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ABSTRACT 

World cereal production is set to grow by around 1% per year for 
the next decade, and while crop areas are not expanding, the major driver 
for the growth production is expected to come from yield improvements. 
Crop yields have been commonly modelled in two ways: process-based 
modelling (also known as crop simulation) and statistical modelling. 
Recently, machine learning started to deliver interesting results, mainly 
because it has the advantage of dealing with non-linear relationships 
between factors. Weather plays an important role in defining crop yields. 
Being able to simulate accurate weather conditions and predict crop yield 
has been an important topic in the industry. The objective of this work is to 
model crop yields using Random Forest regressor and Long Short-Term 
Memory (LSTM) Neural Networks (NN) in 9 annual crops in Argentina: 
wheat, barley, maize, soybean, sunflower, sorghum, rice, cotton and 
peanut. Soil and weather data was collected and transformed for 80 
counties in Argentina. Hyperparameters for the 2 models were optimized 
and accuracy metrics were compared. Weather information was simulated 
estimating the distribution of the historical information using KDE (Kernel 
Density Estimator) and Monte Carlo to generate random sampling. Feature 
importance analysis allowed to reduce the number of factors up to 7 without 
compromising model accuracy. From the 9 crops studied, soybean, maize, 
sunflower, sorghum, wheat and barley models returned reasonable 
accuracy metrics. Except for the last two (wheat and barley) which are 
winter crops, the remaining 4 summer crops (soybean, maize, sorghum and 
sunflower) were forecasted simulating rainfall in different stages of the 
growing season and returned estimations with an error below 20% (MAPE) 
before harvest. Random forest outperformed classic MLR statistical model 
by more than 30% on average over all the crops, but overfitting was 
significantly high. LSTM did not perform as well as Random forest: 
although LSTM did not overfit, performance was slightly better than 
baseline with large variations between crops. This work demonstrates that 
machine learning algorithms are a competitive alternative to statistical 
modelling for crop yield prediction, and weather simulations can return 
reasonably accurate predictions before harvest. This allows the agricultural 
community to anticipate strategic decisions based on crop production 
forecasts.  
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INTRODUCTION 

AGRICULTURE 

During the past decade agricultural products demand increased remarkably. Two main 
events are responsible for driving the trend: China’s economic growth caused the consumption 
of feed to grow by almost 6% per year, and on the other hand the use of feedstock inputs to 
produce biofuel grew by almost 8% per year. The replenishment of cereal stocks by 230 Mt 
also augmented demand (OECD/FAO 2017). 

Cereals world production reached a historical high in 2016, especially for wheat and 
maize. Soybean production increased strongly due to record in crops in the United States and 
Brazil. World production for other oilseeds (rapeseed, sunflower and groundnuts) increased in 
2016 for the first time in three years (OECD/FAO 2017).  

Argentina and Brazil experienced the strongest expansion in crop areas over the past ten 
years, adding respectively 10Mha and 8Mha to global crop land (OECD/FAO 2017).  However, 
global agricultural land decreased by 63 Mha between 1960 and 1993, a trend which is expected 
to continue.   

Under this scenario, yield growth will continue to drive global crop production. 
According to (OECD/FAO 2017), cereal production is set to grow by around 1% per year for 
the next decade, being yield improvements the bulk of production increase.  

Maize is expected to grow 14% in 10 years. Latin America will contribute with 28% of 
the total increase, Asia and Pacific with 24% and North America with 22%, leaving the rest to 
European Union and Africa (OECD/FAO 2017). Wheat is expected to grow 11%, with an 
increase in area of only 1.8%. The increase in wheat production is therefore expected to occur 
through higher yields (OECD/FAO 2017), mostly from Asia and Pacific (46%), European 
Union (13%) and Russia (9%). Rice yields are expected to grow 12%, and major gains are 
projected for Asian countries.  

Agriculture plays an important role in countries GDP. According to (WorldBank 2017), 
world agriculture contribution to GDP was 3.5% in 2016, but it varies significantly between 
countries. While India’s agriculture contribution to GDP was 15.6%, United States’ was 1%, 
Brazil’s agricultural value added was 4.6% and Argentina’s 5.6% (WorldBank 2017). 

Although yield growth is expected to satisfy most of the increasing demand for cereals 
in the upcoming decade, there may be variations depending on weather and climate conditions, 
such as the “El Niño” phenomenon (OECD/FAO 2017). This opens the discussion about how 
yield predictions can be achieved using crop modelling techniques with weather information to 
account to crop production variability.  

This work will analyse 9 of the world’s principal crops in terms of area planted and total 
production and will contemplate last 40-50 years of crop yields obtained in different regions of 
Argentina.   
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CROP MODELLING 

The agricultural system is very complex and deals with a large number of scenarios, 
which come from a number factors (Aditya Shastry 2017a). Yield variability due to extreme 
weather events such as drought and high temperatures remains a major concern in the 
agriculture industry.  

Process-based modelling (also known as crop simulation) and statistical modelling are 
two common approaches for predicting crop yield responses to climate variability (Kim et al. 
2016). Process-based crop models are powerful tools for crop yield predictions, particularly at 
a field level scale, because they simulate physiological processes of crop growth and 
development in response to environmental conditions and management practices. However, this 
approach is not scalable for regional and global estimations due to intensive data and calibration 
requirements. On the other hand, statistical models estimates direct relationships between 
predictor variables (e.g. climate and soil factors) and crop yield without considering the 
underlying processes in crop physiology and ecology (Kim et al. 2016). They return simple but 
reasonable predictions, provided that sufficient and reliable data is used for training the model 
and predictions are made within the boundaries of training data. Simple and Multi Linear 
Regressions (MLR) are commonly used statistical models.  

Several statistical studies contemplate weather and soil data to model crop yield in a 
regional or global scale.  (Lobell and Burke 2010) analysed maize crop yields and compared 
the ability of statistical models to predict yield responses to changes in mean temperature and 
rainfall against process-based model predictions. They concluded that statistical modelling is 
more suitable for broader spatial scales and global climate projections, and accurate enough to 
develop robust statistical inferences with weather simulated information. The relationship 
between wheat yield and climate trends in Mexico were analysed by (Lobell et al. 2005), 
understanding how much of crop yield increase could be attributed to climate change. Similarly, 
(Lobell et al. 2011) investigated the non-linear relationship between perennial crop yield and 
climate change in California. They found that climate change would likely make yields go down 
for almonds, walnuts, avocados and table grapes by 2050.   

Most of the investigation around crop modelling takes similar environmental factors 
into account, mostly water availability and temperature as the critical weather factors 
responsible for crop yield. Regarding statistical modelling, both linear and non-linear 
techniques have been tested for estimating crop yield and results vary depending on the crop 
and geography.  

This work will model annual crop yields in a regional scale using soil characteristics 
and regional weather historical information. Although statistical modelling was used in the past 
to accomplish similar objectives in Argentinian agriculture, in this thesis machine learning 
algorithms will be tested and optimized to predict accurate crop yields based on data from 1970 
until 2018.  
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MACHINE LEARNING ALGORITHMS FOR CROP MODELLING 

While still not as popular as crop simulation and statistical modelling, machine learning 
is a third choice for predicting crop yields in Agriculture. Machine learning presents methods 
that define rules and patterns in large datasets and can also adapt the predictive model by itself.  

As (Paswan and Begum 2013) indicate, crop production is influenced by a great variety 
of interrelated factors and it is difficult to describe their relationships by conventional methods. 
As statistical models need to fulfil regression assumptions and multiple co-linearity between 
independent and dependent variables, it causes classic statistical methods to be inefficient. 
Statistical modelling methods based on machine learning algorithms are able to overcome of 
the limitations of traditional regression approaches (Kim et al. 2016).  

(Kim et al. 2016) evaluated prediction performance of Random Forest (RF) regressor 
using MLR as a baseline in 4 crops: wheat (global), maize, silage maize and potato (county 
level in US). They concluded that RF outperformed MLR in all crops and scales tested. RMSE 
(Root Mean Square Error) for wheat trained with RF was 320 kg/ha (MLR scored 1,320 kg/ha), 
1,130 kg/ha for maize (MLR scored 1,940 kg/ha), 2,770 kg/ha for potato (MLR scored 5,620 
kg/ha) and silage maize RF scored 1,900 kg/ha (MLR 4,540 kg/ha).   

On the other hand, (Cunha, Silva, and Netto 2018) studied the implementation of Long 
Short Term Memory (LSTM) Neural Networks as an alternative to cope with different time 
scale information and deal with monthly variable weather data combined with timeless soils 
properties in order to predict annual crop yield for maize (US) and soybean (Brazil and US). 
They reported that performances achieved with LSTM neural networks are comparable to those 
obtained with Normalized Difference Vegetation Index (NDVI) and remote sensing data, with 
the advantage of being able to forecast yield before crop is planted and resulting in a more 
scalable model: no need of large amount of remote sensing data and scalable to regional level 
as well.  

Barley biomass and grain yield was predicted using ANN models  by (Ayoubi and 
Sahrawat 2011). They compared ANN predictability performance with earlier tested statistical 
models based on multivariate regression. ANN yield models resulted in higher coefficient of 
determination and lower RMSE compared to multivariate regression. A comparison of most 
important factors between the two models revealed that soil organic matter was misled by MLR 
because of non-linear relationship with other soil properties. This factor is well known to be a 
key variable in terms of soil fertility and is proven to be related to crop yield. Similarly, (Kaul, 
Hill, and Walthall 2005) also compared ANN yield prediction performance with MLR, in US 
corn and soybean and concluded that ANN outperformed MLR.  

Recently, a combination of statistical modelling and neural networks was investigated 
by (Crane-Droesch 2018) to predict impact of climate change in crop yield. They proposed an 
approach that uses semiparametric variant of deep neural network, which can simultaneously 
account for complex non-linear relationships in high dimensional dataset, as well as known 
parametric structure to predict maize yield in US agriculture. They claim that the hybrid model 
implemented outperforms both classical statistical methods and fully non-parametric neural 
networks in predicting climate change impact on maize yields.  
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This study will compare and analyse 3 different machine learning algorithms ability to 
predict crop yields: 

1. Lasso (Least Absolute Shrinkage and Selection Operator), a MLR algorithm that 
will be used as benchmark.  

2. Random Forest Regressor: A non-linear regression model.  
3. LSTM (Long Short-Term Memory) ANN (Artificial Neural Network).  

WEATHER SIMULATIONS 

One of the main goals of crop simulation models is to estimate agricultural production 
as a function of weather and soil conditions (Murthy and Radha 2003).  According to (Murthy 
and Radha 2003), simulation is defined as “reproducing the essence of a system without 
reproducing the system itself”. Essential characteristics of the system are reproduced and 
model, which is then studied in an abbreviated time scale.  

