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Abstract: Online education has emerged as an important educational medium during the COVID-19
pandemic. Despite the advantages of online education, it lacks face-to-face settings, which makes it
very difficult to analyze the students’ level of interaction, understanding, and confusion. This study
makes use of electroencephalogram (EEG) data for student confusion detection for the massive open
online course (MOOC) platform. Existing approaches for confusion detection predominantly focus
on model optimization and feature engineering is not very well studied. This study proposes a novel
engineering approach that uses probability-based features (PBF) for increasing the efficacy of machine
learning models. The PBF approach utilizes the probabilistic output from the random forest (RF) and
gradient-boosting machine (GBM) as a feature vector to train machine learning models. Extensive
experiments are performed by using the original features and PBF approach through several machine
learning models with EEG data. Experimental results suggest that by using the PBF approach on
EEG data, a 100% accuracy can be obtained for detecting confused students. K-fold cross-validation
and performance comparison with existing approaches further corroborates the results.

Keywords: confused student detection; MOOC platform; electroencephalogram; feature engineering

1. Introduction

The use of online education platforms, unlike traditional classroom settings, is growing
rapidly, and the number of students attending online courses through the massive open
online course (MOOC) platform is increasing day by day. MOOC is a large-scale non-
campus setup that is extensively used for online education [1]. Despite the advantages
of 24/7 access, wide reach, and access around the world, this mode of education has
several drawbacks. For example, students are not fully attentive in the online education
program, and there is no face-to-face interaction with the instructor. Online education is
very different from the traditional classroom or face-to-face education [2]. In a face-to-
face classroom setting, a teacher can assess the level of student understanding by verbal
questions, body language, facial expressions, etc., and help the students to increase their
understanding. However, online learning lacks this feature, which affects the performance
of the students. However, there are some guidelines for the stakeholders in e-learning
for a better online course design. These days, MOOC offers interactive sessions where
the teacher and the students can talk about a variety of topics, and student reviews are
also collected for feedback [3]. There is no doubt that students can benefit greatly from
online education, especially during the COVID-19 pandemic. The majority of the students’
learning activities were shifted to the online mode of education, but online education
still has deficiencies. Students may feel confused while watching the MOOC videos [4].
Predominantly, existing studies make use of video data, student physical attributes, and
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textual data for student confusion detection. On the contrary, this study leverages a
novel technology, electroencephalogram (EEG), for student confusion detection in the
MOOC platform.

EEG indicates brain activity, and EEG analysis is an important area of research in
the field of artificial intelligence [5]. It can help medical professionals in making intelli-
gent diagnoses for conditions including epilepsy and Alzheimer’s [6,7]. The EEG signal
is used to determine how the voltage between brain neurons fluctuate. The frequency
and amplitude of electrical activity generated by the brain are both estimated by EEG [8].
With any high-resolution imaging technology, millisecond-range temporal resolution is
not possible, but EEG data can provide this resolution [9]. The relative intensity of activity
within each frequency band has been linked to brain states like focused attentional pro-
cessing, engagement, and frustration, which are important for and predictive of learning.
Rhythmic fluctuations in the EEG signal occur within a set of specific frequency bands. The
information captured by the EEG indicates the electrical activity of different parts of the
brain. It contains the functional state information of the human brain and is represented
by five types of waves. These waves are distinguished by frequency bands which are
characterized by the range of frequency. The delta band is from 0 to 4 Hz, theta band falls
between 3.5 to 7.5 Hz, the alpha band is between 7.5 and 13 Hz, the beta band ranges
from 13 to 26 Hz, and the gamma band is between 26 and 70 Hz [10]. Each wave shows a
different state of mind. For example, delta waves show the deep sleep state while theta
waves indicate the meditation state where the body is asleep while the mind is awake.
Alpha waves indicate the case of dreaming and relaxation, beta waves show the waking
state of mind with large attention while the gamma waves are related to the state of the
brain when it is in a decision-making mode. A raised activity of any of the waves can be
used to diagnose the abnormal state of mind [11].

1.1. Motivation

Confusion detection is an important research area in EEG because confusion can be
analyzed by using the EEG data [12]. For example, the waveform on EEG is different for
fear and confusion. Although these waveforms are not obvious, they are important in
the field of confusion detection and brain–computer interface (BCI) research [13]. Online
learning emerged as an important application during the COVID-19 pandemic when
regular education at institutes was closed. Despite being successful and attractive, online
education has several drawbacks and gaps. This study focuses on one of the major gaps
between online and in-class learning and aims at detecting students’ confusion, which they
experience during online classes [14]. Contrary to in-class instruction, where a teacher
may determine if the student understands the content by verbal questioning or their body
language (such as a furrowed brow, head-scratching, etc.), online learning makes it more
difficult to get immediate feedback from the students [15]. Several additional factors can
also cause confusion like the delivery tool, environment, content of the lecture and tutor
method, etc. For an efficient online education system, it is necessary to have an automatic
system that can detect confusion levels among students in the online education system.

1.2. Contributions

In several fields, including text classification, image processing, and sentiment analy-
sis, machine learning algorithms have demonstrated their strength and superiority over
conventional approaches. According to a number of recent studies, machine learning
techniques outperform traditional methods for EEG data classification tasks. Therefore,
this study leverage machine learning for the detection of confusion by using the EEG data
and makes the following contributions.

• The novel use of EEG data is made for student confusion detection in the MOOC
platform. For this purpose, EEG data collected from students when interacting with
online courses are used for experiments.
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• For increasing the performance of the machine learning models, an intuitive feature
engineering approach, probability-based features (PBF), is designed. The PBF takes
the class probabilities from the random forest (RF), and gradient boosting machine
(GBM) and combines them to make the feature space.

• Extensive experiments are performed by using both the original feature set and the
proposed PBF with many machine learning models including logistic regression (LR),
RF, GBM, support vector classifier (SVC), and extra tress classifier (ETC). In addition,
two state-of-the-art deep learning models are also employed, including convolutional
neural network (CNN) and long short-term memory (LSTM). Performance analysis is
carried out with existing methods and k-fold cross-validation is also performed.

The rest of the paper is divided into five sections. Section 2, contains the related work.
Section 3 describes the proposed methodology, models, and data used for experiments.
Section 4 contains results and discussion. The conclusion is summarized in Section 5.

2. Related Work

Many researchers used machine learning techniques to analyze the EEG data for
various purposes including epilepsy detection, Alzheimer’s detection, driver drowsiness
detection, emotion detection, etc. There is a consensus that confusion in students during
MOOC can be consistently detected through visual inspection of EEG waves from patterns.
To access the cognitive processing and mental state by using EEG signals, several studies
were conducted in this regard.

Keeping in view the importance of online education systems, especially in the context
of COVID-19 [16], a large body of literature can be found regarding online education. For
example, Kumar et al. [17] worked on the improvement of the quality and effectiveness of
the online education system. They used 32 supervised learning algorithms with various
parameter settings to detect whether the student is confused or not confused while watching
MOOC videos. Results of the study show that bagging with RF gives the accuracy value of
61.89% for the pre-defined confusion level detection and achieved 66.6% for user-defined
confusion level detection.

