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Quantum systems are by their very nature fragile. The fundamental backaction on a state due to
quantum measurement notwithstanding, there is also in practice often a destruction of the system
itself due to the means of measurement. This becomes acutely problematic when we wish to make
measurements of the same system at multiple times, or generate a large quantity of measurement
statistics. One approach to circumventing this is the use of ancillary probes that couple to the
system under investigation, and through their interaction, enable properties of the primary system
to be imprinted onto and inferred from the ancillae. Here we highlight means by which continuous
variable quantum modes (qumodes) can be employed to probe the thermodynamics of quantum
systems in and out of equilibrium, including thermometry, reconstruction of the partition function,
and reversible and irreversible work. We illustrate application of our results with the example of a
spin-1/2 system in a transverse field.

I. INTRODUCTION

Quantum systems are now routinely created, manipu-
lated, controlled and studied in the lab, making the re-
alisation of technologies that exploit truly quantum phe-
nomena a very imminent reality. Examples of such sys-
tems are numerous, including ultracold atoms [1], ion
traps [2], superconducting circuits [3], and microwave
cavities [4]. Beyond the intrinsic interest in studying
such systems, they can be deployed to, for example, en-
hance computation and metrology [5–8]. A particularly
promising use, especially in the near term, is that of ana-
logue quantum simulation, where the system is made to
emulate the behaviour of another quantum system of in-
terest [9–11], which can be applied in quantum chem-
istry [12] to study otherwise experimentally inaccessible
quantum systems and parameter regimes.

A necessary element in these applications is to read-
out properties of or results output by the quantum sys-
tem. While theoretical models of measurement are well-
established, in many of the proposed architectures the
measurement process is destructive to the system, al-
lowing only a single-shot reading, after which the sys-
tem must be completely reprepared. For example, with
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cold atom systems, a widely-used measurement method
is time-of-flight [13–16], which involves destruction of the
atomic trapping potential, hence requiring the atoms to
then be re-trapped and re-cooled. Moreover, in other
systems direct methods to measure particular sets of ob-
servables may not be available.
It has been proposed that this can be mitigated

through the use of ancillary systems that serve as mea-
surement probes. Through their interaction, properties
of the system are imprinted onto the probes [17, 18],
and information about the system may then be obtained
through measurement of the ancillary probes alone [19–
32]. While such measurements disturb the system state
and are hence not non-demolition, they do not destroy
the system. They thus constitute a practical method to
determine certain system properties whilst leaving the
system intact. This method has been explored in partic-
ular for cold atom systems, where atomic impurities form
ancilla qubits [33]; post-processing of the impurity mea-
surement statistics then allows properties such as den-
sity [29] and temperature [24, 30] to be determined.
In parallel, developments in continuous variable quan-

tum information processing [34–38], based on continuous
variable quantum modes (‘qumodes’) rather than qubits,
provide new applications for quantum optics and collec-
tive atomic phenomena in quantum technologies. One
recently proposed model of quantum computation uses
squeezed qumodes as a resource for phase estimation of
an operator [39].
Bringing these two themes together, qumodes offer a

promising, flexible means of non-destructively probing
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quantum systems. With an appropriate initial qumode
state, the statistics of the system operator to which the
qumode couples can be mapped directly onto the qumode
state. Subsequent measurement of the qumode then al-
lows for the spectrum of the system operator to be de-
termined, along with the populations of the respective
eigenstates. This enables a full characterisation of the
moments of the operator for the system state, as though
one had directly sampled the observable from the system.
In the ideal case, the qumode behaves akin to a non-
destructive von Neumann measurement meter [40, 41],
while even with a more realistic model of achievable ini-
tial qumode states a highly faithful measurement can
be performed. Crucially, we only directly measure the
qumode ancilla, from which we are able to indirectly
probe the system of interest itself, circumventing the typ-
ical direct approaches that are often destructive to the
system.

