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Abstract

We show how a dynamical system given by a t-score function for some class of monotonic data
transformations generates consistent extreme value estimators. The variation of their values in-
creases the uncertainty of proper assessment of climate change. Two important examples illustrate
the methodology: mass balance measurements on Guanaco glacier, Chile, and extreme snow loads
in Slovakia. We experience singular learning of the transitions in ecosystems.

Keywords:
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1. Introduction

In the past several decades scientific effort has been focused on studying and understanding
global climate changes. The effect of climatic changes has become more and more visible and
in many regions of the world these changes are represented by increasing of weather extremes
[10],[12],[26].

All ecosystems (Methan [35], Guanaco Glacier [24], Snow extremes [45]) are oscillating. Decom-
position to deterministic, stochastic and chaotic part have been studied by [43]. We can understand
contributions to oscillations in at least three following ways:

1) Extreme Value Index (EVI) ξ oscillates around 0 (it can have positive, negative or zero
values). As [31] pointed out, difficulties may rise with the ”regularity conditions” for the maximum
likelihood (ML) estimation ([41]), it is shown that the usual property of asymptotic normality holds
provided the extreme value parameter ξ is larger than −0.5. For all environments we can consider
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ξ > −1. ([31]) Recently, Zhou ([46, 47]) showed that the ML estimators verify the property of
asymptotic normality for ξ > −1. The Second Order Regularity condition (SOC) can be difficult to
be checked (or even satisfied) in practical application. E.g. if the observed random variable (r.v.)
is power of Uniform or has power law behavior at the finite right end point (see Example 3.3.15
and 3.3.16, page 137, [17]), there is not unique SOC parameter ρ.

2) Aside of 1), the consistent estimators of tail parameters can be build up upon t-scores ([24]).
The parameters of Harmonic mean estimators (HME) are consisting dynamical system which can
surprisingly always find a monotonic representing data function (t-score function) η. This process
contributes to deterministic dynamics of [43].

3) The use of Negative t-Hill(n-t-Hill) for estimation of the EVI index ξ < 0) can give sev-
eral limiting behaviors, however, limits can be given by symmetric (normal) or classical (Weibull)
distributions, which both are special cases of generalized gamma distribution (ggd), see [42].

The paper is organized as follows. In the next session we study autonomous system of t-score
functions. In section 3 we study mass balance measurements from Guanaco glacier and we show
that both negative and positive EVIs are obtained. In section 4 we study the extremal snow
loads in Slovakia, again receiving both negative and positive EVIs. To maintain the readability of
manuscript we put technicalities to Appendix.

2. Dynamical systems of t-score functions

The transformation-based score ([6], [44]) or shortly the t-score for the density f is defined as

Tη(x; θ) = − 1

f(x; θ)

d

dx

(
1

η′(x)
f(x; θ)

)
.

It expresses a relative change of a basic component of the density, i.e., density divided by the
Jacobian of mapping η. The t-score is a suitable function for using the generalized moment method
for the estimation of parameters of heavy-tailed distributions. Let X1, . . . , Xn be independent
identically distributed (i.i.d) sample from F with probability density function (p.d.f.) f . The
parametric version of the so-called t-mean, which can be considered as a measure of central tendency
of distributions, yields the moment estimation equations for θ in the form

1

n

n∑
i=1

T (xi; θ) = 0.

The solution θ̂ is strongly consistent and asymptotically normal (see [6]). For t-Hill estimator
[18], we have bounded score

S(x; θ) = Tη̃(x; θ) = θ

(
1− θ + 1

θx

)
,

and for generalized t-Hill estimator [3] (Pareto distribution and η̃(x) = ln(x− 1), x > 1), we have
the score

S(x; θ, β) =

{
θ
(

1− θ+β−1
θxβ−1

)
, for β 6= 1,

θ
(
1
θ − lnx

)
, for β = 1.

(1)
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where β > 0 is tuning parameter. For β = 2 we receive t-Hill, with ”typical” transformation of the
support of the distribution (1,∞) to the whole real line (−∞,∞) is η̃(x) = ln(x− 1), x > 1. Here
an important inverse problem arises. For a given score S̃, does there exist one or several sufficiently
smooth functions η such that equation

Tη = S̃ (2)

holds? Which qualitative properties do they posses?
Consider now the Pareto distribution with the probability density function (p.d.f.)

f(x, θ) = θx−θ−1, x > 1

where θ > 0 is a shape parameter (the tail index). Let us modify the equation (2) by multiplying
by f > 0 in order to receive exact 2nd-order differential equation in the form

h(x) +
d

dx

(
f(x)

η′(x)

)
= 0, (3)

where h(x) = S(x; θ, β) f(x). Now, integrate equation (3) to obtain an equation, which is solvable
by quadrature, of the form

H(x) +

(
f(x)

η′(x)

)
= C,

where H(x) is an antiderivative of h. Its form (under the condition β 6= 1− θ) is:

H(x) = θ2
∫ (

1− θ + β − 1

θxβ−1

)
x−θ−1dx = θx−θ

(
x1−β − 1

)
+ C1.

This yields several classes1 of solutions expressible in general in the form of special functions (a
nonelementary antiderivatives). But this is an obstacle, since they can be hardly jointly analyzed
because of their transcendental nature.

This difficulties motivate us to study equation (2), by a different approach, applicable for general
density f and score function S̃. In order to analyse it is more convenient to define some extra
variables w = (x, y, z) := (t + a, η, η′), a ∈ supp(f) = {x ∈ R, : f(x) 6= 0}. Under the assumption
η′ 6= 0 equation (2) is equivalent to the system ẇ = W(x, y, z), where W(x, y, z) = (1, z,Ψ(x, z)),
Ψ(x, z) = z2 S + z d

dx ln(f(x)) and (x, y, z) ∈ D0 := [a,∞)× [a,∞)× R \ {0}.
We use this approach in details for (3), where a = 1, x ≥ 1 is the independent variable,

η(x) ≥ 1 is the unknown function with η′(x) 6= 0 and (β, θ) ∈ R+ are parameters. Here (x, y, z) :=
(t+ 1, η, η′). In this way, (3) is equivalent to the following set of autonomous ordinary differential
equations: 

ẋ = 1,

ẏ = z,

ż = ϕ(x, z),

(4)

where

ϕ(x, z) = −θ + 1

x
z + θ

(
1− θ + β − 1

θxβ−1

)
z2,

1E.g. for β = 1 (Hill or MLE estimator) η̃(x) = −θ ln lnx+const., x > 1 is the example of η which can be
expressed in terms of elementary functions.
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and (x, y, z) ∈ D0.
In our setting any initial condition (x0, y0, z0) ∈ D0 defines a unique smooth solution of (4) —

and, hence, a unique differentiable solution y = η(x) of (3). Each solution of (4) can be represented
as a smooth orbit {(x(t), y(t), z(t))} in R3 parameterised by t ∈ R; see [7] for more details.

The (unique) orbit through a given point (x, y, z) ∈ D0 is tangent to the vector (1, z, ϕ(x, z))
at the point (x, y, z). Hence, an orbit always flows forward in the direction of x and never “comes
back” near any point already visited in the same orbit. More precisely, there is no dense orbit of
(4) in any open region of the phase space R3. Hence, there cannot be topological mixing, which is
one of the necessary ingredients of chaotic dynamics [7, 8].

For the fixed initial condition we are able to obtain monotonic solution for t-score for almost
all possible cases of parameters. The t-score defines consistent estimator of tail parameter θ. The
choice of parameter β is an issue of experience for the statistician/ecologists. Experienced choice
of parameter β brings a proper trade-off between robustness and efficiency (see [3]).

2.1. The qualitative behaviour of the solutions

2.1.1. The function y = η(x) is monotone

The graph of y = η(x) in the (x, y)-plane is determined by the initial condition (x0, y0, z0) at
t = t0. In particular, from (4) it follows that z0 is the initial slope η′(x0) = ẏ(t0) = z0 of this
solution. By the continuity of the solutions of (4), since z = η′(x) 6= 0, then

sign(z0) = sign (z(t))

for all t > 0; namely, the sign of z0 determines the (constant) sign of ẏ = z. Hence, y(t) is a
monotone function of t, and, hence, any solution η(x) of (3) is either an increasing or decreasing
function for every x. This a is very important property, since monotone transformations of data
are statistically optimal.

2.1.2. The set ϕ−1(0)

In spite of η(x) being a monotone function, its graph could still have a number of different shapes,
it could be bounded or unbounded, etc. Statistical reasons for having η a monotonic function are
as follows: if we have a differentiable inverse of η we can compute the induced distribution after
the transformation. From the ecological point of view, it is as parsimonious view on ecological
dynamics that one can consider.

In particular, the level set ϕ−1(0) in the (x, z)-plane determines the values of x where d2η(x)
dx2 = 0

and, hence, where η(x) has an inflection point. Moreover, the domain D0 of system (4) can be
continuously extended in order to include the plane z = 0. Hence, in what follows we consider a
continuous extension of the domain D0 given by

D1 := [1,∞)× [1,∞)× R

so that the set
M0 := {(x, z) ∈ [1,∞)× R : z = 0} ⊂ ϕ−1(0).

