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Abstract
People’s habits have changed after the pandemic and cycling around the city of Buenos Aires is
no exception. This thesis leverages literature on Capacitated Facility Location Problems (CFLP)
to build an optimal bike-sharing network to minimize the total system’s cost. The objective is to
decide which stations should be left open to meet projected demand in the worst-possible
cases, ensuring that users do not have to walk more than a predefined distance to the facility
that is closest to them. Results suggest that there is an excess of stations in the downtown area
and idle capacity that could be relocated in peripheral areas, reflected by a positive load factor
increase of 2x after the optimization is done. The solution shows that up to 70% of total costs
could be saved after using our optimization model, by closing down facilities while meeting
demand. While total cost is estimated as the budget that needs to be invested to ramp up the
system from scratch, it is a useful metric that shows us how the network could be optimized
taking away stations from overcrowded areas without losing any of the current demand. All of
these bike-sharing facilities could be relocated to areas that have a low-density of bikes,
improving access to the cycling system in the city of Buenos Aires.

A Momeh, El Abuelo, Dijon, Pupa, La Bobe. No estaría acá sin ustedes.
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1. Introduction

1.1 Context, Motivation, Problem Statement

Cycling is an activity that has increased in popularity in recent years: bicycles are a healthy,
emission-free means of transportation that are cheaper than cars. However, not all people in the
city of Buenos Aires, Argentina, have the luxury of owning a bicycle. Having this in mind, the city
government introduced the Ecobicis program in 2012, a bike sharing mechanism that sought to
provide a new alternative in public transportation systems.

As with any bike sharing system, the administration installed bike stations in different spots
within the city, stocking them with bicycles that people could take out for an indefinite period of
time only to later return them to another station. The program continued to be maintained by the
city government until May 2019, when Ecobicis was sold to Tembici, a Brazilian ridesharing
company. The acquisition had to do with ensuring that private capital would support the network,
while the Government of the City guaranteed its gratuity by contributing 60M$ in subsidies to the
bike-sharing company. The subsidy meant a huge saving for the city, since it only represented
half of what they spent to maintain the system at the time.1

Since its acquisition, Tembici has expanded coverage of the program within the city. They
installed multiple stations outside of the typical tourist spots and observed a mass increase in
usage of 3.6x2. The pandemic put their growth to a stop, with severe quarantine measures in
place in Argentina. The service was completely suspended from March 19th, 2020 until May
12th, 2020, and when it came back online, the total number of daily trips was not at the level it
used to be, as seen in Figure 1.1.

2 Value calculated by comparing average number of bicycle trips before Tembici acquisition (March-May 2019) and
after Tembici acquisition (May 2019-Dec 2019).

1 Extracted from:
https://www.cronista.com/apertura/empresas/Adios-a-las-bicicletas-amarillas-una-firma-brasilena-operara
-Ecobici-20190219-0010.html
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Figure 1.1: Total number of trips per day considering all stations that were active during that day, ranging from Feb
2019 to Feb 2023. Plot was built using information from bike-sharing user trips from Feb 2019 to Feb 2023 in the

City of Buenos Aires.3 Plot was built by the author.

What motivates this thesis is the hypothesis that states that, after the quarantine, people in the
city have changed their cycling habits. Working remotely from home, city life does not revolve so
much around downtown, where most offices were located. Hence, there is an over investment of
stations and retrievable bikes in the downtown area and an under investment along the city’s
periphery, where people spend a larger relative share of their time, as seen by the current
network of stations in the city in Figure 1.2.

Figure 1.2: Current location of stations within the City of Buenos Aires, last 6 months of data (sept 2022-feb 2023).

3 Link to extracted information: https://data.buenosaires.gob.ar/dataset/bicicletas-publicas
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Our objective is to study the optimal design of the bicycle station network under different
conditions, aiming to minimize the system's total cost. Given that we already have the current
station configuration, by using different simulation techniques and assumptions, we can
estimate the current system’s cost and use it to understand the improvement our optimization
model can bring. Our solution will involve Linear Integer Programming and can be framed within
a subset called Capacitated Facility Location Problems (CFLP). Such types of problems require
inputs that depend on where stations are located and where demand is located. Therefore, we
will also use the centroids of Voronoi regions around each station to calculate demand locations.
We will also predict demands for each center of demand using state of the art time series
techniques, ensuring that our predictions reflect worst-case scenarios, making our solution more
robust. Finally, we run a ceteris paribus analysis to determine how each of the parameters affect
our proposed end result.

1.2 Literature Review

1.2.1 Theory On CFLP
Wolsey (2021) [12] describe Integer Linear Programming (ILP) as a mathematical optimization
problem in which some or all of the variables are restricted to be integers. The Linearity in the
ILP usually refers to a linear objective function. CFLP’s are a typical type of Integer Linear
Programming problems.
Snyder and Shen (2019) [10] have a book that does a great introduction to CFLP’s.
Paraphrasing them, this problem comes from firms that need to decide what is the number and
location of factories, retailers or physical facilities. There is a key tradeoff between the quantity
of facilities and the customer service they provide. Too many facilities probably imply excellent
customer service since most customers are close to a facility, but also make the firm incur in
high facility costs to build and maintain them. On the other hand, if the firm installs too few
facilities, they will have lower costs, but customers will have to travel great distances to get to a
facility.

In the CFLP problem, facilities have fixed costs that represent building each facility, which are
independent of the amount of volume that passes through the facility. There is also a
transportation cost per unit of product shipped from a facility to a customer. Each facility also
has a maximum capacity of product that they can store and there is a single product. The
problem is to choose facility locations to minimize the fixed cost of building facilities plus the
transportation cost to transport product from facilities to customers, subject to constraints
requiring every customer to be served by some open facility.

The authors also go into different types of CLFPs, with other objective functions that we will not
cover throughout this thesis. Covering models are worth mentioning, given the nature of the
problem we will address here. Our firm could desire that all users are very close to a
bike-sharing station and not have to travel far, regardless of the installation cost that this implies.
The idea here is that we minimize the amount of stations that are open, while ensuring that
every customer will be allocated to a station, without being left out of the system.
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While our objective function will minimize total costs, we will introduce restrictions that
guarantee coverage for the current level of demand. We will also include restrictions that make
solutions practically feasible, meaning that a user does not get allocated to a station that is very
far away and to which they would not travel to.

1.2.2 Practical applications of CFLP
Much has been written about these types of problems. Essentially, bike sharing systems depend
on optimal decisions in three different types of fronts, some of them more strategic and others
more operational. Paraphrasing Nikiforiadis, Aifadopoulou, Salanova Grau, and Boufidis (2020)
[8], the three optimization problems to consider are:

- The location and number of bike-sharing stations within the service area.
- The capacity of each station and the number of bicycles available in the system.
- The redistribution process of the bicycles within the day or a given time period.

These problems are sorted from most strategic to more operational. We will discuss all of them
briefly, below.

1.2.2.1 Capacity of each station, number of bicycles and redistribution process problems

Freund, Henderson, O’Mahony, & Shmoys (2019) [3] discusses the work they did with Motivate,
the leading company in the bike-sharing industry in the United States. Their first project had to
do with reallocating capacity across stations, based on the station's current utilization, with the
end goal of improving the service quality for riders. The second of their projects, described in
the same paper, have to do with building the right incentives for users in New York City to make
them rebalance the system without any intervention from the owner.

User Dissatisfaction Functions (UDF) are the framework behind this paper. The idea is to
associate the number of docks and bikes of each station to the expected number of stockouts
that they will have. Each UDF follows a stochastic sampling process of users returning or
renting bikes. A dissatisfied user is recorded every time that a user in the sampled sequence
wants to rent a bike and no bikes are available, or conversely, when they would like to deposit a
bicycle and all docks are full. Then, the UDF is defined as the expected number of users that
were dissatisfied from the sample, based on the station capacity and bikes available. In order to
avoid having biased estimates of demand, since no foreign actor was intervening in the system
at the time their investigation took place, they developed a decensoring method that estimates
time-dependent demand for arrivals and returns at each location.

Another paper that works on the tactical Bicycle Redistribution Problem (BRP) is Dell’Amico,
Hadjicostantinou, Iori, and Novellani (2013) [2]. Their objective is to decide how the vehicles that
replace bicycles in each station should be routed so as to minimize the vehicles total cost. A
typical example of when this problem becomes of paramount importance is in cities with hills,
where users decide to take a bike from up the hill and deposit it in the station below the hill, but
find other means of transport to go back up the hill again. Therefore, you have stations that
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have a lot of bikes and stations that run out of bikes, hence the need for a redistribution
operator. The authors start by formulating a Mixed Integer Linear Programming version of the
BRP, based off of the Multiple Traveling Salesman Problem, where uncapacitated vehicles
based out of a central depot have to visit a set of bike-sharing stations, with the constraint that
each station is visited exactly once. In order to adapt the typical Salesman Problem to the
nature of the BRP, they include additional constraints so as to ensure that demands are met and
vehicle capacities are not exceeded. They build different models and test them by collecting
data from several bike-sharing websites, and benchmark every one of them by their
computational run time.

Finally, Ohana (2021) [9] is also worth mentioning, given that they use a similar dataset to the
one being leveraged for this thesis. Their thesis focuses on understanding what is the optimal
amount of bikes that should be allocated to each station at the beginning of each day,
minimizing the chances of the system not having stock. It estimates demand using a model that
incorporates climate variables such as weather, temperature to be able to decompose the
estimation between trend and seasonality. If we were to frame it within the three types of
decisions from Nikiforiadis [8], this body of work would fit into the following: “define the
redistribution process of the bicycles within the day or a given time period”. In an opposite lane
but using the same framework, our thesis will focus on a more strategic decision: “define the
location and number of bike-sharing stations within the service area”.

1.2.2.2 Location and number of bike-sharing stations problem

This thesis addresses the first of the problems described in Nikiforiadis, Aifadopoulou, Salanova
Grau, and Boufidis (2020) [8]: define the location and number of bike-sharing stations in the
area of service. There are pre-existing works that have already solved this object of study in
different cities around the world, with diverse methods to estimate potential demand.

Nikiforiadis, Aifadopoulou, Salanova Grau, and Boufidis (2020) [8] tackle this topic in the city of
Thessaloniki, Greece by constructing an objective function with three sub-objectives that are
weighted differently. Said objective function maximizes the amount of demand that is met and
the geographical coverage that the system has over the city while minimizing the bicycle
redistribution needs. They determine what the potential demand for a new station would be by
using a pre-existing bike-sharing system where people could rent a bike without having to go to
a specific station. Then, they split the city into quadrants and define their centers of demand as
the quadrant centroid and use it to estimate arrival and departure rates.

Martinez, Caetano, Eiro, & Cruz (2012) [7] solved the design of a bike-sharing system in the city
of Lisbon, Portugal. Their objective function is net benefit, defined as the difference between
income minus bicycle deposit cost and total fleet cost, with the decision variables being the
quantity of stations, their location, and the stock of bicycles. Beyond solving the problem for
different price configurations, the main contribution of this paper is to incorporate uncertainty
into potential demand, with a model of simulated synthetic trips, calibrated for the metropolitan
area of this city. With this dataset, they estimate the propensity to make this trip by bicycle with a
discrete choice model.
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Gonzalez (2017) [5] addresses this problem in the city of Buenos Aires by minimizing total
commuting time to work, playing with the pre-existing public transportation network and thinking
of bicycles as a complement. He computes areas that are surrounding subway stations and are
more than four blocks away and defines them as bikeable but not walkable distances. Within
these zones, he uses a GIS location-allocation algorithm incorporating variables such as the
inhabitants of each census block, the time each census block takes to reach the center, and the
average cost of the trip. He also leverages census parameters as an input for the algorithm to
estimate potential demand.

