
Coverage control

Marta Arriaza, Francisco del Campo and Carla Lázaro
Physics Engineering Project II

ETSETB- UPC
(Dated: June 4, 2021)

The focus of this project is on optimal coverage of a given geographical area by means of sen-
sors. To this aim, we reproduce a dynamic method to locate the sensors. The implementation is
made by gradient descent-based control algorithms relying upon computational geometry of spatial
structures, in particular, Voronoi diagrams.

I. INTRODUCTION

Motivation: The focus of this project is the design of
control and coordination algorithms for groups of vehi-
cles that perform sensing tasks. We refer to the groups
of vehicles as sensor networks. These networks can per-
form several relevant actions, that are difficult to carry
out for a single sensor, such as search and recovery op-
erations, manipulation in hazardous environments, ex-
ploration, surveillance and environmental monitoring for
pollution detection and estimation.

Sharing information between the vehicles of the
network, provides the ability to adapt the system to
the environment in space and time. To that end, it is
important to design a control and formation architecture.

Problem description: Optimal deployment of a group
of agents within a certain region from a certain initial
position.

In this project, we present and implement a classical
coverage control solution based on the so called Lloyd’s
algorithm; see [4] for a reprint of the original report
and [5, 6] for numerous applications in other techno-
logical areas. Essentially, the idea is that the sensors,
initially located at random positions within the target
region, evolve to final positions that provide an optimal
coverage of the region following a certain control strategy.

Paper organization: Section II provides a theoretical
review of the mathematical concepts that are used in
the implementation of the algorithm. Section III has the
algorithm build up and all the main function codes and
their utility in our algorithm. Finally, section IV includes
several figures that show the simulation results of imple-
menting the algorithm for a random distribution of sen-
sors. The implementation is made varying the density
function, the number of sensors and the polygon geome-
try.

II. LOCATION OPTIMIZATION

Let Q be a convex polygon in R2. We consider a dis-
tribution density function : φ : Q → R+ that repre-
sents the probability that some event take place over Q.
Let P = (p1, .., pn) be the location of n sensors mov-

ing in Q. A partition of Q is a collection of n polygons
W = W1, ...,Wn whose union is Q. The objective is to
minimize the locational optimization function:

H(P,W) =

∞∑
i=1

∫
Wi

f(||q − pi||)φ(q)dq (1)

A. Voronoi Partitions

At fixed sensors location, the optimal partition of Q is
the Voronoi partition V (P) = V1, ..., Vn generated by the
points (p1, p2, ..., pn):

Vi = {q ∈ Q| ||q − pi|| ≤ ||q − pj ||,∀j 6= i} (2)

Since Q is a convex polyhedron in a finite dimensional
Euclidean space, the boundary of each Vi is a convex
polygon.

In what follows, we will write: Hv = H(P, V (P))

B. Centroidal Voronoi Partitions

Some basic quantities associated to a region V ⊂ RN

and a mass density function φ are: the generalized mass
and centroid (center of mass):

MV =

∫
V

φ(q)dq (3)

CV =
1

MV

∫
V

qφ(q)dq, (4)

Lets recall the locational optimization problem (1). It
can be proved [1] that the critical points for Hv are cen-
troids of the Voronoi cells:

CVi
= argminpi

Hv(P)

C. Continuous- time Lloyd descent for coverage
control

The proposed Lloyd algorithm is a gradient descent
flow. Let p(t) ∈ R2 denote the position of the ith ve-
hicle at time t. Assume the sensors location obeys the

2

following behavour:

ṗi(t) = ui (5)

We consider HV a cost function to be minimized and
impose that pi follows a gradient descent,

ui = −k(pi − CVi) (6)

where k is a positive gain and we assume that the parti-
tion V (P) is continuously updated.

The equation (6) induces a a closed loop where the sen-
sor location converges asymptotically to a critical point
of the cost function HV , i.e. to the centroid of the ith
Voronoi cell [1]. With this gradient descent, it is only
guaranteed to find local minima, we may not reach the
global minimum.

III. ALGORITHM IMPLEMENTATION

To build the code we took some intermediate steps.
Firstly, we developed the algorithm from a fixed uniform
density with tabulated CVi and MVi , taking the formulas
in [2]. Then we ended up applying arbitrary densities
using a double integral function to calculate CVi and MVi

at each iteration of the Lloyd’s algorithm. All of the steps
are shown in the subsections below.

A. Symmetric points

We define a region Q that contains n agents located
in random locations inside it. In order to represent the
Voronoi diagram inside Q, we need to calculate the sen-
sors’ position symmetric points.

The code function simet calculates the symmetric of a
point respect the sides of Q. To compute the symmetric
points, the function uses simple geometry relations
to build straight lines and calculate the symmetric
distances.

B. Centroids for a uniform density function

After obtaining the Voronoi diagram of our polygon Q,
we used the formulas in [2] to calculate the CVi

and the
MVi

of each Voronoi cell with uniform density distribu-
tion.

MVi =
1

2

Ni−1∑
k=0

(xkyk+1 − xk+1yk) (7)

CVi,x
=

1

6MVi

Ni−1∑
k=0

(xk + xk+1)(xkyk+1 − xk+1yk) (8)

CVi,y
=

1

6MVi

Ni−1∑
k=0

(yk + yk+1)(xkyk+1 − xk+1yk) (9)

C. Centroids for a generic density function

For an arbitrary density function we compute the in-
tegrals in (3) and (4) for the calculation of the centroids
using the doubleintegral function. We detail a scheme of
the code below.