In order to study ϕ−1(0), let us define the function

g(x) :=
θ + 1

x
(
θ − (θ + β − 1)x1−β

) , (5)
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and let gr(g) be the graph of z = g(x) in the domain [1,∞) × R. Furthermore, let us define the
following sets in the parameter space (β, θ):

Ω1 = {(β, θ) ∈ R+ : 0 < β < 1, θ + β − 1 < 0}; (6)

Ω2 = {(β, θ) ∈ R+ : 0 < β < 1, θ + β − 1 > 0}; (7)

Ω3 = {(β, θ) ∈ R+ : 1 < β < 2}; (8)

Ω4 = {(β, θ) ∈ R+ : 2 < β}; (9)

and their boundaries:

T1 = {(β, θ) ∈ R+ : θ + β − 1 = 0}; (10)

T2 = {(β, θ) ∈ R+ : β = 1}; (11)

T2 = {(β, θ) ∈ R+ : β = 2}. (12)

The sets Ωk, k = 1, 2, 3, 4 and Tj , j = 1, 2, 3 are shown in panel (e) of Figure 1. From a statistical
point of view, by choosing of system (4) we decided for a specific form of dynamical system, driven
by autonomous system for t-scores of Pareto distribution. Here we consider statistical learning
based on t-score function with monotonous transformation η. From an ecological point of view,
this was a convenient and parsimonious approach to model the underlying dynamics for extreme
value estimators under the statistical constraints of Pareto tail, and a monotonous smooth η. The
usefulness of Lemma 1 and Figure 1 is that we can use the information on the nature of the set
ϕ−1(0) —as a function of parameters β and θ— to give some geometric insight into the possible
shapes of η(x) in terms of slope and inflection points. This will be greatly illustrated in the next
subsection.

Fact: The following statements hold, see Appendix C.1:

Lemma 1. 1. If (β, θ) ∈ Ω1, the set ϕ−1(0) = {M0,M1} consists of two branches, where
M1 = gr(g). The set ϕ−1(0) is qualitatively as in the sketch of Figure 1(a).

2. If (β, θ) ∈ T1, the set ϕ−1(0) = {M0,M1} consists of two branches, where M1 is the graph

of z =
θ + 1

θx
. The set ϕ−1(0) is qualitatively as in the sketch of Figure 1(b).

3. If (β, θ) ∈ Ω2, the set ϕ−1(0) = {M0,M1,M2} consists of three branches, whereM1∪M2 =
gr(g). The set ϕ−1(0) is qualitatively as in the sketch of Figure 1(c).

4. If (β, θ) ∈ T2, the set ϕ−1(0) = {M0} consists of the single branch M0. The set ϕ−1(0) is
qualitatively as in the sketch of Figure 1(d).

5. If (β, θ) ∈ Ω3, the set ϕ−1(0) = {M0,M1,M2} consists of three branches where M1 ∪M2 =
gr(g). The set ϕ−1(0) is qualitatively as in the sketch of Figure 1(f).

6. If (β, θ) ∈ T3, the set ϕ−1(0) = {M0,M1,M2} consists of three branches where M1 ∪M2

is the graph of z =
x(θ + 1)

θx2 − (θ + 1)x
. The set ϕ−1(0) is qualitatively as in the sketch of Figure

1(g).

7. If (β, θ) ∈ Ω4, the set ϕ−1(0) = {M0,M1,M2} consists of three branches where M1 ∪M2 =
gr(g). The set ϕ−1(0) is qualitatively as in the sketch of Figure 1(h).
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Figure 1: Sketches of the set ϕ−1(0) in the (x, z)-plane (in panels (a)–(d) and (f)–(h)) for different parameter values
(β, θ) in the regions shown in panel (e).

2.1.3. The shapes of η(x)

In this section we describe the geometric properties of the function y = η(x). We compute
different solutions of (4) for fixed —and representative— values of (β, θ) in each parameter regime.

6



The initial conditions are chosen of the form (x0, y0, z0) = (1, 1, z
(k)
0 ), with z

(k)
0 6= 0. For each

value of z
(k)
0 , the graphs of y = ηk(x) and z = η′k(x) correspond to the projection of the solution

(xk(t), yk(t), zk(t)) of (4) onto the (x, y) and (x, z)-planes, respectively.
Rather than computing each solution as mere integration from a given initial condition, we

obtain each desired orbit (xk(t), yk(t), zk(t)) with high accuracy as an element of a family of solutions
of a well-posed boundary value problem —which is solved by continuation in Auto [13]; see also [5].
This numerical procedure is explained in Appendix C.5.

Figures 2 and 3 show the graphs of a set of selected solutions y = ηk(x) and z = η′k(x), where the

index k > 0 if z
(k)
0 > 0, and k < 0 if z

(k)
0 < 0. Panels (a1) and (a2) of Figure 2 show the projection

of each solution to the (x, y) and (x, z)-plane, respectively, for (β, θ) = (0.5, 0.4) ∈ Ω1. Also shown
in Figure 2(a2) is the set ϕ−1(0) = {M0,M1} (grey lines); compare with Figure 1(a). Similarly,
Figures 2(b1)–(b2), Figures 3(a1)–(a2) and Figures 3(b1)–(b2) show the corresponding graphs of
y = ηk(x) and z = η′k(x) (and the set ϕ−1(0)) for (β, θ) = (0.5, 0.7) ∈ Ω2, (β, θ) = (1.5, 0.7) ∈ Ω3

and (β, θ) = (3, 0.7) ∈ Ω4, respectively.
Let us now describe in more details the properties of y = η(x) in each scenario. In Figure 2(a1),

for (β, θ) ∈ Ω1, every solution y = ηk(x) with positive initial slope z
(k)
0 > 0 is a monotone increasing

function. From Figure 2(a2), the corresponding derivative functions z = η′k(x) grow unbounded
at certain finite values x∞k < ∞. Hence, limx→x∞k ηk(x) = ∞. On the other hand, in Figure 2(a1)

every solution y = ηk(x) with negative initial slope z
(k)
0 < 0 is a monotone decreasing function

with bounded negative derivative —and, hence, ηk(x) eventually changes sign and takes negative
values—; in fact, from Figure 2(a2), the corresponding derivatives z = η′k(x) tend toM0 as x→∞.

In Figure 2(b1), for (β, θ) ∈ Ω2, there exists a threshold initial slope z∗0 > 0 such that if

z
(k)
0 > z∗0 , the solution y = ηk(x) grows unbounded much as in the previous case for (β, θ) ∈ Ω1;

see the curve η1 for instance. However, if z
(k)
0 < z∗0 , the derivatives z = η′k(x) in panel (b2)

start as increasing functions until they cross the curve M1 near x = xas —hence, attaining a
maximum at the intersection point with M1— and decrease towards M0. As a consequence, the
corresponding functions y = ηk(x) have an inflection point and remain bounded; furthermore, each
solution y = ηk(x) tends to a horizontal asymptote y = y∞k . On the other hand, the behaviour of

solutions for z
(k)
0 < 0 for (β, θ) ∈ Ω2 is qualitatively as in Ω1.

In Figure 3(a2), for (β, θ) ∈ Ω3, if z
(k)
0 > 0, the derivatives z = η′k(x) decay monotonously to

M0 and fail to intersect the curve M2. On the other hand, if z
(k)
0 < 0, the derivatives z = η′k(x)

may not be monotonic functions —initially some of them are decreasing functions that cross the
curve M1 to start to increase; see for instance η′−1, η

′
−2 and η′−3—, but eventually all of them

tend monotonously towards M0. Therefore, in Figure 3(a1), every curve y = ηk(x) tends to a
horizontal asymptote y = y∞k ; in particular, η−1, η−2 and η−3 have an inflection point at certain
value x < xas where z = η′k(x) crosses the curveM1. For (β, θ) ∈ Ω4, in Figure 3(b1), virtually the
same qualitative behaviour of y = ηk(x) is observed. In this last scenario, the only minor difference
is that all the solutions y = ηk(x) with negative initial slope z0k < 0 have an inflection point as η′k
crosses the curve M1; see also Figure 3(b2).

Finally, it remains to explore the shape of y = ηk(x) when parameters (β, θ) cross from one open
region to another in Figure 1(e). However, notice that, if (β, θ) ∈ T1, the set ϕ−1(0) is qualitatively
as in the case for (β, θ) ∈ Ω1; one can expect y = η(x) and z = η′(x) to be qualitatively as in
Figure 2(a1) and (a2), respectively. Similarly, if (β, θ) ∈ T3, the set ϕ−1(0) is qualitatively as in
the case for (β, θ) ∈ Ω4 for x ≥ 1; hence, the functions y = η(x) and z = η′(x) are qualitatively as
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Figure 2: The graph of the functions y = ηk(x) and z = η′k(x) —for different initial conditions— for (β, θ) =
(0.5, 0.4) ∈ Ω1 in panels (a1) and (a2), respectively, and for (β, θ) ∈ Ω2 in panels (b1) and (b2), respectively.

in Figure 3(b1) and (b2), respectively. Therefore, it only remains to see the case when (β, θ) ∈ T2.
Figure 4 shows the graphs of a set of solutions y = ηk(x) and z = η′k(x) for (β, θ) = (2, 0.7) ∈ T2.

In panel (b), all the functions z = η′k(x) are monotonously decreasing (if k > 0) or increasing (if
k < 0) towards M0 as x → ∞. Thus, in panel (a), the functions y = ηk(x) increase (if k > 0)
or decrease (if k < 0) monotonously, and converge to a finite horizontal asymptote as x → ∞. In
Figures 2,3 and 4 the evolutions of transformations η(x) and their derivatives z = η(x) are plotted.
They, as a set form the statistical model ”per se” in the sense of [29]. Here we consider that to each
transformation η a specific estimator and inference function (T-score) are given (see also [24]).
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Figure 3: The graph of the functions y = ηk(x) and z = η′k(x) —for different initial conditions— for (β, θ) =
(1.5, 0.7) ∈ Ω3 in panels (a1) and (a2), respectively, and for (β, θ) = (0.5, 0.7) = (3, 0.7) ∈ Ω4 in panels (b1) and
(b2), respectively.