García-Palomares, Gutiérrez, and Latorre (2012) [4] also aims to define the location that
stations should occupy in the city of Madrid using a location-allocation model in GIS, but they
employ another method to estimate the potential demand. The authors begin by creating a layer
of points containing the population and employment associated with each point and a layer of
polygons that includes the number of trips that originate and terminate from each transportation
zone. To obtain the number of trips for each point, they multiply the ratio of trips generated by
the transportation zone by the number of inhabitants in that point. By calculating the average
trips per job of each point, they are able to detect zones that represent office locations and
adapt their model to incorporate this information.

Liu et al. (2015) [6] determines the optimal location of stations in the city of New York by
predicting the demand and balance of the system, incorporating information on people's mobility
and proximity to key points as features. They define a Voronoi region around each station,
assuming that the centroid of the Voronoi region is equal to the center of demand. For each of
these regions, they estimate the demand for the area around a station using a neural network,
using the variables described as input. Then, they use a genetic algorithm to select the optimal
location of stations out of a randomly defined set of candidate points.

This thesis will leverage the pre-existing literature and will adapt it to the nature of the city of
Buenos Aires. This thesis is divided as follows. Section 2 gets into a data review, talking about
the sources that the data came from and the exploratory data analysis. Section 3 describes the
model being used, the inputs that are necessary and how they are being estimated. Section 4
solves the problem using the problem instance that we define as ideal and walks us through a
sensitivity analysis for all the input variables. Finally, Section 5 includes conclusions and
potential for future work.
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2. Data

2.1 Data Sources, Feature Engineering
There are three main datasets that were used for this project. The first one of them is the same
one used by Ohana [9] and holds all of the bicycle trips done by users of the bike-sharing
system from Feb 1st 2019 to Jan 31st 2023. These were extracted from the Gov. of the City of
Buenos Aires’s official webpage4. This dataset holds the following information. We will use this
as the base for predicting demand per active station, understanding where those stations are
located.

Column Name Description Variable type

id_recorrido Unique identifier of trip. String

duracion_recorrido Duration of trip in seconds Integer

Fecha_recorrido
(origen/destino)

Timestamp of when the trip occurred. Records when the trip started
(origen) and when the trip ended (destino).

Timestamp

Id_estacion
(origen/destino)

Unique identifier of bike-sharing station. Records where the trip started
(origen) and where the trip ended (destino).

String

Nombre_estacion
(origen/recorrido)

Name of the bike-sharing station. Records where the trip started
(origen) and where the trip ended (destino).

String

Direccion_estacion
(origen/recorrido)

Address of the bike-sharing station. Records where the trip started
(origen) and where the trip ended (destino).

String

Long_estacion
(origen/destino)

Longitude of the bike-sharing station. Records where the trip started
(origen) and where the trip ended (destino).

Integer

Lat_estacion
(origen/destino)

Latitude of the bike-sharing station. Records where the trip started
(origen) and where the trip ended (destino).

Integer

id_usuario Unique identifier of user that did the bicycle trip. String

Table 2.1: Dataset description for bike-sharing trips data extracted from the Gov. of the City of Buenos Aires’s official
webpage.

The second dataset that was used came from consuming the available Public Transport API
also provided by the Gov. of the City of Buenos Aires5. There are three endpoints that hold
different information per station and that provide the latest up to date information about the
system. This dataset will help us associate a capacity to each of the active stations mentioned
in the previous dataset, a key part of our optimization problem that will help us understand how
much demand each station can meet.

We managed to ping them at regular hourly time intervals for a month, from Nov 27th 2022 to
Dec 25th 2022. API query results were saved in a json file that was appended to previous API

5 Link to Public Transport API docs: https://apitransporte.buenosaires.gob.ar/console/
4 Link to extracted information: https://data.buenosaires.gob.ar/dataset/bicicletas-publicas
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results to accumulate all of them in a single place, and were later exported to a document .csv
to be able to merge with other datasets. The information that was later used from these files is
described in Table 2.2. Further details on how the API was consumed can be found in the
Appendix section.

Column Name Description Variable type

station_id Unique identifier of bike-sharing station. String

lat Latitude of the bike-sharing station. Integer

lon Longitude of the bike-sharing station. Integer

capacity Total capacity of bike-sharing station. This shows how many bicycles the
station could potentially hold.

Integer

num_bikes_avail
able

Quantity of bicycles available to use at a certain point in time in the
bike-sharing station.

Integer

num_docks_avail
able

Quantity of docks available to leave a bicycle at a certain point in time in
the bike-sharing station.

Integer

last_updated Timestamp in which the API was consumed. Unix timestamp

Table 2.2: Dataset description for station and bike-sharing system information data extracted from the Public
Transport API from the Gov. of the City of Buenos Aires.

The final dataset that was leveraged for this project was the date and name of holidays in
Argentina, from 2019 up to 20236. We constructed this dataset based off of the official calendar
of holidays form that is published every year by the Argentinian government. This dataset will
play a key role when predicting demand, since it will help our model detect outliers.

We also built additional date and time features to make sure we are extracting the largest
amount of information from the dataset we can. These new variables are listed in Table 2.3.

6 Link to example of Argentina National Holiday calendar for 2021:
https://www.argentina.gob.ar/interior/feriados-nacionales-2021
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Column Name Description Variable type

Fecha_recorrido_
hora_dia

(origen/destino)

Hour of day when the trip occurred. Records when the trip started
(origen) and when the trip ended (destino).

Integer (in ART)

Fecha_recorrido_
dia

(origen/destino)

Date when the trip occurred. Records when the trip started (origen) and
when the trip ended (destino).

Date

Fecha_recorrido_
mes

(origen/destino)

Month when the trip occurred. Records when the trip started (origen) and
when the trip ended (destino). Fill in day with 1st day of each month.

Date

Fecha_recorrido_
year

(origen/destino)

Year when the trip occurred. Records when the trip started (origen) and
when the trip ended (destino). Filled in month and date with Jan 1st.

Date

weekday Day of week when the trip occurred. String

is_weekend Dummy variable representing if the day when the trip occurred is part of
the work week or the weekend.

String

count_ids Count of bicycle trips with duplicated id_recorrido. Trips that have
multiple trip ids (id_recorrido) will be discarded.

Integer

Table 2.3: Features that were inferred based off of the datasets that were described in Tables 2.1 & 2.2.

Given the clear structural change in the dataset exhibited in Figure 1.1 after the COVID19
quarantine from March to May 2020, we will only use data from May 2020 onwards since it will
be more representative of the current scenario. This implies that we will have a total of ~8.2
million observations of trips recorded in this period, with 28 descriptive variables coming from
the trips dataset. The datasets that were extracted from the Public Transport API represent an
extra 31.5 K observations with 7 variables, which will be merged with the trips dataset file to run
the analysis.

2.2 Data Preprocessing
The second step of every data analysis project has to do with making sure that the data makes
sense and cleaning it to ensure we are providing insights to inform accurate decisions.

We started by counting the amount of trips per day, and considered a day of activity as one that
had at least 100 trips. We chose the 100 trips value because, as seen in Figure 1.1, the average
of trips per day after the pandemic is around 5000 trips per day. However, there are also some
dates that are holidays and where people did not cycle as much as they usually do. We did not
want to count these days as inactive, since there were bicycle rides that occurred. Hence, the
100 trip threshold excludes days that have close to zero trips, and counts as active days with a
low amount of trips but still had some. Then, we counted the amount of active days within a
month, to determine which month had missing days. We divide that by the amount of days in the
month, to make sure we translate this value to a percentage.
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Figure 2.1: Percentage of days in total month that had more than 100 trips per day. Date range: May 2020 - Feb
2023.

As Figure 2.1 shows, we have fewer days than the days in the entire month for May 2020. This
is expected given that the bike-sharing system was shut down until May 12th. The rest of the
months are at 100% of coverage meaning that there are no clear holes in the dataset when we
look at it by date of bike trip.

We also sought to determine the quantity of trips that were duplicated based on the trip unique
identifier (“id_recorrido”). Given that each trip should have a single identifier, it makes sense to
discard trips that are duplicated in the dataset, given that they could bias results.

Count of repeated ids per trip Count of trips % of total observations

1 8,222,296 99.8%

2 7,862 0.1%

4 388 0.005%

Table 2.4: Count of trips that had repeated unique identifiers and percentage of total observations that they represent.
Date range: May 2020 - Feb 2023.

As observed in Table 2.4, trips with repeated ids account for 0.2% of total observations. These
are discarded from the dataset, given that the data loss is negligible.

Furthermore, we looked at the distribution of trip time, split by weekday or weekend. We
compare how the mean and quartile of the distributions looks with the entire dataset, on top,
and how the distribution looks when outliers are excluded up to 1%, on the bottom.

16



Figure 2.2: Boxplots that shows distribution of trip time during the week and during the weekend. Outliers included.

Figure 2.3: Boxplots that shows distribution of trip time during the week and during the weekend. Outliers
excluded.
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Figure 2.2 that includes the entire dataset shows that there are observations that have a huge
gap to the average time per trip, and that take more than 3 hours. Since these don’t really make
sense given the current bike-sharing system, which limits trips to a duration of 1.5 hours with
renewal, we have removed these observations, using a 1% winsorization technique. The result
after winsorizing is shown in Figure 2.3. It’s interesting to see that the trend between years and
weekdays or weekends is reversed. Seems like users had longer durations in previous years
during weekdays, but longer bike rides during weekends in the most recent years.

This left us with ~7.6M observations, discarding less than 100k trips that were considered to be
outliers. This accounts for 316 stations for which we had both capacity information coming from
the Public Transport API and the trips dataset. The following exploratory analysis may hold data
from before the quarantine, but the model and the results were built solely on observations that
have survived this data preprocessing.

2.3 Descriptive Analysis
After having a healthy dataset which we can trust, we sought to dig deeper to understand the
historical location and movement of stations and the demand for them throughout time.

The first point worth mentioning is how close current bike stations are to actual bike lanes. We
want to make sure that the station’s latest location does not make users have to expose
themselves to cycling on streets before finding an actual bike lane.

Figure 2.4: Bike-sharing Stations current location and proximity to public bike lanes, represented by the red lines.

As seen in Figure 2.4 of the City of Buenos Aires, stations that are close to the downtown area,
in the mid-right hand side of the map, usually have many bike stations that pass near them.
There is also a high density of bike-sharing stations around the center area, and a general lower
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concentration of stations and bike lanes around the peripheral zones, especially in the southern
areas.

The second point worth mentioning is that not all areas of the city have had the same behavior
when comparing demand per station before and after the COVID19 quarantine. In order to
make a fair historical comparison, we split the city into 1 km2 quadrants, making sure we were
not subject to stations moving or going out of commission. Some of the quadrants do not have
any stations within them and some have more than one. The segmentation and the amount of
stations in each quadrant are shown in Figure 2.5. Leveraging the km2 quadrants, we computed
the ratio between the share of trips that originated from each quadrant before and after
quarantine and showed that in the heatmap plot, in Figure 2.6.