Zhaoheng Ni et al. [18] proposed a deep learning-based system to classify students’
confusion in watching online course videos using EEG data. The study used the recurrent
neural network (RNN), long short-term memory (LSTM), and bi-directional LSTM deep
learning algorithms. The proposed bi-directional LSTM shows strong robustness that was
evaluated by cross-validation. The proposed bi-directional LSTM achieved an accuracy of
73.3% in predicting whether a student is confused or not.

Haohan Wang et al. [19] proposed a system to improve MOOC feedback interaction by
using EEG signals. They used two ways to label mental states. According to the experimen-
tal design, one way is a pre-defined confusion level, and the second way is a user-defined
confusion level. For the pre-defined confusion level, student-specific classifiers achieved
an accuracy of 67% and student-independent classifiers achieved an accuracy value of 57%.
For the user-defined confusion level, student-specific and student-independent classifiers
achieved the accuracy of 56% and 51%, respectively.

In another study, Haohan Wang et al. [20] proposed a deep learning system for
improving the prediction accuracy for healthcare applications. To check the efficacy of
their system they performed experiments across CT-scan, MRA, and EEG brainwave. CT-
scan used for lung adenocarcinoma prediction. MRA is used for segmentation on the
right ventricle (RV) of the heart, and EEG brainwave data is used for the prediction of
student confusion in MOOC. They used SVM, KNN, CNN, DBN, RNN-LSTM, BiLSTM, and
proposed CF-BiLSTM. The proposed CF-BiLSTM achieved the accuracy value of 75% for
student confusion status prediction. Harsh Kumar et al. [21] used the EEG signals collected
by using a Neuro Sky Mindwave headset for the estimation of mental confusion levels. They
used machine learning algorithms such as KNN, NB, XGBoost, and RF. The RF achieved an
accuracy value of 96.48% for this brain–computer interface (BCI). Edla et al. [22] proposed
a system for human mental state analysis by using EEG data. They acquired the real-time
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EEG data of 40 subjects (7 female, 33 male). Statistical measures such as standard deviation,
mean, minimum, and maximum amplitudes are used to derive the features of the EEG
data. Analysis of the results shows that the proposed random forest achieved an accuracy
of 75%. Table 1, shows the summary of related work on the confused student prediction.

Table 1. Summary of the systematic analysis studies in related work.

Study Year Dataset Classifiers Achieved Accuracy

[17] 2019 Same dataset 32 algorithms 66.6% ETC

[13] 2020 Same dataset KNN, CNN, NN, LSTM, BiLSTM 88% BiLSTM

[18] 2017 Same dataset RNN,LSTM, Bi directional LSTM Bi directional LSTM

[19] 2013 Same dataset Student specific and student independent 67% student independent

[20] 2019 Same dataset SVM, KNN, CNN, DBN, RNN-LSTM,
BiLSTM, CF-BiLSTM 75% CF-BiLSTM

[21] 2019 Self-collected using neurosky mind
wave hand wave KNN, NB, XGBoost, RF 96.48% RF

[22] 2018 Self-collected using neurosky mind
wave hand wave RF, SVM 75%

Yeo et al. [23] used the EEG signals for the detection of drowsiness in car drivers.
They extract the features from four EEG frequency bands. The SVM achieved an accuracy
value of 99.3%. To extract the features from the EEG, Sun et al. [24] used an unsupervised
learning technique. They observed that the efficiency of EEG classification suffers when
supervised learning techniques are used. Deep belief networks (DBN) were used by
Hajinoroozi et al. [25] to predict the driver’s cognitive states by extracting features and
dimensionality reduction from EEG data. Results of their study reveal that DBN-C is a
potential technique to extract features. Petrosian et al. [26] proposed a deep learning system
that can detect the symptoms of Alzheimer’s disease from the long-term EEG signals. Gen
et al. [13] proposed a maximum marginal approach for EEG signal processing for emotion
detection. The proposed approach selects the least similar segments between EEG signals
as features that can differentiate between EEG signals caused by different emotions. To find
the features, the method defines a signal similarity described as the distance between two
EEG signals. Wavelet transform make use of a wavelet to calculate the frequency domain of
EEG. They used KNN, CNN, NN, LSTM, and BiLSTM models in their study and achieved
the accuracy value of 88% by BiLSTM.

3. Materials and Methods

This study performed experiments for student confusion prediction by using EEG
signals and a machine learning approach. We implement this approach on a Corei7 11th
generation machine with Windows operating system. We used Sci-kit learn, TensorFlow,
and Keras framework for the implementation of the proposed approach by using the
Python language. The proposed approach’s architecture is shown in Figure 1.

The proposed approach consists of several steps. First, we acquired the dataset from
Kaggle named “confused student EEG brainwave data”. This dataset consists of two target
classes. After acquiring the dataset, we perform data engineering techniques to improve the
accuracy of learning models. We used a probability-based feature engineering technique to
generate new features from original features. We pass the original dataset to the machine
learning models. These models generate probabilities against each sample of the dataset.
Each model predicts two probabilities; one for a confused target and one for a non-confused
target class. Data splitting is the next step after feature engineering and we split the dataset
with a 0.8 to 0.2 ratio, where 80% data is used for training whereas 20% is used for testing of
models. We used several machine learning and deep learning models for student confusion
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prediction, and in the end, we evaluate the performance of learning models in terms of
accuracy, precision, recall, and F1 score.

Feature
Engineering

Dataset

Data
Splitting

Training Set

Testing Set

Model Testing

Model EvaluationModel Training

Figure 1. Flow of the adopted methodology for confusion detection.

3.1. Dataset

The dataset is acquired from Kaggle [19,27]. Ten students participated in the data
collection while watching MOOC video clips. Ten videos were watched by each student
which generate 100 data points consisting of 12,000+ rows. According to this count, each
data point consists of approximately 120+ rows (100 data points × 120+ rows = 12,000+
rows). The students wore a single-channel wireless MindSet that measured activity over
the frontal lobe. Three electrodes, one placed on the forehead and two contacted with an
ear, record the brain’s spontaneous electrical activity over a period of time. This electrical
activity generated a specific pattern to show if the student is confused, which is later labeled
by the student himself to verify whether he was confused or not. Consequently, an EEG
signal that is verified by a student who was confused during the lecture used for modeled
training can be generated through an automatic system, which in turn can predict EEG
data showing whether the student is confused or not. The electrodes collect the following
signal streams by using NeuroSky’s API:

• the raw EEG signals, sampled at 512 Hz;
• an indicator of signal quality reported at 1 Hz;
• MindSet’s proprietary “attention” and “meditation” signals are said to measure the

user’s level of mental focus and calmness, reported at 1 Hz; and
• a power spectrum, reported at 8 Hz, clustered into the standard named frequency

bands, i.e., delta (1–3 Hz), theta (4–7 Hz), alpha (8–11 Hz), beta (12–29 Hz), and gamma
(30–100 Hz).