3. Application 1: Guanaco Glacier

A glacier is a volume of snow and ice higher than 0.01 km2 with evidences of flow, that is fed by
solid water (snow, hail or hoarfrost), that is transformed into ice by densification and compaction,
loosing mass mainly by melting, sublimation or calving. The balance between the gains and losses
during a period of time (normally the hydrological year between April 1 and March 31 of the
following year) is defined as Glacier Mass Balance [25]. For measuring this glacier mass balance, a
number of stakes or poles are installed over a glacier (location determined mainly by the altimetry
of the zone), where their protruding height is repeatedly measured during each season together with
the density of the intervening mass. The changes are converted into water equivalent by multiplying
the poles heights by the density of the snow or ice gained or losses during the surveyed period. The
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Figure 4: The graph of the functions y = ηk(x) and z = η′k(x) —for different initial conditions— for (β, θ) = (2, 0.7) ∈
T2 in panels (a) and (b), respectively.

mass balance per stake is then aggregated relative to the area of influence of each one, as in the
following equation [25]

B =
∑
i

bi
si
S
.

Guanaco glacier is located in the semi-arid region of Chile (latitude 29S) at an altitude range
between 5,000 and 5,300 m above sea level, with a surface area of 1:61 [km2] in 2015 and a maximum
thickness of 120[m][34]. This glacier, together with other minor glaciers and glacierets (Figure 5), is
located close by Pascua Lama [22], a gold mining project that was interrupted in 2015. This mining
project was monitoring these glaciers for environmental purposes since 2002 with the main aim of
assessing possible impacts of their mining activities on the glacier mass balance among several other
variables.

3.1. Estimators of the EVI

It is of interest to consider the statistical behavior of maxima Xn:n = max{X1, ..., Xn}, where
the sequence of independent random variables X1, ..., Xn has the common cumulative distribution
function F , that is Xi ∼ F . The Fisher-Tippett-Gnedenko theorem [14] shows us that if there
exists a sequence of constants {an > 0} and bn such that

P

(
Xn:n − bn

an
≤ z
)
→ G(z) as n→∞,

where G(z) is a non-degenerate distribution function, then G corresponds to a Generalized Extreme
Value distribution (GEV)
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Figure 5: Geographical location of glaciers nearby Guanaco glacier, the three largest are Guanaco, Estrecho and
Ortigas 1; accounting for almost the 95% of the area of the 7 studied ice bodies.

G(z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ}
. (13)

This result quite resembles the Central Limit Theorem, but now with the maximum of the
sequence of random variables as the statistic of interest, not the average. The proof of this theorem
can be found in [27], while a summary of some results with weaker hypothesis (such as loss of
independency or stationarity) can be found in [11]. This limiting cumulative distribution function
(c.d.f.) G(z) can be classified into three types according to its shape parameter ξ (called also
EVI), these are often called Weibull (ξ < 0), Fréchet (ξ > 0) and Gumbell (ξ = 0) types. If, for
example, F is such that G is a Weibull type, then it is said that F belongs to the Weibull Domain
of Attraction of G, usually denoted as F ∈ DA(Gα). The shapes of these distributions for different
parameters are given on Figure 6 . The practical relevant range of the EVI is [− 1

2 ,
1
2 ].

In particular, several practical applications can be found in the case of the Weibull domain of
attraction, for example, the ultimate world record in a specific athletic event given today’s state of
the art [16], the estimation of the efficiency frontier in economics [20] or the limit behavior of the
distance of two random points over a convex set [28]. In general, the estimation of the finite right
endpoint is linked to estimate ξ < 0.

If the previous theorem holds, then the conditional probability

P (X > u+ y | X > u) ,

11



Figure 6: Different behavior of the Generalized Extreme Value distribution according to the value of its shape
parameter, the EVI.

for large values of u, has a Generalized Pareto distribution (GP)

F (y) = 1−
(

1 + ξ
y

σ

)−1/ξ
, (14)

where σ = σ + ξ(u − µ), this limit c.d.f. can be also classified into three types, often called, Beta
(ξ < 0), Pareto (ξ > 0) and Exponential (ξ = 0). This approach is known as Peaks over threshold
(POT) [11] and suits better in a case when the whole data set is available and not only the
maximum value of a predefined block. However it is necessary to choose an appropriate threshold.

Several estimators were took into account for this work. Here Xi:n denotes the i-th order statistic
of the sample X1, ..., Xn, where Xn:n = max {X1, ..., Xn} These estimators depend on the number
of order statistics (k) which are used:

• An estimator based on the method of moments [23], labeled as MOM:

ξ̂MOM(k) =
1

2

(
1− µ2

0(k)

σ2(k)

)
,

where:

12



µ0(k) =
1

k

k∑
i=1

[Xn−i+1:n −Xn−k:n] ,

σ2(k) =
1

k − 1

k∑
i=1

[Xn−i+1:n −Xn−k:n − µ0(k)]
2
.

• The method of probability weighted moments estimator [23], labeled as PWM, enjoys good
properties in the small sample context [21]:

ξ̂PWM(k) = 2− µ0(k)

µ0(k)− 2µ1(k)
,

where µ0(k) is defined as in the previous estimator, and:

µ1(k) =
1

k(k − 1)

k∑
i=1

(i− 1) [Xn−i+1:n −Xn−k:n] .

• Pickands’ estimator [32], labeled as PICK, is computed because it only needs four distinct
order statistics (which makes it a robust estimator), and is location and scale invariant:

ξ̂PICK(k) =
1

log 2
log

(
Xn−rk+1:n −Xn−2rk+1:n

Xn−2rk+1:n −Xn−4rk+1:n

)
,

where rk = bk/4c with b·c the floor function.

• A moment estimator [15], labeled as m-Hill:

ξ̂m-Hill = M (1)
n + 1− 1

2

1−

(
M

(1)
n

)2
M

(2)
n


−1

,

M (j)
n =

1

k

k−1∑
i=0

(logXn−i:n − logXn−k:n)
j
.

• Falk’s estimator [19], labeled as n-Hill, defined as:

ξ̂n-Hill =
1

k

k−1∑
i=1

[log (Xn:n −Xn−i:n)− log (Xn:n −Xn−k:n)] , k ∈ {1, ..., n− 1}.
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3.2. Negative t-Hill estimator

The t-Hill estimator [18] is a robust EVI estimator which works in the Fréchet domain of
attraction, defined as:

ξ̂ = −1 +

{
1

k

k∑
i=1

Xk+1:n

Xi:n

}−1
, where: k ∈ {1, ..., n− 1}.

This one is a particular case of the HME [3], which relates to the studied score function (1):

ξ̂ = H
(β)
n:k :=


1

β − 1

(1

k

k∑
i=1

U1−β
ik

)−1
− 1

 , if β > 1

1

k

k∑
i=1

log (Uik) , if β = 1

where Uik :=
Xn−i+1:n

Xn−k:n
.

In order to obtain a negative version of t-Hill estimator we applied a procedure similar to the
one introduced by Falk [19, 14], resulting in the following estimator for the EVI, labeled as n-t-Hill:

ξ̂n-t-Hill = 1−
{

1

k

k∑
i=1

Xn:n −Xn−i+1:n

Xn:n −Xn−k:n

}−1
, where: k ∈ {2, ..., n− 1}.

In more detail, we have been considering the fact that if X belongs to the Weibull domain of
attraction with ξ < 0, therefore, Y defined as:

Y =
1

x∗ −X (15)

belongs to the Fréchet domain of attraction, i.e., Y ∈ DA(G−ξ) (because −ξ > 0). In (15),
x∗ denotes the unknown value of the finite right endpoint, as an estimator of this value, the
maximum observation of the sample was used, which is recommended for ξ < − 1

2 [14]. The
following asymptotic results are detailed in Section Appendix A and proved in the Appendix:

ξ̂n-t-Hill

P
−−−−−→
k→∞

ξ,

√
k
(
ξ̂n-t-Hill − ξ

) d
−−−−−→
k→∞

N
(

0, ξ2
(1− ξ)2
(1− 2ξ)

)
, ξ < −1

2
,

k−ξ
(
ξ̂n-t-Hill − ξ

) d
−−−−−→
k→∞

ξ(1− ξ)Weibull

(
1,−1

ξ

)
, 0 > ξ > −1

2
.

3.3. Computational Results

For this section, the chosen software was R [33], the code with the implementation of the
estimation of a partially smooth c.d.f. was cordially shared by S. Müller and implemented in this
work. All previous estimators were implemented plus their smoothed versions [30], labeled with an
”s” at the end of their names.
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3.3.1. Small sample: Generalized Pareto distribution

In order to better contrast the results of [30], the same setup was studied, that is, n random
samples were generated from a Generalized Pareto (GP) distribution of parameters

ξ = {−1,−0.75,−0.5,−0.25,−0.1},

µ = 0, σ = 1 with n = {16, 32, 64} and a fixed seed for the random number generator (RNG)
algorithm of value 200905 the same that was used in [30]. The results are summarized in Table 1,
which tries to resemble [30, table 3].

n=16 n=32 n=64
ξ Best estimator(s) Range(s) of k Best estimator(s) Range(s) of k Best estimator(s) Range(s) of k

-0.1
n-Hills k < 4 n-Hills k < 4 n-Hills k < 4
MOMs k ≥ 4 MOMs k ≥ 4 MOMs k ≥ 4

-0.25 n-Hills All k n-Hills All k n-Hills All k

-0.5 n-Hills All k
n-Hills k < 8 n-Hills k < 5

n-t-Hills k ≥ 8 n-t-Hills k ≥ 5

-0.75 n-t-Hills All k n-t-Hills All k
n-t-Hills k ≤ 15

n-Hill k > 15

-1
n-t-Hills k ≤ 10 n-t-Hills k < 7 n-t-Hills k < 6
n-Hills k > 10 n-Hill k ≥ 7 n-Hill k ≥ 6

Table 1: Best estimator according to MSE for different sample sizes and EVI. Estimators ending with ”s” represent
smoothed versions according to [30].