Here, we highlight how we can employ these probes to
study the thermodynamics of quantum systems. We first
describe the basic qumode probing protocol, and how the
operator statistics are imprinted onto the qumode state.
We show that the protocol is robust to experimental lim-
itations of finite squeezing in the initial qumode state,
and discuss its experimental practicality. We then intro-
duce several thermodynamical applications of the prob-
ing protocol. Amongst these, we show how qumodes can
be used as thermometers to measure the temperature of
quantum systems in equilibrium, and how partition func-
tions can be reconstructed. We also show how reversible
and irreversible contributions to work can be measured
in non-equilibrium settings, extending beyond prior work
that introduced an analogous approach to measuring to-
tal work [42, 43]. We also show how the protocol can be
used to measure the overlaps of ground states of different
parameter regimes of a Hamiltonian. As an example, we
simulate an illustrative use of our method in probing the
temperature of a spin-1/2 system in a transverse field.

II. QUMODE PROBES

A. Base qumode probing protocol

We first describe the basic qumode probing proto-
col, from an architecture-agnostic perspective. Con-
sider a quantum system of interest with (possibly un-
known) state ρsys, and an observable O of the system
that we wish to measure. Specifically, we wish to de-
termine the moments of O with respect to ρsys, given
by ⟨Om⟩ = Tr(ρsysO

m), where O is the operator associ-
ated with O. The aim is to make these measurements
in a manner non-destructive to the system. This can
be achieved by a probing protocol that uses ancillary
qumodes as probes. We emphasise that the protocol is
not a full tomography of the state or operator [44–47],
but rather, a means to obtain the statistics of the ob-
servable with respect to the system state.

FIG. 1. Probing quantum systems with qumodes. A
continuous variable qumode illuminates a system of interest,
inheriting properties of the system through their interaction.
The state of the qumode is then measured, revealing informa-
tion about the system.

The qumode probing protocol consists of three com-
ponents (see Fig. 1). The first of these is the system of
interest, with state ρsys. The protocol does not in general
need a particular form for the system or its state, and it
may inhabit a discrete or continuous Hilbert space. As
mentioned above, there is no need for a priori knowl-
edge of this state, and in general this nescience is as-
sumed. The second component is the continuous vari-
able qumode, described by its quadratures x and p, often
referred to as ‘position’ and ‘momentum’ [48]. We shall
take these quadratures to be in their dimensionless form;
that is, in terms of the creation and annihilation opera-
tors a and a† of the mode, we have x = (a + a†)/2 and
p = (a− a†)/2i.

The final component is the interaction between sys-
tem and qumode. We shall consider an interaction
Hamiltonian of the form λx ⊗Hint, where the first sub-
space belongs to the qumode, and the second the sys-
tem [39]. Hence, the interaction acts on the system, with
a strength that depends on the qumode position quadra-
ture, with λ an overall coupling strength [49]. The as-
sociated evolution operator (in natural units ℏ = 1) is
U(t) = exp(−iλx ⊗ Hintt), and thus the qumode is de-
phased in this quadrature, at a rate dependent on the
the system operator Hint, thence motivating the use of a
phase estimation-type algorithm.

We label the eigenstates of the system operator Hint

as |un⟩, with associated eigenvalues En. Thus, when the
system is in such an eigenstate, and the qumode in a
quadrature eigenstate |x⟩, the effect of the interaction
can be written

|x⟩ ⊗ |un⟩ → e−iλxEnt|x⟩ ⊗ |un⟩. (1)

In general, the qumode will be in a superposition of
the quadrature eigenstates |ψq⟩ =

∫
dxG(x)|x⟩, and the

system state can always be expressed in the basis defined
by the eigenstates of Hint: ρsys =

∑
mn cmn|um⟩⟨un|.

Owing to the linearity of quantum mechanics, Eq. (1)
can be extended to such states, and one can perform a
partial trace over the system to obtain an expression for
the qumode state after running the interaction for a time
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FIG. 2. Quantum circuit for qumode probing. A
qumode prepared in momentum eigenstate |p0⟩ interacts with
the system through a controlled gate Ux = exp(−iλxHintt)
dependent on the qumode position quadrature x. Measuring
the qumode in the momentum quadrature then directly sam-
ples the statistics of the system operator Hint for state ρsys.

t:

ρq(t) =

∫∫
dxdx′G(x)G∗(x′)L(x, x′, t)|x⟩⟨x′|, (2)

where analogous to the qubit probing protocols [29, 30],
we define the dephasing function

L(x, x′, t) :=Tr
(
ρsyse

−iλ(x−x′)Hintt
)

=
∑
n

Pne
−iλ(x−x′)Ent, (3)

where Pn = cnn. This is resemblant of a characteristic
function for the system operator, and is the crux of the
probing protocol.

