaders. See for
xample the games in [24–26].
Voxel-based models have been used in a variety of games to
epresent destructible terrain [27]. Still, being memory intensive

307
Table 1
Qualitative assessment of some solid modeling representations abilities to deal
with editing and rendering eroded terrains.

Implicit
solids

CSG DEM Hybrid
DEM+TIN

TIN Voxels Our
approach

Cavities + + – + ++ + ++
Processing – a ++ + – + +
Storage ++ + + + a – +
Scalability + + + – + a +
Updating – + + – + + +
In/Out Test ++ + ++ + – ++ ++
Rendering – – ++ + – + +
Accuracy – + a + ++ – +

(–) Poor, (a) Average, (+) Good, (++), Very good.

limits them to low-resolution or relatively small scenes. Con-
sidering all platform games, voxel-based dynamic terrains and
big landscapes allow interaction only for either low resolutions
[28,29] or the number of voxels to be updated is small [30].
The games [31,32] allow full environment destruction by com-
bining a low-resolution basic terrain and 3D meshes for terrain
irregularities and features that vanish when the terrain is eroded.

Considering game engines, we find tools and plugins that mix
DEM with meshes as for example [33]. Other hybrid solutions
use DEM and voxel-based models as [34]. The solutions [35–37]
offer full environment-destruction possibilities with voxel models
plus GPU-accelerated techniques to smooth and enrich the visual
appearance.

Classical rendering of terrains modeled as CSG trees follows
basically two different strategies. One strategy focuses on extract-
ing a mesh that approximates boundaries [38,39]. These methods
usually apply only to static scenes and are unsuitable for inter-
active editing. Even though there are techniques to efficiently
extract meshes from volumetric data [40], it still is too expen-
sive for large scenes, especially if editing is a requirement. Thus
this research area is out of the scope of our work. Image-based
techniques [41–43] are a widely used technique. This approach is
based on applying multiple-pass techniques and requires two or
more buffers.

Work in [44] describes an approach that renders boolean
combinations of free-form triangulated shapes. The method first
transforms the CGS tree into a data structure called blist that
voids the need for converting the CSG model into a disjunctive
ormal form. Then, primitives in the CSG tree are iteratively
endered until all pixels in the image are successfully classified.
wo GPU buffers are used. One stores the pixel color according
o the current iteration. The second buffer stores the color of the
inal image.

Recent works focus on taking profit from graphic processors.
hey achieve interactive visualization by implementing a GPU
ay-tracing technique. See for example the work in [45,46] or
47] built upon spatial hashing techniques. These approaches
everely depend on the scene’s complexity, the spatial scene
ecomposition and the amount of available local shader memory.
ence, they are not well suited for scenes that change over time.
Table 1 summarizes the abilities of some solid representation

ethods in terms of our main goals. Specifically, we evaluate
he ability to model cavities and tunnels, processing and storage
equirements, scalability, dynamic updates performance, in/out
est, real-time rendering and accuracy.

. The geometric model

We first define the set of points in R3 to be modeled. Let a DEM
be defined within the domain D = [xmin, xmax] × [zmin, zmax]

J. Alonso, R. Joan-Arinyo and A. Chica Computers & Graphics 114 (2023) 306–315
Fig. 1. Algorithm outline. Between points p1 and p2 , qi are the points where visibility status can change.
with an associated height function hDEM :D→ R. The set of points
to be modeled is

T = {(x, y, z)|(x, z) ∈ D and Ymin ≤ y ≤ hDEM (x, z)}

where Ymin is an arbitrary value equal or less than min(hDEM (x, z)).
Notice that this set is bounded, closed, and the boundary, denoted
from now on as δ(DEM), does not self-intersect and is trivially
orientable.

In these conditions, given a terrain as a DEM, we aim at
modeling and rendering terrains with overhangs, tunnels and
surface erosions. These modeling operations can easily be per-
formed by carving the DEM with some carving tool. To capture
this idea, we model an eroded terrain as a CSG tree where the
geometric primitives are the DEM and a sphere as a carving tool.
We first consider spheres of fixed radius. In Section 5 we detail
the changes needed to deal with spheres of variable radius. The
Boolean operator is the difference. The DEM is placed at the tree
deepest. Spheres are placed bottom-up according to increasing
distances to the viewpoint. Spheres at the same distance are
randomly placed within their distance slot.

4. The algorithm

We first give an outline of the algorithm to render the geomet-
ric model. Then we explain how we identify the set of surfels that
must be considered. To end, we describe the rendering process.

4.1. Algorithm outline

Our approach uses rasterization to compute the set of sur-
fels [48] to be rendered. Surfels are classified using the graphics
hardware following the approach described in [44]. Surfel status
is stored as a mask in the stencil buffer in the pixel where the
surfel will be projected. No sampling of surfels is ever stored.

Consider the 2D DEM embedded in a blue skybox depicted
in Fig. 1a where the viewpoint is denoted as o, the current field
of view is Fo and dotted lines are rays that emanate from o and
go through points where visibility changes. Clearly, the visibility
status of surfels can only change at DEM silhouette points within
the field of view, say qi, when the terrain is seen from o. Visible
surfels are shown in bold green points on δ(DEM).

Assume that we place a carving sphere, say S1, such that the
intersection S1∩DEM is not empty. See Fig. 1b. As a result of the
carving, visibility status can change at either terrain silhouette
points or at points where S1 and the DEM intersect within Fo.
These points are p1 and q1 in Fig. 1b thus, since the set of points
S1∩DEM is removed, DEM points on the shortest arc of S1 that
connects p1 and q1, shown in brown, are now visible. The final
set of surfels the visibility status of which must be updated, is
figured out once the set of carving spheres has been considered by
traversing the geometric model tree. Fig. 1c illustrates the results

after applying two spheres.

308
4.2. Front and back spheres

In general, only a part of a carving sphere surface is active
when performing a carving on the convex surface of a DEM. We
generically consider two different parts in a carving sphere: the
front sphere, Sf , and the back sphere, Sb, defined as follows.