Figure 2.5: Grid of squared km throughout the city, showing the stations that are included within each of them.
Color of dots represent stations that had a lower share of trips post quarantine in red (higher share of trips post

quarantine = False) and those that had a higher share of trips post quarantine (higher share of trips post
quarantine = True).
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Figure 2.6: Ratio of shares of demand before and after COVID19 quarantine for each squared km.

Quadrants with intense red colors in Figure 2.6 have had a higher relative demand after the
quarantine period, and are represented with positive signs (“+”). On the other hand, quadrants
with lighter shades of red and yellow have had a lower relative demand after COVID19 hit and
are represented by (“-”). Quadrants with zero values mean that the increase was between -10%
and 10%. This is good evidence that shows that there is a need for a relocation of stations
throughout the city. Places with the largest quantity of stations downtown show lighter colors
than places around the city center, specially close to the river and North East area.

The heatmap could be a reflection of new bike-sharing stations being positioned in certain
areas, which could make trips go up. In essence, this has to do with causality: does the offer of
bikes make people cycle more in that area, or does the saturation of the system in certain areas
due to high usage make the owner react and build new bike-sharing stations? As shown in
Figure 2.4, some of the stations in common in both periods have been less used. If people were
to go where the bikes are, then no stations would be underused throughout time. Also, we
believe that a rational owner's decision process to open new stations would have to take into
account current area usage of bikes. Hence, for this analysis we will assume that more stations
being opened in an area happens due to high existing station usage in that zone.
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Figures 2.5 & 2.6 show us where the trips started. To complement this insight, we wanted to
understand where users were going to as well, using the dataset from May 2020 onwards. For
that reason, we built a directed graph, where each node represents a station. The size of each
node represents the quantity of trips that originated at that station. The objective of this
visualization is to observe if there is some clear pattern at different points in time. We compare
graphs based on aggregate trips for Monday and Sunday at different times of day, going from 7
am to 12 pm and from 1 pm to 8 pm.

The reason behind why we chose single days (Monday’s and Sunday’s) instead of analyzing the
entire work week and weekend has to do with user behavior. When we analyzed these two sets
of graphs, we noticed that they were similar. This makes sense, given the volume of trips that
was incorporated in this analysis, as mentioned in Section 2.1 and 2.2. Furthermore, we thought
that looking at single days and hour ranges provided more granularity to the analysis than
looking at entire work weeks or weekends.

Figure 2.7: Graph using station locations as nodes, size of nodes represent amount of trips that originated from
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them. Comparing Mondays and Sundays with different hour ranges throughout the day.

From looking at Figure 2.7, a couple of insights become quite clear. First off, there is more
activity around downtown on Mondays than on Sundays. This is expected since there are
probably some people commuting to work on weekdays, so it makes sense for there to be larger
nodes around that area. Secondly, the rest of the big nodes are pretty common between both
days, although there seems to be a larger share of trips in the northern area of the peripheral
region on weekends than on weekdays. Furthermore, there don’t seem to be considerable
differences between the morning and the afternoon of the same day. Finally, the center of the
city has quite a lot of activity, both on weekdays and on weekends. These differences in
behavior between different days of the week led us to differentiate our demand between
weekends and weekdays, but not between hours of the day. This will allow our model to provide
a different station network configuration for different moments of the week and could be more
efficient. We will provide a deeper analysis of this matter in the next section.
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3. Model
As mentioned in our Literature Review section (Section 1.2.1), we will leverage the existing work
on CFLP. The standard CFLP minimizes the total cost of maintenance of the system, considered
to be the sum of fixed costs of maintaining a facility and transport costs of shipping a product
from a facility to a customer. It also includes restrictions that make sure that all of the demand
from customers is satisfied, whatever the distance to a facility may be. Therefore, we have two
sets of nodes, facilities and customers, and this problem looks to define where stations should
be located.

We apply the CFLP to our bike-sharing network. Our bike-sharing stations are the CFLP’s
facilities. We define centers of demand locations as the centroids of the area of points that are
closest to each station, these will be our CFLP consumers. Their demand is predicted based on
the usage of bikes in each station. We guarantee that all demand is met by the available
bike-sharing stations, that demand cannot exceed the station’s capacity and that people from a
center of demand cannot walk more than a certain distance to the station where they are
allocated to. Our model will be a particular case within the family of CFLP.

3.1 Variables, Objective Function, Restrictions
Paraphrasing Liu et al. (2015) [6], the bike sharing network optimization problem for bike
sharing systems can be split into two: demand estimation for each bike station and station
network optimization. The former is a prediction problem, where we try to assess what the
demand for each station will be like in the future and incorporate that into the model. The latter
is a linear programming optimization problem, which we will address leveraging the
preconceived literature around CFLP. We define the model and its variables first, and then go
into how to estimate each of the inputs that it needs, including demand estimation.

The goal of our model is to minimize the aggregate cost of deploying and building the
bike-sharing network. There are two main sources of expenditure that it takes into account:
variable costs and fixed costs. Variable costs take into account the distance that users have to
travel from the centers of demand to the actual stations. Variable costs are only taken into
account when a user from a demand center decides to travel to a station. Fixed costs represent
the money that the owner of the bike sharing system needs to spend in order to build a new
station. These are only taken into account when a station is opened. In essence, this CFLP
objective function incorporates costs that the owner faces but also includes a user perspective,
ensuring that they will not have to travel large distances to reach an active station and be able
to cycle. Hence, our model objective function becomes:

𝑚𝑖𝑛 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 =  𝑚𝑖𝑛 
𝑖=1

𝑛

∑
𝑗=1

𝑚

∑ (𝐶
𝑖, 𝑗

* 𝑥
𝑖, 𝑗

) +
𝑗=1

𝑚

∑ (𝐹
𝑗

* 𝑦
𝑗
)

Going into what each of the variables stand for:
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- Centers of demand are represented with the letter “i”, and go from 1 to the amount of
centers of demand (“n”). .𝐺 =  𝑐𝑒𝑛𝑡𝑒𝑟𝑠 ∈ {1;...;  𝑛}

- Bike-sharing stations are represented with the letter “j”, and go from 1 to the amount of
stations in the system (“m”). .𝐵 = 𝑏𝑖𝑘𝑒 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 ∈ {1;...;  𝑚}

- Variable costs that include distance from a center of demand “i” to a station “j” are
represented by . This is a “nxm” matrix that holds the distance for each center of𝐶

𝑖, 𝑗

demand to each station, where centers of demand are rows and columns are stations.
- includes the fixed costs of opening each station “j”. It is a vector of dimension “m”.𝐹

𝑗

- is a binary variable that indicates whether the station “j” is opened or closed. There𝑦
𝑗

are as many as there are stations in the model.𝑦
𝑗

𝑦
𝑗

∈ {0;  1}.

- is a continuous variable that indicates the share of demand from demand center “i”𝑥
𝑖, 𝑗

that is allocated to station “j”, and goes between 0 and 1. 0 <= 𝑥
𝑖, 𝑗

<= 1.

As any model, there are different restrictions that it faces to find an optimal solution. The first
restriction worth mentioning is a capacity constraint per station, meaning that the total demand
per station is less or equal than the total supply of bikes it has. For simplification purposes, we
are assuming that supply is the same as the capacity of each station, which means that there
are as many bikes in the system as docks available in each station. The new variables showed
here symbolize the predicted demand per center of demand “i” ( ) and the capacity of each𝑑

𝑖

station “j” ( ). This restriction is repeated for all “j” stations in the system.𝑘
𝑗

(1) Capacity constraint:
𝑖=1

𝑛

∑ 𝑑
𝑖

* 𝑥
𝑖, 𝑗

<= 𝑦
𝑗

* 𝑘
𝑗
    ∀ 𝑗 ∈ 𝐵

The next restriction that goes into the model has to do with the continuous share of demand that
can be allocated to different stations. Naturally, the shares of the demand cannot add more than
1, because it would mean that we have a demand prediction that is below actual demand.

(2) Demand constraint:
𝑗=1

𝑚

∑ 𝑥
𝑖, 𝑗

= 1    ∀ 𝑖 ∈ 𝐺

The final restriction that will go into the model is about the maximum radius that users can walk
from their center of demand to the station they were allocated to. This restriction can affect the
model feasibility depending on the walkable distance threshold that we do not want to exceed. A
very small threshold could turn the solution of the model non-feasible, given that stations that
are so close to a center of demand may not exist. In order to bring this restriction to life, we will
update the upper bound of the assignment of center of demand "i" to station "j" to be zero. This
means that there is no possibility of the demand center "i" to be associated with station "j"
because the distance between them exceeds the maximum distance threshold "T". The only
new parameter incorporated here is “T”, which symbolizes the walkable distance threshold.
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(3) Walkable distance constraint: 𝑥
𝑖, 𝑗

= 0  𝑖𝑓 𝐶
𝑖, 𝑗

> 𝑇

Putting everything together, the model that will be optimized becomes:
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; (4)0 <= 𝑥
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<= 1 𝑦
𝑗

∈ {0;  1}

sets:
𝐺 ϵ {1,  2,  ...  𝑛}

 𝐵 ϵ {1,  2,  ...,  𝑚} 

The optimal solution minimizes the total cost, evaluating simultaneously the cost of opening a
station ( ) and the cost of a particular station to serve a particular demand center ( ).𝑦

𝑗
𝑥

𝑖, 𝑗

Capacities ( ) and station locations are given by the current status of the network and are𝑘
𝑗

extracted from the data sources described in Section 2.1. This is another assumption of the
model: facility location does not change from its initial position. Existing facilities can only be
turned on or off. In other words, we assume that the current station location represents the
universe of options to locate a station with a certain capacity, and we want to choose which
ones to use.

Demand per station will be predicted, variable costs will be constructed based on a notion of
current demand centers and fixed costs are assumed to take different values in order to analyze
different scenarios. We describe how we are calculating each of these values in section 3.2.

3.2 Calculating Demand
Demand per station is something that depends on user disposition, station capacity and bicycle
availability. Each station has a different pattern that we need to quantify in order to provide the
most accurate inputs to this model. The reason why demand is being predicted and we are not
using former data points is to give some uncertainty to the model. We do not know for sure what
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the demand will be in the future when our model recommendation is implemented, so we would
like to be as cautious as possible to guarantee that our network solution is robust.

Therefore, we predict the demand up to 180 days going forward, and keep the time period with
the maximum prediction per station. This ensures that we are considering a worst-case
situation, where demand for each station is as high as possible. We observe data at a daily
granularity level to make the prediction. Furthermore, we save the average prediction for that
time period as well as the upper bound of the confidence interval of the prediction, to give the
model some variability, and will run them through the optimization algorithm.

3.2.1 Uncensoring demand
We considered whether demand per station was censored due to bike availability. The good
thing about bike-sharing systems is that there are two sides to the demand. We have to take
into account both the bike extractions as well as the bike deposits. Both are important given that
if a person does not have a bike to take out, then that demand is censored. However, if a user
deposits a bike in the station, then that enlarges daily capacity, since it’s a bike that can be used
by another user and a new trip can be completed for that day. While we do not know the total
number of bicycles available in a station before each trip happens, we can calculate what the
accumulated stock of bikes in a station looks like by sorting the extractions and deposits by
time.