Different curve fitting techniques, interpolation, extrapolation functions are being 
followed to use weather data in the model operation. (Van Wart, Grassini, and Cassman 2013) 
analysed the reliability of gridded weather databases (GWD) to simulate crop yield potential 
and water-limited yield potential, which are considered as benchmarks to quantify climate 
change scenarios on crop productivity and land use change. Among their discoveries, they 
concluded that studies based on GWD to simulate agricultural productivity in current and future 
climates are highly uncertain. They compared models based on GWD with control weather data 
(CWD), resulting the first one with poor prediction ability, strong bias and large root mean 
square errors (RMSEs). They conclude that climate scenario on location-specific observed daily 
weather databases combined with appropriate upselling method could lead to much better 
results.  

 Stochastic weather models can be used as random number generators whose input 
resembles the weather data to which they have been fit (Murthy and Radha 2003). While the 
earliest crop simulation models were based on photosynthesis and carbon balance, next crop 
modelling generation involved combination of multiple inputs that resulted in superior 
analytical, statistical and empirical models (Murthy and Radha 2003). However, when many 
inputs are added the models become more complex.  

In planning and analysing agricultural systems it is essential to consider variability and 
think in terms of the components of the system (Murthy and Radha 2003). As (Murthy and 
Radha 2003) indicate, the principal effect of weather on crop growth and development are 
understood and predictable. In consequence, simulation models can predict responses to large 
variations in weather.  

Many applications are derived from successful weather simulation models. From an 
agronomic management perspective, simulation models can help to set the optimum planting 
date, choose the appropriate hybrids or varieties and evaluate weather risk (Murthy and Radha 
2003).  
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Crop simulations models can also help policy management by estimating global 
production for famine early warning, which can allow policy makers save time to prepare and 
work to ameliorate the effect of global food shortages (Murthy and Radha 2003).  

Among the first crop simulation models, Decision Support System for Agro Technology 
Transfer (DSSAT) was widely used in research and as a teaching tool. The model combines 
ecosystem data (soil, weather genetics), management inputs, crop simulation models with 
weather generation programs to predict crop growth and yields (Murthy and Radha 2003).  

(Wu et al. 2010) worked on adapting soil and weather data from VEMAP (Vegetation 
Ecosystem Modelling and Analysis Project) into a format readable by DSSAT modelling 
software. They managed to convert the dataset and compared the resulting weather simulations 
with ground stations observations. Contrary to (Van Wart, Grassini, and Cassman 2013) 
findings, which proved that control weather data (CWD) was more accurate to predict crop 
yields compared to simulated grid data (GWD), T-test conducted by (Wu et al. 2010) between 
the daily weather data and the simulated VEMAP dataset showed that no significant differences 
were found on yield prediction and concluded that VEMAP can be used for crop model 
applications. 

In this study, regional weather dataset will be interpolated and used as a basis for 
stochastic simulated scenarios that will provide crop yield response to weather variability. 
Furthermore, a combination between actual and simulated information will emulate real 
situations with partial level of certainty, and forecasts will be modelled to analyse the ability of 
models to predict crop yields with different levels of real information.  

JUSTIFICATION 

There are no records of studies made using machine learning modelling to predict crop 
yield in Argentinian agriculture. Local data processing and consolidation is a challenge and 
could partially explain why the adoption of machine learning algorithms is taking longer in 
Argentina than in the rest of important agricultural countries, such as United States, India, 
Brazil and Asian and European countries. 

The outcome of this study will complement other tools used to estimate regional crop 
production and will support policy management to understand the impact of soil and weather 
variability across the country. Weather simulations will help to measure the risk into which 
each crop and region is exposed and will contribute to give more accurate information to the 
agricultural industry. Crop insurance industry, commodity traders and manufacturers among 
others could benefit from better understanding yield variability across regions. 

Furthermore, the ability to forecast yield before the crop season is finished gives the 
whole industry valuable information for decision making and perform strategic changes based 
on this information. Farmers could fix prices upon accurate future production, traders could 
anticipate deficit and surplus and foreseen price volatility, and government can adjust trading 
policies to meet domestic market demands.   
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OBJECTIVE 

This work propose to model yield crops using 2 different machine learning techniques 
(ensemble modelling and Artificial Neural Networks) taking MLR as a benchmark for regional 
crop yield predictions for 9 annual crops: wheat (Triticum aestivum), barley (Hordeum vulgare), 
maize (Zea mays), soybean (Glycine max), sunflower (Helianthus annuus), sorghum (Sorghum 
bicolor), rice (Oryza sativa), cotton (Gossypium herbaceum) and peanut (Arachis hypogaea).      

Specifically, Random Forest and Long Short-Term Memory (LSTM) Neural Networks 
(NN) are trained with Argentinian soil and weather data to predict yields for the 9 crops 
mentioned, spread across 6 provinces and 85 counties within seasons 1970 to 2018.  

Additionally, this study will analyse and understand how the different soil and weather 
factors contribute to explain crop yield and will discuss the differences between the importance 
levels of the mentioned factors across crops evaluated.  

Although all factors will be considered in the first modelling phase, it is a side objective 
to generate a simplified model that could be easier to extrapolate to the agricultural industry 
without depending too much on detailed information to be used, but at the same time could 
keep a reasonably good performance compared to an initial model. Ideally, a few soil and 
weather variables would be able to describe accurately yield crops variability.  

Finally, it is of the interest of this study to conduct weather simulations to forecast crop 
yield before the end of the season. This will be implemented by emulating monthly scenarios 
based on actual weather data and simulating the remaining period to predict crop production.  



 

 

METHODS 
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METHODS 

DATASET  

The datasets used in this study are public. Soil data was accessed from (GeoINTA, n.d.), 
weather data was collected from the weather station network program from (INTA, n.d.), a 
national research institute. Crop yields were collected from (Agroindustria, n.d.), and Total 
Factor Productivity (TFP) was gathered from (Lema 2015).   

Soil dataset contains geospatial information for the whole Argentina, at a scale 
1:500,000 (1 cm in the map equals 5 km in the terrain). The data is presented in polygons, which 
can be related to specific locations (counties and provinces) within the country.    

These are the soil variables took under consideration, excluding the first 3 variables, the 
rest are categorical:  

• Productivity index (numerical) 
• Soil deepness (numerical) 
• Slope (numerical) 
• Main soil limitation 
• Secondary limitation 
• Third limitation 
• Group classification 
• Texture of superficial soil 
• Texture of sub superficial soil 
• Drain capacity 
• Alkalinity degree 
• Susceptibility to hydric erosion 
• Susceptibility to wind erosion 
• Susceptibility to floods 
 

Weather dataset consists of 240 weather stations reporting daily data, each of them with 
different time series window (some stations records go back to 1930, whereas some others only 
have 10 years of data or even less). Each weather station is geolocated and can be linked to a 
county within Argentina. These are the main variables gathered in the dataset: 

• Heliophany 
• Sum of cold hours 
• Humidity 
• Snow 
• Rainfall 
• Average pressure 
• Global and net radiation 
• Mean temperature (shelter) 
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• Maximum temperature (shelter) 
• Minimum temperature (shelter) 
• Mean soil temperature 
• Average wind speed (1000 cm) 
• Average wind speed (200 cm) 

TFP is an annual index that establishes the level of efficiency of agriculture in 
Argentina.  According to ((IFPRI) 2018), it is an indicator of how efficiently agricultural land, 
labour, capital, and materials (agricultural inputs) are used to produce a country’s crops and 
livestock (agricultural output). It is calculated as the ratio of total agricultural output to total 
production inputs. When more output is produced from a constant amount of resources, 
meaning that resources are being used more efficiently, TFP increases. (Lema 2015) calculated 
different TFP for agriculture and for livestock, in this study the agricultural TFP will be used.  

Crop yield dataset holds annual data at a county level for different crops across 
Argentina. This study focuses in 9 main crops of Argentinian agriculture: soybean, maize, 
wheat, sunflower, sorghum, barley, rice, peanuts and cotton. Except for winter wheat and 
barley, the remaining 7 crops are summer crops. The season for summer crops in Argentina 
spreads from September until May, whereas for winter crops the season starts in May and 
finished in January. For this study and according to Argentinian agriculture season layout, a 
standard season is defined from July until June of the next year.  

A generic model trains with known ‘X’ features (set of independent variables) to predict 
unknown ‘y’ values (dependent variable). In this study, X represents annual observations of 
soil and weather data. Because soil characteristics do not change over the period analysed in 
this study, soil factors remain the same year after year for each region. Weather variables are 
expressed annually as a combination of average, minimum, maximum and cumulative 
observations. Each weather record represents an annual observation composed by a set of 
variables in different times of the year (e.g. minimum temperature in June, average mean annual 
temperature, cumulative rainfall from July to September). The dependent “y” variable is the 
annual crop yield for a given crop, expressed as kg/ha (kilograms per hectare). This variable 
depends on soil characteristics (productivity of the land) and seasonal weather factors. The 
resulting configuration defines the dimension of the coordinate X, y for each crop as following: 

• Observations (rows) 
▪ y: Number of years of crop yields for each region.  
▪ X: Number of years with soil and weather data for each region. 

Same number of observations for X and y.  
• Features (columns) 

▪ y: 1 feature (crop yield) 
▪ X:  Up to 600 features between soil and weather factors 

depending on the complexity of the model and the degree of 
completeness of the dataset for a given region.  

It is important to mention that crop yield in a given season will be affected by weather 
conditions starting from July until June of the following year. Therefore, weather features will 
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be transformed to the mentioned calendar, for example accumulated rainfall will start in July, 
and accumulate monthly until June next year.   

MODELS 

With the objective of bringing together different techniques to predict crop yields, three 
algorithms with different properties are tested and compared in this study: 

I. LASSO  

Lasso (Least Absolute Shrinkage and Selection Operator) is and advance linear 
regression model suitable for high-dimensional regression problems. Is was proposed by 
Tibshirani in 1996 as a new method for estimation in linear models, and became very popular 
in genomics in the 2000’s. As the name indicates, it serves two purposes that ordinary least 
squares (OLS) do not have: a penalty parameter controlling the amount of shrinkage and 
variable selection.  According to Tibshirani, OLS estimates often have low bias, but suffer from 
high variance (Bergersen 2013). Lasso estimator 𝛽′ is defined by: 

 𝛽′ =  𝑎𝑟𝑔𝑚𝑖𝑛  { 
||𝑦 − 𝑋 𝛽||2

2
+  𝜆 ∑|𝛽𝑗|  } 

From the equation above, lambda is a regularization factor that can take values from 0 
to 1. When lambda = 0, the equation reduces to an OLS algorithm. This type of regularization 
can lead to zero coefficients (i.e. some of the features being completely ignored for the 
evaluation of the output), therefore Lasso not only helps reducing overfitting but also helps in 
feature selection (analysing which variables are more important to the prediction).  

In this study, Lasso algorithm will be used as a baseline to benchmark the other 2 
models’ ability to predict crop yields.   

II. RANDOM FOREST REGRESSOR 

Random forest is a supervised learning algorithm that builds multiple decision trees and 
merges them together (this is also known as ensembling). As the name indicates, is a collection 
of multiple regression trees, where each tree is generated based on the values of an independent 
set of random vectors (Tan, Steinbach, and Kumar 2006).  