As before, o denotes the viewpoint and Fo the field of view. Let
p be a point on the carving sphere S with local normal n⃗p and r⃗p
the ray from o through p. Fig. 2a illustrates these concepts. The
back sphere is defined as the subset of points on S that, by carving,
are candidates to change the visibility status of DEM surfels, that
is

Sb = {p | p ∈ S and r⃗p · n⃗p > 0} ∩ Fo

In Fig. 2a, Sb is the arc in bold of S. Similarly, the front sphere is
defined as the subset of points on S that will never change the
visibility status of any DEM surfel

Sf = {p | p ∈ S and r⃗p · n⃗p < 0} ∩ Fo

Surfels candidates to be updated belong to either the δ(DEM)
or to the new terrain surface generated by the carving of Sb. We
identify them by applying the crossing parity number [49,50].

Notice that we only need to consider rays within the intersec-
tion of the field of view Fo with a cone tangent to Sb and apex o,
depicted in Fig. 2a in yellow. A tighter set of rays will be identified
in Section 4.4.

Let p be a point on Sb and r⃗p the ray through p. First, we
calculate the set of potential surfels generated by r⃗p, that is

Qp = {q|q ∈ r⃗p ∩ δ(DEM) and d(o, q) ≥ d(o, p)}

Then we sort Q according to increasing distances from the view-
point o. Thus p is the first point in Q . Consider the point p on Sb as
depicted in Fig. 2b. Counting the parity crossing number on ray r⃗p
classifies p as laying inside δ(DEM). Thus Sb is carving the terrain
at point p, and the surfel corresponds to new carved surface.

Now consider the point q ∈ Qq and the ray r⃗q. See Fig. 2b.
Parity crossing number on ray r⃗q classifies q as laying outside
δ(DEM). In these conditions, the surfel to be rendered corresponds
to the second point in Qq, that is, a point on δ(DEM). Fig. 2c shows
the set of surfels where the status visibility changes. Surfels on
δ(DEM) that are no longer occluded by the terrain are shown in
green. New surface surfels generated by carving are shown in
brown.

4.3. The stencil buffer

The stencil buffer plays an essential role in our approach,
it is used to store information concerning the status of some
calculations. Three different masks are stored in the stencil buffer.

The first mask, Mwa, stores the surfels under study that will
be modified. The second mask, M , stores for each surfel the
count

J. Alonso, R. Joan-Arinyo and A. Chica Computers & Graphics 114 (2023) 306–315

p
o
a
a
t

4

a
a
u

o
e
p
N
w
t
b
t
c
T
w
I

i
t
⃗

Fig. 2. Only points on the back sphere can generate changes in the visibility status.
a
S
s
t
t

4

s
t
c
e
i
T
a

s
c

t
W
a

c

arity crossing number as a counter modulo 2 for the number
f times its corresponding ray crosses δ(DEM). The third mask is
binary flag that signals whether some ray through the surfel
ssociated with the pixel in the stencil buffer has already been
raced.

.4. The working area

We call the set of surfels whose visibility status will change
s a result of carving the terrain with a single sphere the working
rea. All the pixels from this area and only these pixels will be
pdated once rendering evaluation is carried out.
Figuring out the working area depends on how the viewpoint

is placed concerning both the carving sphere S under consid-
ration and the terrain surface δ(DEM). We only consider three
ossible S/δ(DEM) relative placements of o: out/out, in/out, in/in.
otice that the case out/in where o is outside S and inside δ(DEM)
ould mean that the viewpoint o is completely surrounded by
errain, and nothing could be seen from o even if S carved some
ite of terrain. Fig. 3 illustrates the three cases considered for a 2D
errain. The working area is depicted as an arc labeled wa. All the
alculations described in what follows are performed in the GPU.
he working area is stored in the Mwa mask. To compute Mwa,
e disable the color buffer and set the depth buffer as read-only.

nitially, all the mask Mwa is set to inactive.
Case out/out. We consider first the case where the viewpoint o

s outside of both S and δ(DEM), as illustrated in Fig. 3a for a 2D
errain. Let R denote the set of rays from o such that for all r⃗ ∈ R,
r ∩ Sb ̸= ∅ and r⃗ ∩ δ(DEM) ̸= ∅. Then the working area is the set
of points on Sb defined as

wa = {p ∈ Sb | p = r⃗ ∩ Sb, r⃗ ∈ R}

To reduce as much as possible the need to change the GPU
status, the GPU shall always work on backface culling mode.
Consequently, we keep two instances of the carving sphere. In
one instance, denoted S+, normals point toward the unbounded
space. In the other sphere instance, denoted S−, normals point
toward the bounded space. Then the working area is computed
with the next two steps: (1) Rasterize S+ and for each surfel
s ∈ S+ set Mwa(s) to active. (2) Rasterize S− and for each surfel
s ∈ S−, if Mwa(s) is set to active, then set Mwa(s) to inactive.

Case in/out. Now we consider the case where the viewer is
inside the sphere S and outside δ(DEM), as shown in Fig. 3b.
Notice that in these conditions, there is no need to rasterize the
sphere S+. Thus, we rasterize S− and, for each surfel s, Mwa(s) is
set to active.

Case in/in. When the viewpoint o is inside of both the carving
sphere under consideration S and δ(DEM), we need to distinguish
two different scenarios. If the intersection of S with any previ-
ously considered sphere is empty, the working area is trivially
the back sphere S . See Fig. 3c.
b M

309
Fig. 3. The working area cases denoted by the arc labeled wa.

Consider now the situation depicted in Fig. 3d where S1 and S2
re carving spheres. S2 is the sphere under consideration, while
1 is an already considered one. The viewpoint o is inside of both
pheres as well as inside δ(DEM). However, o is outside the carved
errain; therefore, the visibility must be figured out by applying
he case in/out.