We start by assuming that the bicycle stock of each station starts at zero. This is a necessary
assumption given that we have not included trip data going back further than May 2020, for
reasons we have described in Section 2.2. In other words, all stations start out with a balanced
bicycle stock that can only be changed by people’s extractions and deposits. Then, we add one
every time a deposit is made and we subtract one every time a bike extraction is made.

Leveraging this framework of aggregate bicycle stock throughout time, we can think of three
types of stations:

- Stations that keep themselves stable. These are stations that have a similar number
of extractions and deposits throughout time and regulate themself without any
intervention.

- Stations that are prone to extractions. The natural foot traffic of the station means that
users are always prone to take a bike from that station and deposit it somewhere else.

- Stations that are prone to deposits. These stations are places where people usually
tend to deposit bikes throughout time.

Out of the 316 stations we considered throughout this thesis, we chose one station as an
example for each type of station. We plotted the accumulated stock of these three in Figure 3.1,
using the trips dataset, from May 2020 to Feb 2023. The red lines represent the station capacity.
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Figure 3.1: Accumulated stock throughout time for different types of stations.

As we can observe from Figure 3.1, stations that keep themselves stable like “303 - Huaura”
have an accumulated level of stock that is approximately similar to the station capacity. These
stations probably do not have a lot of activity relative to the rest and are quite dependent on
people’s movements, choosing to extract or deposit a bike. Note the scale of the y axis that is
always showing that the accumulated stock is between -50 and 50, around zero.

However, stations that are prone to extractions like “104 - Federico Lacroze” demonstrate
interesting behaviors. Users constantly decide to go on bike rides from bikes in that station and
deposit them somewhere else. Essentially, this means that there would not be any more
bicycles available until users started depositing them again. This is conclusive evidence of
government intervention and bicycle redistribution via central planning.

The opposite problem occurs with stations that are prone to deposits, as shown in the “273 -
Plazoleta Colombia” station example in Figure 3.1. Given that the accumulated stock for these
does not stop growing, there has to be a physical person taking bicycles that users deposit
away from stations prone to deposits into stations prone to extractions that need them.

As we can see from Figure 3.2, this is not an isolated behavior. There are actually many stations
that fall into the understocked (prone to extractions) or overstocked (prone to deposits) category.
Another visualization can be observed in Figure 3.3, showing that there are both overstocked
and understocked stations.
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Figure 3.2: Location of stations according to their accumulated stock, from May 2020 to Dec 2022.

Figure 3.3: Distribution of stations according to their stock from Jan 2022 to Dec 2022.

Based on this insight, our conclusion is that government intervention is prevalent in this system.
We will assume that this task is done by minimizing the chances of users wanting to go on a
bike ride and not having bikes available in the station they like. Therefore, throughout this work,
we assume that demand is uncensored due to government bike redistribution between stations.

Furthermore, since both of these types of stations are necessary for the system to function, we
will consider station demand to be the maximum between bike extractions and bike deposits per
day. That way we guarantee that a station will be considered as popular when people use it,
regardless of whether it is prone to deposits or to extractions. We will use this definition to build
the input data we need for the model to predict demand per station. We will call this the demand
dataset.

(5)𝑑
𝑖

= 𝑚𝑎𝑥(𝑏𝑖𝑘𝑒 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑠
𝑖
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3.2.2 Predicting demand with Prophet
Once we defined what the demand would be, we built the dataset input as a time series, per day
and per station. We leveraged the Prophet package to predict what the demand would be for the
next 180 days since it is accurate, robust and easy to use.

3.2.2.1 Prophet Methodology

Paraphrasing Taylor and Letham (2017) [11] Prophet is a procedure for forecasting time series
data based on an additive model where non-linear trends are fit with yearly, and weekly
seasonality, plus holiday effects. It works best with time series that have strong seasonal effects
and several seasons of historical data. Prophet is robust to missing data and shifts in the trend,
and typically handles outliers well.

The authors propose a practical approach to forecasting that combines configurable models,
with a modular regression with interpretable parameters that can be intuitively adjusted by the
analyst with specific domain knowledge on the time series. It is essentially an ensemble model,
with three main components: trend ( ), different types of seasonality ( ) and holidays ( ), as𝑔

𝑡
𝑠

𝑡
ℎ

𝑡

well as an error term ( ) that represents any idiosyncratic changes that are not accommodatedϵ
𝑡

by the model.

(1)𝑦
𝑡

= 𝑔
𝑡

+ 𝑠
𝑡

+ ℎ
𝑡

+ ϵ
𝑡

The trend model uses a nonlinear saturation growth model as a base, which is tied to population
growth in natural ecosystems. In our case, since we are modeling trips per station throughout
time, the saturation will converge to the total number of bicycles in that station at a certain point
in time.

The seasonality model tries to capture effects that are repeated with a certain frequency
throughout time. The authors rely on Fourier series to provide a flexible model of periodic
effects. For our bike-sharing problem, we could have different seasonalities in place. Weekly
seasonality could be in place for a station in areas that are more active throughout the work
week, with more activity from Monday to Friday. Yearly seasonality could also be at play, given
that users might decide to go on fewer bike rides due to hard weather conditions in the winter,
and enjoy cycling more during the summer.

Holidays are included into the model by assuming that the effects of holidays on the time series
are independent. They add an indicator function representing the time at which a holiday
happened and assign a parameter to each of them, which corresponds to the change in the
forecast. Argentina is in the top 20 countries with the most amount of holidays throughout the
world. Depending on the station location, holidays may affect the station’s activity positively or
negatively in terms of trips, as we will see in section 3.2.2.2: “Prophet Application”. For instance,
a station located in typical recreational areas along the periphery of the city of Buenos Aires
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could have a larger amount of trips occurring on holidays, given that people are off work and
may like to cycle more in that area.

3.2.2.2 Prophet Application

We started by analyzing a single station and assessing the model’s performance.

We chose the “002 - Retiro II” station because it is in a downtown area, typically very active and
capturing lots of traffic. In line with the author’s mantra about robust estimates with easy
implementations for the analyst, we obtained a forecast by activating the trend, yearly and
weekly seasonality mentioned above. We also incorporated the Argentinian holidays dataset
into the model, and used the demand dataset of trips per day for this particular station as the
dependent variable. Immediately, the model finds a good fit based on the pre-existing data with
a low Root Mean Squared Error (RMSE) and predicted 180 days forward. Figure 3.3 shows the
actual values as gray points and the model’s fit in blue with its confidence intervals. The dotted
line shows the station capacity.

Figure 3.4: Prophet model fit and 180 day prediction for station “002 - Retiro II”.

As we can observe, Prophet seems to pick up the trend of data quite well, since it started out
low and then grew, even though there is a larger dispersion in the actual values. For the future,
it predicts values that are similar to the last ones. Around the time of June-July, there is a
downward trend of the demand, which accounts for winter and how bike-sharing demand falls
due to the cold weather. It’s also interesting to see how Prophet is able to capture certain spikes
in the data, that are probably due to special dates, where people changed their cycling habits
since they had the day off. We will analyze this further below by decomposing the demand into
the model's parameters.

This information can also be seen when we decompose the actual values into trend, weekly and
yearly seasonality and holidays components, as we look at Figure 3.5. In order to measure
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Prophet’s goodness of fit, we also analyzed what the RMSE was for different prediction lengths,
ranging from 20 to 180 days, in Figure 3.6.

Figure 3.5: Prophet output analysis. Showing decomposition of time series between trend, holidays, weekly and
yearly seasonality. Analyzed for "002 - Retiro II" station.

Figure 3.6: Prophet goodness of fit analysis. Showing the RMSE over different prediction horizons. Analyzed for
"002 - Retiro II" station.

As we can observe in Figure 3.5, the trend goes up by the beginning of 2022. The model
predicts it will continue to grow throughout 2023. Furthermore, looking at holidays and
seasonality, some of these components can be extrapolated and others cannot. For example,
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the yearly seasonality that shows a lower amount of trips during winter and a higher amount of
trips during autumn and spring will probably be seen across all stations. However, given that this
is a station located in the downtown area, we observe that demand goes down during summer
(from December to February in the yearly seasonality). The same can be said for the days of the
week, with a lower demand for Saturday and Sunday and a higher demand on weekdays. Most
holidays also account for a smaller demand. This all has to do with this particular area of the
city, near offices and businesses. Most users of this station usually do so on weekdays because
they go to work. People do not go to work on holidays, on weekends. They usually take time off
during the summer. Therefore, this behavior should be considered as particular to this station.
Stations in the peripheral areas or center of the city will probably have a different yearly or
weekly seasonality.

RMSE behaves as expected in Figure 3.6. It is smaller when the prediction is closer to the latest
data points, and higher when the prediction is a few more periods into the future. In order to
benchmark our model, we compared Prophet’s performance in terms of RMSE with a Single
Exponential Smoothing (SES) model, using the same simple dataset. Model fits and predictions
for both models are compared below, in Figure 3.7. We use the last 180 days of actual values
as a testing set and train the model on all previous days.
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Figure 3.7: Prophet fit and prediction (top) vs SES Naive model fit and prediction (bottom). Analyzed for "002 -
Retiro II" station.

Comparing Prophet and SES, we can observe that Prophet has a much more precise fit in the
testing and training period. This is evidence that it does not overfit and that it is better at
predicting the future than the naive model, which only predicts that the future is the mean of
previous observations with a confidence interval that enlarges as more days go by.

Train Test All periods

Prophet RMSE 8.48 18.1 10.4

SES RMSE 10.5 23.8 13.3

% Improvement Prophet 19% 24% 21.8%

Table 3.1: Comparing Prophet & SES model in terms of RMSE for training and testing dataset, only in "002 - Retiro II"
bike-sharing station. Testing dataset defined as values for the last 180 days. Training dataset defined as periods that

are not in testing.
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We also added the RMSE in each subset for all models in the "002 - Retiro II" station to quantify
how much better Prophet is. As observed in the final row, Prophet achieves an improvement in
performance of above 20% in terms of RMSE than our naive model.

We repeat this demand estimation for each station separately. As mentioned previously, we
capture the date with the maximum prediction for our demand function for each station, split by
weekend and weekday. We also keep the predicted mean of that date and the upper bound of
the predicted confidence interval. Therefore, we have a combination of 4 different demand
predictions per station to incorporate multiple scenarios:

1. Mean of max predicted demand on weekends.
2. Mean of max predicted demand on weekdays.
3. Upper bound of confidence interval of max predicted demand on weekends.
4. Upper bound of confidence interval of max predicted demand on weekdays.

3.2.3 Hours of activity
The last piece of the puzzle missing is to calculate the hours of activity during each day that
each station has. With that we are able to define the demand per hour of activity of each station,
dividing the worst-case demand per day scenario mentioned in the previous point and the hours
of activity. On top of that, computing the hours of activity per station gives an additional level of
variability to the model. Instead of saying “all stations are active from 9 am to 7 pm” which is
quite arbitrary, we will only count an hour as active for each particular station if the hour has a
higher share of trips than the average amount of trips per hour that the station had. This leaves
us with a balanced distribution, with a mean of around 11 hours of activity per day (portrayed in
green in the plot below).
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Figure 3.8: Looking at different thresholds to consider an hour where a station had extractions or deposits as
active.