The training algorithm applies a technique called bootstrap aggregating, also known as 
bagging. Given a set X = x1, … xn with responses Y = y1, … yn, bagging repeatedly select a 
random sample with replacement of the training set and fits trees to these samples (Biau 2010). 
Each time a split in a tree is considered, a random sample of m predictors is chosen as a split 
candidate from the full of p predictors. The split is allowed to use only one of those m predictors 
(James et al. 2009). 
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Each randomize tree predicts the output variable and results from all trees are averaged 
to get an aggregated prediction (James et al. 2009). Bagging leads to better model performance 
because it decreases the variance of the model, without increasing the bias. This means that 
while the predictions of a single tree are highly sensitive to noise in its training set, the average 
of many trees is not, as long as the trees are not correlated (Amnon Shashua 2017). 

In this work, Random Forest algorithm will be trained with soil and weather information 
to predict crop yields and results will be compared against baseline algorithm (Lasso).  

III. LONG-SHORT TERM MEMORY NEURAL NETWORK 

Neural Networks (NN) can learn complex non-linear patterns thanks to their strong self-
learning and self-adaptive capabilities (Azzouni and Pujolle 2017). NNs can estimate almost 
any linear or non-linear function when the underlying data relationships are unknown. This 
model is an adaptive approach which relies on the observed data rather than on an analytical 
model.  

A neural network consists of interconnected nodes, called neurons. The interconnections 
are weighted (weights) and neurons are organized in layers (Azzouni and Pujolle 2017): An 
input layer, one or more hidden layers and an output layer.  

 

Fig. 1: Illustration of Multi-Layer Perceptron (MLP) for simple non-linear 
regression (Jaokar 2019). 

Long-short term memory (LSTM) is a specific recurrent neural network (RNN) 
architecture that is well suited to learn from experience to classify, process and predict time 
series with time lags of unknown size.  LSTM neural networks are composed by units called 
memory blocks, and each memory block contains memory cells with self-connections storing 
the temporal state of the network, in addition to multiplicative units (gates) to control the flow 
of information (Azzouni and Pujolle 2017). LSTM are useful when dealing with data with a 
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temporal relationship and can learn to recognize temporally extended patterns in noisy 
sequences (Cunha, Silva, and Netto 2018).  

As proposed by (Cunha, Silva, and Netto 2018), to train a LSTM  the dataset is divided 
into a static set and a dynamic set. The static set is integrated by the soil data, which for the 
time scales consider in this work soil properties do not change over time. The dynamic set is 
integrated by the monthly weather set, containing meteorological data with seasonal variability.  
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MODEL PIPELINE 

 

Fig. 2: Pipeline for modelling crop yields with 3 machine learning 
algorithms (Lasso, Random Forest and LSTM Neural Networks) 

I. FEATURE ENGINEERING 

Feature engineering is the process of transforming the given data into a form which is 
easier for the model to interpret (Grabiński 2018).  As (Zheng and Casari 2018) indicates, it is 
a crucial step in the machine learning pipeline, because the right features can ease the difficulty 
of modelling, and therefore enable the pipeline to output results of higher quality.   

Each of the different datasets has different temporal and spatial levels of granularity. To 
get meaningful data, it is necessary to standardize the information into a same time and space. 
This study analyses annual data at county level.  

Soil data is timeless, and spatially represented by around 7,000 polygons across 500 
counties in Argentina. Transformations consist in calculating the area represented by each 
polygon for each county. Then, weighted averages are obtained for each variable using the area 
of each polygon as the weight. The resulting transformed dataset consolidates timeless data at 
a county level, with the variables mentioned before. 
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Weather data has more challenges than the rest of the datasets. To begin with, the data 
is not consistent across weather stations. Each station has different amount of missing data and 
different time frame. Spatially, each station is related to a coordinate, a specific point in the 
map, and the target for the analysis requires aggregated county level information.  

A completeness analysis was conducted to evaluate each weather station degree of 
consistency, combined with a variable analysis: analysing each individual variable to determine 
if a variable has enough information to be included in the modelling stage. Threshold levels 
were introduced to classify wanted/unwanted variables and regions. A time frame was also 
fixed from 1970 onwards, which is the starting point for 2 of the other datasets (crop yields and 
TFP index).   

Secondly, an Inverse Distance Weighting (IDW) interpolation was performed across the 
weather dataset. For each daily missing observation, the missing value is replaced by a weighted 
interpolation from the neighbour weather stations, and the weight is inversely proportional to 
the distance between the target and the interpolated station. Although IDW has well known 
short comings when performing spatial interpolations, proves to be very effective for the 
weather parameters analysed (Yang 2010).  

Additionally, new features were created derived from the original variables, mostly 
related to temperature and water availability. According to (Prieto 2010), summer crops suffer 
with temperatures higher than 28° C, and can also be affected by lower amplitude temperatures 
(difference between maximum and minimum temperature). Mean temperatures below 24° C 
can also affect yield. Taking all this into consideration, new variables were generated:  

• Evapotranspiration calculated with  Hargreaves equation (Strzepe 1994).  

Erc =  0.0022 ∗  RA ∗ (Tmax − Tmin) ∗ 0.5 ∗  (Tmean +  17.8)  

▪ RA: Radiation 
▪ T: temperature 

 
• Growing degree days 

𝐺𝐷𝐷 =  (
𝑇 max − 𝑇 𝑚𝑖𝑛

2
) − 𝑇 𝑏𝑎𝑠𝑒   

▪ T base: 8° C 
 
• Number of days with maximum temperatures higher than 28° C.  
• Number of days with mean temperatures lower than 24° C.  
• Number of days with minimum temperatures lower than 0° C 

Finally, the resulting daily dataset was aggregated annually and by county. For spatial 
aggregation, variables were classified into mean, maximum and minimum. For annual 
aggregation, apart from mean, maximum and minimum calculations, sums where computed for 
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variables that needed addition, such as rainfall, growing degree days and number of days with 
temperature below 0° C.  

Total Factor Productivity (TFP) index dataset is an annual time series index for the 
whole country. The index was applied equally across all counties for each year.  

Random regression models cannot deal with missing information or incomplete 
datasets. Null data was removed from the training dataset in two dimensions: 

1. Remove records where datapoint for the predictable variable (yield) are missing.  
2. Remove fields with missing information. Thanks to the interpolation in the most 

relevant weather dataset pursued during the data processing stage and thanks to the 
completeness of the soil map, most of the variables were able to pass the completeness filter 
and were considered in the modelling stage. Having said that, the remaining variables varied 
for each crop modelled.  

Normally, when adapting a dataset to fit a model, variables are split into numerical and 
categorical. Another necessary transformation to fit regression models is to convert categorical 
variables to numerical. While there are a few ways of doing this, in this study two mechanisms 
were tested and selected the one that performed better according to the performance evaluation 
of each model.  

1. Label binarizer: Also known as ordinal coding, converts categorical variables 
into numerical. This methodology keeps the same number of fields in the dataset, by only 
replacing each category field by a number that is assigned to each category value. A potential 
drawback of ordinal coding is that implies an order to the variable that may not actually exist.   

2. One hot encoding: Compares each level of the categorical variable to a fixed 
reference level. One hot encoding transforms a single variable with n observations and d distinct 
values into a d binary variables with n observations each (Potdar, S., and D. 2017). 

One hot encoding proved to perform better compared to label binarizer and was 
implemented across all models tested.  

Numerical data can be scaled using different techniques. A MinMaxScaler was 
implemented into the dataset but the results showed slight better performance with the original 
scale, so the transformation was dismissed. What this technique does is transforms features by 
scaling each value to a given range (e.g. between zero and one).  

Feature selection techniques  prune away non-useful features in order to reduce the 
complexity of the resulting model (Zheng and Casari 2018). The goal is to end up with a 
simplified model, quicker to compute and with little or no degradation in predictive accuracy. 
While there are different techniques to perform feature selection, such as filtering and wrapper 
methods, this study leverages the use of random forest model to extract feature importance from 
the trained model. This technique is called embedded (Zheng and Casari 2018), and occurs as 
part of the model training process.  

Initially, each crop model was trained with more than 600 variables, combining both 
soil and weather features. After analysing feature importance and identifying the critical 
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features, a feature selection was performed. This work tries to reduce the number of features up 
to 10, trying to prioritize the features that are easier to collect, without compromising too much 
the prediction accuracy.  Another advantage of keeping a reduced number of variables is the 
ability to perform simulations when the number of variable factors is limited. Soil properties 
are considered not to change within a season, leaving only the weather variables subject to 
seasonal variability. In summary, Random Forest feature importance property will be used in 
this study to minimize the number of weather variables without giving up too much 
performance of the models.   

II. EXPLORATORY ANALYSIS 

Weather information was evaluated by distribution analysis. Monthly data for each 
region was plotted to detect patterns in the most important climate variables, such as rainfall, 
moisture, extreme and mean temperatures.  

Despite season variations, historical yields follow an ascending trend due to 
technological improvements. This is what TFP index is about and the agricultural factors 
involved during the period analysed are seed genetics, machinery, pesticides efficiency and 
precision in agriculture.  

To isolate the importance of time scale, crop yield was adjusted by TFP index prior to 
the training process. This helped to better differentiate the remaining important variables when 
performing feature selection.  

 

Fig. 3: Maize historical yields for Pergamino, Buenos Aires [blue] and maize 
5 year rolling average annual yield for the same region [red].  
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Fig. 4: Maize historical yield for Pergamino, Buenos Aires adjusted by Total 
Factor Productivity (TFP) [blue] and 5 year rolling average of the adjusted annual 
yield [red]. 

A coverage analysis was performed to understand the scope of the models to be trained.  
For each crop, the number of counties was registered together with the proportion of the national 
production for the given crop represented by the training dataset. This is a heuristic approach 
to evaluate the importance of the training set for each crop and gives an indication of level of 
confidence to the model trained.  

III. SEPARATE INTO TRAINING, VALIDATION AND TEST DATASET 

Once the data was ready to input into the different models, 10% of the whole dataset 
was put apart as a test set, which will be use at the end of the research to evaluate each model’s 
performance.  

The remaining 90% of the dataset was introduced into the model pipeline. 70% of the 
data was used as training set and 30% as validation set. During training process, a seed was 
planted to neutralize the random state effect when splitting the data. This helps to isolate the 
performance of the model from random effect of sampling.  

The same training, validation and test set was used to train all three algorithms to ensure 
a fair comparison.  
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Table 1: Dataset size. Number of observations per crop (total) spitted into 
train, validation and test. 

 

IV. HYPERPARAMETER OPTIMIZATION 

Machine learning use the term hyperparameter to distinguish from standard model 
parameters. While standard parameters are the ones learned from the data, hyperparameters are 
the properties that govern the entire training process (Prabhu 2018). A regularization 
hyperparameter controls the capacity of the model, how flexible the model is, how many 
degrees of freedom it has in fitting the data. Proper capacity can prevent overfitting, which 
happens when the model is too flexible, and the training process adapts too much to the training 
data (Zheng 2015).   