.5. Rendering

Once the working area has been identified and stored in the
tencil buffer, the next step is to render the eroded terrain effec-
ively. The set of potential surfels Qp, defined in Section 4.1, is
omputed by intersecting the ray rp with δ(DEM). We use a strat-
gy in which triangles that model δ(DEM) are sorted according to
ncreasing distances from the point of view, as described in [51].
his technique guarantees that points in Qp will be also sorted
ccording to the same criterion.
The rendering algorithm to subtract a sphere has three major

teps. Assume that the results are stored in the buffer CsZs, which
ontains both the z values in Zs and the color values in Cs.
In the first step, Zs is initialized, assuming that all the surfels in

he working area belong to the new terrain carved by the sphere.
e rasterize S− in the Zs with the z-function set to always as long

s Mwa(s) is active.
In the second step, two actions are carried out. The algorithm

alculates the parity crossing number and stores the result in
(s). Simultaneously, we update C and Z with the first
count s s

J. Alonso, R. Joan-Arinyo and A. Chica Computers & Graphics 114 (2023) 306–315

v
w
a
a
M

v

1
1

t
a
r
d
b
p
w
r
p
t
w
o
o
a
t

5

a
f
c
a
w
o

f

f

s
r
r
e

s
r
S
b

r⃗

isible surface of δ(DEM) through rs. To perform this procedure,
e set the z-function to the greater value, we rasterize δ(DEM),
nd we set up the stencil buffer in such a way that computations
re done in the pixels matching Mwa(s), counting is performed in
count (s), and we only update Cs and Zs once.
To fix those surfels which were wrongly updated in the pre-

ious step, in a third step, S− is rasterized again. Cs and Zs are
updated according to the parity crossing number stored in Mcount
with the surfels of the back sphere.

Algorithm 1 summarizes the procedure to render our model.

Algorithm 1 Rendering model evaluation

1: function Render(model, viewer)
2: T← Sort(model.dem(), viewer)
3: S← Sort(model.spheres(), viewer)
4: initialise CsZs
5: CsZs← Rasterize(T, z-func=LESS)
6: for each s ∈ S do
7: initialise Mwa, Mcount
8: Mwa ← WorkingArea(s, model, viewer)

▷ 1st step: assume complete carving in Zs
9: Zs← Rasterize(sb, z-func=ALWAYS, Mwa)

▷ 2nd step: counting and partial result
0: setup stencil to count parity and to update CsZs once
1: CsZs, Mcount ← Rasterize(T, z-func=GREATER, Mwa)

▷ 3rd step: update if parity test is even
12: CsZs← Rasterize(sb, z-func=ALWAYS, Mcount)
13: end for
14: end function

Fig. 4 shows the concepts introduced in this section using
he initial DEM depicted in image (a) and two eroding spheres
s illustrated in image (b). In the image (c), the pixels in red
epresent the front spheres. In the image (d), the pixels in red
epict the back spheres. The adjacent set of pixels in yellow and
lue color represents the working area of each sphere. The yellow
ixels correspond to the parity crossing test with an odd result,
hile the blue ones to an even result. The last image (e) shows the
esult of the evaluation rendering. Where we have blue pixels, we
lace the surfels from the back spheres with a brown texture. In
he yellow pixels, we place the surfels beyond the back spheres
ith respect to the viewpoint. These surfels are no longer self-
ccluded by the DEM because of the terrain carving. Specifically,
n the left sphere, new surfels from the terrain and the skybox
re now visible while, on the right one, we can see a new part of
he terrain.

. Validity of the model

The key points of our approach are the individual and sorted
pplication of the carving spheres and their contribution to the
inal erosion. As we mentioned, our approach is a CSG model
omposed of the initial terrain and the set of eroding spheres
s primitives. We begin by rendering the initial terrain. Then,
e sort the set of spheres and apply them using the subtraction
peration.
As a sorting criteria, we use the sorting factor f computed as

ollows. Given a viewer O with viewing direction v⃗ and a sphere
with center C and radius r , if O⃗C · v⃗ > 0 then f = |O⃗C | − r ,
= −|O⃗C | − r otherwise. Notice f is a continuous function.
Concerning the erosion of a sphere, we must state that one

phere only deletes material within its volume, and its visible
esult is limited by its working area. The partial contribution
esult from a sphere will be incorrect if and only if a later sphere

rodes them. The sorted application of the spheres guarantees

310
Fig. 4. The rendering evaluation of a DEM with two eroding spheres.

Fig. 5. Interactions between a line of vision with origin O and two spheres S1
and S2 .

properly overwriting these possible wrong partial solutions. That
is, when a sphere is applied, the erosion is correctly computed
but can be eroded with farther erosions.

Next Fig. 5a depicts all possible interactions from a ray of view
with origin O with two overlapping spheres S1 and S2 with center
c1 and c2, same radius and sorting factors f1 and f2, respectively,
uch that f1 < f2, denoted as r⃗i, 1 ≤ i ≤ 5. The green points
efer to the intersections points with S1, and the blue points to
2. For each ray and each sphere, the first intersection points
elong to the front sphere denoted as p1f and p2f , and the second

intersection points belong to the back sphere denoted as p1b and
p2b.

Thus, the five possible lists of intersection points from each
ray, sorted regarding O are [p1f , p1b], [p1f , p2f , p2b, p1b],
[p1f , p2f , p1b, p2b], [p2f , p1f , p1b, p2b], and [p2f , p2b]. The erosion
intervals for cases r⃗1 and r⃗2 are [p1f , p1b] and for cases r⃗4 and

are [p , p]. Therefore in these four situations, the result can
5 2f 2b

J. Alonso, R. Joan-Arinyo and A. Chica Computers & Graphics 114 (2023) 306–315

S
s
w
i
s
f
d

w
t
s
i
p

[

S
a

t
s
i
i
c
T

t
S
a
l
s
n
s
∥

S
t
a

r

d
t

S
q
t
l
e
s

L

i
t
t

Fig. 6. Appearance and correction of the sorting artifact.