For data annotation, the participants confirmed their state of mind after each session
of watching online videos. The subjects rate their confusion level on a scale of 1–7 from low
to high. For binary classification, these labels are quantized into confused or not confused.
Further details on the data collection and quantization can be found in [18].

The dataset has 17 columns and 12,811 samples, as shown in Table 2. The dataset
features consist of two categories, one extracted by using an EEG signal when they were
watching a MOOC video clip. The second type of features are demographic features that
contain demographic information about students, such as gender, age, and language as
shown in Table 3.
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Table 2. Dataset details for training and testing.

Data Splitting

Dataset Confused Not Confused

Training set 5255 4993

Testing Set 1251 1312

Total 6567 6244

Dataset Stats

Total Features 17

Total Samples 12,811

Table 3. Dataset features description.

Feature Type Feature Name Description

EEG Features
(10 students EEG recorded data)

Attention A proprietary measure of mental focus

Mediation A proprietary measure of calmness

Raw EEG signal

Delta 1–3 Hz of the power spectrum

Theta 4–7 Hz of the power spectrum

Alpha1 Lower 8–11 Hz of the power spectrum

Alpha2 Higher 8–11 Hz of the power spectrum

Beta1 Lower 12–29 Hz of the power spectrum

Beta2 Higher 12–29 Hz of power spectrum)

Gamma1 Lower 30–100 Hz of the power spectrum

Gamma2 Higher 30–100 Hz of the power spectrum

User-definelabel Is the student confused or not confused (actual label)

Demographic Features
(Each student’s demographic information)

Age Age of students

Ethnicity
Chines

English

Bengali

Gender Student gender (Male, Female)

The histogram distribution of these features is provided in Figure 2. This figure
contains the features’ value ranges and the number of sample counts against the values. As
in the attention feature, most of the samples have values ranging from 25 to 75. Similarly in
the raw features, most of the samples have values ranging from −500 to 500. Because not
all features are equally important, a feature correlation analysis is carried out to understand
and analyze the correlation level. The sample of the dataset is present in Table 4.
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Figure 2. Histogram of EEG dataset features.

Table 4. Sample of dataset.

No. Attention Mediation Raw Delta Theta Alpha1 Alpha2 Beta1 Beta2

1 56 43 278 301,963 90,612 33,735 23,991 27,946 45,097

2 40 35 −50 73,787 28,083 1439 2240 2746 3687

3 57 53 −73 2,265,079 48,307 82,437 140,472 15,464 227,432

4 64 64 −42 83,208 11,927 6755 811 2141 4271

5 63 66 279 901,346 44,037 18,886 27,924 8475 8999

No. Gamma1 Gamma2 User-
Definedlabel Age ethnicity

_Bengali
ethnicity
_English

ethnicity_Han
Chinese gender_M

1 33,228 8293 0 25 0 0 1 1

2 5293 2740 0 25 0 0 1 1

3 30,097 6403 1 24 0 0 1 0

4 6877 274 1 24 0 0 1 0

5 16,990 2883 1 24 0 0 1 0
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3.2. Probability-Based Features

The used dataset consists of 17 features. The original dataset is not linearly separable
to a great extent, which leads to poor performance from machine learning models. So
in this study, we worked on feature engineering and proposed a novel approach called
the probability-based features (PBS) technique. Figure 3 shows the architecture of the
PBF approach.

Dataset

RF

GBM

RF_P1 RF_P2 Target

GBM_P1 GBM_P2 Target

RF_P1 RF_P2 TargetGBM_P1 GBM_P2 Target

GBM Features

RF Features

PBF

Figure 3. Schematic diagram of the proposed PBF approach.

Algorithm 1 shows the working of the proposed PBF approach. The approach utilizes
two machine learning models including RF and GBM. Both models are tree-based ensemble
models. These models are selected for feature engineering because the original feature is
small in size and is not linearly separable. Predominantly, linear models do not show good
performance on small-sized feature sets. For this reason, we design the probability-based
feature set by using RF and GBM.

The whole dataset is passed to RF and GBM separately. The dataset has two target
classes: “confused” and “not confused”. Consequently, the output from RF and GBM
is in two classes. RF and GBM both provide the output in the form of class probability
each for “confused” and “not confused”. These probabilities are then joined to make a
feature set comprising two probabilities from RF and two from GBM. PBS has a total of
four feature sets, which is more linearly separable and distinguishes both target classes
with a higher margin.

Algorithm 1 Algorithm for PBF
Input: EEG Features
Output: Confused or Not-Confused

1: RF ← RF Model
2: GBM ← GBM Model
3: for i in Corpus do
4: PobRF ← RF(i)
5: PobGBM ← GBM(i)
6: end for
7: PBF ← Concatenate(PobRF, PobGBM)

3.3. Machine Learning Classifiers

The use of machine learning algorithms for the EEG brainwave data has produced
good results. Consequently, many algorithms and their variants can be found in the lit-
erature. For the current study, LR, RF, GBM, linear SVC, and ETC are used for confusion
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detection in students while watching MOOC videos. For the implementation of these algo-
rithms, the Scikit-Learn library is used. By fine-tuning several parameters, the performance
of these algorithms has been optimized. A brief description of these algorithms is provided
in this section, and Table 5 shows the hyperparameter setting of each model.

Table 5. Machine learning models’ hyperparameters setting.

Model Hyperparameters Hyperparameters Tuning

ETC n_estimators = 300, max_depth = 15 max_depth = {2 to 300}, n_estimators = {50 to 500}

RF n_estimators = 300, max_depth = 15 max_depth = {2 to 300}, n_estimators = {2 to 300}

GBC n_estimators = 300, max_depth = 15, learning_rate = 0.8 max_depth = {2 to 300}, n_estimators = {50 to 500},
learning_rate = {0.0 to 1.0}

SVC Kernel = linear, C = 3.0 Kernel = {poly, linear, sigmoid} C = {1.0 to 5.0}

LR solver = liblinear, C = 3.0, multi_class = ovr Kernel = {liblinear, sag, saga} C = {1.0 to 5.0},
multi_class = ovr

LR is a machine learning algorithm used for classification problems [28]. It is a
statistical method that is based on the logistic function and works on the concept of
probability. The values of the S-shaped curve and variable v of the logistic function range
from −∞ to +∞ for the actual number. In LR, the “liblinear” hyperparameter is used to
boost the performance because it has a small corpus [29]. For the binary classification
problems, the “multi-class” parameter is set to “multidimensional”.

RF is an ensemble learning model used for constructing predictions with high precision
by composing the results of sub-trees [30]. For the training of several decision trees, RF used
bagging by using samples of bootstraps [31]. In RF, to achieve the best accuracy value, RF
has been applied with many weak learners, and with n-estimator in RF shows the number
of trees taking part in the prediction process to reduce the overfitting phenomenon [32].
The max-depth parameter is used in RF and “random state” is used for the randomness of
the sample at the time of training.

GBM is a boosting model which works by a model formed by an ensemble of weak
prediction models, commonly called decision trees. In boosting, weak learners are trans-
formed into strong learners [33]. Every tree which is formed is a modified version of one
before it and uses gradient as a loss function. Loss determines how well a model coefficient
fits the underlying data. For the optimization of the model loss, function is used.