Let us now consider that after an interaction time τ
a measurement is made of the qumode state. Inspired
by the qubit-based protocols, we shall measure in a basis
conjugate to that which defines the interaction Hamilto-
nian, here the momentum quadrature. Recall that these
can be expressed in terms of the position eigenstates as
|p⟩ = (1/

√
2π)

∫
dx exp(ipx)|x⟩. Correspondingly, using

that P (p) := ⟨p|ρq(τ)|p⟩, we have

P (p) =
1

2π

∫∫
dxdx′G(x)G∗(x′)e−ipxL(x, x′, τ)eipx

′

=
∑
n

Pn

2π

∫∫
dxdx′G(x)G∗(x′)e−i(p+λEnτ)xei(p+λEnτ)x

′

=
∑
n

Pn|G(p+ λEnτ)|2, (4)

where G(p) := (1/
√
2π)

∫
dxG(x) exp(−ipx) is the

Fourier transform of G(x). Thus, we see that the eigen-
values of the interaction Hamiltonian – and their associ-
ated probabilities – are imprinted into the final state of
the qumode.

Before discussing the choice of initial probe state dis-
tribution G(x), let us address a caveat to the above
derivation. Namely, that we have neglected the pres-
ence of the natural evolution of the system under its
bare Hamiltonian H0 during the running of the proto-
col. For this to be valid, we require that the interaction

occurs on timescales much faster than the natural evolu-
tion (λHint ≫ H0), and that the natural evolution has
negligible effect on the system state during the running
of the protocol (H0τ ≪ 1), hence imposing a maximum
allowable running time for the protocol. However, these
restrictions are lifted when the bare Hamiltonian and the
interaction Hamiltonian commute, in which case the nat-
ural evolution does not affect the outcome of the qumode
measurement.

B. Initial probe state

Consider the idealised scenario where the qumode is
initially prepared in an eigenstate of momentum |p0⟩;
G(x) = (1/

√
2π) exp(ip0x). In this case, we find that

G(p) = δ(p− p0), leading to

P (p) =
∑
n

Pn|δ(p− (p0 − λEnτ))|2. (5)

That is, the final state of the probe has a distribution
that consists of sharp peaks, non-zero only at the points
p = p0 − λEnτ , where it takes values Pn. The mea-
surement of the qumode state hence directly samples the
same distribution as that of a measurement of the op-
erator Hint on the state ρsys, with the mapping from
qumode measurement outcomes to the spectrum of the
system operator given by E = (p0 − p)/λτ . With re-
peated measurements, one can then obtain an estimate
of the probability distribution P (p) (and hence P (E)).
This thus allows for the estimation of moments of the sys-
tem operator ⟨Hm

int⟩ =
∑

n PnE
m
n . Hence, by encoding a

suitable operator O associated with some observable of
interest O as our interaction Hamiltonian, we can use the
protocol to determine the moments of O with respect to
the system state ρsys – effectively realising an ideal von
Neumann measurement meter. It is worth noting that
this does not require prior knowledge of the eigenvalues
of the system operator, and further, that these can be
determined from the qumode measurement outcomes. In
contrast to the analogous qubit probing protocols, here
all these properties can be obtained directly, without the
need for post-processing of the measurement outcomes.
This protocol is illustrated in Fig. 2.
However, this is an idealised model of the protocol,

and in practice the qumode cannot be prepared in a
true momentum quadrature eigenstate. Rather, one can
only achieve approximations to this, with a finite level of
squeezing in a given quadrature (the eigenstates corre-
sponding to the limit of infinite squeezing). That is, we
have a Gaussian uncertainty in the value of the momen-
tum quadrature, centred on the desired p0, i.e.,

G(x) =

(
s2

π

) 1
4
∫
dqe−

s2q2

2 eiqx
eip0x

√
2π
. (6)

Here, s corresponds to the dimensionless squeezing fac-
tor [39], parameterising the squeezing in the momentum
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quadrature [50]. Inserting this in to Eq. (4), we find the
final probability distribution for the qumode is given by