be properly computed regardless of the order we apply S1 and
2 due to the fact erosion intervals can be defined by only one
phere. In the case r⃗3 though, sorting spheres is fundamental,
e need to start with S1 and finish with S2. The sorting factor

ntroduced solves this problem. However, when we deal with
pheres of different radii, the sorting factor is not enough. See
or example Fig. 5b and c. In both cases f1 < f2 but they have
ifferent erosion intervals, [p2f , p1b] and [p1f , p2b], respectively.
A new special treatment is needed to adapt the model to deal

ith spheres of variable radius. From now on, the area in which
he pixels are incorrect due to this issue will be referenced as the
orting artifact. First, we define the set of conditions in which it
s possible to generate a sorting artifact. Then, we introduce the
rocedure to address and fix the possible artifacts.
Given a list of sorted spheres with their radius values S =

S1(r1), S2(r2), . . . , Sn(rn)] and the current sphere to be processed
i(ri) ∈ S, 1 < i ≤ n, we say a sorting artifact can be produced
fter applying Si if ∃j, 1 ≤ j < i such Si(ri) ∩ Sj(rj) ̸= 0 and ri < rj.
For convenience, we consider lists of sorted spheres of just

wo intersecting elements. On the one hand, it is not necessary to
tudy spheres which are not overlapping, they do not introduce
nterferences. On the other hand, the way we process spheres,
ncreasingly and individually, allows us to focus the study by
onsidering the current sphere and one previous random sphere.
hus, the list of sorting spheres can be simplified to S = [Sj, Si].
Next Fig. 6 depicts a step to step evaluation of the case of

he image in the previous Fig. 5b. The sorted list of spheres is
= [S1, S2] due to the fact f1 < f2. Image (b) shows the result

fter applying S1 and image (c) after applying S2. The red dashed
ines limit the working areas for each sphere. After these two
teps, we can confirm the existence of a sorting artifact. S1 is
ot eroding as much as it could due to the fact the algorithm
tarted with S1, and there are some rays with origin O where
⃗Op2f ∥ < ∥ ⃗Op1f ∥. At this point, we can check that after applying

2, there was a previous and bigger sphere intersecting with S2,
hat is, S1. Thus, the sorting artifact effectively could appear and
ctually appears.
To fix the sorting artifact, once a sphere Si(ri) is processed, we

epeat the rendering evaluation of all those spheres S (r) that can
j j o

311
Fig. 7. Representation of the data structures of the broad, mid and narrow
phases used to update the physical system model.

create a sorting artifact. That is all spheres Sj such Si(ri)∩Sj(rj) ̸= 0
and ri < rj. Since the sorting artifact is a phenomenon produced
ue to the spatial relationship between two spheres, no matter
he order in which we re-evaluate these Sj spheres. Fig. 6d depicts
the final result once this extra step is carried out.

6. The physics system

Our physical model uses a specific data structure, allowing us
to provide a real-time testing model with broad, mid and narrow
phases. The broad phase uses a quadtree spatial data structure
of AABBs of the initial terrain, that is, the terrain without any
modification. The mid phase maintains a coarse evaluation of the
model. It uses a grid where each element is a run-length encoding
representation of the solid materials within a column XZ of the
terrain. The narrow phase comprises the triangles of the initial
terrain and a graph of spheres where each sphere maintains the
references to those spheres which intersect. Fig. 7 shows for the
specific eroded terrain in the image (a), the broad (b), mid (c) and
narrow (d) data structures used for each phase.

In our approach, we capture the continuous motion of entities
modeled as spheres. Their continuous collisions can be processed
by using as a swept model, the ray defined by two different
positions p1 and p2 of the center of a sphere. We can easily extend
this procedure to a set of points to increase the accuracy of the
collision. In what follows, we will use T as the digital terrain
model and S as the set of the eroding spheres. Fig. 8 depicts two
examples where the swept model defined by segment p1p2 is
crossing T and several spheres.

In the physics evaluation of our model, the resulting collision
point q can belong to a sphere of S or the surface of T . Both
situations are depicted in Fig. 8a and Fig. 8b, respectively. The
list of candidate points LC to be the collision point q is defined
as follows. Let LPT be the sorted list of points resulting from the
intersection between T and p1p2. Let LPS be the sorted list of
points resulting from the intersection between the set of spheres
of S and p1p2. Let LP be the list of points resulting from the union
of LPT and LPS. Points on LP must be kept sorted regarding p1.
ee for example in Fig. 8a we have LP = [q1, q2, . . . , q7]. A point
i ∈ LP is included in LC if and only if it accomplishes one of these
wo statements: (1) If qi ∈ LPT : if p1 is out T we consider qi if its
ocated in an odd position on LPT , otherwise, if it is located in an
ven position. (2) If qi ∈ LPS: let be c the center position of the
phere Si ∈ S such as qi ∈ Si. We consider qi if qic · p1p2 < 0.
The final collision point qi, is the first point from LC such as

either (1) qi ∈ LPT or (2) qi ∈ LPS, and is the farthest point
connected from spheres of S through p1p2 within T . That is, if
Si ∈ S and qi ∈ Si, qi is in T and qi+1 is out Si. See for example in
Fig. 8a, LC = [q2, q4, q5, q7] and the collision point is q5. In Fig. 8b,
C = [q2, q4, q6, q7] and the collision point is q7.
Let w⃗ be the initial direction w⃗ =

−−→p1p2. Once we obtain the
ntersection point q and the unit vector n⃗ of the collision plane,
he new position is updated with q and the new direction v⃗ with
he reflection vector of w⃗ as v⃗ = w⃗ − 2(w⃗ · n⃗)n⃗. By placing the
bject on position q, we use one frame to simulate damping.

J. Alonso, R. Joan-Arinyo and A. Chica Computers & Graphics 114 (2023) 306–315

7

p
s
r
i
h
r
e
u
p

3
g
V
O
d
b
t
a
f

7

m
c
m

Fig. 8. Collision point given by a sphere (a) and by terrain (b).

Fig. 9. Influence of the carving sphere radius on the performance.