Linear SVC is a good choice for practical applications. SVC generates a hyperplane
or line that divides the data into classes [34]. With the help of the kernel function, low
dimensional input space is transformed into higher dimensional space. This means that
non-separable issues are transformed into separable ones. Linear SVC mainly handles
non-linear differential problems [35]. SVC separates the data based on labels and performs
complex data transformations.

ETC is an ensemble learning model that considers the results of multiple uncorrelated
decision trees for the final decision. Each decision tree in the forest used for further
classification is formed by using training samples [36]. On the random sample of features,
multiple uncorrelated decision trees are constructed. During the construction of trees,
feature selection is done to split the data by using the Gini index for each feature [37].

3.4. Deep Learning Models for Experiments

In this study, we also deployed deep learning models in comparison with machine
learning models. We used two state-of-the-art deep learning models, LSTM and CNN.
These models are used with their best hyperparameters setting according to the dataset
and their architecture is shown in Table 6. We used these models because they are mostly
used in literature for this type of dataset. We compared it with our proposed approach for
machine learning models. Both models are used with a vocabulary size of 50 and 20 output
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dimensions. LSTM is used with 100 units; similarly, CNN is also used with 100 filters and
2 × 2 kernel size. We used binary_cross-entropy loss function because of the binary class
problem and also used the Adam optimizer. We used 100 epochs and a batch size of 8 for
model fitting.

Table 6. Architecture of deep learning models.

Model Hyperparameters

LSTM Embedding(50, 20, input_length = ..)
Dropout(0.5)
LSTM(100)
Dense({2}, activation = ‘softmax’)

CNN Embedding(50,20, input_length = ..)
Conv1D(100, 2, activation = ‘relu’)
MaxPooling1D(pool_size = 2)
Activation(‘relu’)
Dropout(rate = 0.5)
Flatten()
Dense({2}, activation = ‘softmax’)

{loss = binary_crossentropy}’, optimizer = ‘adam’,
epochs = 100, batch_size = 8

3.5. Performance Evaluation Parameters

To check the performance of machine learning algorithms, various evaluation matrices
are used in this research. We used the confusion matrix. Every observation in the testing
set is predicted in exactly one box. A confusion matrix is a tabular representation of a
classification model’s performance, and it consists of four parameters—true positive (TP),
true negative (TN), false positive (FP), and false negative (FN). We used accuracy, precision,
recall, and F1 score for the evaluation of learning models.

The measure of prediction correctness is called accuracy [38]. It is measured as

Accuracy =
total number o f correct predictions

total number o f predictions
. (1)

It can also be represented as

Accuracy =
TP + TN

TP + TN + FP + FN
. (2)

Precision represents the ratio of true positives to all events predicted as true [39]. Its
value lies between 0 and 1 and is calculated as

Precision =
TP

TP + FP
. (3)

The recall represents the total number of positive classifications out of true class [40].
It is calculated as

Recall =
TP

TP + FN
. (4)

F1 score represents a tradeoff between precision and recall, or it is a harmonic mean
between precision and recall [41]. It is calculated as

F1Score = 2 ∗ Precision ∗ Recall
Precision + Recall

. (5)
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4. Results and Discussion

In this section, we discussed the results obtained from the three sets of experiments.
We evaluate and compare the performance of all used machine learning models applied
to the features obtained by using RF, GBM, LR, and SVM. The machine learning models
employed in this study can be classified into two categories: tree-based classifiers, and
regression-based classifiers. RF, GBC, and ETC are tree-based classifiers, whereas LR and
linear SVC are regression-based models.

4.1. Experimental Setup

The analysis of the results for the confusion detection in students while watching
MOOC videos is presented in this section. The SciKit-learn library and Natural Language
Process Tool Kit (NLTK) are used to implement the machine learning models. Python’s
SciKit module is used to deploy machine learning algorithms. For conducting experiments,
the Jupyter notebook is used. The data is split in the ratio of 0.7 to 0.3 for training and
testing, respectively, because this ratio is adopted by many studies to avoid overfitting [42].
All the experiments are carried out on a 2 GB Dell PowerEdge T430 graphical processing
unit on a 2X Intel Xeon 8 cores 2.4GHz machine equipped with a 32 GB DDR core random
access memory (RAM).

4.2. Performance of Machine Learning Models Using Proposed PBF

For this set of experiments, we carried out experiments by using the proposed ap-
proach where the extracted features using RF and GBM learning algorithms are combined
to make PBF. A comparative analysis of machine learning models has been conducted,
and the results are given in Table 7. Results indicate that all models show 100% accuracy,
precision, and recall when trained and tested by using the proposed approach PBF which
shows the superiority of the approach over traditional feature engineering approaches.

Table 7. Machine learning models results by using RF and GBM extracted features.

Classifiers Accuracy Precision Recall F1 Score

RF 1.00 1.00 1.00 1.00

GBC 1.00 1.00 1.00 1.00

LR 1.00 1.00 1.00 1.00

SVC 1.00 1.00 1.00 1.00

ETC 1.00 1.00 1.00 1.00

Table 8 shows the 10-fold cross-validation results of our proposed approach and we
can analyze that models are also significant with a 10-fold cross-validation approach when
they used PBF. All models achieved a 1.00 mean accuracy score with +/−0.00 standard
deviation which shows the significance of our proposed approach.

Table 8. 10-fold cross-validation results of RF and GBM features using machine learning algorithms.

Classifiers Accuracy Standard Deviation

RF 1.00 0.00

GBC 1.00 0.00

LR 1.00 0.00

SVC 1.00 0.00

ETC 1.00 0.00
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4.3. Performance of Models Using LR and SVM Extracted Features

To show the efficacy of the proposed approach, we performed additional experiments.
The purpose of the second set of experiments is to analyze the performance of the features
extracted by using LR and SVM and compare the performance of machine learning models
with that of PBF. The process of combining the features is the same as followed in PBF. In the
second set of experiments, we used the features extracted by using LR and SVM learning
algorithms. A comparative analysis of machine learning models has been conducted on
these sets of features, and results are given in Table 9. Table 9 shows that the highest
accuracy score of 60% is achieved by the LR and linear SVC with the same 60% precision,
recall, and F1 score. The second-best results are obtained by the RF classifier which obtains
a 59% accuracy, precision, recall, and F1 score, respectively. From the results, it can be
observed that the regression-based models perform better than tree-based models.

Table 9. Machine learning models results using LR and SVM extracted features.

Classifiers Accuracy Precision Recall F1 Score

RF 0.59 0.59 0.59 0.59

GBM 0.55 0.55 0.55 0.55

LR 0.60 0.60 0.60 0.60

SVC 0.60 0.60 0.60 0.60

ETC 0.56 0.56 0.56 0.56

Figure 4 shows the confusion matrix for all models using LR and SVM extracted
features. The “confused” class is represented by 1 while the “not confused” class is
represented by 0 in the confusion matrix. From the total of 2563, LR obtains the highest
number of 1543 correct predictions, followed by 1541 correct predictions by the SVC and RF
with 1508 correct predictions. GBC has the lowest number of correct predictions, i.e., 1419
when using the features extracted from LR and SVM. Table 10 shows per-class precision,
recall, and F1 scores of all the models.
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Figure 4. Cofusion matrices of all models using LR and SVM extracted features.