It can be seen a similar behavior among different values of n, but there are more differences
among them than in [30], therefore, results for n = {16, 32, 64} are shown and not only for n = 32.
Smoothed estimators show great advantage over their non-smoothed counterparts, however, the
lack of theoretical results about their order of convergence or their behavior over more general
distributions, makes difficult to put smoothed estimators over non-smoothed ones in a more general
view.

In the large sample case, the estimation is way more reliable than in the small one. One can
observe here that all estimators are converging to the original value of the simulation, however,
it can also be seen, the slower rate of convergence of both Negative t-Hill (n-t-Hill) and Falk’s
estimator (n-Hill) when ξ < −0.5, this result is expected given the asymptotic results obtained in
this work.

3.4. Robustness testing for Pareto tails

The robust properties of t-Hill estimator have already been studied [3] they are explained by
the fact that this estimator uses the Harmonic mean instead of the Arithmetic one on the data.
For this experiment, the c.d.f. of the contaminated samples is defined as:

F (x) = (1− α)F1(x) + αF2(x),

where F1 is the c.d.f. of a transformed Pareto distribution (see equation (15)) of parameter −ξ
with ξ < 0, while F2 is similar but with parameter −ξ/2.

Table 2 shows the relative efficiency of the estimators among themselves, for each value of
α = {0, 0.05, 0.1, 0.15, 0.2} and ξ = {−0.1,−0.25,−0.5,−0.75}. The MSE and the percentage of
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contribution of each estimator to the global MSE is computed. The m-Hill estimator was left out
due to its large MSE results. A starting value of k = 10 was chosen for the computation of the
percentage, given the large instability of the estimation when almost all order statistics are took
into account.

ξ α n-Hill n-Hills n-t-Hill n-t-Hills MOM MOMs PWM PWMs PICK PICKs

-0.1

0 13.62 8.96 13.38 9.56 2.63 1.56 3.62 2.08 31.89 12.69
0.05 13.55 8.96 13.33 9.53 2.68 1.64 3.68 2.19 31.58 12.87
0.1 13.02 8.58 12.74 9.13 2.74 1.72 3.84 2.37 32.47 13.39
0.15 12.53 8.38 12.32 8.90 2.82 1.88 4.05 2.64 32.58 13.91
0.2 12.01 7.94 11.73 8.43 3.04 2.11 4.36 3.00 33.01 14.38

-0.25

0 9.50 2.48 9.71 3.30 4.34 2.21 5.91 3.14 43.01 16.39
0.05 9.11 2.33 9.25 3.13 4.36 2.38 5.97 3.35 43.34 16.79
0.1 8.56 2.15 8.68 2.91 4.57 2.65 6.23 3.70 43.32 17.23
0.15 7.68 1.92 7.84 2.65 4.71 3.10 6.53 4.30 43.15 18.13
0.2 6.85 1.68 6.98 2.37 5.04 3.66 7.01 5.02 42.56 18.85

-0.5

0 3.74 5.12 4.80 2.94 7.64 4.62 8.91 5.13 44.80 12.30
0.05 3.27 5.37 4.26 3.26 7.38 4.88 8.78 5.45 44.56 12.78
0.1 2.84 5.42 3.80 3.50 7.47 5.32 8.88 6.01 43.16 13.60
0.15 2.44 5.30 3.38 3.64 7.58 5.91 9.11 6.72 41.34 14.59
0.2 2.12 5.18 3.02 3.78 7.92 6.57 9.48 7.51 38.96 15.45

-0.75

0 1.31 22.60 2.18 16.12 6.47 8.30 6.50 7.59 23.11 5.81
0.05 1.19 22.41 2.04 16.21 6.39 8.37 6.50 7.75 22.84 6.30
0.1 1.21 21.75 2.04 15.99 6.47 8.51 6.65 8.01 22.40 6.98
0.15 1.25 20.54 2.09 15.38 6.74 8.70 7.01 8.34 22.08 7.87
0.2 1.36 19.17 2.23 14.64 7.17 8.94 7.46 8.73 21.47 8.84

Table 2: Percentages of relative efficiency (the lesser the better) of each estimator for different levels of contamination
and EVI. The minimum value can be seen in bold.

It can be stated from the previous table that both n-Hill and n-t-Hill estimators are the only ones
to perform better while the contamination level grows when ξ > −0.75. Also, it can be seen how all
smoothed estimators are performing better than their non-smoothed counterpart when ξ > −0.5.

In table 3 it can be found a similar analysis, but now taking the average of 20 order statistics
around the optimal value of k for each estimator, the optimal was chosen given its MSE. A notion of
relative stability can be obtained from these results if we make a comparison with table 2, because
a decrease in the percentage across the tables indicates a larger zone of reliable estimation of the
EVI, this topic is quite important, because the optimal value of k is a topic of active research.

After a contamination both Negative t-Hill (n-t-Hill) and Falk’s estimator (n-Hill) are almost
invariant in their estimation, which clearly shows the robust properties of these estimators in
this case of contamination. Estimation of the EVI on mass balance data of several glaciers from
Pascualama region, from 2002 to 2014 can be found in Figure 7. We can see from the values
of several EVI estimators that for a complete modelling of the EVI on mass balance data from
Pascualama region we need to consider several values of EVI, not only one.

4. Application 2: Extremal snow loads

Understanding of snow extremes plays an important role for both climatology and civil en-
gineering. An approach combining engineering and climatology to assess accidental snow loads
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ξ α n-Hill n-Hills n-t-Hill n-t-Hills MOM MOMs PWM PWMs PICK PICKs

-0.1

0 19.35 14.58 17.34 13.58 1.22 1.24 1.85 1.90 16.57 12.37
0.05 18.41 13.84 16.31 12.74 1.40 1.55 2.23 2.21 17.40 13.91
0.1 16.30 12.23 14.27 11.15 2.06 2.02 3.24 2.94 19.32 16.47
0.15 14.15 10.67 12.29 9.63 2.53 2.44 4.10 3.62 21.91 18.68
0.2 12.33 9.25 10.56 8.26 3.05 2.91 4.98 4.34 23.76 20.56

-0.25

0 13.95 4.71 11.51 4.35 2.63 2.70 3.95 4.04 30.41 21.76
0.05 11.18 3.50 8.78 3.05 3.22 3.48 4.94 4.83 31.78 25.25
0.1 8.11 2.33 6.02 1.91 4.43 4.45 6.70 6.05 32.83 27.17
0.15 5.31 1.40 3.72 1.08 5.06 5.09 7.70 6.85 34.90 28.89
0.2 3.43 0.83 2.22 0.61 5.50 5.49 8.33 7.47 36.31 29.80

-0.5

0 3.55 7.35 2.73 5.13 5.12 5.27 6.65 6.72 34.31 23.17
0.05 1.63 8.67 1.10 6.89 5.74 5.95 7.44 7.21 31.45 23.92
0.1 0.81 8.44 0.74 6.95 6.76 6.49 8.52 7.68 29.70 23.91
0.15 0.43 4.67 0.46 44.40 4.10 4.07 5.38 4.79 17.79 13.91
0.2 0.49 4.81 0.52 39.06 4.63 4.64 6.04 5.44 19.62 14.74

-0.75

0 1.00 31.47 1.14 19.10 4.52 4.43 5.05 4.77 17.83 10.68
0.05 0.84 29.52 1.09 20.05 4.87 5.00 5.50 5.30 16.86 10.97
0.1 1.06 26.15 1.32 19.38 6.00 5.42 6.84 5.68 17.74 10.41
0.15 1.13 23.42 1.41 18.60 6.26 6.18 7.13 6.47 18.37 11.03
0.2 1.18 21.69 1.44 18.14 6.45 6.69 7.39 6.94 18.99 11.09

Table 3: Percentages of relative efficiency (the lesser the better) of each estimator for different levels of contamination
and EVI, taking into account 20 order statistics around the optimal MSE value. The minimum value can be seen in
bold.

on structures is suggested in [39]. We use the data of collection and analysis of snow loads in
Slovakia carried out recently [37] and [38]. The long-term weekly measurements of snow water
equivalent (SWE) of snow cover at rain-gauge stations are employed. Out of the rain-gauge sta-
tions, meteorological stations were selected at which daily SWE values have been recalculated using
other climatological measurements, like depth of snow cover etc. (see [38]). Preliminary statistical
analysis has been made in [39] and in [45].

The SWE records of winter seasons are well suited for the assessment of the characteristic snow
load on the ground, which is defined as 98 % quantile of a suitable extreme value distribution
fitted to the yearly snow load maxima. It is assumed that the maximum is a member of the same
population, however, with a mean return period of say about 1000 years and more. Following [40]
the largest snow load value is exceptional if the ratio k of the load to the characteristic snow load
determined without that value is greater than 1.5. The snow loads identified as exceptional should
be treated in accidental design situations as accidental actions (loads), cf. Eurocode EN 1990 (see
[40]).