P (p) =
s√
π

∑
n

Pne
−s2(p−p0+λτEn)

2

. (7)

Indeed, the form of this distribution should not be too
surprising – the smearing of the initial momentum dis-
tribution manifests in a smearing in the final distribu-
tion. This smearing is identical in the initial and final
distributions, and is controlled by the squeezing factor.
Specifically, the standard deviation of the final momen-
tum distribution is given by ςp =

√
2/s, corresponding

to a standard deviation for the system operator eigen-
values of ςE =

√
2/sλτ . Thus, the precision to which

we can measure the eigenvalues of Hint can be increased
by running the protocol for longer or increasing the cou-
pling strength, or increasing the squeezing. This is anal-
ogous to a result found in the proposal for the power of
one qumode computation [39], that one can trade off a
decreased squeezing with increased running time τ , and
vice versa.

While it is tempting to then conclude that these uncer-
tainties in the final distribution can thus be negated by a
sufficiently increased running time, this is not necessarily
practical in general, due to the constraint imposed on τ
for the effects of the system’s natural evolution H0 to be
neglected – as well as the inherent difficulties with main-
taining coherence over long timescales. Ultimately, such
practical considerations bound how small the spread ςE
can be made.

More generally, suppose we express the initial qumode
state in the momentum eigenbasis as |ψq⟩ =

∫
dpf(p)|p⟩.

We note that f(p) and g(x) are related by a basis
change corresponding to a Fourier transform, i.e., f(p) =
G(p). Thus, we can equivalently express Eq. (4) as
P (p) =

∑
n Pn|f(p+ λEnτ)|2; the final distribution is a

mixture of shifted versions of the initial momentum dis-
tribution, with weights given by the probability of each
eigenstate of Hint, and shifts proportional to the corre-
sponding eigenvalue.

C. Candidate experimental platforms

The general form of the coupling Hamiltonian con-
sidered, λx ⊗ Hint, appears almost ubiquitiously in
continuous-variable systems, as these typically couple
through one of the quadratures of the qumode(s). Per-
haps most famously, the basic building block of quantum
light-matter interactions is the quantum Rabi model [48]:

HQR = λx⊗ σx, (8)

where σx is the usual Pauli x matrix [6], taking the role
of the interaction Hamiltonian Hint. The Hamiltonian
was originally conceived as a description of a quantised
light field interacting with a two-level system. One of-
ten finds this Hamiltonian in its simplified guise as the

Jaynes-Cummings Hamiltonian, where the approxima-
tion is made to neglect the counter-rotating terms aσ−

and a†σ+; nevertheless, systems described by this Hamil-
tonian are typically more accurately described by the full
Rabi Hamiltonian. Moreover, though the Hamiltonian
Eq. (8) contains only a σx coupling, it is possible to probe
the spin operator in any chosen direction by an appropri-
ate rotation of the individual spins prior to running the
probing protocol, due to the rotation mapping the statis-
tics of the desired direction onto the x-axis (e.g. applying
a Hadamard gate [6] to the system allows probing of σz).

Both cavity [51, 52] and circuit [53–56] quantum elec-
trodynamics experiments consist of interactions between
a continuous variable mode (cavity fields in the former,
nanomechanical resonators in the latter) and a two-level
system (atoms and superconducting qubits respectively),
interacting through a quantum Rabi Hamiltonian Eq. (8)
in the (ultra)strong coupling regime. Such setups operate
in a regime where the qumode measurement resolution
can be much finer than the differences between the inter-
action Hamiltonian eigenvalues, which for this example
is of order unity. For example, in Ref. [54] the coupling
between qubit and resonator gives λ ≈ 1010, and the Q-
factor of 103 and resonance frequency of 8.2GHz leads
to λτ ∼ 200 when the protocol is run for times of the
order of the resonator lifetime. With the parameters of
Ref. [52], we would have λτ = 40 when τ is the cavity
lifetime. Comparing with our example later, we see that
this would offer a high degree of precision, with a very
fine resolution of the spectrum.