Table 10 illustrates the per-class accuracy of the models, which demonstrates that all
models are equally effective for both the target classes. The models are equally effective
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for each target class, as demonstrated by these confusion matrices. After rounding off,
the accuracy scores of RF, LR, and SVC are almost identical, although the number of
accurate predictions varies slightly. These findings demonstrate that no class is overfitted
by a model.

Table 10. Per-class accuracy of LR and SVM models.

Models Class Precision Recall F1 Score

RF
0 0.57 0.56 0.57

1 0.60 0.61 0.61

GBC
0 0.54 0.54 0.54

1 0.57 0.57 0.57

LR
0 0.58 0.62 0.60

1 0.63 0.58 0.60

SVC
0 0.58 0.62 0.60

1 0.62 0.58 0.60

ETC
0 0.54 0.54 0.54

1 0.62 0.58 0.60

For validating the performance of machine learning models, 10-fold cross-validation
is performed and the results of all machine learning algorithms are shown in Table 11.
Results show that a 0.59% accuracy can be obtained by using both LR and SVC when
features formed by using LR and SVM are utilized for training and testing the machine
learning models.

Table 11. 10-fold cross-validation results on LR and SVM features using machine learning algorithms.

Classifiers Accuracy Standard Deviation

RF 0.56 0.04

GBC 0.53 0.03

LR 0.59 0.04

SVC 0.59 0.04

ETC 0.56 0.04

4.4. Performance of Machine Learning Models Using Original Features

In the final set of experiments, all the features from the dataset are used with the
machine learning models. A comparative analysis of machine learning models has been
conducted on this set of features, and results are given in Table 12.

Table 12 shows that the highest accuracy score of 77% is achieved by the RF with
77% precision, recall, and F1 score. The second best results are given by the ETC classifier
by obtaining 75% accuracy, precision, recall, and F1 score. It can be observed that the
tree-based models perform better than the regression-based models because enough data is
available to construct the decision tree. This is the reason the tree-based models perform
well as compared to the regression-based models.
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Table 12. Results of machine learning models using original features.

Classifiers Accuracy Precision Recall F1 Score

RF 0.77 0.77 0.77 0.77

GBC 0.71 0.71 0.71 0.71

LR 0.61 0.61 0.61 0.61

SVC 0.52 0.56 0.51 0.38

ETC 0.75 0.75 0.75 0.75

Figure 5 presents the confusion matrices for all of the models. These confusion matrices
show how the models are exposed to varying predictions for each target class. For a larger
sample size, RF and ETC’s correct predictions are 1971 and 1934, respectively, out of a total
of 2563. Table 13 shows F1 scores for both the RF and ETC models, which indicate that
they make similar predictions across all classes. Out of 2563 total predictions, the GBC and
LR have correct predictions of 1823 and 1557, respectively. The SVC model has the least
accurate predictions of 1323.
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Figure 5. Confusion matrices of all models using original features.

Table 13 shows class-wise performance evaluation of all the models. It can be seen
that the highest F1 score of 0.78 is obtained from the RF model for class 0. Class-wise
performance from the models is almost similar. It is clear that SVC fails to predict class 0
and has the lowest F1 score of all the models.

We have zero false rates with the proposed approach because in this study, the machine
learning model’s performance depends on the base machine learning model probabilities.
We used two kinds of models for probability-based feature generation—one tree-based
model (RF, GBM) and a second linear model (LR, SVM). The combination of RF+GBM
generated a more correlated feature set as compared to the LR+SVM approach, and the
reason is that LR and SVM require a large feature set to get a good fit and generate more
accurate probabilities, whereas RF and GBM can also perform well on small feature sets.
When RF and GBM generate a probability feature set, it is more correlated to the target
class, which means that in the new feature, one target class value becomes totally different
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compared to other class values. The new features set has clear patterns for “confused” or
“not confused” target classes, which leads to a 100% accuracy score.

Table 13. Per-class accuracy using the original features.

Models Class Precision Recall F1 Score

RF
0 0.77 0.75 0.76

1 0.77 0.78 0.78

GBC
0 0.71 0.69 0.70

1 0.71 0.73 0.72

LR
0 0.59 0.68 0.63

1 0.63 0.54 0.58

SVC
0 0.60 0.05 0.09

1 0.51 0.97 0.67

ETC
0 0.75 0.75 0.75

1 0.76 0.76 0.76

The 10-fold cross-validation results using machine learning algorithms with original
features are shown in Table 14. It can be seen that the best performance can be obtained by
using the ETC model which shows a 0.69% accuracy with a 0.03 standard deviation. RF
also has the same accuracy, but its standard deviation is 0.04.

Table 14. K-fold cross-validation results on the original dataset using machine learning algorithms.

Classifiers Accuracy Standard Deviation

RF 0.69 0.04

GBC 0.67 0.03

LR 0.59 0.04

SVC 0.51 0.04

ETC 0.69 0.03

4.5. Comparison of Original and Probability-Based Features

Experimental results show that using the proposed PBF, the performance of the ma-
chine learning models is greatly enhanced. For verifying this performance, a visual rep-
resentation of feature distribution is given in Figure 6. Figure 6a shows that with the
original feature, the data is not linearly separable. However, when the proposed method of
feature engineering is used, the feature space becomes more linearly separable, as shown in
Figure 6b. This is the reason the performance of the machine learning models is elevated.
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Figure 6. Feature space, (a) Class distribution using the original features, and (b) Class distribution
using the proposed PBF.

Figure 7 shows the comparison between the machine learning model’s performance
using RF+GBM, LR+SVM, and original features. We can see that models outperform
tree-based model features (RF+GBM) whereas original features are poor as compared to
RF+GBM features but it is better than LR+SVM features.

(a) (b)

(c) (d)

Figure 7. Performance comparison of models (a) Accuracy, (b) Precision, (c) Recall, and (d) F1 score.

We also calculated the computational cost for each model with different features engi-
neering techniques. We find that the proposed approach is significant in terms of accuracy
as well as efficiency. The computational cost for the proposed approach is significantly bet-
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ter than other approaches. We achieved the highest accuracy with the lowest computational
time as shown in Table 15.

Table 15. Computational cost (time in seconds) of machine learning models.

Classifiers PBF LR+SVM Original

RF 0.43 2.87 3.41

GBC 0.14 2.73 2.65

LR 0.04 0.02 0.11

SVC 0.02 0.03 0.64

ETC 0.42 1.42 1.66

4.6. Results of Deep Learning Models

We deployed LSTM and CNN models on the original dataset. Figure 8 shows the
results of the deep learning model per epoch. It shows that the LSTM obtains the highest
accuracy at the 54th epoch; after that, there are ups and downs in the accuracy. Similarly,
CNN obtains the best accuracy at the 81st epoch, and after that, there is no change.