The novelty of the approach for the assessment of the accidental snow loads by [39] can be briefly
described. First the k values in excess of 1.5 are identified. Then by the expertise of climatologists
based on the geomorphology of Slovakia, regions of similar climate conditions for the occurrence
of accidental snow loads are determined (see Figure 8). Within a given region, the values of the
empirical distribution function F restricted to the N ordered k values in excess of 1.5 is calculated
as

F (ki) =
i

NR + 1
, (16)
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Figure 7: EVI computed over the mass balance data of several glaciers from Pascualama region, from 2002 to 2014.

where NR is the sum of winter seasons over all stations in the region and i ∈ (NR−N + 1, ..., NR).
The obtained empirical upper tail for k ratios is approximated, e.g. by nonlinear regression analysis
using Pareto, exponential and Generalized Extreme Value (GEV) distributions. The extremes of
0.999 and 0.9999 quantiles of the distributions are of particular interest.

Under Generalised Pareto Distribution (GPD) with parameters µ, ξ and δ we understand the
distribution with c.d.f.

1−
(

1 + ξ
x− µ
δ

)−1/ξ
, x > µ− δ

ξ
. (17)

Under Generalized Extreme Value (GEV) distribution with parameters ξ, µ and δ we understand
the one with c.d.f.

exp

[
−
(

1 + ξ
x− µ
δ

)−1/ξ]
, x > µ− δ

ξ
. (18)

We fit GPD to data from the companion paper (Sadovský et al. [39]). Particularly, we study
regions of Slovakia separately. We refine study of Regions 2 and the composite Region 4, within
which the mountain basins are considered as one region. For the exceptional snow loads and their
corresponding k values in Region 1, treated in Sadovský et al. [36], a statistical dependence on the
altitude is studied. The idea is to check the anticipated low dependence of k values on the altitude
inferred from their definition, which comprises the altitude dependence already in the characteristic
values.

4.1. Region 1

Here we consider 63 data, maximal values of the exceptional snow loads in Region 1, described in
[45], where a subset of these data is considered. We assume that the observations are independent.
Their mean excess plot shows that the observed random variable has c.d.f. with Pareto tail. In
order to fit the GPD to the exceedances of the threshold we use maximum likelihood approach,
implemented in function gpd.fit in R. The threshold that we choose is µ = 97. The number of
exceedances is 28. The estimated values of the parameter ξ and δ of the c.d.f. (17) are given in
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Figure 8: Regions of exceptional snow loads (Sadovský et al. [36]).

Parameter Estimation Standard error
ξ 0.3325008 0.2979518
δ 36.8023369 12.7791203

Table 4: Maximum likelihood estimators of the parameters of GPD (17).

Table 4. The GPD pp-plot of the exceedances is given on Figure 9. It proves that we have made a
good fit of the distribution of the data over the threshold.

In the above estimation we used only the upper order statistics of the observations in order
to estimate the parameters. In this way we lose information about the observed values below the
threshold 97. If we can estimate the c.d.f. in all range of the data it always would be better.
Therefore now we make GEV fit of the data. The maximum likelihood approach is implemented
in function gev.fit in R. The estimated values of the parameters µ, ξ and δ of the c.d.f. (18) are
given in Table 5. Looking on the pp-plot on Figure 10 we can conclude that this GEV (18) fit with
the parameters, given in Table 5 is relatively good.

Both Hill on Figure 11 and t-Hill plot on Figure 12 confirmed the above values of the EVI,
which is positive in this region.

Parameter Estimation Standard error
µ 85.5114413 3.34024537
ξ 0.3345636 0.09937401
δ 23.8166815 2.87468837

Table 5: Maximum likelihood estimators of the parameters of GEV (18).
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Figure 10: GEV pp-plot of the maximal values of the
exceptional snow loads in Region 1.
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Figure 11: Hill plot of the Maximal values of the
exceptional snow loads in Region 1.
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Figure 12: t-Hill plot of the Maximal values of the
exceptional snow loads in Region 1.
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Parameter Estimation Standard error
ξ -0.4606775 0.17744269
δ 0.2973319 0.06759829

Table 6: Maximum likelihood estimators of the parameters ξ and δ of the c.d.f. (18)
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Figure 13: GPD pp-plot of k in Region 1.

4.1.1. Fitting the distribution of k in Region 1

Here we consider component k - the ratio of the load to the characteristic snow load determined
without the largest snow load value for Region 1. The number of observations is again 63. The mean
excess plot shows that the observed random variable has GPD with negative parameter ξ. In order
to fit this distribution we use the maximum likelihood approach, implemented in function gpd.fit
in R. For the threshold we use the minimal observed value µ = 1.5. The number of exceedances is
39. The estimated values of other parameters ξ and δ of the c.d.f. (18) are given in Table 6.

The pp-plot of the exceedances on Figure 13 shows that our GPD fit of the distribution of the
data is very good. The same conclusion could be made having in mind the similarity between the
theoretical and empirical c.d.fs.

We can compare the Negative Hill estimator, proposed by [19] and the Negative t-Hill introduced
in Section 3.3. Both, the Negative Hill like plot on Figure 14 and the Negative t-Hill like plot on
Figure 15 confirmed the above values of the EVI.

4.2. Region 4

In contrast to the Region 1, where we have relatively much amount of data, in Region 4 we have
only 17 observations. Therefore instead of using the functions gev.git and gpd.fit in R, we use the
regression in order to estimate the coefficients in these distributions. This approach is considered
in [45] with respect to the distribution of k, where these data are considered. In order to simplify
the regression model, instead of (17) we use the following definition for Pareto distribution

F (x) = 1−
(
λ

x

)1/ξ

, x > λ. (19)
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Figure 14: Hill plot of k in Region 1.
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Figure 15: t-Hill plot of k in Region 1.

Under exponential c.d.f. we understand

F (x) = 1− e− x−µa , x > µ. (20)

The mean excess plot of the maximal values of the exceptional snow loads in Region 4 shows
that the observed random variable has c.d.f. with Pareto tail. Here we compare three types of
distributions for modelling these data: exponential type (20), Pareto type (19) and Generalized
extreme value type (18). For the estimation of the coefficients we used lm function in R and the
results are compared with the corresponding Hill and t-Hill estimators.

We start with fitting of c.d.f. (19). Due to the fact that we have relatively small amount of data
we will use for the threshold the minimal observed value. Having in mind that (20) is equivalent to

log(1− F (x)) =
log λ

ξ
− log x

ξ
, x > λ

we make the following transformation of the data F1 = log(1− cdf) and X1 = log sort(M), where
cdf are the values in the empirical c.d.f. of the data and M denoted the Maximal snow load. The
scatter plot of F1 and X1 is given on Figure 16. Therefore we use the regression model

F1 =
log λ

ξ
− ξ−1X1 + ε̃, (21)

where ε̃ is the random error. The estimators of the coefficients are given in Table 7. Both are
statistically significant. Residual standard error of the model in 0.1841 on 14 degrees of freedom.
We have the multiple R2 = 0.9492 and adjusted R2 = 0.9456. The empirical value of the Fisher
characteristic is 261.7. Its p-value is 1.866e-10. The degrees of freedom are correspondingly 1 and
14. The last means that this model is adequate. The normal qq-plot of the error terms on Figure 17
shows that the distribution of the error term in the last regression is not a normal one. The GEV
qq-plot on Figure 18 shows that the observed random variable is GEV distributed. The estimators
of the coefficients in (18) are given in Table 8. Now we come back to the initial coefficients and
obtain that ξ = 0.3070782 and λ = 113.4926. The qq-plot on Figure 19 show the quality of this fit.
The confidence intervals are wide therefore we also apply GPD and GEV models.

We can use Hill and t-Hill estimators in order to obtain the estimated value of ξ. Depending on
the number of upper order statistics that are included in the estimators, the Hill and t-Hill plots
are given correspondingly in Figure 20 and Figure 21.
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Figure 17: Normal qq-plot of the error terms in
model (21).

Parameter Estimation Standard error t value Pr(> |t|)
log λ/ξ 15.4089 1.0102 15.25 4.08e− 10
−1/ξ - 3.2565 0.2013 -16.18 1.87e− 10

Table 7: The estimators of the coefficients in (21).

Parameter Estimation Standard error
µ 0.01233436 1.999988e-06
ξ 0.19224841 2.150387e-03
δ -1.02813582 1.999988e-06

Table 8: Estimators of the coefficients in GEV of the error term in (21).
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Figure 18: GEV qq-plot of the error terms in model
(21).
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Figure 19: Exponential (see (19)) qq-plot of the max-
imal snow loads in Region 4.
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Figure 20: Hill plot of the Maximal values of the
exceptional snow loads in Region 4.
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Figure 21: t-Hill plot of the Maximal values of the
exceptional snow loads in Region 4.

Parameter Estimation Standard error
ξ 0.3319058 0.5106394
δ 35.3014497 20.6332138

Table 9: Estimators of the coefficients in GPD of the error term in (17).

Now we will use the fact that the Pareto distribution appears mainly in exceedances over high
threshold. We use the function gpd.fit in R, over the threshold 140 and obtain the parameter µ in
(17) is equal to 140, and the estimators of ξ and δ are given in Table 9. The qq-plot on Figure 22
shows that this fit could be useful.