We also explore the distribution of hours of activity per station considering other thresholds and
compare it with our preferred option. The count of hours of activity distribution when hours of
activity have more than 1 trip per day is drawn in red. Although this rationale makes sense, this
threshold seems to be challenging, given that there are many stations with few hours of activity,
which does not seem to be the case in practice.

We further show the distribution of hours of activity when we reduce the threshold to the
difference between the average quantity of trips per station and their standard deviation. This
makes most of the stations have almost all of the available hours within a day as active, which
we know is also not the case. Therefore, we have chosen the threshold of hours of activity to be
hours with a higher number of trips than the average for that station, and we will divide demand
that was estimated per day by that quantity, per station and per weekend or weekday.

Having the demand per active hour, as proposed by Liu et al. (2015) [6], ensures that we are
computing demand for each center by the same unit of measurement. Stations with more
activity per day have a higher demand per active hour, but their standard deviation to stations
with a lower demand per day decreases, given that highly active stations also are active
throughout more hours in the day, as reflected in Figure 3.6. Furthermore, this way of computing
demand can also be tied back to the CFLP model mentioned at the end of Section 3.1. Having a
demand per active hour guarantees that we can further optimize the system at a certain point in
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time, especially considering that bike rides in our bike-sharing systems cannot last more than 90
minutes..

3.3 Calculating Variable Costs
Now that we know the demand each station faces, we need to determine where it came from.
Demand location is a key factor that goes into the objective function that we would like to
minimize, since we need to compute the distance between station locations and centers of
demand. By doing this, we will quantify how much it costs for users to travel to a certain station.

3.3.1 Locating centers of demand
Replicating what Liu et al. (2015) [6] did in their paper, we will build demand centers as the
centroids of the Voronoi regions that surround each station. A Voronoi diagram is a partition of a
plane into regions, where each region is composed of all the points that are closest to the object
we care about. In our case, we are using station locations as the objects we would like to divide
our plane on. The rationale behind this is that every user looking for a bike ride will go to the
station that is closest to them. Therefore, we are assuming that all users that are within a
Voronoi region will go to the station that is in the area. Furthermore, each station will have a
Voronoi region surrounding it, and a center of demand at the center of said Voronoi area. We
observe what the Voronoi diagram looks like using our station location in Figure 3.9.

Figure 3.9: Voronoi Diagram based on station locations.
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Being geometric figures, each Voronoi region around a bike-sharing station is surrounded by its
vertices. We average all the vertices of a figure to decide where the physical demand will be
located, and repeat this for all Voronoi zones. Hence, the center of each area around a station
will become the position of the center of demand. The distribution of distances between stations
and their centers of demand can be seen in Figure 3.10

Figure 3.10: Distribution of distances between stations and their centers of demand.

The farther the stations are from each other, the larger the Voronoi area is. In the downtown
area, where there are many bike-sharing stations, we observe tiny regions. When we move
closer to the peripheral regions that have a lower density of stations, Voronoi regions are quite
large, since more users have that only station at their disposal.

Averaging the vertices that surround a station is a technique that will compute the centroid of the
figure around each station. However, the stations around the periphery of the city are only
limited by an artificial restriction that is imposed by the Voronoi package. Ideally, we would like
to define this limit as the city perimeter, to avoid having centers of demand that are very far
away from their corresponding stations.

Out of the total 316 stations, only 12% of the stations had a distance to their center of demand
larger than 500 mts, as observed in Figure 3.10. All of these stations are along the peripheral
area of the city and have to do with the fact that the perimeter is ill-defined. Then, we built an
artificial city perimeter, by connecting the cities that surround the city. The original centers of
demand are shown in Figure 3.11. To solve this problem, we excluded all Voronoi vertices that
fall outside of that perimeter. Figure 3.12 shows how demand centers' positions change when
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Voronoi vertices that fall outside of the city are excluded. After the exclusion, all demand centers
fall within the city perimeter.

Figure 3.11: Centers of demand prior to the vertex exclusion. The perimeter based on peripheral stations is
represented as the black line around the dots.

Figure 3.12: Centers of demand after the vertex exclusion. The perimeter based on peripheral stations is
represented as the black line around the dots.
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Figure 3.13: Centers of demand after the vertex exclusion, highlighting stations that still have more than 0.5 km to
their center of demand, in green. The perimeter based on peripheral stations is represented as the black line

around the dots.

This leaves around 7% of stations with a distance larger than 500 mts to their center of demand,
highlighted in Figure 3.13 as green dots. Since centers of demand are a fabrication in order to
be able to position the demand somewhere, we changed the distance to these centroids to be
100 mts away from the station they came from. This allows us to have feasible solutions when
we reduce the "T" parameter from the walkable distance restriction, reported in Section 3.1.

3.3.2 Distances between stations & centers of demand
The final input that we are missing to run the model is the variable costs, represented by the
distance between centers of demand and station locations. There are many ways to quantify the
distance between two points. One could select the Manhattan distance, which is the sum of
absolute differences between latitudes and longitudes of the two points, or the Euclidean
distance, which is the root sum of squares of differences between latitudes and longitudes of the
two points. A third option is to query the Distance Matrix API (i.e. Google Maps, from now on
DMA) and ask it what is the distance for the route that should be taken between two points if a
person was to walk between point A and point B. These three types of distances are exemplified
in Figure 3.14.
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Figure 3.14: Illustrative example of types of distances that exist between two points.

Since people will be walking to their station of choice, our preferred distance would be the one
coming from the DMA. However, because we have 316 stations and 316 centers of demand,
and we have to calculate the distance between all of these points (close to 100k pairs of
distances), querying the DMA would become expensive.

To validate whether the Euclidean or the Manhattan distance was a better choice compared to
the DMA, we selected a subset of 10 different station locations, built the 45 pairs of locations
and passed them through DMA. Then we calculated the Euclidean and Manhattan distance
between each of the pairs of points. Finally, we analyzed the percentage gap that each distance
had to the actual DMA value. We show this value for each pair of points in Figure 3.15, a blue
line for Manhattan and a red line for Euclidean. The median gap for both distances are charted
as dotted lines.
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Figure 3.15: Percentage Gap in walkable distance between Distance type & Distance Matrix API (i.e. Google
Maps).

While the gap between the suggested walkable path between two points coming from DMA and
the Euclidean or Manhattan distance may be above 25% higher for some pairs, the Euclidean
distance is always closer to the DMA distance than the Manhattan one.

To avoid outliers intervening in the analysis, we analyzed the median of the gap to the DMA
calculation for the Euclidean distance, which was around -6% and around 21% for the
Manhattan distance. This is the reason behind our choice to consider the Euclidean distance
between stations and centers of demand as the distance metric for our model input. We have
also chosen the kilometer scale given the size and scope of the problem and the city size.
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3.4 Summary of execution pipeline
Before getting into the optimization results, we provide a brief executive summary of the process
that was followed to build the dataset, assemble the inputs and construct the CFLP. The final
output will give us an optimal solution showing how many stations we need to open to meet
demand while minimizing the total system's cost. Figure 3.16 shows us the different stages of
this thesis.

Figure 3.16: Summary of entire pipeline, from data extraction to results analysis. Solid boxes represent datasets,
transparent boxes symbolize tasks being run on top of the datasets. Figure built by the author.

As shown throughout this thesis, we start extracting data from publicly available sources. We
incorporate a trips dataset, that has the pickup and dropoff station that users ride to, along with
the duration of their trip; the public transport API dataset that holds information about station
capacity; the Argentina holidays dataset to analyze differences in trips per day due to public
holidays.

Then we get into preprocessing the data: we only consider data after the COVID19 quarantine
due to structural changes in the time series; we remove outliers based on duplicated trips and
journeys that have a very long duration; we analyze demand to assess whether it's worth
uncensoring.

Later, we adapt the CFLP problem to our bike-sharing case, adding some practical restrictions
that will make our end result pragmatic. We then build the demand per station as the quantity of
trips per day, and predict demand 180 days going forwards. We define the worst-case scenarios
and keep demand for the mean and upper confidence interval of the prediction, for weekends
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and weekdays. We locate demand centers using Voronoi regions around stations, allowing for
each station to have their respective center of demand. Finally, we calculate stations to demand
centroids distances, using Euclidean formulations.

In terms of modeling, we run the model we built via the Python interpreter of CPLEX, solving our
Integer Linear Program and the inputs we built for it. In general, the model converges to a
solution in under 20 seconds for each instance resolution, when using an Apple MacBook Pro
from 2019, with 16 GB of RAM and 8-core Intel I9 processor.

Finally, we analyze results of the ideal instance that we will define below and run a sensitivity
analysis to understand how much each parameter affects the end solution.
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4. Results

4.1 Ideal Instance Resolution
All the work and research of the problem done in the previous section leads us to believe that
the ideal instances to solve will be composed of the following parameters:

- : variable costs measured in km, given the space and dimension of the city.𝐶
𝑖, 𝑗

Calculated using Euclidean distance.
- : demand is predicted per active hour. We build four worst-case scenarios, combining𝑑

𝑖

the predictions for weekdays and weekends with the prediction's mean and upper
confidence interval bound.

- : capacity for each station extracted from API.𝑘
𝑗

- : walkable distance from station to center of demand restriction threshold set to 1 km.𝑇
We do not want people to walk more than approximately 10 blocks for a bike ride. This is
a decision we make for practical purposes, but it's an arbitrary model parameter that can
be changed at will.

- : fixed costs assumed to be 100. We will change this in the next section and run a𝐹
𝑗

sensitivity analysis on this parameter to see how it affects the final result.

This leaves us with a total of 4 instances (2 predictions of demand (mean, CI upper bound) *
weekend or weekday) to solve. As a recap, our model will take the current scenario, where all
bike stations are online and available for our users, and decide which of the existing stations
should be turned off in order to minimize costs while satisfying the restrictions. All demand for
bicycles should be met and can be shared across stations and users cannot walk more than 10
blocks from their center of demand to the station to grab a bike. As mentioned before, this is just
a model parameter that we define to make our solutions become pragmatic, but it can be
modified to whatever value the modeler choses. The solutions to this problem are reported in
Table 4.1, along with the total stations that were opened and the improvement in cost they had.

Mean/CI Upper
bound

Weekday or
Weekend

Original Cost Optimized
Cost

Cost gain Q Stations
opened

Mean Weekday 31,647 8,303 -73.76% 81 (25%)

Mean Weekend 31,647 7,298 -76.94% 71 (22.5%)

CI Upper bound Weekday 31,647 9,406 -70.28% 92 (29%)

CI Upper bound Weekend 31,647 8,001 -74.72% 78 (24.6%)
Table 4.1: Results of ideal instances in terms of their minimized cost and the quantity of stations that were opened.

By using CPLEX as a mathematical programming solver to solve the CFLP model proposed in
Section 3 for each of these instances, we obtain an improvement of above 70% in cost in all
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cases, just by turning off facilities that could be repurposed while meeting demand. Furthermore,
even in the worst case we could face, using the confidence interval upper bound and on a
weekday, we can support demand per active hour with just 92 stations out of the total 316
opened today. This means that close to 71% of stations could be removed today without any
harm to the level of trips.

Another way of looking at the same problem is through the lens of the load factor per station.
Load factor can be defined as the demand that each station has to meet, divided by its total
capacity. If our solution works, we should observe that the load factor per station increases at
the optimal point, given that we are making the most out of the resources we have. Table 4.2
shows the increase in load factor for each of the demand instances we considered in our ideal
instance resolution.