(a) (b)

Figure 8. Deep learning models score per epochs. (a) LSTM; (b) CNN.

Experimental results for deep learning models are shown in Table 16. According to the
results models, performance is poor as compared to the machine learning models, even on
the original dataset. The performance of deep learning models is better on a large feature
set as compared to using a small dataset. The used dataset has a small feature set which
is the reason the performance of deep learning models is low as compared to machine
learning models. LSTM achieved a 0.67 accuracy score and CNN achieved only a 0.66
accuracy score.

Table 16. Results of deep learning models.

Model Accuracy Class Precision Recall F1 Score

LSTM 0.67

0 1.00 0.31 0.47

1 0.61 1.00 0.75

Avg. 0.80 0.65 0.61

CNN 0.66

0 0.99 0.31 0.47

1 0.61 1.00 0.75

Avg. 0.80 0.65 0.61
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4.7. Statistical T-Test

We have done a statistical T-test to compare models’ performance by using RF+GMB
features with other used features. A T-test will find whether compared results are statisti-
cally different and significant or not. To evaluate the T-test, there is a null hypothesis. If
the value of the T-score value given by the T-test is greater than the critical value (cv), the
null hypothesis will be rejected and the alternative hypothesis will be accepted. Our null
hypothesis and alternative hypothesis are:

• Null hypothesis; the proposed approach (RF+GBM) is not statistically significant as
compared to the other approach; and

• Alternative hypothesis; the proposed approach (RF+GBM) is statistically significant
as compared to the other approach.

Table 17 shows the results of the T-test with two cases. When we compared model
results by using RF+GBM features and model performance by using original features.
The T-test rejected the null hypothesis and accepted the alternative hypothesis. Similarly
the RF+GBM vs. the LR+SVM approach shows that in our model performance with our
proposed features, RF+GBM is statistically significant.

Table 17. Statistical T-test results.

Case T-Score df cv Null Hypothesis

RF+GBM vs. Original features 6.98 4 7.06 × 10−17 Rejected

RF+GBM vs. LR+SVM 33.03 4 7.06 × 10−17 Rejected

4.8. Comparison with Existing Studies

In this section, we compare the proposed approach with existing studies on the same
dataset. These studies all worked on different machine learning or deep learning ap-
proaches to achieve significant results but no one focused on feature engineering. The
study [18] proposed bi-directional long short-term memory (Bi-LSTM) for confused stu-
dent prediction. Similarly, the study [13] also deployed Bi-LSTM for confused students’
predictions and also adopted a feature selection technique to enhance the performance.
The study [17] also worked on student confusion prediction by using the machine learning
model ETC. In comparison with all approaches, we worked on feature engineering and
deployed machine learning models to achieve significant results. A comparison between
previous studies and our approach is shown in Table 18, which indicates that the proposed
approach outperforms existing models.

Table 18. Comparison with existing studies.

Study Year Models Reported Accuracy

[18] 2017 Bi-LSTM 73.3 %

[20] 2019 CF-BiLSTM 75%

[13] 2020 BiLSTM 88%

[17] 2022 ETC 66.6%

This study 2022 RF, GBC, LR, SVC, ETC 100%

4.9. Performance of Proposed Approach with “Feeling Emotions” Dataset

For validating the performance of the proposed approach, we deployed the proposed
approach on another dataset which is the EEG Brainwave Dataset: Feeling Emotions.
This dataset consists of three sentiments—positive, neutral, and negative. The dataset
is collected by using the Muse EEG headband. We performed experiments by using the
proposed feature set approach with machine learning models. Experiments are performed



Electronics 2022, 11, 2855 19 of 21

with a two-fold purpose. First, the performance of the proposed approach is validated by
using the EEG data for emotions. Secondly, the performance of the proposed approach
is analyzed for emotion classification by using the EEG dataset. Table 19 shows the
comparison between the proposed approach and other studies that utilized the same
dataset. The results demonstrate that by using the proposed approach, an accuracy of 100%
is achieved. Results also prove that the proposed approach outperforms state-of-the-art
approaches that use the same EEG data for emotion classification.

Table 19. Performance of the proposed approach on the Feeling Emotions dataset.

Ref. Year Model Accuracy

[43] 2018 SVM, RF 87%

[44] 2019 RF 97.89%

[45] 2021 RF, XGBoost 96.88%, 96.41%

[46] 2022
RNN Training: 97.50%

Testing: 96.50%

SVM, LR Training: 100.00%
Testing: 97.25%

[47] 2022 RNN 97%

This study 2022 RF, GBC, LR, SVC, ETC 100%

5. Conclusions

Online education became an attractive mode of education recently, especially during
the COVID-19 outbreak. Unlike the traditional modes of education, it does not require being
in the classrooms physically, and classes are conducted online. However, lacking face-to-
face interaction with the instructor, student’s level of understanding, or confusion regarding
particular topics cannot be judged, which raises serious concerns. This study leverages
the electroencephalogram data to detect confused students by using a machine learning
approach in the context of the MOOC platform. An intuitive feature engineering approach
is proposed, which utilizes the class probabilities output from RF and GBM to make the
feature vector. Experiments are performed by using machine learning and deep learning
models with the original features, as well as the proposed PBF approach. It is found that
machine learning models tend to show better results than deep learning models. Results
indicate that by using the proposed feature engineering approach a 100% accuracy for
confused student detection can be obtained. Results are further corroborated by using k-fold
cross-validation and the Feeling Emotions dataset. Furthermore, performance comparison
with the state-of-the-art approaches shows that the proposed approach outperforms existing
studies. In the future, we intend to work on feature augmentation. Because deep learning
models could not perform well on the small feature set, we plan to increase the number of
features. In addition, we want to work with real-time confusion detection in the future.

Author Contributions: Conceptualization, T.D. and F.R.; data curation, T.D.; formal analysis, F.R.;
investigation, W.A.; methodology, T.D. and W.A.; project administration, A.H.B.; software, A.H.B.;
supervision, I.A.; validation, I.A.; visualization, A.H.B.; writing—original draft, F.R., T.D. and W.A.;
writing—review & editing, I.A. and F.R. All authors have read and agreed to the published version of
the manuscript

Funding: This research received no external funding.