Name: centroid
Goal: calculate the centroids for each Voronoi cell
Requires: (i) Voronoi cell computation
(ii) Cell’s vertices
(iii) Density function
(iv) Doubleintegral function
1: Set the domain of integration = Voronoi cell
2: Compute Mv with doubleintegral function
3: Compute the double integral for the calculation of
the centroids for both x and y component (Cvxi and
Cvyi)
4: Compute the centroids as Cvx=Cvxi/Mv and
Cvy=Cvyi/Mv

D. Lloyd algorithm

The implementation of Lloyd’s algorithm needs the
sensors position at the Voronoi cells centroid at each
iteration. For this purpose, we have built the function
simncen described below.

Name: simcen
Goal: gives only the position of the sensors and its
centroids that are in the polygon
Requires: (i) Position of the sensor
(ii) Polygon vertices
(iii) Density function
(iv) Simet function
(v) Inpolygon function
(vi) Centroid function
1: Run simet
2: Set a vector with all positions and its symmetric
points
3: Compute the Voronoi regions
4: Obtain the vertices of the Voronoi cells
5: if vertices are inside the polygon
run centoridd
end if
6: Run inpolygon for the centroids
if in==1
Ccvx=[Ccvx Cvx] Ccvy=[Ccvy Cvy]
end if

This function uses the symmetric points function
detailed in Subsection A. Symmetric points and the
Matlab voronoi function to obtain the cells vertices.
It also requires the Matlab inpolygon function which
returns 1 if the given point is situated inside the polygon
described or 0 if not.

3

First of all, we define our control function u, as shown
in (6). Then, using a Runge-Kutta method, we calculate
its optimal distribution for every iteration, taking into
account the density function.

Name: lloyd2F
Goal: optimal distribution of sensor using Lloyd’s
algorithm
Requires: (i) initial sensor’s position
(ii) Polygon’s vertices
(iii) Density function
(iv) u function
for n=1:iterations
1: Run simcen
2: Calculate error between position and centorid
3: Run rk4 with u function
4: Plot Voronoi distribution
end for

IV. SIMULATION RESULTS

In this section, we will show the results of applying
the Lloyd algorithm, explained in the previous section.
In the figures below, the red circles will represent the
positions of the sensors and the blue crosses will denote
the centroids of each Voronoi cell.

The algorithm has been applied to different systems,
in the following figures we will see how it works modi-
fying the density function, the number of sensors or the
polygon of interest.

FIG. 1: Lloyd algorithm with uniform density function
φ = 1.

Figure 1 shows the Lloyd algorithm on a convex polyg-
onal environment, with uniform density function φ = 1.
The top figure illustrates the initial position and the
Voronoi cells calculated from the initial distribution. On
the bottom figure, we observe the final positions of the
sensors, which coincide with the centroids of each Voronoi
cell for the final distribution.

FIG. 2: Gradient descent flow for uniform density func-
tion.

Figure 2 shows the position of the vehicles after each
iteration, until the position coincides with the centroid
of the Voronoi cell.

The next figures show systems with a non-uniform den-
sity function. For example, on figure 3 and figure 4 we

can see the behavior of the algorithm for φ = e
1
2∗(x

2+y2).
The final result is similar to the uniform distribution case,
then we can conclude the algorithm also works well with
non-uniform density functions. To verify this statement,
we see another example in Figure 5 and Figure 6.

FIG. 3: Initial and final positions and Voronoi cells of

the sensors distributed with φ = e
1
2∗(x

2+y2)

4

FIG. 4: Gradient descent flow for φ = e
1
2∗(x

2+y2)

FIG. 5: Initial and final positions and Voronoi cells of

the sensors distributed with φ = e−50(1.4x
2+0.6y2−0.3)2

FIG. 6: Gradient descent flow for the density function

φ = e−50(1.4x
2+0.6y2−0.3)2

As explained in section II, the region of interest Q has
to be a convex polygon, but it can take any form. In
Figure 7 we see how the algorithm works for a different
polygon if it verifies the convex condition.

FIG. 7: Initial and final positions and Voronoi cells of

the sensors distributed with φ = e
1
2∗(x

2+y2)

Finally, in Figure 8 the number of sensors is increased
from n=10 to n=20, we see how the algorithm gets to
the same result. The number of sensors can be increased,
but the computational cost increases with it.

FIG. 8: Initial and final positions and Voronoi cells of the
n = 20 sensors distributed with φ = 0.8((x−2)2+(y−3)2

5

[1] Jorge Cortés, Sonia Mart́ınez, Timur Karatas and
Francesco Bullo. Coverage Control for mobile sensing net-
works: variations on a theme. Paper to IEEE transactions
on Robotics and Automation (16 Dec 2002)

[2] Jorge Cortés, Sonia Mart́ınez, Timur Karatas and
Francesco Bullo. Coverage control for mobile sensing net-
works. IEEE International Conference on Robotics and
Automation (May 2002)

[3] Jorge Cortes, Sonia Mart́ınez, Timur Karatas and
Francesco Bullo. Coverage control for mobile sensing net-
works. IEEE Transactions on Robotics and Automation
(Volume:20, Issue:2, April 2004)

[4] S.P.Lloyd, Least squares quantization in PCM. IEEE
Transactions on Information Theory, (Vol.28, no.2,
pp.129–137, 1982)

[5] Q. Du, V. Faber, and M. Gunzburger. ”Centroidal Voronoi
tessellations: applications and algorithms,”.SIAM Review,
vol. 41, no. 4, pp. 637-676 (1999).

[6] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial
Tessellations: Concepts and Applications of Voronoi Di-
agrams. Wiley Series in Probability and Statistics. John
Wiley and Sons, New York, NY, second edition, (2000)