Mean/CI Upper
bound

Weekday or
Weekend

Original Avg. Load
Factor

Optimized Avg.
Load Factor

Load Factor
Gain

Mean Weekday 21.4% 70.7% 2.3x

Mean Weekend 12.1% 52.3% 3.3x

CI Upper bound Weekday 27% 78.5% 1.9x

CI Upper bound Weekend 17.8% 64.9% 2.65
Table 4.2: Results of ideal instances in terms of their load factor gain.

The average load factor gain shows a clear increase, between 2x and 3.3x depending on the
instance being analyzed. This is in line with our expectations, given that our system wants to
minimize the total cost and will try to satisfy demand with the least amount of stations possible,
while minimizing the user's travel cost to each station. However, the average can be a metric
that is deceitful. Therefore, we also plotted the distribution of load factors per station for each of
the instances, ensuring that our insights are robust.
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Figure 4.1: Load factor distribution per station for the original situation in our CFLP problem.

Figure 4.2: Load factor distribution per station for the optimized solution of our CFLP problem.
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As observed in Figure 4.1 in the original state of nature, most of the stations are underutilized,
even in the worst case scenario of the upper confidence interval demand prediction on
weekdays. On the other hand, in our optimized network observed in Figure 4.2, most of the
stations have a load factor of around 100% in all instances. There are also some load factors
which we cannot maximize, which probably have to do with the 1 km radius walkable distance
maximum restriction that we included in the model. Since there are no stations around certain
demand points, those stations have to be turned on to guarantee that total demand will be
satisfied.

Furthermore, our optimal solutions can be clearly visualized in Figure 4.3, with stations and
centers of demand. We managed to locate them spatially based on their longitude and latitude,
which makes it easier to see how the new network fits inside of the city. Blue nodes represent
stations that the optimization decided to maintain from the original network. Their capacity is
represented by the blue node size. Orange nodes represent centers of demand. The edges
show which centers of demand are connected to each station.

Figure 4.3: Optimal distribution of stations to address demand from centers. Stations are symbolized by blue
nodes, orange nodes represent centers of demand. Using example for CI upper bound Demand prediction on

weekdays. Stations that appear to have no edges are in fact connected to the center of demand that is closest to
them.

Stations that are farther apart from each other, which is something typically observed along
peripheral areas, especially towards the South of the city, will generally be active. This has to do
with the 10 block walkable distance radius that we are imposing on the model. Beyond that
obvious fact, it’s interesting to see how the station density in the downtown area is reduced and
becomes homogeneous across the rest of the city. This has to do with the fact that there was
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not so much demand in that zone, so there is actually no need for so many bike-sharing
stations. Furthermore, the stations in the downtown area have more capacity than other stations
in general, shown by the node size. This makes it easier for them to support the existing
demand.

We also compare the difference between weekdays and weekends for the same level of
demand prediction. Our findings are located in Table 4.3, where we show the stations that are
only present in the instance and the stations they have in common.

Mean/CI Upper
bound

Weekday or
Weekend

Q stations only
present in day of

week

Q stations
shared between

weekday &
weekend

Q stations
opened

Mean Weekday 43 38 81

Mean Weekend 33 38 71

CI upper bound Weekday 33 59 92

CI upper bound Weekend 19 59 78

Table 4.3: Comparing results between weekdays and weekends for the same level of demand.

The reduced amount of demand per active hour on weekends makes the system require less
stations to satisfy the user requirement. However, that does not mean that the difference in total
number of stations for weekends and weekdays are the only ones that will be positioned
differently. In fact, approximately half of the stations are shared in the mean scenario, and more
than 65% when considering the Confidence Interval upper bound scenario. This is evidence that
the system is reoptimizing the stations that are opened in each of the cases to guarantee that
demand is met as efficiently as possible. We visualize the location of all stations and the centers
of demand they serve for weekdays and weekends in Figure 4.4. Then, we also indicate where
the different stations are located in Figure 4.5.
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Figure 4.4: Comparing weekdays (left) and weekends (right) optimal station solution location of stations and how
they tackle each center of demand. Stations are symbolized by blue nodes, orange nodes represent centers of

demand. Using CI upper bound demand prediction on weekdays.

Figure 4.5: Analyzing differences between weekends and weekdays for CI upper bound demand predictions, to
make them easier to spot. Purple nodes represent stations that are only present on weekdays, blue points are
stations that are only present on weekends, and gray stations are stations in common. Using CI upper bound

demand prediction on weekdays.

Figure 4.5 clearly shows that all the southern and northern borders of the city remain the same
across weekends and weekdays. The big change is in the west border, and along the city center
and downtown zone. The typical solution implies splitting demand into two for some cases
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where demand is higher in that area on a weekday instead of just one bike-sharing station in the
middle of both nodes, satisfying all constraints.

4.2 Sensitivity Analysis
After analyzing results for the ideal instance, we opted for running a sensitivity analysis over all
of the data inputs that were required to build the instance. The concept behind this section of
research is to determine how each input affects the final results in terms of the quantity of
stations that are opened in the optimal solution. We complement this metric with the cost gain
that comes from each optimal result, comparing it to the initial cost that the original state had,
where all bike-sharing stations are open. Essentially, throughout each of these subsections, we
are trying to answer the following question: “what happens to the optimal solution when we
change this input, and everything else remains constant?”.
We will use the following input parameters for each of these sensitivity analysis, unless the input
under scrutiny modifies it:

- No walkable distance constraint applied. This means that for all of the sensitivity analysis
we will lift the restriction of the amount of blocks that a user has to walk to their station.
This has to do with the fact that we would like to analyze the true elasticity of each
parameter, without them being affected by practical matters.

- Variable costs: measured in km, using Euclidean distance.
- Fixed costs: set to $100. This is a relative value that has to be in proportion to the

distance that users traveled, given that that depends on the share of demand that was
allocated to each station, which is a continuous variable.

- Demand per active hour prediction, varying between mean & CI upper bound, and
weekend or weekday.

4.2.1 Walkable distance restriction threshold
We started by assessing the impact that different thresholds had on the walkable distance.
Recapping the restriction we included from section 3.1, what we are changing here is the
parameter T, ranging from a radius of 500 mts to a 3 km radius.

(3) Walkable distance constraint: 𝑥
𝑖, 𝑗

= 0  𝑖𝑓 𝐶
𝑖, 𝑗

> 𝑇

The changes in the number of opened stations and the gains in cost are reported in Figure 4.6.
Cost gains are symbolized by straight lines and the quantity of stations that were opened
optimally are represented by dashed lines. Each color represents a different demand prediction
that we have discussed throughout the thesis.
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Figure 4.6: Sensitivity analysis for different walkable distance thresholds. Each color represents a demand
prediction type. Cost Gain is represented by straight lines. Quantity of stations opened is represented in dashed

lines.

As we relax the walkable distance constraint, the system finds solutions that have less stations
active, given that the objective is to minimize the total cost while attending to all of the demand.
Furthermore, there seems to be a steep gain in cost when the walkable distance is changed
from 500 mts to 1 km. This is the main reason behind our choice of 1 km as a distance
threshold when analyzing the ideal instance. In fact, the cost reductions show a diminishing
return when larger thresholds are implemented.

On top of that, a threshold of 2 km means that there will be users that may have to walk up to 20
blocks for a bike ride from their nearest station. In practice, this is the same as saying that this
user will not have access to a bike station and that not all demand will be met. The extreme
case where there is no restriction on the distance that people have to walk from their center of
demand to their nearest bike sharing station is shown in the right hand side of the next three
graphs. We also show the different optimal solutions for the 500 mts and 1 km threshold that we
mentioned previously.

51



Figure 4.7: Graphical representation of different walkable distance thresholds: 500 mts (upper-left), 1 km
(upper-right), none (bottom). Stations that appear to have no edges are in fact connected to the center of demand

that is closest to them. Using CI upper bound demand prediction on weekdays.

The network distribution for the 500 mts walkable distance threshold shows that close to 70% of
total stations need to be opened. The reason is that most centers of demand are closest to their
stations, and they cannot be satisfied by the next closest station, even though it may have idle
capacity, as shown by the load factor analysis in Table 4.2. The problem with this is that demand
per active hour is not as high as total capacity, so there will be many bikes left in the stations
that people will never use. While five blocks is something manageable by people, this restriction
also seems extreme, since people who want to go on a bike ride probably like to do physical
activity and may be fine with walking a bit more.
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On the contrary, when there is absolutely no restriction to the number of blocks that people have
to walk to a station the optimization leverages the idle capacity as much as possible. It focuses
on minimizing cost and generally opens big stations, because the fixed-cost of opening a station
is assumed to be capacity-independent in our model. However, it opens enough stations to
minimize the variable costs as well, balancing both objectives. Finally, as mentioned before, it
connects centers of demand to stations that are very far away, which in practice is not realistic.

4.2.2 Fixed & variable costs
We explore the tradeoff between the two components composing our objective function. While
this function is multi-objective and compares average distance traveled per trip (in km) and the
budget needed to open stations (in dollars), we believe that this analysis is worth getting into.
Eventually, if we had a metric of monetary cost per km, we could translate both amounts to
dollars. Alternatively, we could also include an artificial coefficient to shift both terms to have the
same magnitude.

Variable costs represent the average distance per trip between centers of demand and opened
stations. Since our goal is to minimize costs, we would like to make the sum of average
distances per trip to be as small as possible. The corollary of this is that variable costs will be
minimized only when each station that is closest to every center of demand is opened. Our
problem structure, where we have as many centers of demand as stations, implies that variable
costs minimization will lead to all stations being opened.

On the other hand, we have our fixed costs, which are interpreted as the dollar amount that the
owner of the bike-sharing system has to pay to open each station. Again, since our goal is to
minimize costs, fixed costs will be minimal when we open as few stations as possible. In the
edge case, where fixed costs have a higher weight than variable costs due to their magnitude,
our problem would be solved with a single open station, assuming that the system needs to be
operational.

Therefore, there is a clear tradeoff between both types of costs. Variable costs have a tendency
to open more stations to be minimized, while fixed costs lead to fewer stations being open. We
show the cost gain and quantity of stations opened for different scenarios and both types of
costs in Figure 4.8 and Figure 4.9 respectively. We vary the scale in which variable costs are
measured from kilometers * 100 to meters. We changed fixed costs from ten cents per station to
$10,000. We replicated this analysis for each of the demand instances we have.
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Figure 4.8: Sensitivity analysis for variable costs. Each color represents a demand prediction type. Cost Gain is
represented by straight lines. Quantity of stations opened is represented in dashed lines.

Figure 4.9: Sensitivity analysis for fixed costs. Each color represents a demand prediction type. Cost Gain is
represented by straight lines. Quantity of stations opened is represented in dashed lines.
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As expected, curves in Figure 4.8 and Figure 4.9 have opposite behaviors. The larger the
variable costs, the more stations we opened and the lower the gains in costs. The curves for
fixed costs show that the larger the fixed costs, the least amount of stations are opened in the
optimal solution, minimizing costs.

These plots also show the main reason behind why we have chosen to represent variable costs
in kilometers and have set fixed costs to $100. These scales seem to be the smallest scales by
which the cost gains are stable. In other words, if we were to increase fixed costs from $100 to
$1000, ceteris paribus, we would not see big improvements in cost gains comparing the two
optimal solutions. The same goes for variable costs shrinking from being measured in
kilometers to being measured in kilometers multiplied by ten.