Hyperparameter tuning works by running multiple trials in a single training job. Each 
trial of a hyperparameter setting involves training a model. The outcome of hyperparameter 
tuning is the best hyperparameter setting, and the outcome of model training is the best model 
parameter setting (Zheng 2015).  

For all three algorithms considered in this work (Lasso, Random Forest and LSTM 
Neural Networks), hyperparameter tuning was implemented with Random Search Cross 
Validation technique instead of Grid Search, which tries every combination of a pre-set list of 
values of the hyperparameters and choose the best combination based on the cross-validation 
score. Reaching every possible combination can take a lot of time. Instead, Random Search 
tries random combinations of a range of values (number of iterations needs to be defined). 
Normally, Random Search reaches a very good combination of hyperparameters faster than 
Grid Search does. The problem is that it does not guarantee to give the best parameters 
combination. For Lasso and Random forest, the number of iterations was set to 20 and the cross-
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validation size was set to 10.  Because training LSTM took significantly more time, the number 
of iterations was set to 10 for this model. 

Lasso hyperparameter and values tested: 

• lambda: Regularization factor that controls the amount of shrinkage. Lambda 
can take values from 0 to 1 (when lambda = 0, Lasso algorithm is equivalent to OLS algorithm). 
In this study, the range tested was [0 - 1]. 

Random forest hyperparameters and grid are described below:  

• n_estimators: Represents the number of trees in the forest. Usually, the 
higher the number of trees the better to learn the data. However, adding a lot of trees can slow 
down the training process considerably  (Mohtadi 2017). In this study, the range tested for 
n_estimators is [100, 300, 500]. 

• max_depth: Indicates how deep a tree can be. The deeper the tree, the more 
splits it has, and it captures more information about the data. But deeper trees can lead to 
overfitting, which means over learning from the dataset, taking the noise in consideration. 
Overfitting tends to have high variance and low bias. The range tested is [1 - 6]. 

• min_samples_split: The minimum number of samples required to split an 
internal node. This can vary from considering at least one sample at each node to considering 
all of the samples at each node (Mohtadi 2017). By increasing this parameter, the forest is more 
constrained, and the deepness is limited. A range from 5 to 100 was tested.  

• min_samples_leaf: The minimum number of samples required to be at a 
leaf node (Mohtadi 2017). Like min_samples_splits. Increasing the value of this parameter, 
same as the previous one, can cause underfitting, which can be defined as the failure to capture 
the underlying pattern of the data. An underfitted model, in contrary to overfitting, has low 
variance and high bias. The options tested were: [5, 10, 15]. 

• max_features: Represents the number of features to consider when looking 
for the best split. This parameter remained unrestricted in this study. Options tested: [1,2,3]. 

• min_impurity_decrease: A node will be split if the split indicated a 
decrease of the impurity greater of equal to this value. Random samples from 0 to 1 were tested.  

• min_weight_fraction_leaf: Defined as the minimum weighted fraction 
of the sum of weights required to be a leaf node.  Tested values in the range of [0 – 0.5]. 

• oob_score: Out of bag error score, a way of measuring prediction error.  

Optimization of Neural Network performance was accomplished by computing 
predictions on training and validation set while passing through the dataset. A full pass of the 
dataset is known as an epoch, and prediction and accuracy were computed after each epoch. 
This allows to observe the behaviour of training and validation performance across the epochs 
ran by the model.   

Because Neural Network offer large flexibility, there are many hyperparameters to 
tweak. Not only how neurons are interconnected, but even in a simple Multi-Layer Perceptron 
(MLP) the number of layers can be changed, the number of neurons per layer, the type of 
activation function to use in each layer, the weight initialization logic, among others. Taking 
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the work done by (Cunha, Silva, and Netto 2018) as a reference, the number of layers and the 
activation function was implemented based on their experience working on yield predictions in 
maize and soybean in United States and Brazil. The optimizer chosen is ‘Adam’. and the number 
of hidden layers was set to 4. The hyperparameters optimized in this work follow the order set 
below:   

• epochs: An epoch is defined as a full pass of the dataset. Too few epochs don’t 
give the network enough time to learn the good parameters; too many might overfit the training 
data. Epochs tested: [10 - 150] 

• batch_size: Refers to the number of examples used at a time when 
computing gradients and parameter updates. Values tested: [5 -150].   

• neurons:  The number of neurons per hidden layer is determined by the type 
of input and output the task requires. A recommendable practice is to start with all hidden layers 
with the same number of neurons, and gradually increase the number of neurons until the 
networks starts overfitting. This study tested the following values: [1 – 50]. 

• learning_rate: Is one of the most important hyperparameters. Defines how 
fast is the model going to learn from the train set. For this work, the values tested were [0,1; 
0.001, 0,00001]  

In each optimization instance, the process was repeated from 5 to 10 times (depending 
on the time consumed to execute the calibration) and averages where computed from these 
samples.  

 

Fig. 5: Loss for training and validation set across epochs for Maize 
 LSTM Neural Network model. Configuration: 250 epochs, 2 neurons, batch 
size = 4 and learning rate = 0.01.  
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V. EVALUATE PERFORMANCE 

In a regression task, the model learns to predict numeric scores. The most commonly 
used metric for regression models is RMSE (root-mean-square-error), defined as the square 
root of the average squared distance between the actual score and the predicted score (Zheng 
2015):  

RMSE = √
∑ (yi − yi′)2n

i=1

n
  

 

Here, ‘yi’ denotes the true score for the ith data point, and yi’ denotes the predicted 
value. While RMSE is very popular, it has some problems. Because is an average, it is sensitive 
to large outliers. If the regressor performs really badly on a single data point, the average error 
could be very big, which the model is not robust (Zheng 2015). Taking this into consideration, 
is useful to look at the mean absolute percentage error. MAPE gives a relative measure of the 
typical error: 

MAPE =
1

n
∗ 100 ∑(|

Yi − Yi′

Yi
|)

n

i=1

 

 

MAPE has important shortcomings that need to be considered. It cannot be used if there 
are zero values and puts heavier penalty in negative errors than on positive ones.  On the other 
hand, because it is a relative error to the mean, it is useful when comparing targets with different 
scale units and is commonly used as a quality score for forecasting models.  

An alternative, Mean Absolute Error (MAE) is calculated as an average of absolute 
differences between the target values and the predictions. MAE is a linear score with means 
that all the individual differences are weighted equally (Drakos 2018). MAE penalizes huge 
errors and is less sensitive to outliers compared to RMSE.  

MAE =
1

n
 ∑ | Yi − Yi′|

n

i=1

 

Coefficient of determination R² is closely related to RMSE, with the advantage of being 
scale free (it doesn’t matter if the output values are very large or very small, the R² is between 
-∞ and 1. When R² is negative it means that the model is worse than predicting the mean. R² 
can be also defined as the ratio between how good the model is and how good a naïve mean 
model is (Drakos 2018): 

R2 = 1 −
MSE (model)

MSE (baseline)
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This study will compute RMSE, MAPE, MAE and R² and will compare model 
performance using Lasso estimator as a baseline for Random Forest regressor and LSTM neural 
networks.  

SIMULATIONS 

An important section of this work is the application of machine learning models to 
predict outcome from simulated scenarios. It has already been mentioned that the variable factor 
in this crop model is the weather component. By simulating n times how weather is going to 
behave in a season, yield predictions can be estimated for each n simulation, and then statistical 
analysis can be performed to determine mean and variation of the outcomes from those 
simulations.  

Monte Carlo simulation is a powerful statistical analysis tool widely used across 
different industries: engineering, finance and physics are clear examples. Its ability to deal with 
a large number of random variables and various distribution types and nonlinear models makes 
Monte Carlo suitable for complex problems (Askew 2012).   

Monte Carlo simulation performs random sampling and statistical characteristics of the 
experiments (model outputs) are observed,  and conclusions on the model output are drawn 
based on the statistical experiments (Askew 2012). In each experiment, the possible values of 
the input random variables X = (x1, x2, … xn) are sampled (generated) according to their 
distributions. Then the values of the output variable Y are calculated through the performance 
function. Repeating the same process for a number of experiments leads to a set of samples of 
output variable Y from which statistical analysis can be conducted.  

The purpose of sampling on the input random variables is to generate samples that 
represents distribution of the input variable from their CDF’s (Cumulative Distribution 
Function). The samples of the random variables will then be used as inputs to the simulation 
experiments (Askew 2012).   

 The two steps to carry out a Monte Carlo simulation are:  

1. Generate random variables that are uniformly distributed between zero and one. 
This can be achieved using a random-generator.  

2. Transforming [0, 1] uniform variables into random variables that follow the 
given distributions. While several methods exist to perform such transformations, inverse 
transformation method is used in this work.  

In order to accomplish Monte Carlo experiments, its necessary to now beforehand the 
distribution of the variables to be simulated, which in this case are unknown. However, based 
on historical data, distribution can be estimated using different statistical tools.  

Density estimation methods are statistical tools used to reconstruct an unknown PDF 
(Probability Density Function) from a set of samples drawn from the PDF. These samples are 
used to reconstruct the PDF using either nonparametric or parametric estimators. A non-
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parametric estimator doesn’t assume the underlying distribution in order to obtain estimates 
about that distribution, whereas a parametric estimator assumes the functional form of the 
underlying PDF (Burke 2016).  In other words, non-parametric estimators make no assumption 
about the shape of the distribution, but parametric estimators do (e.g. assume Gaussian 
distribution beforehand).  

This study will conduct non-parametric estimations by calculating Kernel Density 
Estimators (KDE) for each variable, for each region, in each of the 12 months of the season. 
KDEs obtain estimates of the underlying density at discrete points and was first referenced by 
Pazen in 1962 (Parzen 1962). The performance of the KDEs is heavily dependent upon the 
bandwidth. An optimal bandwidth is the one that minimizes the Mean Integrated Square Error 
(MISE), sum of integrated square bias and the integrated variance (Burke 2016).  

On the other hand, the choice of the kernel has a minimal impact on the estimate of the 
underlying density compared to the choice of the bandwidth.  

Once KDE was obtained for a given variable for each month on a given county, 1,000 
Monte Carlo simulations (random number from 0 to 1) were computed and by the inverse 
transformation method, the CDF was obtained, from which the value from the variable that fall 
under that CDF was taken. This process was automated for main monthly weather variables 
across all the regions and a new dataset was generated from the simulations, which would then 
be used to make yield forecast combining actual weather data with simulated information.  

 

Fig. 6: Kernel Density Estimator (KDE) for historical January rainfall in 5 
counties in La Pampa province. X axis indicated monthly rainfall (mm) and Y axis 
the density. 

For the model to be a good representation of the reality and at the same time be 
manageable, a trade-off must be done towards reducing the number of dimensions or features 
to be used to train the model. The model needs to be accurate, but easy to use in practice. 
Therefore, modelling took part in 2 stages:  
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I. Stage 1: A complex model with more than 600 features involved (after applying 
one hot encoding). This allowed to identify the most important variables and quickly dismiss 
the ones that didn’t’ add value to the prediction. 