While Eq. (8) makes it clear that the protocol can be
used to probe moments of the spin operator of a two-
level system, it can be applied more generally. First, the
physical motivation and derivation of the Hamiltonian
does not necessarily require that the system has only two
states, and can be rederived for any number of states, by
replacing σx with the appropriate spin operator for the
number of states. Secondly, by illuminating an array
of such systems with the same light field, the Hamilto-
nian becomes an interaction between the light field and
the sum of the individual spin operators for each system,
and thus probes moments of the total spin operator, as
well as correlations between individual spins. This can
be enhanced by tuning the optical geometry [57] such
that different spins couple to the qumode with differ-
ent strengths and phases. Further, when the individual
spins are indistinguishable, they couple to the qumode
as a single, collective spin operator, leading to the Dicke
model HD = λx ⊗ Jx [58, 59], which may be probed
in a similar manner. Finally, higher-order light-matter
interactions in the context of many-body systems often
appear in such a form [60], such as in the case of cold
atoms in optical cavities [61, 62].

We emphasise that the ‘momentum’ measurement
made of the qumode is that of its canonical momentum
quadrature, which does not necessarily correspond to a
Newtonian momentum. Measurement of such quadra-
tures is a highly routine procedure for photons in quan-
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tum optics [63], and can similarly performed for phonon
qumodes formed by e.g., atomic or ionic motion [42, 64].

III. QUMODES AS THERMODYNAMICAL
PROBES

A. States in equilibrium

Consider a system that is known to be in a state of
thermal equilibrium ρΘ(β) = exp(−βHΘ)/Z(β) with re-
spect to a Hamiltonian HΘ. Here, β = 1/T is the
inverse temperature (we employ units in which Boltz-
mann’s constant kB = 1), and Z(β) = Tr(exp(−βHΘ))
is the partition function. When the system component of
the qumode interaction Hamiltonian Hint is proportional
toHΘ [65], we can use the qumode as a thermodynamical
probe of the state.

Specifically, notice that the qumode probing protocol
in this case will reveal for each eigenvalue Ēn of HΘ its
respective probability Pn in the state ρΘ(β). Given that
this eigenvalue has degeneracy gn, we can for each eigen-
value construct an equation of the form

ln(Z(β)) + βĒn = ln

(
gn
Pn

)
, (9)

which follows from taking the logarithm of the spec-
trum of ρΘ(β). Let us assume that we know two of
the eigenvalues Ēn0

and Ēn1
, and their associated de-

generacies gn0
and gn1

respectively. By combining the
associated Eq. (9) for both these eigenvalues, we obtain
β = ln(Pn0

gn1
/(Pn1

gn0
))/(Ēn1

− Ēn0
), i.e.,

T =
Ēn1

− Ēn0

ln

(
Pn0

gn1

Pn1
gn0

) . (10)

By using the qumode to determine the associated Pn0

and Pn1
it thus provides a non-destructive means of de-

termining the temperature of the system. Note that we
do not need a priori knowledge of Ēn0 and Ēn1 , pro-
vided that we know the proportionality factor between
Hint and HΘ – the spectra {En} will be similarly pro-
portional to {Ēn}, and the former can be deduced from
the output distribution. We also remark that a known
constant shift in the (proportionally scaled) eigenvalues
of one Hamiltonian relative to the other can similarly be
accounted for.

Unlike traditional means of thermometry [66], we do
not require thermal equilibrium to be established be-
tween the system and the probe – the temperature is
measured through the shifts in the qumode state. Fur-
ther, while similar schemes for measuring temperature
using impurity probe qubits [24, 30] also do not require
equilibriation, their accuracy is limited by the number
of probes. This can be a limitation even for quantum
thermometers that exploit advantages in precision using
quantum metrology [24, 67]. In contrast, the precision

of qumodes can also be enhanced by either increasing
the squeezing factor, or increasing the interaction time
or strength.

This approach requires that we can resolve between dif-
ferent eigenvalues of the interaction Hamiltonian {En},
i.e., min(|En − En′ |) ≳ ςE), or at least for the two
eigenvalues used in Eq. (10) and their nearest neigh-
bours. Otherwise, we must combine nearby eigenvalues
and treat them as degenerate, in term limiting the preci-
sion to which the temperature T can be estimated by the
(scaled) uncertainty ςĒ . The number of measurements
required to determine the temperature to a given preci-
sion will scale inversely proportional to both the variance
of the measurements of En (set by s, λ, and τ) due to
the finite width of the output distribution peaks, and the
associated eigenstate probabilities Pn0

and Pn1
involved

in Eq. (10).