4.2.3 Demand positive shocks
This final sensitivity check has to do with observing what happens when demand suddenly
increases evenly amongst all centers. Conceptually, this can be tied back to the safety stock we
should have in terms of active stations, in case people suddenly start going for more bike rides.
Having safety stocks is a good idea given that opening a station is not instantaneous. In the
case where there is a surge in demand, we would like to have bike-sharing stations in place to
avoid demand exceeding the system capacity.

We replicated the steps in the aforementioned process. We increased demand in discrete
intervals of 10%, homogeneously across all centers of demand and all demand instances, and
mapped out the optimal solutions' gains in costs and number of stations opened. We observe
sensitivity analysis results when no maximum walkable distance restriction is applied in Figure
4.10. We also implement the 1 km maximum walkable distance restriction and run the same
sensitivity analysis in Figure 4.11.
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Figure 4.10: Sensitivity analysis for different demand positive shocks when no walkable distance restriction is
applied. Each color represents a demand prediction type. Cost Gain is represented by straight lines. Quantity of

stations opened is represented in dashed lines.

Figure 4.11: Sensitivity analysis for different demand positive shocks when 1 km max walkable distance restriction
is in place. Each color represents a demand prediction type. Cost Gain is represented by straight lines. Quantity of
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stations opened is represented in dashed lines.

Since the demand increases are evenly distributed across all centers of demand, we do not
observe concave shaped costs gain curves as we did for previous experiments. As expected,
the higher the demand, the more stations need to be opened to be able to meet it and the lower
the cost gains will be. The spread across each of the demand instances has to do with the
pessimistic nature of the CI upper bound on weekdays, compared to the average prediction on
weekends. While they are both using the prediction with the maximum value for the next 180
days, the former has a demand per active hour that’s generally much higher than the latter.

Furthermore, we compared how the optimal solution behaves when the 1km max walkable
distance constraint is applied (Figure 4.11) and what happens when that is lifted (Figure 4.10).
As expected, when the restriction is applied, cost gains are lower and the quantity of stations is
higher. This has to do with the fact that we have to take into account how much users should
move to get to their station as well as station idle capacity to decide which stations we should
open. The more restrictions we include in the system, the less amount of costs it will be able to
reduce. Since users cannot walk more than 1 km to a station from their center of demand, and
stations are not evenly distributed throughout the city, there are some stations that need to be
active to satisfy the entirety of the demand.

Moreover, it's interesting to analyze how many more stations are opened when the demand
increases in a certain percentage. This seems quite linear for the case without any walkable
distance restriction in Figure 4.8, in the upper plot, with a slope below 1. In layman's terms, this
means that while demand can increase by 2x, opened stations will increase by less than 2x in
this scenario. However, when the walkable distance restriction is applied, the quantity of station
curves looks more exponential. Again, the reason behind this is that stations are not distributed
homogeneously across the territory and the model needs to satisfy the entirety of the demand.
Therefore, the slope is higher than the case with no walkable distance constraint, but is still not
as high as the increase in demand, meaning that there are less stations opened than the
increase in demand.

As a last step, we were keen on visualizing how the optimal network configuration spatially
changed with demand increases, without the walkable distance restriction implemented. We
plotted three scenarios in Figure 4.11: no changes to demand per active hour on the left; 2x
increase in demand per active hour, on the right; 3x increase in demand per active hour, at the
bottom.
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Figure 4.12: Graphical representation of different demand positive shocks: no shock (upper-left), +2x positive
shock to demand (upper-right), +3x positive shock to demand (below). Using CI upper bound demand prediction

on weekdays.

Comparing the 2x case increase in the center with the regular demand per active hour, we
observe that more facilities have been opened to satisfy the positive shock. Furthermore, there
does not seem to be as many long connections in the plot on the right as there is in the plot on
the left. Implicitly, the increase in demand made it so that the opened stations had to satisfy the
demands that they had close by in order to minimize variable costs. This positive shock of
doubling our demand estimation gives an optimal network setup that seems visually more
practical than previous setups without any walkable distance restrictions. Naturally, variable
costs will also increase when demand goes up, and probably more than fixed costs, given the
slope of most cost gains and active stations curves comparing Figure 4.8 and Figure 4.9.
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Since there is no restriction to the walkable distance in this ceteris paribus inspection, the plot
on the top-right from Figure 4.12 also shows connections that would not be feasible in practice.
Another thing worth noting is that since demand centers can be shared between stations, some
stations that are close to a center do not have the capacity to fulfill the increase in demand, so
the graph seems to show connections between stations. However, it still does not open all
facilities since the optimizer calculates that costs can still be minimized by shutting down some
of the existing stations and reallocating those centers of demand to previously opened ones.

In fact, when increasing demand per active hour, we noticed that the last feasible solution is
achieved at an increase of ~3.5x. This means that the current active network, with all stations
opened, is equipped to face up to a 4x surge in demand when no walkable distance restrictions
are incorporated.
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5. Conclusions
Cycling is an activity that nourishes the body and the mind. It is also a low-cost way of
transportation when we can leverage bike-sharing systems that are implemented in the city.
However, the facilities within our network are located in areas that do not need them, meaning
that there is an opportunity to improve the current infrastructure.

Our solution ensures that people in peripheral areas have greater access to the system,
guaranteeing that the current quantity of trips will not be reduced if stations are relocated. This
is a win-win situation: it is good for people because they will have more transportation options
and it is good for the bike-sharing business, because they will have an increased revenue from
all the trips made by new users.

Our work shows sufficient evidence that there is an excess of capacity that is equivalent to a
demand that could be up to four times higher, even thinking about a worst-case scenario. We
have also shown that given the uneven distribution of facilities throughout the city of Buenos
Aires, most of the stations in the downtown area can be turned off. Stations in peripheral areas
should be kept open given that most of them are farther spread out and people use them.

In general, the model views stations that are turned off as a reduction in cost only if the demand
from that station can be met by another station that is not more than 1 km away. Beyond the
conservative estimation of 70% cost reduction, these spaces could be repurposed by the owner
to make a higher profit from them. For example, bike-sharing stations that are closed by the
model could be reinvented to be safe bicycle holders for all other cycling users that own their
bicycle and need a place to park it.

Furthermore, the stations that are closed in downtown areas could be simply relocated to areas
that have a much lower density of stations, especially towards Southern areas of the city of
Buenos Aires. After placing stations in these new areas that currently have a high usage of the
facilities they have, this model could be run again. It could even become an iterative process:
when stations are opened in zones with no facilities in a radius of ten blocks, demand is
predicted based on usage and the model is reoptimized once again.

Going beyond the macro result, other facility optimizations could be done at a weekly level.
Emptying stations is another way of closing them temporarily. Albeit more tactical, there is also
evidence for the owner to optimize where bikes should be deployed depending on the moment
of the week. This could also allow the business to fix bicycles that require a trip to the mechanic,
ensuring that demand is consistently met to the highest standards of service.

5.1 Future work
One of the assumptions behind this thesis is that stock is equal to capacity, meaning that all
docks within a station are full with all the bicycles they can have. Therefore, the first avenue for
future work could be to relax this assumption and incorporate bicycle stock as another variable
in the model. Including this variable would also imply that there is a reason to avoid having less
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stock than total capacity, which means that something would have to be done with the rationale
behind using free station docks to deposit bicycles. This could be tied back to the demand
function we built as well, actually predicting only extractions instead of the maximum between
extractions and deposits for each day. One could even predict what is the trend for deposits and
incorporate a new restriction within the model that makes it so that the demand for bicycle
deposits is also met.

Another front that could be worth exploring is to expand this model to make fixed costs
changeable, so that they depend on the capacity that each station has. This would be more
realistic, given that building a bike station with 10 docks and bicycles should not be the same as
installing a station with 100 docks and bicycles. Moreso, capacity could even become a new
decision variable for the model to decide which stations it should open, and what their capacity
should be. Even thresholds of walkable distances could become variable depending on where
centers of demand are located. We could expand the walkable thresholds in zones with a lower
density of stations to allow more flexibility in the model's result.

The last assumption from the model worth lifting is the facility locations. The model we used
assumes that the station position is given and only decides whether the facility should be turned
on or off. Potentially, a random positioning algorithm could be used to build different sets and
decide which configuration is optimal given the demand. That way we could incorporate another
level of stochastic decision making that could make the model more robust with respect to
locating the actual demand position, which is endogenous to where stations are currently
located.

Finally, further objective functions could be used to describe a different central planner. For the
sake of this work, we focused on minimizing cost. However, the central planner could be more
interested in maximizing their profit, which involves including a form of revenue model. The
bike-sharing system in the city of Buenos Aires has only recently started including a segmented
tariff. A fixed price per bike ride is charged only to tourists any day of the week and to locals
during weekends. We could estimate different demands for each of them, trying to enrich the
data via some other sources that were not available for this work, incorporating the income
coming from each trip.
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6. Appendix

6.1 Public Transport API query result
In order to allow for future work on this subject, we add the query results in the following table,
showing the capacity of each station and their latitude and longitude. These results come from
the last time the API was consumed, on Dec 25th, 2022.

Station id Latitude Longitude Capacity

2 -34.59242413 -58.37470989 36

3 -34.611032 -58.3682604 20

4 -34.601822 -58.368781 20

5 -34.5805497 -58.4209542 42

6 -34.628526 -58.369758 20

7 -34.606498 -58.381098 16

8 -34.6094218 -58.3893364 24

9 -34.585443 -58.407741 24

12 -34.5927096 -58.388807 16

13 -34.61009 -58.406 30

14 -34.577424 -58.426387 30

17 -34.6064101 -58.4187306 20

21 -34.640111 -58.406432 24

22 -34.5938629 -58.3825498 20

23 -34.600139 -58.379836 12

24 -34.610583 -58.3808943 18

25 -34.5894269 -58.4161178 24

26 -34.600752 -58.3638723 30

27 -34.599068 -58.3900887 16

29 -34.6079414 -58.4335573 30

30 -34.5908211 -58.3973698 20

31 -34.6033431 -58.439521 16

32 -34.6072074 -58.3735984 16

33 -34.5970909 -58.3989807 20

35 -34.5964246 -58.371847 32

36 -34.6045481 -58.3767677 16

38 -34.5970497 -58.3828403 20

41 -34.6371232 -58.4058883 20

43 -34.584018 -58.389921 28
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44 -34.5755148 -58.4138829 20

45 -34.6018635 -58.3866934 20

49 -34.6290527 -58.422611 16

50 -34.5837348 -58.4010798 20

51 -34.6014776 -58.3821261 12

54 -34.5982097 -58.4220694 16

56 -34.588567 -58.425999 16

57 -34.6126898 -58.37125 12

58 -34.5752773 -58.4346883 20

59 -34.617654 -58.380565 20

60 -34.6016509 -58.371079 20

61 -34.6189273 -58.5051769 12

63 -34.5986 -58.373062 24

64 -34.5936508 -58.3941087 20

65 -34.5873124 -58.4157873 20

66 -34.5945475 -58.4138713 20

68 -34.552148 -58.480464 16

69 -34.5961006 -58.4046092 16

70 -34.5926862 -58.4260597 20

71 -34.6026673 -58.3833559 30

73 -34.6306814 -58.3718235 16

74 -34.60439 -58.43454 30

75 -34.6122976 -58.3989871 20

76 -34.6074084 -58.3950548 20

77 -34.581135 -58.501487 16

79 -34.61189 -58.36393 30

80 -34.6245807 -58.4341232 12

82 -34.6078917 -58.4263947 20

83 -34.603269 -58.3893728 28

85 -34.5948057 -58.4091784 20

86 -34.6212681 -58.4016808 20

87 -34.619845 -58.4314942 16

89 -34.5825475 -58.4056671 20

91 -34.6174482 -58.397602 20

92 -34.6316444 -58.4053386 20

93 -34.620798 -58.3944635 20

94 -34.591511 -58.449652 30
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95 -34.6021121 -58.3781678 16