II. Stage 2: A simplified model, with less than 10 variables and all being the same 
for all 9 crops. To simplify things even more, feature selection towards weather variables 
pushed to select only one weather feature, knowing that each variable would need to be 
simulated for each month, and dealing with more than one variable at the same time is 
computationally expensive, not to mention the difficulty to put the model in practice.   

After training a simplified model with a reduced number of variables with a Random 
Forest Regressor for each crop, monthly weather simulations were conducted to forecast yield 
on 12 scenarios each one with different level of uncertainty: 

1. For example, for a given crop staring the season in July, 100 simulations where 
conducted for each of the 12 months ahead.  

i. All 100 simulated weather data were then randomly grouped to 
conform 100 seasons. 

ii. Prediction was made on all 100 seasons and accuracy metrics were 
calculated.  

2. Once predictions are made simulating all 12 months of the season, step 1 is 
repeated, but n-1 months each time, using the current month as a certain fact. For example, next 
step is to take July data as actual data and simulate the remaining 11 months. After that, July 
and August actual data plus October until June simulated data, and so on. 

 This results on 12 different stages of prediction, each one with different level of 
uncertainty. Starting from 100% simulations in July and finishing with 100% real information 
in June of the following year.  

Moreover, to evaluate performance of the forecasted model, MAPE was calculated at 
each stage and then thresholds were implemented to evaluate at which stage of the season the 
model could make reliable recommendations based on the real data plus the simulations.  

Two thresholds were implemented as acceptance level of accuracy for forecasting 
modelling:  

1. Threshold 20: MAPE less or equal to 20 means the model is qualified. 
2. Threshold 15: MAPE less or equal to 15 means the model is good.   

SOFTWARE 

This study was coded in is python and several python modules were implemented:  

• Pandas and NumPy: Feature engineering and data analysis.  
• Geopandas, Fiona and Shapely: Geospatial feature engineering and analysis.  
• Matplot lib and Seaborn: Plotting packages.  
• Scikit Learn:  
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▪ Kernel Density Estimator (KDE) 
▪ Lasso Estimator 
▪ Random Forest Regressor 
▪ Model performance metrics (RMSE, MAE and R²) 

• Keras and Tensorflow High level API 
▪ LSTM Neural Networks 

Code is available in Github:  

https://github.com/truizmoreno/Crop-Modelling-Thesis  

https://github.com/truizmoreno/Crop-Modelling-Thesis
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RESULTS 

DATA REPRESENTATIVENESS 

For each of the 9 crops county level and national production information was collected 
to calculate the amount of crop production that the counties involved in the training set 
represented from the national production. For example, if Argentina produces 60 million tons 
of soybeans on average every year, the training regions accounted for 60% of the total 
production (36 million tons). This qualitative analysis allows to make inferences about how 
trusted results can be for each crop. 

 

Fig. 7: Indicator of level of representativeness of training set over national 
production, calculated as percentage of production associated to the counties in 
training set over total national production of each crop.  

Apart from cotton and peanuts, the counties used in the training set accounted for 30 to 
40% of the national production, which is a reasonably good representation considering the 
extension of the country and the fact that some of these crops are widely spread across the 
country, specially soybean, maize and wheat. 
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Fig. 8: Number of counties used to train the model for each crop.  

Looking at the number of counties used in the training set, the numbers are consistent 
with the percentage of national production described above. Except for rice, which is confined 
to specific areas of the north east of the country, and the few counties in the training set represent 
a 40% of the national production.  

MODEL PIPELINE  

I. FEATURE IMPORTANCE 

It is desirable to determine which variables and group of variables contribute most to 
the predictive skill of a model. Important measures were developed in the context of Random 
Forest training process. These statistics measure the decline in the accuracy when a variable in 
the out-of-bag sample is randomly permuted (Crane-Droesch 2018). Random permutation 
destroys their correlation with the outcome and with the variables with which they interact, 
remaining uninformative.  

Although remarkable differences were found across the 9 crops, some common features 
can be extracted as the ones that appear to be important cross to all crops. Soil productivity 
index, (IND_PROD in the dataset), is a productivity score from 0 to 1 that reflects the ability 
of the soil to produce. Is a very powerful variable that summarizes many of the other soil 
features, such as type and degree of limitation, fertility, slope, risk of erosion and degradation, 
among others. This index is usually applied in the industry to classify farms between arable 
(highest score), mixed crop and livestock, dairy, livestock, and sheep farms. Three other soil 
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variables remained present across many of the crops, soil deepness of sub superficial horizon 
(PROFUND_S1) and two features related to soil fertility: Natracuoles tipico accounts for acid 
soils (ph. < 7) , with high levels of organic matter, while Natracualfes tipico are classified as 
alkaline soils with high concentration levels of exchangeable sodium from surface (Borrajo, 
Braco, and Ezcurdia 2011).  

The most popular weather variables were the ones associated with water availability: 
accumulated rainfall in a certain month (Precipitacion Pluviometrica acum|[month]), hydric 
stress represented as the difference between precipitation and evapotranspiration (pp_ETP) and 
estimated Hargreaves evapotranspiration (ET_h).  

Starting with the winter crops, wheat most important variables were related to soil 
composition. Important weather variables were maximum temperatures (Bool_tmax_acum) 
accumulated in September and November, Growing Degree Days or GDD 
(GradosDia_acum|[month]) accumulated to December and until the end of crop season 
(January), average annual soil moisture (Humedad_media_14_8_20) and annual rainfall. The 
fact that averages and annual variable were more important than accumulated ones could be 
related to the generalization of the crop season (July-June), when the real season occurs from 
May until January. Barley, the other important winter crop, shares a very similar pattern of 
feature importance.  
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Fig. 9: Random Forest Regressor top 10 most important features for wheat 
according to Feature Importance. 
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Fig. 10: Random Forest Regressor top 10 most important features for 
barley according to Feature Importance. 

Moving on to summer crops, soybean most important variables were soil productivity 
index, followed by accumulated rainfall until February and April, and water stress accumulated 
in March. This makes total sense, since soybean is a crop very well adapted to a wide range of 
temperatures in Argentina and according to research mostly limited by water availability.  

Sunflower most important variable is also soil productivity, followed by temperature 
amplitude accumulated in September (TMedia_min_acum|9) which matched with planting 
season (September). Wind speed appears to be important for this crop 
(Velocidad_Viento_200cm_Media and Velocidad_Viento_200cm_Media), explained by the 
fact that a substantial area where sunflower is planted suffers from high speed winds coming 
from the south of the country. Also, the heavy weight of the flower when the crop approaches 
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to maturity makes it very vulnerable to falls, and storms can make considerable losses in 
sunflower fields. 

 

Fig. 11: Random Forest Regressor top 10 most important features for 
soybean according to Feature Importance. 
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Fig. 12: Random Forest Regressor top 10 most important features for 
sunflower according to Feature Importance. 

Maize most important feature by far is also soil productivity, followed by rainfall 
accumulated until December and January. This can be explained by the fact that maize is very 
demanding in nutrients, higher yields correspond to fertile soils; and very demanding of water 
in specific moments of the growing period (flowering is a critical stage in maize) (Prieto 2010). 
Sorghum most important features are very similar to maize ‘s, with the caveat that sorghum is 
less affected by rainfall (can tolerate drought better than maize) and is more restricted by 
maximum temperatures.  
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Fig. 13: Random Forest Regressor top 10 most important features for maize 
according to Feature Importance. 
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Fig. 14: Random Forest Regressor top 10 most important features for 
sorghum according to Feature Importance. 

Although rice in Argentina is mostly irrigated, rainfall is still classified as an important 
variable for this crop. Heliophany (Heliofania_Relativa_acum|[month]) happens to be an 
important factor, together with mean temperature below 24 degrees 
(Bool_tmed_acum|[month]).  

Cotton most important variables are associated to temperature. GDD, mean 
temperatures below 24 C, and accumulated days with maximum temperatures higher than 28 C 
(Bool_tmax).  Wind speed has also considerable importance. As rice, is not as influenced by 
soil productivity as the other crops. 

Peanut doesn’t have a dominant feature (neither does rice and cotton), but all top 10 
important variables are related to weather and not even one to soil (mean and maximum 
temperature, wind speed, heliophany and accumulated rainfall are some of the most important 
ones). Peanut production is located in the centre of Argentina (mainly in Cordoba province), 
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requires quite specific soil conditions and therefore is limited to homogeneous soil properties. 
Other important weather variables are accumulated days with temperatures below 0 C 
(Bool_heladas_acum|[month]) and sum of cold hours (Horas_frio_acum|[month]), which are 
similar variables.  

 

Fig. 15: Random Forest Regressor top 10 most important features for rice 
according to Feature Importance. 
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Fig. 16: Random Forest Regressor top 10 most important features for cotton 
according to Feature Importance. 
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Fig. 17: Random Forest Regressor top 10 most important features for 
peanut according to Feature Importance. 

After running a complex model with a large number of variables and analysing feature 
importance individually for each crop, 7 variables (4 soil features and 3 weather features) were 
selected to train a simpler model that will later be used to perform simulation scenario analysis. 
These are the variables selected to integrate a simplified model:  

1. Soil productivity index (IND_PROD)  
2. Soil deepness of sub superficial horizon (PROFUND_S1) 
3. Proportion of Natracuoles tipico in soil (Natracuoles_tipico) 
4. Proportion of Natracualfes tipico in soil (Natracualfes_tipico) 
5. Rainfall accumulated from July until September (Precipitacion Pluviometrica 

acum|9) 
6. Rainfall accumulated from July until January (Precipitacion Pluviometrica 

acum|1) 
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7. Rainfall accumulated from July until March (Precipitacion Pluviometrica 
acum|3) 

II. HYPERPARAMETERS 

Each crop was optimized for hyperparameters for Random Forrest regressor and LSTM 
using the 7 variables described before. The combination of hyperparameters that Random 
Search selected to reduce mean squared error (MSE) for each crop is listed below:  

1. Cotton 

Random Forest 

{'oob_score': True,  

'n_estimators': 500,  

'min_weight_fraction_leaf': 

0,  

'min_samples_split': 5,  

'min_impurity_decrease': 

0.6,  

'max_leaf_nodes': 87,  

'max_features': 1,  

'max_depth': 2} 

LSTM 

{'epochs': 60, 

'neurons': 24, 

'batch_size': 105, 

'learning_rate': 

0.1, 

'loss': 'mae', 

'optimizer': 'Adam'} 

 

2. Rice 

Random Forest 

{'oob_score': False,  

'n_estimators': 300,  

'min_weight_fraction_leaf': 

0,  

'min_samples_split': 65,  

'min_impurity_decrease': 

0.9,  

'max_leaf_nodes': 52,  

'max_features': 1,  

'max_depth': 1} 

LSTM 

{'epochs': 20, 

'neurons': 39, 

'batch_size': 45, 

'learning_rate': 