Data Availability Statement: The dataset and code for machine learning models used in this study
are available via the following link: https://github.com/furqanrustam/EEG-Brainwave (accessed on
15 August 2022).

https://github.com/furqanrustam/EEG-Brainwave


Electronics 2022, 11, 2855 20 of 21

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Allen, I.E.; Seaman, J. Going the Distance: Online Education in the United States; ERIC: Washington, DC, USA, 2011.
2. Thompson, G. How can correspondence-based distance education be improved? A survey of attitudes of students who are not

well disposed toward correspondence study. J. Distance Educ. 1990, 5, 53–65.
3. Sharma, R.C. Innovative applications of online pedagogy and course design. Int. J. Inf. Commun. Technol. Educ. 2019, 15, 451.
4. Sublett, C. What do we know about online coursetaking, persistence, transfer, and degree completion among community college

students? Community Coll. J. Res. Pract. 2019, 43, 813–828. [CrossRef]
5. Suhaimi, N.S.; Mountstephens, J.; Teo, J. EEG-based emotion recognition: A state-of-the-art review of current trends and

opportunities. Comput. Intell. Neurosci. 2020, 2020, 8875426. [CrossRef]
6. Li, Y.; Liu, Y.; Cui, W.G.; Guo, Y.Z.; Huang, H.; Hu, Z.Y. Epileptic seizure detection in EEG signals using a unified temporal-spectral

squeeze-and-excitation network. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 782–794. [CrossRef]
7. Khan, K.A.; Shanir, P.; Khan, Y.U.; Farooq, O. A hybrid Local Binary Pattern and wavelets based approach for EEG classification

for diagnosing epilepsy. Expert Syst. Appl. 2020, 140, 112895. [CrossRef]
8. Marosi, E.; Bazán, O.; Yanez, G.; Bernal, J.; Fernandez, T.; Rodriguez, M.; Silva, J.; Reyes, A. Narrow-band spectral measurements

of EEG during emotional tasks. Int. J. Neurosci. 2002, 112, 871–891. [CrossRef]
9. Ding, Y.; Chen, X.; Zhong, S.; Liu, L. Emotion Analysis of College Students Using a Fuzzy Support Vector Machine. Math. Probl.

Eng. 2020, 2020, 8931486. [CrossRef]
10. Baars, B.J.; Gage, N.M. Cognition, Brain, and Consciousness: Introduction to Cognitive Neuroscience; Academic Press: Cambridge, MA,

USA, 2010.
11. Alotaiby, T.; Abd El-Samie, F.E.; Alshebeili, S.A.; Ahmad, I. A review of channel selection algorithms for EEG signal processing.

EURASIP J. Adv. Signal Process. 2015, 2015, 1–21. [CrossRef]
12. Kumar, H.; Sethia, M.; Thakur, H.; Agrawal, I. Swarnalatha, P. Electroencephalogram with Machine Learning for Estimation of

Mental Confusion Level. Int. J. Eng. Adv. Technol. 2019, 9, 761–765.
13. Li, G.; Jung, J.J. Maximum marginal approach on eeg signal preprocessing for emotion detection. Appl. Sci. 2020, 10, 7677.

[CrossRef]
14. Sarwat, S.; Ullah, N.; Sadiq, S.; Saleem, R.; Umer, M.; Eshmawi, A.; Mohamed, A.; Ashraf, I. Predicting Students’ Academic

Performance with Conditional Generative Adversarial Network and Deep SVM. Sensors 2022, 22, 4834. [CrossRef]
15. Li, Z.; Qiu, L.; Li, R.; He, Z.; Xiao, J.; Liang, Y.; Wang, F.; Pan, J. Enhancing BCI-based emotion recognition using an improved

particle swarm optimization for feature selection. Sensors 2020, 20, 3028. [CrossRef] [PubMed]
16. Aljedaani, W.; Aljedaani, M.; AlOmar, E.A.; Mkaouer, M.W.; Ludi, S.; Khalaf, Y.B. I cannot see you—The perspectives of deaf

students to online learning during covid-19 pandemic: Saudi arabia case study. Educ. Sci. 2021, 11, 712. [CrossRef]
17. Anala, V.A.S.M.; Bhumireddy, G. Comparison of Machine Learning Algorithms on Detecting the Confusion of Students While

Watching MOOCs. 2022. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1641701&dswid=-4947
(accessed on 15 August 2022).

18. Ni, Z.; Yuksel, A.C.; Ni, X.; Mandel, M.I.; Xie, L. Confused or not confused? Disentangling brain activity from EEG data using
bidirectional LSTM recurrent neural networks. In Proceedings of the 8th ACM International Conference on Bioinformatics,
Computational Biology, and Health Informatics, Boston, MA, USA, 20–23 August 2017; pp. 241–246.

19. Wang, H.; Li, Y.; Hu, X.; Yang, Y.; Meng, Z.; Chang, K.M. Using EEG to Improve Massive Open Online Courses Feedback
Interaction. In Proceedings of the AIED Workshops, Memphis, TN, USA, 9–13 July 2013.

20. Wang, H.; Wu, Z.; Xing, E.P. Removing confounding factors associated weights in deep neural networks improves the prediction
accuracy for healthcare applications. In BIOCOMPUTING 2019: Proceedings of the Pacific Symposium; World Scientific: Singapore,
2018; pp. 54–65. Available online: https://pubmed.ncbi.nlm.nih.gov/30864310/ (accessed on 15 August 2022).

21. Li, N.; Kelleher, J.D.; Ross, R. Detecting Interlocutor Confusion in Situated Human-Avatar Dialogue: A Pilot Study. arXiv 2022,
arXiv:2206.02436.

22. Edla, D.R.; Mangalorekar, K.; Dhavalikar, G.; Dodia, S. Classification of EEG data for human mental state analysis using Random
Forest Classifier. Procedia Comput. Sci. 2018, 132, 1523–1532. [CrossRef]

23. Yeo, M.V.; Li, X.; Shen, K.; Wilder-Smith, E.P. Can SVM be used for automatic EEG detection of drowsiness during car driving?
Saf. Sci. 2009, 47, 115–124. [CrossRef]

24. Sun, L.; Jin, B.; Yang, H.; Tong, J.; Liu, C.; Xiong, H. Unsupervised EEG feature extraction based on echo state network. Inf. Sci.
2019, 475, 1–17. [CrossRef]

25. Hajinoroozi, M.; Jung, T.P.; Lin, C.T.; Huang, Y. Feature extraction with deep belief networks for driver’s cognitive states prediction
from EEG data. In Proceedings of the 2015 IEEE China Summit and International Conference on Signal and Information Processing
(ChinaSIP), Chengdu, China, 12–15 July 2015; pp. 812–815.

26. Petrosian, A.; Prokhorov, D.; Lajara-Nanson, W.; Schiffer, R. Recurrent neural network-based approach for early recognition of
Alzheimer’s disease in EEG. Clin. Neurophysiol. 2001, 112, 1378–1387. [CrossRef]

http://doi.org/10.1080/10668926.2018.1530620
http://dx.doi.org/10.1155/2020/8875426
http://dx.doi.org/10.1109/TNSRE.2020.2973434
http://dx.doi.org/10.1016/j.eswa.2019.112895
http://dx.doi.org/10.1080/00207450290025897
http://dx.doi.org/10.1155/2020/8931486
http://dx.doi.org/10.1186/s13634-015-0251-9
http://dx.doi.org/10.3390/app10217677
http://dx.doi.org/10.3390/s22134834
http://dx.doi.org/10.3390/s20113028
http://www.ncbi.nlm.nih.gov/pubmed/32471047
http://dx.doi.org/10.3390/educsci11110712
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1641701&dswid=-4947
https://pubmed.ncbi.nlm.nih.gov/30864310/
http://dx.doi.org/10.1016/j.procs.2018.05.116
http://dx.doi.org/10.1016/j.ssci.2008.01.007
http://dx.doi.org/10.1016/j.ins.2018.09.057
http://dx.doi.org/10.1016/S1388-2457(01)00579-X


Electronics 2022, 11, 2855 21 of 21

27. Confused Student EEG Brainwave Data. Available online: https://www.kaggle.com/datasets/wanghaohan/confused-eeg
(accessed on 3 September 2022).