. Experimental results

To assess the performance of the model and approach pro-
osed, we have conducted a set of different tests always mea-
uring the performance as the number of frames per second
endered. The tests conducted include: the influence of the carv-
ng sphere radius, the number of carving spheres applied, carving
oles and overhangs on the terrain, carving tunnels, the terrain
esolution, the variable radius performance impact, and dynamic
rosions and physics performance of moving actors. We have
sed a DEM that models Mount Ruapehu and Mount Ngauruhoe,
laced in a volcanic zone in New Zealand.
The experiments have been conducted on a PC AMD Ryzen 7

700X, with 32 GB RAM, featuring an Nvidia Geforce RTX 2070
raphics board with 8 GB. Programs have been developed in
isual Studio under Windows 10. The graphics API used was
penGL, and the freeglut library was used for events and win-
ow management. For all tests a 1024 × 1024 heightfield of 16
its is used unless otherwise specified. This elevation model is
ransformed into a terrain of 1024 units in both the X and Z axis,
nd 256 units in the Y axis. This video [52] captures real-time
ootage of our tests.

.1. Radius of the carving spheres

To assess the effect of the carving sphere radius on the perfor-
ance, we applied two series of 8 tests. Each test included 1000
arving spheres with a constant radius ranging from 2 to 16 units
easured on the terrain scale.
The first series only carved on the terrain surface δ(DEM) while

the second series carved tunnels. To consider the worst scenario,
the view was always zenithal. By doing so, all spheres must be
processed. Performances are collected in Fig. 9. Results for the
case of surface carving are labeled surface and results for tunnel
carving are labeled tunnel. The performance when spheres carve
tunnels is practically doubled. This is due to the big difference in
the number of inner spheres between both scenarios and the fact
that from inner spheres, there is no chance to devise a new visible
part of the terrain. Thus, for these carving spheres, one step of the
algorithm can be avoided. Notice that, in any case, the role played
by the radius of the carving sphere in the performance is almost
negligible.
312
Fig. 10. Rendering performance as a function of the number of carving spheres.

7.2. Number of carving spheres

To study how the number of spheres used to carve holes and
overhangs on δ(DEM) affect the performance, we throw a top–
bottom shower of randomly generated spheres that carved the
terrain surface δ(DEM). The test consisted of throwing a series of
sets of carving spheres with a number of spheres ranging from
one thousand up to ten thousand. The radius of the spheres was
always 8 terrain units.

We considered two different scenarios. In the first one, the
viewer was placed at a fixed zenithal point. In the second, the
viewer moved along an arbitrary path that never collided with
δ(DEM). The performance for the static viewer is shown in the
plot labeled static viewer of Fig. 10. The number of fps for two
thousand carving spheres is 32.2, clearly enough for real-time
interaction.

In the second scenario, we made the viewer smoothly move
along a path over the terrain. The path allowed the viewer to
observe the δ(DEM) by moving it from one terrain corner to
the opposite one while rotating to look in different directions.
The plot labeled dynamic viewer in Fig. 10 collects the measured
number of fps. Here the approach renders 72.7 fps when the
number of carving spheres is two thousand.

The fact that when the viewpoint moves the performance
is higher than when it is at a fixed place can be attributed to
two facts. On the one hand, since the DEM is convex, when the
viewpoint is placed at a fixed zenithal point, all the carvings and
the whole δ(DEM) are visible. So the computing load is maximal.
On the other hand, when the viewpoint moves along a path,
many carvings and parts of the δ(DEM) are eliminated by frustum
culling. Besides, our approach computes from scratch the whole
scene on each frame and does not depend on the viewpoint
placement.

7.3. DEM resolution

The performance of our approach with respect to the DEM
resolution has been assessed applying the test described in Sec-
tion 7.2 but the DEM is now discretized on a 2048 × 2048
regular grid. We only report performances for the worst case
corresponding to the static viewpoint.

Fig. 11 depicts the rendering performance for the two terrain
resolutions, 1024 × 1024 and 2048 × 2048. Notice that the
plots are almost the same. When the number of carving spheres
is two thousand we get 30 fps. When the number of carving
spheres is three thousand, the number of fps is still above 20.
We conclude that the DEM resolution does not have an impact
on the performance of the computations.

7.4. Variable radius performance impact

We tested the impact of variable radius. Specifically, the radii
of the spheres used are defined in the interval [3, 14] in terrain
units. Table 2 shows the results obtained with a number of
spheres ranging from five hundred to three thousand spheres. We

J. Alonso, R. Joan-Arinyo and A. Chica Computers & Graphics 114 (2023) 306–315

d
s
t

Fig. 11. Impact of the DEM resolution on the approach performance for a static
viewpoint.

Fig. 12. Physics performance regarding the number of dynamic carving spheres
and dynamic entities.

Table 2
Variable radius impact on performance.
Spheres FPS

incorrect
FPS
corrected

FPS diff Spheres
re-evaluated

500 129.0 116.0 10.1% 11.5%
1000 64.0 50.0 21.9% 23.2%
1500 44.7 32.6 27.1% 31.8%
2000 33.9 23.0 32.2% 41.4%
2500 27.6 17.7 35.9% 50.5%
3000 23.3 14.0 39.9% 59.7%

only report performances for the worst case corresponding to the
static viewpoint.

As we saw in Section 4, to include spheres of variable ra-
ius involves an extra step in which reprocessing some carving
pheres can be needed. The column labeled as FPS incorrect refers
o the rendering without this step whereas FPS corrected refers to
the complete procedure. This extra step impacts the performance
of the rendering evaluation and the increasing cost is proportional
to the number of spheres intersecting with different radii. As it
can be seen in column Spheres re-evaluated, the more spheres we
add, the more spheres must be processed due to the fact that the
chances and number of intersections increase. Notice that if no
intersections are present, there is no performance impact.