96 -34.6027814 -58.4116586 20

98 -34.6081643 -58.3779002 16

99 -34.5960961 -58.435408 20

101 -34.5891857 -58.4424397 20

102 -34.5851209 -58.4492989 12

104 -34.587617 -58.455212 30

107 -34.63037718 -58.395844 16

111 -34.6054877 -58.3646858 30

112 -34.612075 -58.380384 20

114 -34.5949745 -58.3722554 32

116 -34.5921708 -58.4025894 12

117 -34.6201008 -58.3741759 16

118 -34.6170196 -58.4026531 20

120 -34.617509 -58.4092876 20

121 -34.6011732 -58.4285093 20

122 -34.5915614 -58.4198163 16

124 -34.580538 -58.411965 20

126 -34.6402672 -58.3692243 16

128 -34.60515159 -58.36882117 28

130 -34.5917376 -58.37436403 40

131 -34.5984043 -58.3990158 16

132 -34.6033685 -58.372763 12

134 -34.683188 -58.468952 12

135 -34.595125 -58.377535 20

137 -34.6155977 -58.3674923 24

138 -34.6353595 -58.3876724 12

144 -34.6018744 -58.4060944 20

146 -34.6221118 -58.4078419 20

149 -34.6153266 -58.3813642 16

150 -34.6187547 -58.3554654 36

151 -34.6118145 -58.361285 24

152 -34.6181645 -58.3596311 28

153 -34.6307765 -58.3620701 16

155 -34.6380383 -58.4114346 16

156 -34.5775895 -58.4074696 20

158 -34.592735 -58.4450697 20
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161 -34.6020779 -58.4196761 20

162 -34.608985 -58.401924 20

163 -34.6095663 -58.4064308 30

164 -34.617301 -58.3698984 20

165 -34.597048 -58.407614 12

166 -34.58834666 -58.39414794 12

167 -34.606984 -58.44854 16

168 -34.6186217 -58.3812271 16

169 -34.6123459 -58.411856 12

171 -34.6032813 -58.3997553 20

172 -34.625426 -58.371082 16

174 -34.597225 -58.391768 20

175 -34.626851 -58.380707 48

176 -34.555254 -58.494845 16

177 -34.568165 -58.412121 12

179 -34.6384786 -58.3642885 16

181 -34.5926649 -58.4120072 20

182 -34.5780479 -58.4352466 20

183 -34.6156994 -58.3899728 28

184 -34.6306129 -58.3913419 20

186 -34.6136356 -58.4064415 20

187 -34.552571 -58.450897 16

188 -34.62393 -58.39125 24

189 -34.5886889 -58.3852113 20

190 -34.5850763 -58.4111136 20

191 -34.6079305 -58.3808358 16

193 -34.5908626 -58.4061652 20

194 -34.6060758 -58.4224635 16

196 -34.6275351 -58.3657211 20

197 -34.620998 -58.493044 20

199 -34.6222601 -58.4160137 20

200 -34.5890696 -58.4053617 16

202 -34.583749 -58.390602 30

203 -34.628757 -58.356259 24

204 -34.614948 -58.427818 24

205 -34.583323 -58.428016 16

206 -34.58495 -58.437339 16
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207 -34.65237685 -58.48735936 16

208 -34.5807161 -58.438404 8

210 -34.572165 -58.411278 20

212 -34.600275 -58.434875 20

213 -34.599659 -58.442685 20

215 -34.585878 -58.424996 20

216 -34.589968 -58.411493 20

219 -34.6360274 -58.4156332 16

220 -34.635128 -58.427573 16

222 -34.572583 -58.420628 20

223 -34.6234 -58.424853 16

227 -34.61036075 -58.43276297 20

228 -34.6164879 -58.3656683 16

229 -34.581576 -58.45153 12

230 -34.5678255 -58.4645037 16

231 -34.60511787 -58.44599959 16

232 -34.5599779 -58.4790578 20

234 -34.5480059 -58.4469439 20

235 -34.573734 -58.48692409 24

236 -34.562161 -58.455166 16

237 -34.63670936 -58.50135526 16

239 -34.56533652 -58.42062076 20

241 -34.600874 -58.494123 12

242 -34.57716 -58.403214 20

245 -34.552594 -58.4429397 16

247 -34.5838957 -58.466494 18

248 -34.573522 -58.474635 20

251 -34.64485798 -58.40974866 12

252 -34.647121 -58.374336 16

253 -34.6163544 -58.4170737 16

254 -34.620717 -58.441607 16

255 -34.622092 -58.448547 16

257 -34.570825 -58.481236 24

258 -34.565521 -58.455334 16

259 -34.5591522 -58.4441762 16

260 -34.55307941 -58.43522349 12

261 -34.616151 -58.440584 16
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262 -34.609761 -58.467476 16

263 -34.622003 -58.457555 12

265 -34.64196 -58.4505 16

267 -34.5976121 -58.4985424 16

268 -34.5503 -58.477 36

269 -34.577329 -58.457799 18

270 -34.640114 -58.43026 20

271 -34.630108 -58.473844 20

273 -34.616758 -58.446751 16

275 -34.562277 -58.459289 20

277 -34.563539 -58.436115 12

278 -34.564122 -58.469813 16

280 -34.633528 -58.449379 24

281 -34.613778 -58.458315 24

284 -34.631018 -58.435056 20

289 -34.559801 -58.448314 24

291 -34.617247 -58.381627 16

299 -34.631705 -58.466143 20

301 -34.66036166 -58.46763869 20

302 -34.6518464 -58.415771 16

304 -34.5893 -58.4848 16

307 -34.6499971 -58.424773 12

308 -34.567633 -58.436752 20

309 -34.62141207 -58.51978099 16

310 -34.67711802 -58.47562444 12

311 -34.5972098 -58.47421143 20

316 -34.605567 -58.453475 16

318 -34.603936 -58.457317 20

322 -34.551304 -58.454181 20

323 -34.565409 -58.459298 24

324 -34.578933 -58.4840556 16

327 -34.67713052 -58.45428605 16

329 -34.593141 -58.435187 20

330 -34.6008306 -58.4721271 12

333 -34.6008 -58.50335 20

335 -34.615945 -58.47098 20

336 -34.5997308 -58.5111458 28
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340 -34.54754 -58.467844 20

342 -34.616813 -58.484297 20

348 -34.610482 -58.474369 12

349 -34.5703869 -58.4663122 16

353 -34.599036 -58.364695 28

355 -34.567483 -58.446381 16

358 -34.561486 -58.465586 12

359 -34.555602 -58.450479 20

361 -34.569187 -58.453608 20

362 -34.5658514 -58.479847 12

363 -34.6439 -58.463114 16

366 -34.6352784 -58.4825327 12

367 -34.61621214 -58.47720947 16

368 -34.59807 -58.482079 12

369 -34.592244 -58.491797 16

370 -34.590964 -58.500336 20

371 -34.6317 -58.45534 12

372 -34.636406 -58.470136 12

373 -34.58233692 -58.48108315 16

374 -34.6471 -58.4698 16

375 -34.60459736 -58.48481212 16

376 -34.626778 -58.487078 20

378 -34.623123 -58.468287 20

379 -34.5602 -58.4281 20

381 -34.6162466 -58.4658836 12

382 -34.60547 -58.47739 16

383 -34.5717986 -58.4895409 16

384 -34.57951881 -58.46183473 18

385 -34.60615991 -58.49314135 16

386 -34.5654 -58.4759 8

387 -34.602028 -58.465568 16

392 -34.554581 -58.485381 16

393 -34.59027327 -58.4669322 12

395 -34.59684929 -58.45327986 16

400 -34.57899 -58.46982 16

403 -34.64552326 -58.39666367 20

407 -34.6424248 -58.478266 16
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408 -34.56912 -58.50025 16

413 -34.6614271 -58.5015315 16

416 -34.553262 -58.469133 28

417 -34.57634 -58.50248 20

418 -34.5809383 -58.4445804 16

420 -34.5446 -58.4396 16

422 -34.56454 -58.50289 16

423 -34.559255 -58.487772 12

424 -34.638584 -58.39965 16

425 -34.6440763 -58.422091 16

426 -34.5557 -58.4579 20

427 -34.648402 -58.5136448 16

428 -34.587458 -58.4739506 20

429 -34.63897407 -58.51010242 16

431 -34.542628 -58.436913 20

432 -34.619879 -58.435801 20

433 -34.637697 -58.373726 24

434 -34.54569 -58.46514 16

435 -34.544503 -58.459499 16

436 -34.57653 -58.44349 12

440 -34.5906475 -58.428899 16

441 -34.609801 -58.3748 20

444 -34.608936 -58.370716 24

448 -34.58226812 -58.37909621 24

449 -34.62883578 -58.46329738 24

453 -34.6294802 -58.4944854 16

454 -34.63403 -58.50694 12

455 -34.62652 -58.50805 16

457 -34.62805 -58.52174 16

458 -34.636275 -58.444041 20

459 -34.61072 -58.51914 16

460 -34.6075 -58.51193 16

461 -34.58088 -58.49363 16

464 -34.541 -58.4441 28

465 -34.5904625 -58.5071166 12

466 -34.608096 -58.4118397 16

467 -34.6055135 -58.3958925 12

69



468 -34.6042288 -58.3937375 8

469 -34.5934185 -58.513837 12

471 -34.5947293 -58.5033086 12

473 -34.6134032 -58.4933583 12

474 -34.6108915 -58.50302 12

475 -34.6165412 -58.5260181 12

476 -34.6182924 -58.4985253 12

477 -34.6350046 -58.3950539 12

478 -34.572056 -58.4475236 12

479 -34.6262877 -58.4553001 12

480 -34.6293335 -58.4836028 12

481 -34.6430378 -58.5127001 12

482 -34.550468 -58.430024 12

483 -34.5436888 -58.4771259 12

484 -34.5554843 -58.4768041 12

485 -34.553465 -58.42144 12

486 -34.5420905 -58.4705699 12

487 -34.558137 -58.4672593 12

488 -34.5657087 -58.4952184 12

489 -34.5476039 -58.4565662 12

490 -34.56477054 -58.402021 16

491 -34.6122963 -58.443295 8

492 -34.6097105 -58.4215633 16

493 -34.5967435 -58.4594031 8

494 -34.6147875 -58.5116722 12

496 -34.5831596 -58.5131664 12

497 -34.5744245 -58.4962318 12

498 -34.5865976 -58.4949585 12
Table 6.1: Public transport API query result on Dec 25th, 2022. Includes a total of 316 bike-sharing stations and their

capacities.
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