0.1, 

'loss': 'mae', 

'optimizer': 'Adam'} 

 

3. Barley 

Random Forest 

{'oob_score': False,  

'n_estimators': 100,  

'min_weight_fraction_leaf': 

0,  

'min_samples_split': 20,  

'min_impurity_decrease': 

0.9,  

'max_leaf_nodes': 97,  

'max_features': 1,  

'max_depth': 2} 

LSTM 

{'epochs': 140, 

'neurons': 19, 

'batch_size': 5, 

'learning_rate': 

0.001, 

'loss': 'mae', 

'optimizer': 'Adam'} 
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4. Sunflower 

Random Forest 

{'oob_score': True,  

'n_estimators': 300,  

'min_weight_fraction_leaf': 

0,  

'min_samples_split': 20,  

'min_impurity_decrease': 

0.25,  

'max_leaf_nodes': 47,  

'max_features': 2,  

'max_depth': 4} 

LSTM 

{'epochs': 100, 

'neurons': 43, 

'batch_size': 15, 

'learning_rate': 0.1, 

'loss': 'mae', 

'optimizer': 'Adam'} 

 

 

5. Maize 

Random Forest 

{'oob_score': False,  

'n_estimators': 500,  

'min_weight_fraction_leaf': 

0,  

'min_samples_split': 85,  

'min_impurity_decrease': 

0.9,  

'max_leaf_nodes': 47,  

'max_features': 2,  

'max_depth': 5} 

LSTM 

{'epochs': 110, 

'neurons': 11, 

'batch_size': 75, 

'learning_rate': 

0.001, 

'loss': 'mae', 

'optimizer': 'Adam'} 

 

6. Peanut 

Random Forest 

{'oob_score': False,  

'n_estimators': 500,  

'min_weight_fraction_leaf': 

0,  

'min_samples_split': 20,  

'min_impurity_decrease': 

0.4,  

'max_leaf_nodes': 7,  

'max_features': 1,  

'max_depth': 1} 

LSTM 

{'epochs': 110, 

'neurons': 40, 

'batch_size': 35, 

'learning_rate': 0.1, 

'loss': 'mae', 

'optimizer': 'Adam'} 

 

7. Soybean 

Random Forest 

{'oob_score': True,  

'n_estimators': 300,  

'min_weight_fraction_leaf': 

0.2, 'min_samples_split': 5,  

'min_impurity_decrease': 

0.25,  

'max_leaf_nodes': 57,  

'max_features': 2,  

LSTM 

{'epochs': 90, 

'neurons': 4, 

'batch_size': 35, 

'learning_rate': 

0.001, 

'loss': 'mae', 

'optimizer': 'Adam'} 
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'max_depth': 1} 
 

8. Sorghum 

Random Forest 

{'oob_score': False,  

'n_estimators': 300,  

'min_weight_fraction_leaf': 

0,  

'min_samples_split': 20,  

'min_impurity_decrease': 

0.7,  

'max_leaf_nodes': 47,  

'max_features': 2,  

'max_depth': 5} 

LSTM 

{'epochs': 60, 

'neurons': 13, 

'batch_size': 25, 

'learning_rate': 

0.1, 

'loss': 'mae', 

'optimizer': 'Adam'} 

 
 

9. Wheat 

Random Forest 

 

{'oob_score': True,  

'n_estimators': 500,  

'min_weight_fraction_leaf': 

0,  

'min_samples_split': 25,  

'min_impurity_decrease': 

0.6,  

'max_leaf_nodes': 22,  

'max_features': 1,  

'max_depth': 4} 

LSTM 

{'epochs': 60, 

'neurons': 24, 

'batch_size': 105, 

'learning_rate': 

0.1, 

'loss': 'mae', 

'optimizer': 

'Adam'} 
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Fig. 18: Comparison of loss variability [MAE] in training and validation for 
LSTM Neural Network model in maize testing different number of epochs  

III. MODEL PERFORMANCE: RANDOM FOREST AND LSTM NEURAL 
NETWORKS 

The evaluation of model performance was conducted by calculating accuracy metrics 
for all 3 models in two stages: one for a complex model with almost all the soil and weather 
features, and another fit with the 7 selected variables.  

Random Forest average improvement across all crops compared to Lasso is 32% in 
MAE and 35% in RMSE.  Reduction in MAE score was significant across the 9 crops analysed 
(minimum improvement was observed for soybean, were RF outperformed Lasso by 20%). On 
average, LSTM performed 9% better than Lasso when measuring MAE and 18% better in 
RMSE. However, substantial variations were observed between crops: wheat LSTM model 
performed 20% worse than the baseline, while rice and cotton LSTM model outperformed 
baseline over 40%.  
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Fig. 19: Reduction in MAE in Random Forest and LSTM compared to 
Lasso’s over the 9 crops analysed trained with all variables. 

For a complex model with many features Random Forest outperformed Lasso and 
LSTM. Only in 2 crops and for specific scores LSTM got best scores by minimum difference.  
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Table 2: Model scores for 3 algorithms (LSTM, Random Forest and Lasso) 
trained with the complete set of variables. Lowest column indicate the algorithm that 
obtained the best score. LSTM (%) and RF (%) indicate each algorithms error 
reduction compared to Lasso Regressor (baseline).  
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For the simple model with 7 variables, Random Forest got the best performance for all 
crops and scores analysed except for cotton, were LSTM performed slightly better. RF 
improved MAE on average 35% compared to Lasso while LSTM performance compared to 
Lasso averaged 7% for the same metric. RF had lower standard deviation between crops 
performance than LSTM. 

 

Fig. 20: Reduction in MAE in Random Forest and LSTM compared to 
Lasso’s over the 9 crops analysed trained with simplified model (7 variables). 
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Table 3: Model scores for 3 algorithms (LSTM, Random Forest and Lasso) 
trained with reduced number of variables. Lowest column indicate the algorithm 
that obtained the best score. LSTM (%) and RF (%) indicate each algorithms error 
reduction compared to Lasso Regressor (baseline).  
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Comparisons of performance scores between training and test dataset allowed to detect 
when a model is overfitting. Although Random forest outperformed LSTM and Lasso, it 
overfitted the training dataset in each crop model.  

 

Fig. 21: Random forest overfitting for MAE score. Complex model (all 
variables). 

LSTM, on the other hand, with less attractive accuracy metrics, had a very similar scores 
for training and test set.  
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Fig. 22: LSTM comparison of training and test dataset performance (MAE). 
Complex model (all variables). Results show a very close relationship between test 
and training set accuracies, with no signs of overfitting.  

IV. MODEL PERFORMANCE: COMPLEX AND SIMPLE MODEL 

Reducing complexity of the model had different impact depending on the crop. For the 
summer crops were RF originally performed well (maize, soybean, sorghum and sunflower) 
the reduction of features had softer effects. These could be related to the fact that the variables 
chosen for the simplified model are quite representative of crop yield variability. Wheat and 
barley, the winter crops, deteriorated MAE by 20% for both LSTM and RF. As was mentioned 
when discussing feature importance, these two crops depended very much on specific soil 
features that were removed in the simplified model, plus the fact that water availability is less 
critical compared to summer crops. Peanut model was severely affected by feature reduction 
on both models. None of the top 10 most relevant variables (from RF feature importance) for 
peanut were kept in the simplified model. Finally, rice and cotton performance changed 
opposite from each other after feature reduction. While RF decreased performance in cotton, 
LSTM increased, and while RF improved performance in rice, LSTM performance deteriorated.   
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Fig. 23: Change in MAE score after reducing the number of variables from 
a complex model to a simple model with 7 variables.  

 

Fig. 24: Change in MAPE score after reducing the number of variables from 
a complex model to a simple model with 7 variables. 
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Coefficient of determination R² experimented very small reductions after reducing the 
number of dimensions in the model. Except for cotton and peanut, which coefficients of 
determination resulted very damaged after model simplification.  

 

Fig. 25: Comparison of Coefficient of Determination R² for Random Forest 
Regressor between a complex model and simple models with 7 variables. 

V. MODEL PERFORMANCE: CROPS 

Because crops have different scale of yields, and the models learned with the original 
scale of values (no normalization was effectively implemented), it is not convenient to use MAE 
score to compare the accuracy of the models between crops. Maize for example, can yield more 
than 12 tons/ha (12,000 kg/ha), whereas sunflower average yields could be around 3,5 tons/ha 
in some regions. 

 MAPE (Mean Average Percentage Error) is used to compare model accuracy between 
crops. It gives a relative measure of the typical error (Zheng 2015) and solves the scaling 
problem.  Coefficient of determination R² is also analysed as an indicator of how good the 
trained model against a naïve mean model is.  
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Table 4: Evaluation of Random Forest performance scores for 9 crops 
between training and test dataset. Left: Complex model, with all soil and weather 
variables. Right: Simplified model 

  

Looking at Random Forest R² and MAPE, maize, soybean and wheat models performed 
very well on both metrics. Barley and sunflower, with lower R² performed reasonably well on 
MAPE. 

As was mentioned before, significant difference between training and test performance 
was observed for Random forest which indicates that the model overfitted the training data.  

Predictions where made on the test dataset and regression analysis was conducted 
between predicted and actual yields for each crop. The difference between prediction and actual 
values was normalized and z scores were calculated as following:  

𝑧 =
(𝑒𝑟𝑟𝑜𝑟 −  𝜇)

𝜎
 

Looking at the performance scores obtained for the test dataset, results look very 
promising for 6 of the 9 crops analysed: barley, wheat, maize, sorghum, soybean and sunflower. 
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Correlation between actual and prediction yields was statistically significant for all 6 crops 
mentioned above, with very acceptable Pearson coefficient (r ≥ 0.75 except for sunflower). This 
are the main crops in terms of national production and geographical extension compared to the 
remaining 3 crops which didn’t show good results in the predicted vs. actual analysis.  

The amount of data available for training and the representativeness of the training set 
was higher for the 6 crops with best scores compared to the 3 scores that performed poorly. 

 
 

Fig. 26: Wheat prediction performance analysis with Random Forest 
simplified model. Left: Scatter plot of actual vs. predicted yields. Right: Distribution 
of the normalized error, calculated as the difference between actual and predicted 
yield, normalized to the mean.  

 
 

Fig. 27 Barley prediction performance analysis with Random Forest 
simplified model. 
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Fig. 28: Maize prediction performance analysis with Random Forest 
simplified model. 

 

 
 

Fig. 29: Sorghum prediction performance analysis with Random Forest 
simplified model. 
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Fig. 30: Soybean prediction performance analysis with Random Forest 
simplified model. 

 

 

 

Fig. 31: Sunflower prediction performance analysis with Random Forest 
simplified model. 
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Fig. 32: Cotton prediction performance analysis with Random Forest 
simplified model. 

 

 

 

Fig. 33: Rice prediction performance analysis with Random Forest 
simplified model. 
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Fig. 34: Peanut prediction performance analysis with Random Forest 
simplified model. 