7.5. Dynamic erosions with physical dynamic entities

The next test we have carried out introduces dynamic carv-
ing spheres and dynamic entities on the terrain simultaneously.
Fig. 12 shows the resulting performance obtained. Notice that
all values on X-axis refer to 50% of carving spheres and 50% of
dynamic entities. Specifically, it measures the performance cost
of three curves: the initial cost of terrain rendering with carving
spheres (a), the performance when we incorporate the entities
rendering (b), and the total cost when we also conduct the en-
tities’ physics computation (c). We can observe that rendering
(a) takes most of the computing time. The contribution of the
physical computations in the final frame rate increases linearly
from 1% when there are one thousand spheres to 20% when we
have ten thousand spheres.

7.6. Physical behavior

To end, we have manually designed several scenarios to check
out the correct physical behavior of thousands of bouncings enti-
ties. Next, we present two of them, the TestCave and the TestPaths.
313
Fig. 13. Performance of the TestCave (a) and TestPaths (b) experiments.

Fig. 14. The TestCave (a) and TestPaths (b) experiments.

The first experiment consists of a cave with tunnels and holes
created with 150 carving spheres. In the second experiment, we
used 400 carving spheres to drill different paths. We perform an
exhaustive test using up to 50 thousand physical entities. In both
experiments, the dynamic entities impact the eroded surfaces as
expected. In the experiment TestCave, we are above 30 fps with
30 thousand entities and in the experiment TestPaths with 20
thousand entities. Using 50 thousand moving objects, we obtain
19.0 fps and 15.1 fps, respectively. Fig. 13 depicts the performance
of TestCave and TestPaths. Fig. 14 shows both experiments.

7.7. General modeling

There is nothing essential in the fact that δ(DEM) captures
a terrain’s surface. The approach can be applied to sculpt any
coherent closed triangulation free of self-intersections. Fig. 15
illustrates the results output when the approach is applied to
sculpt a teapot from a raw stock. Image (a) shows a cubic raw
stock modeled as a δ(DEM). Images (b) and (c) show the result of
removing part of the stock. Finally, images (d), (e) and (f) depict
the clean fully sculpted teapot. The graphics user interface we
have developed is experimental and, consequently, offers a small
set of basic sculpting interactions. Hence the teapot has been
sculpted with the help of a simple script that places the carving
spheres in the 3D space. Specifically, the test consists of a cubic

J. Alonso, R. Joan-Arinyo and A. Chica Computers & Graphics 114 (2023) 306–315

t
i
t
e
c
m
s
o

b
s
p
r

t
o
w
B
i
t
o
r
h
i
c
r
T
i
b
h
w
a
s
h
p

t
a
o
i

b

Fig. 15. Teapot sculpted by carving a raw stock with spheres.

DEM of 32 × 32 resolution with 12,539 spheres of fixed radius
performing 7.12 fps. Clearly, lesser spheres with variable radii
could obtain a similar figure featuring a better performance with
an improved user interface.

8. Conclusions

The approach described, where information always flows from
he CPU to the GPU, introduces a way to evaluate CSG expressions
n rendering different from those we have found in the litera-
ure. As a matter of fact, the CSG expression is never explicitly
valuated. Once the viewpoint is fixed, the main idea is, for each
arving sphere, to identify the minimum set of surfels in the 3D
odel, the visibility status of which can change. Partial results are
tored in the buffers of the commodity graphics card available on
ur computer.
No level of detail or any similar acceleration technique has

een applied to the δ(DEM) or the spheres. However, in the worse
cenario where carving takes place on the δ(DEM), the view-
oint is zenithal and the whole terrain is visible, about 30fps are
endered for a number of carving spheres of up to two thousand.

Similar results could be achieved using other techniques at
he cost of a performance hit. Trying to perform the difference
peration on the meshes of the heightfield and the carved spheres
ould have to deal with the robustness problems inherent to
oolean operations. Cherchi et al. [53] propose a robust and
nteractive approach, achieving 25 fps with scenes of 25K total
riangles. This is an improvement over current implementations
f [54], like the one in libigl [55]. Another option would be to use
aytracing to obtain the intervals of each ray intersected by the
eightfield and then subtract the carving spheres to get the first
ntersection. To render the heightfield, we can either raytrace the
orresponding mesh, which is costly, or apply a relief map-based
aymarcher which will lead to artifacts in the rendering process.
evs et al. [56] propose a hybrid approach that accelerates the
ntersection test of a raymarcher while also providing an exact
ilinear patch intersection. They report 33 fps for a 1024 × 1024
eightfield. We expect that adding thousands of carving spheres
ould significantly impact its performance. Even though our
pproach is limited to sphere carving, it achieves real-time on a
cene of 67.823.616 total triangles derived from a 1024 × 1024
eightmap and two thousand carving spheres, providing better
erformance than these alternatives.
Besides the real-time rendering and editing performance ob-

ained in our proposal, we have successfully incorporated the
bility to evaluate the model for physics simultaneously. Tens
f thousands of entities can interact with the model with an
ncreasing cost of up to 20% of the rendering cost.

In future work, we would want to improve the performance
y identifying clusters of spheres that may be rendered on the
314
same step. The idea is to replace each sphere node in the CSG
tree with a cluster of spheres. Then, when considering a cluster,
all the possible sequences of spheres in it are rendered so we
can severely speed up the performance. Preliminary results are
promising, but conceptual aspects concerning how to identify
minimal clusters need to be further elaborated.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data will be made available on request

Acknowledgments

This work has been partially funded by Ministeri de Ciència
i Innovació (MICIN), Agencia Estatal de Investigación (AEI) and
the Fons Europeu de Desenvolupament Regional (FEDER) (project
PID2021-122136OB-C21 funded by MCIN/AEI/10.13039/50110001
1033/FEDER, UE).

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.cag.2023.06.019.

References

[1] Galin E, Guérin E, Peytavie A, Cordonnier G, Cani M-P, Benes B, et al. A
review of digital terrain modeling. In: Computer graphics forum, vol. 38,
no. 2. Wiley Online Library; 2019, p. 553–77.

[2] Gamito M, Musgrave F. Procedural landscapes with overhangs. In: Proc.
10th Portuguese computer graphics meeting. 2001, p. 33–42.