Now we use the same approach including all the values. Although the sample size is only 17, we
use the function gpd.fit in R, over the threshold 105.99 and we obtain µ̂ = 105.99 in (17), ξ̂ and δ̂
are given in Table 10. In this case we have very wide confidence intervals. The qq-plot is given on
Figure 23.

The differences in Pareto predictions show again the well known fact that if we use a small
amount of data and the distribution of the observed variable is not exact Pareto, the Pareto fit is
not stable. Therefore we make GEV (18) fit of the data. The estimated values of the parameters
µ, ξ and δ of the c.d.f. are given in Table 11. ξ still have wide confidence intervals, however µ and
δ are statistically significant. The pp-plot on Figure 24 shows that this fit is relatively good.

We make also exponential fit with c.d.f. (20). The minimal observed value is 106. According to

Parameter Estimation Standard error
ξ -0.02649701 0.2509478
δ 61.52754876 21.4716669

Table 10: Estimators of the coefficients in GPD of the error term in (17).
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Figure 22: GPD pp-plot of the maximal values of the
exceptional snow loads in Region 4, threshold 140.
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Figure 23: GPD pp-plot of the maximal values of the
exceptional snow loads in Region 4, threshold 105.99.

Parameter Estimation Standard error
µ 136.1595290 8.0254567
ξ 0.3673421 7.0589241
δ 28.3571790 0.2482327

Table 11: The estimators of the parameters in the GEV (18) model.
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Figure 24: GEV pp-plot of the maximal values of the
exceptional snow loads in Region 4.
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Figure 25: Exonential pp-plot of the maximal values
of the exceptional snow loads in Region 4.
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Parameter Estimation Standard error
ξ 0.1905593 0.583140
δ 14.0443152 9.705665

Table 12: The estimated value of the parameter ξ and δ of the c.d.f. (22).
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Figure 26: Maximal values of the exceptional snow
loads in Region 2.
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Figure 27: Mean excess plot of the maximal values
of the exceptional snow loads in Region 2.

[2] this is the estimator for µ. Again by [2], the best estimator for scale a is

â =
17(Xn − 106)

16
=

17(165.9− 106)

16
= 63.64375.

The corresponding exponential pp-plot, given on Figure 25 shows that again we observe a good fit.

4.3. Region 2

In Region 2 we have only 9 observations. Here we proceed with fitting the distributions of the
maximal snow loads and k in this region.

The maximal values of the exceptional snow loads in Region 2 are given on Figure 26. In sense
of reproducible research we present the data

m 144 86 88 110 84 101 80 89 97

Although we have very small amount of data their mean excess plot on Figure 27, shows that
the observed random variable is possibly to have a c.d.f. with Pareto tail. In order to fit the
Generalised Pareto Distribution (GPD) to the exceedances of the threshold we use maximum likeli-
hood approach, implemented in function gpd.fit in R. The threshold that we choose is the minimal
observation that is 85. The number of exceedances is 7. The estimated value of the parameter ξ
and δ of the c.d.f.

1−
(

1 + ξ
x− 85

δ

)−1/ξ
, x > 85− δ

ξ
(22)

are given in Table 12. Due to the small number of observations we have wide confidence intervals.
The pp-plot of the exceedances is given on Figure 28 the corresponding c.d.f. are in Figure 29. It
proves that we have made a relatively good fit of the distribution of the data over the threshold.

As we have already mentioned if we can estimate the c.d.f. in all range of the data it always
would be better. Therefore now we make GEV fit of the data. More precisely we estimate the
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Figure 28: GPD pp-plot of the maximal values of the
exceptional snow loads in Region 2.
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Figure 29: Empirical c.d.f. and the corresponding
estimated GPD c.d.f.
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Figure 30: GEV pp-plot of the maximal values of the
exceptional snow loads in Region 2.
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Figure 31: Empirical c.d.f. and the corresponding
estimated GEV c.d.f.

parameters of the c.d.f. (18). We use the function gev.fit in R and obtain the estimated values of
the parameters µ, ξ and δ of the c.d.f. (18). They are given in Table 13. Looking on Figure 31
we can compare the theoretical GEV c.d.f (18) with the parameters, given in Table 13, with the
empirical c.d.f. of the observed data. This together with the pp-plot on Figure 30 show that this
fit is better than the GPD fit.

4.3.1. Fitting the distribution of k in Region 2

Here we consider component k - the ratio of the load to the characteristic snow load determined
without the largest snow load value for Region 2. In sense of reproducible research we present the
data

k 1.72 1.60 1.46 1.42 1.32 1.29 1.24 1.22 1.17

Parameter Estimation Standard error
µ 87.6472012 3.2619087
ξ 0.4756571 0.3795467
δ 8.2649512 3.0653720

Table 13: The estimated values of the parameters µ, ξ and δ of the c.d.f. (18).
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Figure 32: GPD pp-plot of the values of k in Region
2.
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Figure 33: Empirical c.d.f. and the corresponding
estimated GEV c.d.f.

Parameter Estimation Standard error
µ 1.2868780 0.04976148
ξ 0.2239521 0.44424346
δ 0.1177385 0.04137990

Table 14: The estimated values of the parameters µ, ξ and δ of the c.d.f. (18).

The mean excess plot of the data shows that the observed random variable has GEV distribution
therefore we estimate the parameters of the c.d.f. (18). The estimated values of the parameters µ, ξ
and δ of the c.d.f. (18) are given in Table 14. Looking on Figure 33 we can compare the theoretical
GEV c.d.f (18) with the parameters, given in Table 14, with the empirical c.d.f. of the observed
data. This together with the pp-plot on Figure 32 shows that although the confidence intervals of
the coefficients are wide this fit is good.

5. Conclusions

It is clear that oscillations of natural ecological systems are measured imprecisely. To this
imprecision contribute both non-chaotical and chaotical dynamical systems. In the present paper
we explained non-chaotical dynamics of autonomous system of t-scores, which underline statistical
estimates of entropy. Other source of contribution is switching between negative and positive
extreme value indexes. This is well visible from both applications, Guanaco glacier in Chile and
extreme snow loads in Slovakia. These observations provide new illustrations of the decomposition
in deterministic, stochastic and chaotic parts introduced in [43]. Therein we studied the methane
emission example and we outlined the problem of deceptiveness regarding a complete certainty of
the climate change. Several other contributions to imprecision can be made by fusion of several
p-values ([1]).

More care should be taken in interpretations and the use of various observations of the climate
change as well as in their methodologies and approaches.

Thus based on these new observations, we doubt the possibilities of a 100% judgment (a 100%
paradigm of expectations) that the climate change has been caused solely by human effect. The
currently obtained consensus of 95-98% to justify a human impact on the global climate change is
probably the maximal possible threshold.
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effect. The currently reached consensus of 95-98% to justify a human impact on the global
climate change is probably the maximal attainable threshold.
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Appendix A. General information

Let X,X1, . . . , Xn be independent random variables with common c.d.f. F . In the following,
we assume that:

(A.1) F belongs to the maximum domain of attraction of the Weibull distribution.

This assumption entails that F has a finite right endpoint x∗ and that F has a negative EVI ξ < 0.
Our goal is to estimate ξ. To this end, the so-called n-t-Hill estimator is considered:

ξ̂ = 1−
(

1

k

k−1∑
i=0

Xn:n −Xn−i:n
Xn:n −Xn−k:n

)−1
,

where X1,n ≤ · · · ≤ Xn,n are the ordered statistics associated with X1, . . . , Xn and k ∈ {1, . . . , n}.
Introducing the auxiliary random variable Z := (x∗−X)−1 and denoting by G its c.d.f., extreme-

value theory shows that G belongs to the maximum domain of attraction of the Fréchet distribution.
Under (A.1), G has an infinite right endpoint and a positive EVI given by −ξ. Additionally, the
tail quantile function of Z defined by

U(·) := (1−G)←(1/·) = 1/(x∗ − (1− F )−1(1/·))

is regularly varying with index −ξ, i.e.

U(tx)/U(t)→ x−ξ as t→∞ for all x > 0. (A.1)

See [9] for a general account on regular variation. In extreme-value theory, the second order condi-
tion aims at quantifying the rate of convergence in (A.1):

(A.2) There exist ρ < 0 and some positive or negative function A with A(t) → 0 as t → ∞
such that

1

A(t)

(
xξU(tx)

U(t)
− 1

)
→ xρ − 1

ρ
as t→∞ for all x > 0.

See for instance [14] p. 74.
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Appendix B. Main properties

Our main result establishes an asymptotic representation for the n-t-Hill estimator in terms
of Weibull and Gaussian random variables. To this end, recall that the Weibull distribution with
parameter θ > 0 denoted by W (θ) is defined by the c.d.f.

Fθ(x) = 1− exp(−xθ), x > 0.

Theorem 1. Suppose (A.2) holds and let θ = min(1/2,−ξ). Let k → ∞ such as k/n → 0 and
kθA(n/k)→ λ ∈ R as n→∞. Then, the following asymptotic expansion holds

kθ(ξ̂ − ξ) = kθ−1/2
ξ(1− ξ)√

1− 2ξ
ζ (1 + oP (1)) + kθ+ξ (1− ξ)ξ ζξ (1 + oP (1)) +

λ(1− ξ)
1− ρ− ξ (1 + oP (1)),

where ζ is a standard Gaussian random variable and ζξ is a random variable following the Weibull
distribution W (−ξ).

As a consequence, two different cases appear:

Corollary 1. Assume that the assumptions of Theorem 1 hold with λ = 0.