SIMULATIONS 

Step by step monthly rainfall simulations for each crop in each region resulted in 
seasonal MAE curves that express level of confidence of simulations compared to the prediction 
using real data. Although crop season changes regionally, this model is a generalization for the 
national crop season.  

Maize season in Argentina usually goes from September-October (planting) until May-
June of the following year (harvest) (INTA 2016). Accuracy of the model was good with 100% 
real data (no simulations), MAPE was just below 15%.  Simulations from January, were there 
is still 4-5 months of the season to go, resulted in a qualified model (MAPE ≤ 20).  

 

Fig. 35: Reduction in MAPE score for maize RF model across different 
simulation scenarios, starting with 100% simulated data (July) up to 100% real data 
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(June). Vertical dashes indicate the moment when a threshold is achieved, T15: 
MAPE ≤ 15%, T20: MAPE ≤ 20%. 

Soybean (as first crop and not as double crop after a winter crop) season is very similar 
to maize’s, although could have later sowing (October-November) and earlier harvest (April-
May) (INTA 2016). Soybean model accuracy was even better than maize’. In December 3 to 4 
months after planting, a forecast can be made with a qualified accuracy, meanwhile a good 
accuracy is achieved in February.  

 

Fig. 36: Reduction in MAPE score for soybean RF model across different 
simulation scenarios, starting with 100% simulated data (July) up to 100% real data 
(June). Vertical dashes indicate the moment when a threshold is achieved, T15: 
MAPE ≤ 15%, T20: MAPE ≤ 20%. 

Sunflower can be planted between August until November and harvested in February-
March (INTA 2016). The accuracy obtained with simulations allows to forecast sunflower 
yields as from October with a MAPE ≤ 20.  
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Fig. 37: Reduction in MAPE score for sunflower RF model across different 
simulation scenarios, starting with 100% simulated data (July) up to 100% real data 
(June). Vertical dashes indicate the moment when a threshold is achieved, T15: 
MAPE ≤ 15%, T20: MAPE ≤ 20%. 

Sorghum growing season is very similar to soybean’s, sowing happens around October-
November and harvest in April-May (INTA 2016). Results show that with 100% data in July a 
Threshold 20 is achieved, and in January, simulating 42% of the season, an accuracy of MAPE 
≤ 15 is obtained.  

 

Fig. 38: Reduction in MAPE score for sorghum RF model across different 
simulation scenarios, starting with 100% simulated data (July) up to 100% real data 
(June). Vertical dashes indicate the moment when a threshold is achieved, T15: 
MAPE ≤ 15%, T20: MAPE ≤ 20%. 
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Rice is majorly planted in October and harvested around February-March (INTA 2016). 
In November, only a month after planting, a MAE ≤ 15 is achieved by simulating the rest of 
the season. 

 

Fig. 39: Reduction in MAPE score for rice RF model across different 
simulation scenarios, starting with 100% simulated data (July) up to 100% real data 
(June). Vertical dashes indicate the moment when a threshold is achieved, T15: 
MAPE ≤ 15%, T20: MAPE ≤ 20%. 

Cotton is planted between October and November and harvested between March and 
May (INTA 2016). The accepted accuracy level for forecasting cotton yield arrive to late in the 
season to be beneficial. Only in March the model can predict with an error less than 20%, and 
by that time the crop is about to be harvested.  

 

Fig. 40: Reduction in MAPE score for cotton RF model across different 
simulation scenarios, starting with 100% simulated data (July) up to 100% real data 
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(June). Vertical dashes indicate the moment when a threshold is achieved, T15: 
MAPE ≤ 15%, T20: MAPE ≤ 20%. 

Because peanut MAPE values using real data were already higher than the thresholds 
stablished, monthly scenario analysis was not analysed for this crop. On the other hand, winter 
crops (wheat and barley) simulations can’t be model in the same way that summer crops due to 
the differences in growing season and how this study defined a common denominator for crop 
seasonality. However, a time-series analysis was performed combining real data with predicted 
data using different levels of simulations. 

Picking up data for 1 region, 3 instances where modelled: 

1. Real data from July, simulations from August.  
2. Real data from July until September, simulations from October. 
3. Real data from July until November, simulations from December  

For each stage, 100 simulations were generated calculating the average and quartiles of 
the distribution of the predictions and the results were compared against the actual data and 
against the predictions made by 100% real data.  

As the number of months simulated decreases, so does the wideness between lower and 
upper bands (±2 standard deviations from the mean). In other words, as the levels of uncertainty 
decreases, the variability in the calculated yields decreases too.  
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Fig. 41: Time series 1970-2018 simulations for wheat in Marcos Juarez 
(Cordoba) with 3 levels of simulations. On top: 11 months simulations (August to 
July), centre: 9 months simulations (October to July) and bottom: 7 months 
simulations (December to July). Grey bands delimit +- 2 standard deviations from 
the mean prediction of 100 simulations, which is represented by the black line.  Red 
line is the prediction with real data (no simulation) and blue line is the actual yield 
time series. Yields are adjusted by TFP. 

Looking at the barley example, the mean of the simulations improves its accuracy and 
copies the pattern of the real yields better when the number of months simulated decreases.   
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Fig. 42: Time series 1970-2014 simulations for barley in Tres Arroyos 
(Buenos Aires) with 3 levels of simulations. On top: 11 months simulations (August 
to July), centre: 9 months simulations (October to July) and bottom: 7 months 
simulations (December to July). Grey bands delimit +- 2 standard deviations from 
the mean prediction of 100 simulations, which is represented by the black line.  Red 
line is the prediction with real data (no simulation) and blue line is the actual yield 
time series. Yields are adjusted by TFP.  



 

 

DISCUSSION 
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DISCUSSION 

This study illustrates that Random Forest Regressor is highly effective for regional scale 
crop yield predictions. Random Forest models outperformed baseline by more than 30% on 
average across 9 crops analysed and outperform LSTM Neural Networks in almost every 
comparison. The only situations were LSTM came closer to RF performance was for crops with 
fewer amount of training information. On the other hand, RF strongly overfitted the training 
dataset while LSTM results were consistent between training and test dataset.  

Results correspond with findings made by (Kim et al. 2016) whom compared 
predictability performance between Random Forest Regressor and Multi Linear Regression 
(MLR) algorithm. Their study concluded that RF outperformed MLR in all the 4 crops analysed 
(maize, silage maize and potato in United States and global wheat).   

In addition to RF predictive capability, RF also provides useful information about 
variable importance and dependence. The variable importance rank and the partial impact of 
the variable on the response can be evaluated  for the purpose of systems analysis (Díaz-Uriarte 
and Alvarez de Andrés 2006). This study used Mean Squared Error (MSE) to identify the most 
influential variables determining crop yield in the 9 crops and more than 80 counties analysed.  

RF intrinsically separates a random subset of data for performance testing from 
calibration data by using the remaining set of data for model training Therefore, splitting data 
for training and validation is likely a redundant procedure when applying RF for crop modelling 
and its performance may increase as more data is included for training (Kim et al. 2016).   

 INTA’s soil productivity index proved to be a very powerful feature to estimate yield 
for any crop. Other soil characteristics such as deepness, alkaline levels were also useful across 
most of the crops analysed.  

Weather variables associated to water availability and water stress were substantially 
important too.  All summer crops seem to be highly dependent on water availability, even rice 
which is majorly irrigated. Sunflower suffers from high wind speed (so does cotton) and cotton 
is affected by mean and maximum temperatures. Winter crops (barley and wheat) share 
common feature importance’s, with special importance of maximum temperatures and GGD 
(Growing Degree Days).   

Although feature importance was variable across crops, a simple model using a 
combination of soil most important variables and accumulated rainfall in 3 critical stages of the 
season proved to be as accurate as the complex multi-feature model initially trained.  

The ability to standardise the same features across all crops was a major success and 
made simulation become more powerful. By analysing the monthly rainfall historical 
distribution for each region and modelling Kernel Density Estimators (KDEs), simulations were 
performed for all regions from which scenario analysis was conducted to evaluate forecasting 
with different levels of uncertainty.  
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MAIZE 

Maize’s training dataset represents 31% of the total national production and expands to 
68 counties and 6 provinces.  

Simplified RF Regressor for maize was one of the best accuracies obtained in this study. 
RF 7 featured model explained 76% yield variance for the test set, with a statistical significance 
agreement (p-value < 0.05) between the observed values and predicted ones from the test data.  
The MAE was 924 kg/ha, which was 15.7% of the observed yield and RMSE 1,405 kg/ha. The 
ability to predict maize yield allows simulations to successfully forecast yield with MAPE of 
18% as from January. This means that 4-5 before harvest the crop yield can be predicted with 
reasonable accuracy.  

(Cunha, Silva, and Netto 2018) predicted maize (US) and soybean (US and Brazil) 
yields using LSTM Neural Networks. In their findings they reported MAE for US maize of 
1,031 kg/ha (based on 2,204 counties observations), MAPE 11.3% and RMSE 1,390 kg/ha.  

(Kim et al. 2016) estimators for maize yield using Random Forest Regressor are very 
similar to the ones obtained in this work. They reported a Coefficient of Determination of 0.73 
and RMSE = 1,130 kg/ha. 

(Aditya Shastry 2017a) analysed maize, wheat and cotton yields modelling comparing 
linear and non-linear statistical regressor algorithms. They reported coefficient of determination 
R² between 0.75 (linear model) and 0.9 (quadratic model) and RMSE between 600 and 400 
kg/ha respectively for maize yields.  

(Kaul, Hill, and Walthall 2005) evaluated Artificial Neural Networks (ANN) model 
performance and compared the effectiveness of multiple linear regression models to ANN 
models. ANN models consistently produced more accurate yield predictions than regression 
models. ANN maize yield models resulted in R² and RMSEs of 0.77 and 1,036 kg/ha versus 
0.42 and 1,356 kg/ha for linear regression, respectively.  

SOYBEAN 

Soybean’s training dataset accounts for 37% of total national production spread over 61 
counties. RF estimator was able to predict 68% of yield variance with a relative error of 17.25% 
over observed yields. MAE was 454 kg/ha, RMSE of 685 kg/ha and association between 
predicted and actual values was statistically significant (p-value < 0.05). Simulations were able 
to predict soybean yield from December with a MAPE < 18%. Again, being able to anticipate 
harvest actual yields 5-6 months beforehand proves to be very powerful.  

(Kaul, Hill, and Walthall 2005) reported ANN soybean yield models for Maryland 
resulted in R² and RMSEs of 0.81 and 214 kg/ha versus 0.46 and 312 kg/ha for linear regression, 
respectively. 
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(Cunha, Silva, and Netto 2018) trained dataset with Brazilian soybean yields with 
LSTM Neural Networks and obtained R² 0.55, MAE 288 kg/ha, RMSE 386 kg/ha and MAPE 
11%.  