Conversely, suppose we have knowledge of the tem-
perature of the system (either beforehand, or using the
above approach), and at least one of the degeneracies
gn0

. Then, we can use qumode probing to deduce the
remaining degeneracies by considering the ratio of the
associated probabilities of the equilibrium state. Specifi-
cally, we have that

gn =
Pn

Pn0

gn0e
β(Ēn−Ēn0

). (11)

From this we are then able to reconstruct the full par-
tition function Z(β) =

∑
n gn exp(−βĒn). This of-

fers access to several important thermodynamical quan-
tities of interest [68], either directly, or by approximat-
ing derivatives of Z(β) if we are able to slightly per-
turb the temperature. Amongst these quantities are
the free energy (F (β) = − log(Z(β))/β), heat capac-
ity (C = β2∂2 log(Z(β))/∂β2), and entropies (Sα =
logTr(ρΘ(β)

α)/(1 − α)) – the latter two of which can
be used to probe quantum critical points [69, 70].

Particularly valuable is the access reconstruction of
Z(β) provides to the free energy landscape of the sys-
tem. Previously, proposals have been introduced, based
either on the two-time measurement method, or using a
qudit- [71] or qumode-based [42, 43] method, to sample
from the distribution of work done on a system P (W ) be-
tween two timepoints, whereW corresponds to the differ-
ence in energy before and after the evolution (indeed, the
latter of these can be seen as an important special case
application of our qumode-probing framework). Then,
using the quantum counterpart [72, 73] of the Jaryzinski
equality [74], the free energy difference is deduced from
the work done – ⟨exp(−βW )⟩ = exp(−β∆F ). However,
these methods are not always efficient, particularly at low
temperatures, or when large negative values of work are
involved [71].In contrast, our method based on probing
{En} and {Pn} directly still allows for the free energy to
be recovered efficiently in those regimes.
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B. Non-equilibrium thermodynamics

Qumodes can also be used to probe the thermodynam-
ics of quantum systems that are perturbed far from equi-
librium. In particular, we can probe the average work
performed on a system due to a sudden quench in the
interaction Hamiltonian – and moreover, determine the
irreversible portion of this work ⟨Wirr⟩ [72, 75, 76], de-
fined as the difference between ⟨W ⟩, average work done
on the system during the quench, and ∆F , the change
in the free energy had the system evolved adiabatically
from the thermal state of the initial interaction Hamil-
tonian to that of the final Hamiltonian. Interest in the
irreversible component of work is motivated by the fluc-
tuation theorems and its connections with various en-
tropy measures [72, 77] – it is a widely-used measure of
irreversibility, and has been shown to be a signature for
some second-order phase transitions [78]. Note that the
average work is also an interesting quantity to study in
its own right, and its behaviour across a critical point
has been connected to first-order quantum phase transi-
tions [78].

The means of measuring average work and its irre-
versible component proceeeds as follows. Consider initial

and final interaction Hamiltonians H
(0)
int and H

(1)
int , the

former proportional to the system Hamiltonian HΘ, and

the latter satisfying λH
(1)
int ≫ HΘ. For each of the inter-

action Hamiltonians we can apply the methods above to
determine the free energies of their respective associated
thermal states ρΘi

, and correspondingly, the difference
in these free energies ∆F . Under a sudden quench, the
system is unchanged and will remain in its initial ther-
mal state ρΘ, which is equivalent to a thermal state of

H
(0)
int at some effective inverse temperature β̃. The pro-

portionality between the system Hamiltonian HΘ, and

the initial interaction Hamiltonian H
(0)
int corresponds to

the ratio between their eigenvalues En/Ēn, which also
corresponds to the ratio of their associated temperatures
T̃ /T = β/β̃.