(i) If ξ < −1/2, then k1/2(ξ̂−ξ) is asymptotically Gaussian centred with variance ξ2(1−ξ)2/(1−
2ξ).

(ii) If ξ > −1/2, then k−ξ(ξ̂ − ξ) converges in distribution to (1− ξ)2W (−1/ξ).

As a comparison, let us stress that the asymptotic distribution of the n-Hill estimator defined by

ξ̃ =
1

k

k−1∑
i=1

log(Xn:n −Xn−i+1:n)− log(Xn:n −Xn−k:n)

(see for instance [14], paragraph 3.6.2) has been established only for ξ ∈ (−1,−1/2) whereas
Theorem 1 holds for all ξ < 0. Under the assumptions of Theorem 1 and assuming ξ ∈ (−1,−1/2),
it has been shown that

k1/2(ξ̃ − ξ) = ξ ζ (1 + oP (1)) +
λξ

ρ(1− ρ)(1 + ξ)
(1 + oP (1)),

where ζ is a standard Gaussian random variable, see [14], Theorem 3.6.4. It is thus possible to

compare the asymptotic behavior of ξ̂ and ξ̃ for ξ ∈ (−1,−1/2). First, it is clear that ξ̂ has a larger

asymptotic variance (given by ξ2(1−ξ)2/(1−2ξ)) than ξ̃ (which is ξ2). It is possible to show that ξ̂
has a smaller asymptotic bias (given by (1− ξ)/(1−ρ− ξ)) than ξ̃ (which is ξ/(ρ(1−ρ)(1 + ξ))) for

all ξ ≤ ξ0 where ξ0 =
1−ρ−

√
(1−ρ)(1−5ρ+4ρ2−4ρ3)
2(ρ2−ρ−1) . In particular, the asymptotic bias of ξ̃ explodes

when ξ approaches −1 while the asymptotic bias of ξ̂ remains bounded.
Finally, note that, in case (ii) even when λ = 0, ξ̂ has a negative asymptotic bias given by (1 −
ξ)ξΓ(1− ξ)kξ. Nevertheless, this bias can easily be estimated and corrected.
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Appendix C. Proofs

Appendix C.1. Reasoning of lemma 1

From the Implicit Function Theorem, for every z0 6= 0, x0 ≥ 1, the equation ϕ(x, z) = 0

implicitly defines the function z = g(x) near (x0, z0), provided θ− (θ+ β − 1)x1−β0 6= 0. Hence, the
graph of g(x) determines branches of the set ϕ−1(0).

If (β, θ) ∈ Ω1, let u = x1−β . Then, the graph of q(u) := θ − (θ + β − 1)u is a straight line with
positive slope −(θ + β − 1). Since q(0) = θ > 0, then q(u) > 0 for every u ≥ 0. It follows that
θ− (θ+β− 1)x1−β > 0 and, hence, g(x) > 0 and its graph on the positive (x, z)-plane consists of a
single branch M1. Moreover, one can readily check that limx→0+ g(x) =∞ and limx→∞ g(x) = 0.
In addition,

g′(x) = − (θ + 1)F (x)

x2
(
θ − (θ + β − 1)x1−β

)2 , (C.1)

where
F (x) = θ + (β − 2)(θ + β − 1)xβ−1. (C.2)

Since F (x) > 0 for every (β, θ) ∈ Ω1, then g(x) is a strictly monotone decreasing function. In this
way, the set ϕ−1(0) consists of the two branches M0 and M1, where M1 is defined as the graph
of g(x), that is, M1 = {(x, z) : z = g(x)}. A qualitative sketch of the set ϕ−1(0) is shown in
Figure 1(a).

If (β, θ) ∈ T1, we have ϕ(x, z) = z T1(x, z), with

T1(x, z) =

(
−θ + 1

x
+ θz

)
.

Hence, (adopting the same notation of Ω1) the set T−11 (0) = {M1} where M1 is the hyperbola
given by z = (θ + 1)/(θx); see the qualitative sketch in Figure 1(b).

If (β, θ) ∈ Ω2, from (5) it follows that the line

xas =

(
θ + β − 1

θ

) 1
β−1

is a vertical asymptote of ϕ−1(0). Hence, the graph of z = g(x) consists of two branches. Let
M1 and M2 be the branches defined for x < xas and x > xas, respectively. Then, it is easy to
see that g(x) > 0 for x < xas, and g(x) < 0 for x > xas. Moreover, limx→0+ g(x) = ∞ and
limx→∞ g(x) = 0. Furthermore, from (C.1) and (C.2) it follows that g(x) has a local minimum at

xmin = (2−β)(θ+β−1)
θ = (2 − β)

1
β−1xas < xas. On the other hand, g′(x) > 0 for every x > xas;

hence, M2 is defined by a strictly increasing function. As a consequence, the graph of ϕ−1(0) if
(β, θ) ∈ Ω2 is qualitatively as in Figure 1(c).

The analysis for the other cases is similar.

Appendix C.2. Auxiliary lemmas

The first lemma provides an expansion of the t-Hill estimator in terms of two random variables
T1,n and T2,n which derive its asymptotic distribution.
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Lemma 2. Under (A.1), the n-t-Hill estimator can be rewritten as

1

1− ξ̂
− 1

1− ξ =
T1,n − 1

1−ξ
1− T2,n

+
ξ

1− ξ
T2,n

1− T2,n
,

with

T2,n =
U(Yn−k,n)

U(Yn,n)
,

T1,n =
1

k

k−1∑
j=0

U(Yn−k,n)

U(Yn−j,n)
,

and where Y1,n ≤ · · · ≤ Yn,n are ordered statistics associated with n independent standard Pareto
random variables.

The next lemma provides some consequences of the second order condition (A.2).

Lemma 3. Under (A.2), there exists a function A0 asymptotically equivalent to A such that, for
all ε > 0 there exists t0 > 0 such that, for all t ≥ t0 and x ≥ 1,

xξU(tx)

U(t)
= 1 +R1(t, x)A0(t), (C.3)

U(t)

U(tx)
= xξ − xξ+ρ − xξ

ρ
A0(t)− xξR0(t, x)A0(t) +R2(t, x)A2

0(t), (C.4)

with

|R0(t, x)| ≤ εxρ+ε,

|R1(t, x)| ≤ ε− 1/ρ,

|R2(t, x)| ≤ 4(ε2 + 1/ρ2)xξ.

We first establish the asymptotic distribution of T1,n.

Lemma 4. Let k →∞ such that k/n→ 0 as n→∞. Then, under (A.2), k−ξT1,n
d→ ζξ where ζξ

is a random variable following the Weibull distribution W (−1/ξ).

Second, we focus on the asymptotic distribution of T2,n.

Lemma 5. Let k →∞ such that k/n→ 0 as n→∞. Then, under (A.2),

T2,n
d
=

1

1− ξ + σ(ξ)k−1/2ζ(1 + oP (1)) + τ(ξ, ρ)A(n/k)(1 + oP (1)),

where ζ is a standard Gaussian random variable, τ(ξ, ρ) = 1
(1−ξ)(1−ρ−ξ) and σ(ξ) = ξ

(1−ξ)√1−2ξ .
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Appendix C.3. Proofs of auxiliary lemmas
Proof of Lemma 2. Introducing Zj = (x∗ − Xj)

−1 for j = 1, . . . , n, the n-t-Hill estimator can be
rewritten as

1

1− ξ̂
d
=

1

k

k−1∑
j=0

Xn:n −Xn−j:n
Xn:n −Xn−k:n

=

1
k

∑k−1
j=0

Zn−k:n
Zn−j:n

− Zn−k:n
Zn:n

1− Zn−k:n
Zn:n

.

Besides, {Zj}j=1,...,n
d
= {U(Yj)}j=1,...,n where Y1, . . . , Yn is a sample of independent random vari-

ables from a standard Pareto distribution. Therefore,

1

1− ξ̂
d
=
T2,n − T1,n

1− T1,n
and the conclusion follows.

Proof of Lemma 3. From [14], Theorem B.2.18, it is possible to control the rest in the convergence
(A.2): There exists a function A0 asymptotically equivalent to A such that, for all ε > 0 there
exists t0 > 0 such that, for all t ≥ t0 and x ≥ 1,

|R0(t, x)| :=
∣∣∣∣ 1

A0(t)

(
xξU(tx)

U(t)
− 1

)
− xρ − 1

ρ

∣∣∣∣ ≤ εxρ+ε.
Letting R1(t, x) := (xρ − 1)/ρ+R0(t, x), it follows that

xξU(tx)

U(t)
= 1 +R1(t, x)A0(t),

with |R1(t, x)| ≤ ε − 1/ρ for all t ≥ t0, x ≥ 1 and ε < −ρ. The first part (C.3) of the lemma is
proved.
It straightforwardly follows that

U(t)

U(tx)
= xξ − xξR1(t, x)A0(t) +

xξR2
1(t, x)A2

0(t)

1 +R1(t, x)A0(t)

= xξ − xξ x
ρ − 1

ρ
A0(t)− xξR0(t, x)A0(t) +

xξR2
1(t, x)A2

0(t)

1 +R1(t, x)A0(t)
.

Finally, letting R2(t, x) := xξR2
1(t, x)/(1 +R1(t, x)A0(t)), one has

|R2(t, x)| ≤ 2(ε2 + 1/ρ2)xξ/(1− (ε− 1/ρ)|A0(t)|).
Since, for t large enough, |A0(t)| ≤ 1/(2ε− 2/ρ), the second part (C.4) of the lemma follows.