[3] Alonso J, Joan-Arinyo R. The grounded heightmap tree - a new data struc-
ture for terrain representation. In: Proceedings of the third international
conference on computer graphics theory and applications - volume 1:
GRAPP. SciTePress, INSTICC; 2008, p. 80–5.

[4] Benes B, Forsbach R. Layered data representation for visual simulation of
terrain erosion. In: Proceedings of the 17th spring conference on computer
graphics. Washington, DC, USA: IEEE Computer Society; 2001, p. 80–6.

[5] Peytavie A, Galin E, Grosjean J, Merillou S. Arches: a framework for
modeling complex terrains. Comput Graph Forum 2009.

[6] Santamaría-Ibirika A, Cantero X, Salazar M, Devesa J, Santos I, Huerta S,
et al. Procedural approach to volumetric terrain generation. Vis Comput
2014;30(9):997–1007.

[7] Cui J, Chow Y, Zhang M. A voxel-based octree construction approach for
procedural cave generation. Int. J. Comput. Sci. Netw. Secur. 2011;11.

[8] Boggus M, Crawfis R. Procedural creation of 3D solution cave models.
In: Proceedings of the IASTED international conference on modelling and
simulation. 2009.

[9] Antoniuk I, Rokita P. Generation of complex underground systems for
application in computer games with schematic maps and L-systems. In:
Computer vision and graphics. Springer International Publishing; 2016,
p. 3–16.

[10] Mark B, Berechet T, Mahlmann T, Togelius J. Procedural generation of 3D
caves for games on the GPU. In: Foundations of digital games. FDG, 2015.

[11] Cordonnier G, Cani M, Benes B, Braun J, Galin E. Sculpting mountains:
Interactive terrain modeling based on subsurface geology. IEEE Trans Vis
Comput Graphics 2018;24(5):1756–69.

[12] Epic Games, Inc. Fortnite: Battle royale. 2017, Game [PlayStation 4, Xbox
One, Windows, Macintosh] Epic Games, Inc.

[13] EA DICE. Battlefield V. 2018, Game [PlayStation 4, Xbox One, Windows]
Electronic Arts.

[14] Lengyel E. Applying decals to arbitrary surfaces. Game Program. Gems
2001;2:497–509.

[15] Kaneko T, Takahei T, Inami M, Kawakami N, Yanagida Y, Maeda T, et al.
Detailed shape representation with parallax mapping. In: Proceedings of
ICAT, vol. 2001. 2001, p. 205–8.

https://doi.org/10.1016/j.cag.2023.06.019
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb1
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb1
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb1
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb1
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb1
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb2
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb2
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb2
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb3
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb3
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb3
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb3
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb3
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb3
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb3
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb4
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb4
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb4
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb4
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb4
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb5
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb5
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb5
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb6
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb6
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb6
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb6
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb6
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb7
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb7
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb7
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb8
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb8
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb8
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb8
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb8
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb9
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb9
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb9
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb9
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb9
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb9
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb9
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb10
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb10
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb10
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb11
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb11
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb11
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb11
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb11
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb12
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb12
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb12
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb13
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb13
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb13
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb14
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb14
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb14
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb15
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb15
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb15
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb15
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb15

J. Alonso, R. Joan-Arinyo and A. Chica Computers & Graphics 114 (2023) 306–315
[16] Policarpo F, Oliveira MM, Comba JL. Real-time relief mapping on arbitrary
polygonal surfaces. In: Proceedings of the 2005 symposium on interactive
3D graphics and games. 2005, p. 155–62.

[17] Szirmay-Kalos L, Umenhoffer T. Displacement mapping on the GPU-state of
the art. In: Computer graphics forum, vol. 27, no. 6. Wiley Online Library;
2008, p. 1567–92.

[18] BioWare Montréal. Mass effect: Andromeda. 2017, Game [PlayStation 4,
Xbox One, Windows] Electronic Arts, Inc.

[19] Eidos Montréal. Shadow of the tomb raider. 2018, Game [PlayStation 4,
Xbox One, Windows] Square Enix Co., Ltd.

[20] Volition, Inc. Red faction. 2001, Game [PlayStation 2, GameCube, Xbox,
Windows, Macintosh] THQ.

[21] Gabriel Interactive Inc. Construction destruction. 2003, Game [Windows]
ValuSoft Inc.

[22] Day 1 Studios. Fracture. 2008, Game [PlayStation 3, Xbox 360] LucasArts.
[23] WeltenbauerSoftware Entwicklung GmbH. Construction simulator 3 - con-

sole edition. 2020, Game [PlayStation 4, Xbox One] astragon Entertainment
GmbH.

[24] Zagrebelnyj P. Spintires. 2014, Game [Windows] Oovee Game Studios.
[25] Saber Interactive. Mudrunner. 2017, Game [PlayStation 4, Xbox One] Focus

Home Interactive.
[26] Rockstar Studios. Red dead redemption 2. 2018, Game [PlayStation 4, Xbox

One] Rockstar Games.
[27] Rosa M. GPU pro, destructible volumetric terrain. A K Peters/CRC Press;

2010.
[28] Team17. Worms 3D. 2003, Game [PlayStation 2, GameCube, Xbox,

Windows, Macintosh] SEGA.
[29] Mojang. Minecraft. 2011, Game [Windows, Macintosh, Linux] Mojang.
[30] Hello Games. No man’s sky. 2016, Game [PlayStation 4, Windows] Hello

Games.
[31] System Era Softworks. Astroneer. 2019, Game [Xbox One, Windows]

System Era Softworks.
[32] Ghost Ship Games. Deep rock galactic. 2020, Game [Xbox One, Windows]

Coffee Stain Publishing.
[33] Stobierski T. Relief terrain pack 3. 2021, Game Engine Tool [Unity].
[34] Amandine Entertainment. Digger PRO. 2021, Game Engine Tool [Unity].
[35] Amandine Entertainment. Ultimate terrains - Voxel terrain engine. 2019,

Game Engine Tool [Unity].
[36] Careil V. Voxel plugin. 2020, Game Engine Tool [Unreal].
[37] Pahunov D. Voxeland. 2020, Game Engine Tool [Unity].
[38] Hachenberger P, Kettner L, Mehlhorn K. Boolean operations on 3D selective

Nef complexes: Data structure, algorithms, optimized implementation and
experiments. Comput. Geom. 2007;38(1):64–99, Special Issue on CGAL.