WHEAT 

Wheat’s training dataset is integrated by 61 counties that account for 43% of total 
national production. Coefficient of determination R² for RF wheat estimator was 0.59. This 
resulted in a MAE of 496 kg/ha representing 15.7% of observed yields. Correlation between 
actual and prediction was statistically significant (p-value < 0.05).  

(Aditya Shastry 2017a) reported R² score around 0.9 and RMSE values between 200 
and 300 kg/ha for winter wheat. In this study, RMSE for wheat was 750 kg/ha and R² equal 
0.59.  

(Kim et al. 2016) also studied wheat yields, using Random Forest Regressor for global 
yield records derived from wheat atlas mega environment classification (CIMMYT, n.d.). They 
reported coefficient of determination of 0.96, RMSE of 320 kg/ha and MAPE 11.9%.  

Although forecasting wasn’t evaluated monthly as it was for summer crops time series 
analysis showed an acceptable fit of yield predictions using weather simulated data against 
actual yields.  

SUNFLOWER 

Sunflower’s training set represents 28% of sunflower’s national production and is 
conformed by 55 counties. Correlation between observed and predicted values was also 
significant (p-value < 0.05). RF regressor model was able to explain 51% of yield variance with 
a MAE of 371 kg/ha, which represents 14.3% of observed yield. Forecast simulations were able 
to predict sunflower yields with a relative error of 20% as from October for main sunflower 
regions. This is the earliest stage of monthly forecast prediction obtained in this work.  

SORGHUM 

Sorghum’s training dataset represents 42% of total national production all together and 
data was gathered from 54 counties. RF model explained 66% of yield variance with MAE of 
906 kg/ha, that represents 17.5% of observed yield. Correlation between actual and prediction 
test data was also significant. In relation to forecasting, with less than 15% relative error, May 
yields can be predicted in January using weather simulations.  
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BARLEY 

Barley’s training set accounts for 39.5% of national production integrated by 49 
counties. Correlation between actual and predicted data was statistically significant. Coefficient 
of determination R² was 0.51 and MAE equal 586 kg/ha, MAPE equal 20.5%.  

(Ayoubi and Sahrawat 2011) designed ANN models to predict biomass and grain yield 
of barley from soil properties; and they compared the performance of ANN models with 
multivariate regression models. In their study, they reported R² of 0.93 and 0.89 for ANN and 
regression models respectively.  

RICE 

Rice training dataset is conformed only by 15 counties, but because rice production is 
so concentrated in a specific region of the country, those counties account for 39% of national 
production. Rice RF performed poorly. The model account for 58% of yield variance and 
correlations between actual and predicted data are not statistically significant. Nevertheless, 
MAPE values obtained for rice are pretty good (9%), which in fact were the lowest MAPE 
values obtained for the crops analysed.  This resulted in quite attractive forecasts, leading to an 
error less than 15% forecasting yields from November for a crop that will be harvested in 
February. 

(Ji et al. 2007) investigated the performance of ANN model to predict Fujian rice yield 
for typical climatic conditions of the mountainous region. They also compared the effectiveness 
of multiple linear regression models with ANN models. Their study revealed that ANN models 
consistently produced more accurate yield predictions than regression models. ANN rice grain 
yield models for Fujian resulted in R² and RMSE of 0.67 and 891 kg/ha vs. 0.52 and 1977 kg/ha 
for linear regression, respectively.   

PEANUT 

Peanuts training information comes from 10 counties that represent only 4.5% of total 
national production. For future studies, weather information should be gathered for the main 
regions were peanuts grow, in Cordoba province. The low representativeness of the dataset was 
reflected in peanut’ model performance. In terms of model accuracy, peanuts obtained the 
lowest performance across all 9 crops, with negative coefficient of determination (-0.25) and 
highest MAE reported in the study (23.8%). No simulations were conducted for this crop due 
to the poor MAE score. 

COTTON 

Cotton training dataset represents only 9% of national production and in integrated by 
10 counties. RF model accounted for 31% of yield variance in cotton and reported a reasonably 
good RMSE score (702 kg/ha) and MAE score (507 kg/ha)/ Simulations acceptance levels of 
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accuracy do not occur until the end of cotton season (harvest occurs in March-April) and 
therefore results are not very interesting in terms of the ability to anticipate yields predictions. 
Correlation between observed and actual yields is very poor and not significant.  

(Aditya Shastry 2017a) trained US cotton yield dataset with different statistical lineal 
and non-linear algorithms and reported accuracy of 0.6 to 0.8 coefficient of determination R² 
and 350 to 300 kg/ha RMSE for linear and Supported Linear Regressor (SLR) respectively.   

(Mwasiagi, Huang, and Wang 2008) designed an ANN model by selecting cotton-
growing cost factors to predict cotton yield in Kenya. They reported to find an optimum ANN 
with 12 neurons resulting in a R² of 0.88 and RMSE of 204 kg/ha.  
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CONCLUSIONS 

This work demonstrates that machine learning algorithms are a competitive alternative 
to statistical modelling for crop yield prediction. Machine learning algorithms performed better 
than classical linear regression models, mainly because of the non -linear relationship between 
soil and weather variables and crop yields, already mentioned by (Kaul, Hill, and Walthall 
2005) and by (Lobell et al. 2011).  

Random forest outperformed baseline algorithm by 32% when training with all the 
variables of the dataset and 35% better when training with a simplified model. Similar results 
were found by (Kim et al. 2016), who analysed RF performance against MLR in wheat, maize, 
potato and silage maize, and concluded that RF outperformed linear models in all crops 
analysed. However, further efforts should intend to reduce Random forest overfitting, which 
occurred systematically in all crops modelled. 

LSTM neural networks perform slightly better than MLR, but with large variability 
between crops. With practically no difference for 4 crops analysed (sorghum, soybean, 
sunflower and wheat) in a full model (with all soil and weather variables), outperformed 
baseline by more than 50% for cotton and performed worst for rice (20% lower than baseline). 
On average, LSTM outperformed benchmark by 8% in MAE in the full model and by 7.4% in 
the simplified model. 

Wheat and barley are more influenced by soil types. Summer crops are affected by water 
availability, particularly soybean and maize. Together with sorghum and sunflower, soybean 
and maize are very depending on soil productivity. Sorghum behaves similarly to maize, with 
capacity to tolerate water stress, but affected by maximum temperatures, explained by the fact 
that sorghum is planted under more extreme temperature conditions than maize. Sunflower 
suffers from high wind speed more than any other weather factor. Cotton most important 
variables are related to temperature and peanut is similar, but also affected by rainfall. Rice is 
affected by temperature, water stress and heliophany.  

Random Forest models trained returned satisfactory results for 6 of the 9 crops tested: 
wheat, barley, soybean, maize, sorghum and sunflower. The models for these crops had 
statistically significant correlation between actual and predicted yield for the test dataset, and 
performance of the 4-accuracy metrics analysed (R², MAE, RMSE, MAPE) were very 
acceptable too. Accuracy metrics  obtained in this work are comparable to the ones obtained by 
(Cunha, Silva, and Netto 2018) and (Kim et al. 2016) for maize, (Cunha, Silva, and Netto 2018) 
and (Kaul, Hill, and Walthall 2005) for soybean and (Aditya Shastry 2017b) for wheat. 

The three remaining crops are less important in terms of area and production in 
Argentina, this also explains why less amount of training information was available for the 
latter crops. In consequence, models trained for cotton, peanuts and rice performed poorly, with 
no significant correlation between actual and predicted yields and poor accuracy for the metrics 
reported. 

From over 600 weather and soil variables, 4 soil attributes and accumulated rainfall in 
3 stages (July to September, July to January, July to March) were able to explain crop yields 
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almost as accurate as the full model trained initially. Soil productivity, soil deepness, proportion 
of acid soil and alkaline soils with high concentration of sodium are the 4 soil factors.  

A 7-variable simplified model had very similar accuracy values for MAE, MAPE and 
R² compared to a complex model with all variables contemplated. This illustrated the 
importance of feature selection and how identifying the correct factors to explain the predictable 
variable can make a model simpler and robust. The ability to simplify a model training with 
only 7 variables, 4 from which remain constant through the season for a given region, makes 
weather simulation and yield scenarios feasible and easy to explain.  

Monthly rainfall simulations conducted for all regions returned reasonable accurate 
yield prediction scenarios, with promising results for maize, soybean, sorghum, rice and 
sunflower. These crops’ models were able to predict crop yield with MAPE ≤ 20% before the 
crop harvest, making the model acceptable for forecasting. The advantages for forecasting crop 
yields are various and concern many stakeholders of the agricultural chain. Global and regional 
estimations are useful for government to plan possible shortages in production to meet demand 
or exports needs. Farmers forecast production to fix contracts beforehand, compromising 
production they yet have not harvest, with the benefit of fixing the price of the commodity.   
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FIGURES 

 

Fig. A 1: Argentinian county level map of the weather stations location used 
that integrated the dataset. Red dots indicate the location of the weather stations, 
and blue polygons delimit the counties assigned to weather stations.   

 



 

 

 

Fig. A 2: Time series data availability of weather stations data by county.  



 

 

 

Fig. A 3: Completeness analysis by regions and by weather variable. Values 
go from 0 (no data) to 100% (fully complete), represented by dark and bright scale 
respectively.  



 

 

 

 

Fig. A 4: Winter crops sowing and harvest calendar for across provinces in 
Argentina (INTA 2016).  

 

 



 

 

 

 

 

 

 

Fig. A 5: Summer crops sowing and harvest calendar for across provinces 
in Argentina. (INTA 2016).  

 



 

 

 

Fig. A 6: Hyperparameter optimization; illustration of Grid search and 
Random search 

 

Fig. A 7: Accuracy levels, measured as Coefficient of Determination of 
different linear and non-linear algorithms tested on maize for the reduced dataset 
(7 variables); en (Elastic Net), llars (Least Angle Regression), KNN (K-Nearest 
Neighbours), CART (Decision Tree Regressor), RF (Random Forest Regressor).  



 

 

 

Fig. A 8: Random Forest Regressor top 60 features according to Feature 
Importance for maize using all variables available in dataset.  



 

 

 

Fig. A 9:Actual vs. Predicted analysis for 3 main wheat production counties 
using Random Forest simplified model.   

 

Fig. A 10: Actual vs. Predicted analysis for 3 main barley production 
counties using Random Forest simplified model. 



 

 

 

Fig. A 11: Actual vs. Predicted analysis for 3 main maize production 
counties using Random Forest simplified model. 

 

Fig. A 12: Actual vs. Predicted analysis for 3 main soybean production 
counties using Random Forest simplified model. 



 

 

 

Fig. A 13: Actual vs. Predicted analysis for 3 main sunflower production 
counties using Random Forest simplified model. 

 

Fig. A 14: Actual vs. Predicted analysis for 3 main sorghum production 
counties using Random Forest simplified model. 



 

 

 

Fig. A 15: Actual vs. Predicted analysis for 2 main rice production counties 
using Random Forest simplified model. 

 

Fig. A 16: Actual vs. Predicted analysis for 2 peanut production counties 
using Random Forest simplified model. 

 

 

 