Proof of Lemma 4.. Applying expansion (C.3) of Lemma 3 with t = Yn−k:n
P→∞ (see [14], Corol-

lary 2.2.2) and x = Yn:n/Yn−k:n ≥ 1 yields(
Yn:n
Yn−k:n

)ξ
U(Yn:n)

U(Yn−k:n)
= 1 +OP (A0(Yn−k:n)) = 1 +OP (A(Yn−k:n)) = 1 + oP (1),

in view of [14], page 75. As a consequence of Rényi representation, Yn:n/Yn−k:n
d
= Y ∗k:k where Y ∗k:k

is the maximum of a k-sample from a standard Pareto distribution. We thus have T1,n
d
= (Y ∗k:k)ξ(1+

oP (1)). Moreover, the extreme-value theorem states that Y ∗k:k/k converges in distribution to the
extreme-value distribution Φ1 (see for instance [17], Table 3.4.2) with c.d.f. ψ1(x) = exp(−1/x),

x > 0. It is therefore easily seen that k−ξT1,n
d→ Φξ1 = W (−1/ξ).
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Proof of Lemma 5. Applying expansion (C.4) of Lemma 3 with t = Yn−k:n
P→ ∞ (see [14], Corol-

lary 2.2.2) and x = Yn−j:n/Yn−k:n ≥ 1, j = 0, . . . , k − 1 yields the expansion

T2,n = T3,n − T4,n − T5,n + T6,n (C.5)

with

T3,n =
1

k

k−1∑
j=0

(
Yn−j:n
Yn−k:n

)ξ
,

T4,n =
A0(Yn−k:n)

ρ

1

k

k−1∑
j=0

((
Yn−j:n
Yn−k:n

)ξ+ρ
−
(
Yn−j:n
Yn−k:n

)ξ)
,

T5,n = A0(Yn−k:n)
1

k

k−1∑
j=0

(
Yn−j:n
Yn−k:n

)ξ
R0

(
Yn−k:n,

Yn−j:n
Yn−k:n

)
,

T6,n = A2
0(Yn−k:n)

1

k

k−1∑
j=0

R2

(
Yn−k:n,

Yn−j:n
Yn−k:n

)
.

The four terms are studied separately. In view of Rényi representation, (Yn−j:n/Yn−k:n)j=0,...,k−1
d
=

(Y ∗k−j:k)j=0,...,k−1 where Y ∗1 , . . . , Y
∗
k is a sample of independent random variables from the standard

Pareto distribution and Y ∗1:k ≤ · · · ≤ Y ∗k:k are the associated ordered statistics. Consequently, T3,n
can be rewritten as

T3,n
d
=

1

k

k−1∑
j=0

(Y ∗k−j:k)ξ =
1

k

k∑
j=1

(Y ∗j )ξ,

Remarking that E((Y ∗1 )ξ) = 1/(1 − ξ) and var((Y ∗1 )ξ) = σ2(ξ), the central limit theorem entails
that

T3,n =
1

1− ξ + k−1/2σ(ξ)ζ(1 + oP (1)), (C.6)

where ζ is a standard Gaussian random variable. Let us now focus on T4,n. First, remark that

A0(Yn−k:n) = A(Yn−k:n)(1 + oP (1)) = A(n/k)(1 + oP (1)),

in view of [14], page 75. Second, using the same arguments as previously yields

1

k

k−1∑
j=0

1

ρ

((
U(Yn−j:n)

U(Yn−k:n)

)ξ+ρ
−
(
U(Yn−j:n)

U(Yn−k:n)

)ξ)
d
=

1

k

k−1∑
j=0

1

ρ

(
(Y ∗j )ξ+ρ − (Y ∗j )ξ

)
.

The laws of large numbers shows that this quantity converges in probability to τ(ξ, ρ) and therefore

T4,n = τ(ξ, ρ)A(n/k)(1 + oP (1)). (C.7)
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From the definition of T5,n, it follows that, for all ε ∈ (0, 1− ξ − ρ),

|T5,n| ≤ A(n/k)(1 + oP (1))ε
1

k

k−1∑
j=0

(
U(Yn−j:n)

U(Yn−k:n)

)ξ+ρ+ε
d
= A(n/k)(1 + oP (1))ε

1

k

k−1∑
j=0

(Y ∗j )ξ+ρ+ε

= A(n/k)(1 + oP (1))εE((Y ∗j )ξ+ρ+ε)

= A(n/k)(1 + oP (1))
ε

1− (ξ + ρ+ ε)
.

Letting ε→ 0 yields
T5,n = oP (A(n/k)). (C.8)

Similarly, from the definition of T5,n, it follows that, for all ε ∈ (0, 1− ξ − ρ),

|T6,n| ≤ A2(n/k)(1 + oP (1))4(ε2 + 1/ρ2)
1

k

k−1∑
j=0

(
U(Yn−j:n)

U(Yn−k:n)

)ξ
d
= A2(n/k)(1 + oP (1))4(ε2 + 1/ρ2)

1

k

k−1∑
j=0

(Y ∗j )ξ (C.9)

= A2(n/k)(1 + oP (1))4(ε2 + 1/ρ2)E((Y ∗j )ξ)

= oP (A(n/k)). (C.10)

Collecting (C.5)–(C.10) proves the result.

Appendix C.4. Proofs of main results

Proof of Theorem 1. In view of Lemma 4, T2,n = oP (1) and therefore Lemma 2 entails

1

1− ξ̂
− 1

1− ξ =

(
T1,n −

1

1− ξ +
ξ

1− ξ T2,n
)

(1 + oP (1))

= k−1/2σ(ξ)ζ(1 + oP (1)) +
ξ

1− ξ k
ξζξ(1 + oP (1)) + τ(ξ, ρ)A(n/k)(1 + oP (1)),

in view of Lemma 4 and 5. Let θ = min(1/2,−ξ). It follows that

kθ
ξ̂ − ξ

(1− ξ̂)(1− ξ)
= kθ−1/2σ(ξ)ζ(1 + oP (1)) +

ξ

1− ξ k
θ+ξζξ(1 + oP (1)) + λτ(ξ, ρ)(1 + oP (1)),

under the assumption kθA(n/k)→ λ as n→∞. As a consequence, ξ̂ → Pξ and therefore

kθ(ξ̂− ξ) = kθ−1/2σ(ξ)(1− ξ)2ζ(1+oP (1))+kθ+ξ(1− ξ)ξζξ(1+oP (1))+λ(1− ξ)2τ(ξ, ρ)(1+oP (1)),

and the result is proved.
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Proof of Corollary 1. Two cases arise. If ξ < −1/2 then θ = 1/2 and thus k1/2(ξ̂ − ξ) is asymp-
totically Gaussian with mean λ(1− ξ)2τ(ξ, ρ) and variance σ2(ξ)(1− ξ)4. Conversely, if ξ > −1/2,

then θ = −ξ and k−ξ(ξ̂ − ξ) converges in distribution to λ(1− ξ)2τ(ξ, ρ) + (1− ξ)ξW (−1/ξ) where
W (−1/ξ) is the Weibull distribution with shape parameter −1/ξ.

Appendix C.5. Explanation for continuation in Auto [4]

In order to compute a family of solutions of a three-dimensional system

ẋ = f(x(t)) (C.11)

we consider a function u : [0, 1] 7→ R3 satisfying a rescaled version of (C.11) given by the differential
equation

u̇ = Tf(u(t)), (C.12)

where f stands for the vector field defined by the system (4) and T > 0 is the integration time (also
known as the “period”) of an orbit segment of f . Note that in (C.12), the period T appears as an
explicit parameter and the actual integration time over an orbit segment is always 1. Geometrically,
the function u represents a unique orbit segment {u(t) = (x(t), y(t), z(t)) ∈ R3| 0 ≤ t ≤ 1} provided
that suitable boundary conditions are posed at one or both end points u(0) and u(1). In our case,
we consider

u(0) = (1, µ, ν), (C.13)

where µ, ν are dummy parameters that determine the ‘initial’ coordinates y0 and z0, respectively,
of a given solution.

The boundary value problem (C.12)–(C.13) defines a (µ, ν, T )-dependent family of orbit seg-
ments. For any fixed (µ, T ) = (µ0, T0) we have a uniquely defined one-parameter family of orbit
segments (parameterised by ν) with fixed integration time T0 and fixed initial coordinates x(0) = 1,
y(0) = µ0. In order to compute this ν-family by continuation in Auto [4, 13], we need to specify an
initial orbit segment uν0 that satisfies (C.12)–(C.13) for some fixed ν = ν0. To this end, a possible
choice is to take advantage of the continuous extension of (4) to the line z = 0 and consider the
constant solution —i.e., a trivial orbit segment— u(t) ≡ (1, 0, 0) of (C.12) with T = 0; continuation
in T for fixed u(0) = (1, 0, 0) up to T = T0 yields the desired initial orbit segment u0 satisfy-
ing (C.12)–(C.13) for µ0 = 0 and ν0 = 0. A collection of orbits segments is then obtained by fixing
T = T0 and continuing u0 in µ up to a user-defined value; in our case, the stopping condition is
µ = 1. Finally, the desired family of orbit segments is obtained by allowing ν to vary while keeping
T = T0 and µ = 1 fixed. In this way, each orbit segment in this family corresponds to a solution
{x(t) = (x(t), y(t), z(t)) ∈ R3| 0 ≤ t ≤ T0} of (4) with initial condition (x0, y0, z0) = (1, 1, ν).
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