[39] Douze M, Franco J, Raffin B. QuickCSG: Fast arbitrary boolean combinations
of N solids. Research report, 2017, arXiv.
315
[40] Ju T, Losasso F, Schaefer S, Warren J. Dual contouring of hermite data.
In: Proceedings of the 29th annual conference on computer graphics and
interactive techniques. 2002, p. 339–46.

[41] Goldfeather J, Molnar S, Turk G, Fuchs H. Near real-time CSG rendering
using normalization and geometric pruning. Tech. rep. TR88-006, The
University of North Carolina at Chapel Hill. Department of Computer
Science; 1988.

[42] Stewart N, Leach G, John S. An improved Z-buffer CSG rendering algo-
rithm. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop
on graphics hardware. New York, NY, USA: ACM; 1998, p. 25–30.

[43] Stewart N, Leach G, John S. Improved CSG rendering using overlap graph
subtraction sequences. In: Proceedings of the 1st international conference
on computer graphics and interactive techniques in Australasia and South
East Asia. New York, NY, USA: ACM; 2003, p. 47–53.

[44] Hable J, Rossignac J. Blister: GPU-based rendering of Boolean combinations
of free-form triangulated shapes. ACM Trans Graph 2005;24(3):1024–31.

[45] Romeiro F, Velho L, De Figueiredo LH. Hardware-assisted rendering of csg
models. In: 2006 19th Brazilian symposium on computer graphics and
image processing. IEEE; 2006, p. 139–46.

[46] Ulyanov D, Bogolepov D, Turlapov V. Interactive vizualization of construc-
tive solid geometry scenes on graphic processors. Program Comput Softw
2017;43(4):258–67.

[47] Zanni C, Claux F, Lefebvre S. HCSG: Hashing for real-time CSG modeling.
Proc ACM Comput Graph Interact Tech 2018;1(1):1–19.

[48] Pfister H, van Baar MZJ, Gross M. Surfels: Surface elements as rendering
primitives. In: Proceedings of the 27th annual conference on computer
graphics and interactive techniques. SIGGRAPH ’00, New York, NY, USA:
ACM Press/Addison-Wesley Publishing Co.; 2000, p. 335–42.

[49] Shimrat M. Algorithm 112: Position of point relative to polygon. Commun
ACM 1962.

[50] Hacker R. Certification of algorithm 112: Position of point relative to
polygon. Commun ACM 1962;5(12):606.

[51] Alonso J, Joan-Arinyo R. Back-to-front ordering of triangles in digital terrain
models over regular grids. J Comput Sci Tech 2018;33(6):1192.

[52] Real-time footage video of our approach. 2023, https://bit.ly/demoCEIG23.
[53] Cherchi G, Pellacini F, Attene M, Livesu M. Interactive and robust mesh

booleans. 2022, arXiv preprint arXiv:2205.14151.
[54] Zhou Q, Grinspun E, Zorin D, Jacobson A. Mesh arrangements for solid

geometry. ACM Trans Graph 2016;35(4):1–15.
[55] Jacobson A, Panozzo D. Libigl: Prototyping geometry processing research

in c++. In: SIGGRAPH Asia 2017 courses. 2017, p. 1–172.
[56] Tevs A, Ihrke I, Seidel H-P. Maximum mipmaps for fast, accurate, and

scalable dynamic height field rendering. In: Proceedings of the 2008
symposium on interactive 3D graphics and games. 2008, p. 183–90.

http://refhub.elsevier.com/S0097-8493(23)00115-2/sb16
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb16
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb16
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb16
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb16
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb17
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb17
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb17
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb17
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb17
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb18
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb18
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb18
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb19
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb19
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb19
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb20
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb20
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb20
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb21
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb21
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb21
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb22
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb23
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb23
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb23
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb23
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb23
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb24
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb25
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb25
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb25
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb26
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb26
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb26
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb27
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb27
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb27
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb28
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb28
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb28
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb29
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb30
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb30
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb30
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb31
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb31
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb31
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb32
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb32
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb32
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb33
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb34
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb35
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb35
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb35
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb36
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb37
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb38
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb38
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb38
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb38
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb38
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb39
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb39
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb39
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb40
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb40
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb40
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb40
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb40
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb41
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb41
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb41
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb41
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb41
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb41
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb41
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb42
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb42
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb42
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb42
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb42
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb43
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb43
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb43
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb43
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb43
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb43
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb43
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb44
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb44
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb44
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb45
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb45
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb45
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb45
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb45
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb46
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb46
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb46
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb46
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb46
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb47
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb47
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb47
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb48
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb48
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb48
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb48
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb48
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb48
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb48
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb49
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb49
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb49
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb50
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb50
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb50
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb51
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb51
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb51
https://bit.ly/demoCEIG23
http://arxiv.org/abs/2205.14151
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb54
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb54
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb54
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb55
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb55
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb55
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb56
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb56
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb56
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb56
http://refhub.elsevier.com/S0097-8493(23)00115-2/sb56

	Real-time rendering and physics of complex dynamic terrains modeled as CSG trees of DEMs carved with spheres
	Introduction
	Previous Work
	The Geometric Model
	The Algorithm
	Algorithm Outline
	Front and Back Spheres
	The Stencil Buffer
	The Working Area
	Rendering

	Validity of the model
	The Physics System
	Experimental Results
	Radius of the Carving Spheres
	Number of Carving Spheres
	DEM Resolution
	Variable radius performance impact
	Dynamic erosions with physical dynamic entities
	Physical behavior
	General Modeling

	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References