28. Aljedaani, W.; Mkaouer, M.W.; Ludi, S.; Javed, Y. Automatic Classification of Accessibility User Reviews in Android Apps. In
Proceedings of the 2022 7th International Conference on Data Science and Machine Learning Applications (CDMA), Riyadh,
Saudi Arabia, 1–3 March 2022; pp. 133–138.

29. Sebastiani, F. Machine learning in automated text categorization. ACM Comput. Surv. (CSUR) 2002, 34, 1–47. [CrossRef]
30. AlOmar, E.A.; Aljedaani, W.; Tamjeed, M.; Mkaouer, M.W.; El-Glaly, Y.N. Finding the needle in a haystack: On the automatic

identification of accessibility user reviews. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems,
Yokohama, Japan, 8–13 May 2021; pp. 1–15.

31. Biau, G.; Scornet, E. A random forest guided tour. Test 2016, 25, 197–227. [CrossRef]
32. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
33. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 19, 1189–1232. [CrossRef]
34. Safdari, N.; Alrubaye, H.; Aljedaani, W.; Baez, B.B.; DiStasi, A.; Mkaouer, M.W. Learning to rank faulty source files for dependent

bug reports. In Big Data: Learning, Analytics, and Applications; SPIE: Bellingham, WA, USA, 2019; Volume 10989, pp. 60–78.
[CrossRef]

35. Xindong, W.; Kumar, J.V.; Quinlan, R.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.; Angus, N.; Liu, B.; Philip, S.; et al. Top 10
algorithms in data mining. Knowledge and Information Systems. Knowl. Inf. Syst. 2008, 14, 1–37. [CrossRef]

36. Sharaff, A.; Gupta, H. Extra-tree classifier with metaheuristics approach for email classification. In Advances in Computer
Communication and Computational Sciences; Springer: Berlin/Heidelberg, Germany, 2019; pp. 189–197.

37. Ossai, C.I.; Wickramasinghe, N. GLCM and statistical features extraction technique with Extra-Tree Classifier in Macular Oedema
risk diagnosis. Biomed. Signal Process. Control 2022, 73, 103471. [CrossRef]

38. Abid, M.A.; Ullah, S.; Siddique, M.A.; Mushtaq, M.F.; Aljedaani, W.; Rustam, F. Spam SMS filtering based on text features and
supervised machine learning techniques. Multimed. Tools Appl. 2022, 1–19. [CrossRef]

39. Amaar, A.; Aljedaani, W.; Rustam, F.; Ullah, S.; Rupapara, V.; Ludi, S. Detection of fake job postings by utilizing machine learning
and natural language processing approaches. Neural Process. Lett. 2022, 54, 2219–2247. [CrossRef]

40. Rupapara, V.; Rustam, F.; Aljedaani, W.; Shahzad, H.F.; Lee, E.; Ashraf, I. Blood cancer prediction using leukemia microarray
gene data and hybrid logistic vector trees model. Sci. Rep. 2022, 12, 1–15. [CrossRef]

41. Fang, F.; Wu, J.; Li, Y.; Ye, X.; Aljedaani, W.; Mkaouer, M.W. On the classification of bug reports to improve bug localization. Soft
Comput. 2021, 25, 7307–7323. [CrossRef]

42. Ashraf, I.; Umer, M.; Majeed, R.; Mehmood, A.; Aslam, W.; Yasir, M.N.; Choi, G.S. Home automation using general purpose
household electric appliances with Raspberry Pi and commercial smartphone. PLoS ONE 2020, 15, e0238480.

43. Bird, J.J.; Manso, L.J.; Ribeiro, E.P.; Ekárt, A.; Faria, D.R. A study on mental state classification using eeg-based brain-machine
interface. In Proceedings of the 2018 International Conference on Intelligent Systems (IS), Funchal, Portugal, 25–27 September
2018; pp. 795–800.

44. Bird, J.J.; Ekart, A.; Buckingham, C.D.; Faria, D.R. Mental emotional sentiment classification with an eeg-based brain-machine
interface. In Proceedings of the International Conference on Digital Image and Signal Processing (DISP’19), Oxford, UK,
29–30 April 2019. Available online: https://www.researchgate.net/publication/329403546_Mental_Emotional_Sentiment_
Classification_with_an_EEG-based_Brain-machine_Interface (accessed on 15 August 2022).

45. Klibi, S.; Mestiri, M.; Farah, I.R. Emotional behavior analysis based on EEG signal processing using Machine Learning: A case
study. In Proceedings of the 2021 International Congress of Advanced Technology and Engineering (ICOTEN), Virtual, 4–5 July
2021; pp. 1–7.

46. Sarkar, A.; Singh, A.; Chakraborty, R. A deep learning-based comparative study to track mental depression from EEG data.
Neurosci. Inf. 2022, 2, 100039. [CrossRef]

47. Chowdary, M.K.; Anitha, J.; Hemanth, D.J. Emotion Recognition from EEG Signals Using Recurrent Neural Networks. Electronics
2022, 11, 2387. [CrossRef]

https://www.kaggle.com/datasets/wanghaohan/confused-eeg
http://dx.doi.org/10.1145/505282.505283
http://dx.doi.org/10.1007/s11749-016-0481-7
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1117/12.2519226
http://dx.doi.org/10.1007/s10115-007-0114-2
http://dx.doi.org/10.1016/j.bspc.2021.103471
http://dx.doi.org/10.1007/s11042-022-12991-0
http://dx.doi.org/10.1007/s11063-021-10727-z
http://dx.doi.org/10.1038/s41598-022-04835-6
http://dx.doi.org/10.1007/s00500-021-05689-2
https://www.researchgate.net/publication/329403546_Mental_Emotional_Sentiment_Classification_with_an_EEG-based_Brain-machine_Interface
https://www.researchgate.net/publication/329403546_Mental_Emotional_Sentiment_Classification_with_an_EEG-based_Brain-machine_Interface
http://dx.doi.org/10.1016/j.neuri.2022.100039
http://dx.doi.org/10.3390/electronics11152387

	Introduction
	Motivation
	Contributions

	Related Work
	Materials and Methods
	Dataset
	Probability-Based Features
	Machine Learning Classifiers
	Deep Learning Models for Experiments
	Performance Evaluation Parameters

	Results and Discussion
	Experimental Setup
	Performance of Machine Learning Models Using Proposed PBF
	Performance of Models Using LR and SVM Extracted Features
	Performance of Machine Learning Models Using Original Features
	Comparison of Original and Probability-Based Features
	Results of Deep Learning Models
	Statistical T-Test
	Comparison with Existing Studies
	Performance of Proposed Approach with ``Feeling Emotions'' Dataset 

	Conclusions
	References