Thus, the average work done by the quench is given by

⟨W ⟩ = Tr(ρΘH
(1)
int )− Tr(ρΘH

(0)
int )

=
∑
m

E(1)
m P (1)

m −
∑
n

E(0)
n P (0)

n , (12)

where {E(i)
n } and {P (i)

n } are energies and probability am-
plitudes associated with the state ρΘ0

for each of the

interaction Hamiltonians H
(i)
int. The second term corre-

sponds to the average energy of the state with respect
to the initial Hamiltonian, and so may be determined in
the initial stage when we are calculating the associated
free energy. The first term can be measured by using the

qumode probing protocol to determine the {E(1)
n } and

{P (1)
n }. Finally, we can calculate the irreversible compo-

nent of the average work through ⟨Wirr⟩ = ⟨W ⟩ −∆F .
Finally, we remark that we can also use qumode probes

to find the overlaps of the ground states of a parameter-

dependent Hamiltonian at two different values of the
parameter γ. Such overlaps have been used to charac-
terise regions of criticality defining quantum phase tran-
sitions, such as in the Dicke model [79]. Let Hint(γ)
denote the Hamiltonian when the parameter takes on a
particular value γ, and let γc be the value of the pa-
rameter at the critical point. The overlap of the ground
states |uγ⟩ associated with two values of the parameter
γ0 < γc and γ1 > γc can be found using a concatena-
tion of two qumode probing circuits. The first probing
circuit is run using Hint(γ0), and is post-selected on the
qumode measurement resulting in the initial ground state
energy, such that the state is left in the ground state of
this Hamiltonian |uγ0⟩. We then probe this state using
a second qumode, coupled with the interaction Hamilto-
nian Hint(γ1). The probability that the qumode is found
to have been shifted according to the ground state of this
latter Hamiltonian then corresponds to |⟨uγ0

|uγ1
⟩|2, i.e.,

the desired overlap probability.

IV. EXAMPLE: SPIN-1/2 PARTICLE IN
TRANSVERSE FIELD

Consider a two level system with energies ±∆, for
example, a spin-1/2 particle within a magnetic field of
strength ∆ along the z-direction. Consider further that
the spin is subject to an additional field of strength B
along the x-axis, such that the total Hamiltonian is given
by

Hsys = ∆σz +Bσx. (13)

We now illustrate thermometry with a qumode by
applying it to this example, when the system is ther-
malised to this Hamiltonian at a range of temperatures
T . Specifically, we simulate sampling from the distribu-
tion obtained by employing the probing protocol with
a qumode initially prepared in a squeezed momentum
state. We study a scenario where the interaction Hamil-
tonian is proportional to the system Hamiltonian, i.e.,
Hint ∝ Hsys.

We will also, as an extra test of the protocol, mimic
that the eigenvalues of Hsys and Hint are unknown (but
their relative proportionality is), and demand that the
protocol also deduce these. We assume that it is known
that there is one positive and one negative energy eigen-
value, such that the protocol will treat all measurements
corresponding to a positive shift in momentum as being
due to the negative eigenvalue, and vice versa. These
are then averaged over to arrive at the deduced energy
eigenvalues.

We examine the case that ∆ = B = 1, Hint = Hsys.
We consider temperatures in the range β = 1/T ∈ [0, 2],
with the extremes corresponding to the infinite tem-
perature limit (P0 = P1), and a very low temperature
limit (P0 ≈ 0.997, P1 ≈ 0.003). We allow the qumode
to make 103 measurements (‘shots’) of the distribution,
and combine the dependence on squeezing s, coupling
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FIG. 3. Simulated thermometry of spin-1/2 in tranverse field. (a,c,e,g,i) Initial and final momenta distributions of
qumodes used to probe the temperature of a spin-1/2 particle (at β = 0.3), and (b,d,f,h,j) qumode-measured temperature
with 103 shots for various β ∈ [0, 2]. Precisions α ∈ {0.1, 0.5, 1, 3, 10} correspond to plots {(a, b), (c, d), (e, f), (g, h), (i, j)}
respectively. One temperature measurement yielded a negative value for α = 10, β = 0; the corresponding absolute value is
shown.
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strength λ and interaction time τ in a single precision
factor α := sλτ . To illustrate the effect of the preci-
sion, we plot the final distributions of the qumode state
for α ∈ {0.1, 0.5, 1, 3, 10} at β = 0.3 in Figs. 3(a,c,e,g,i)
respectively.

The performance of the qumode at estimating the tem-
perature of the spin for the prescibed range of tempera-
tures is shown in Figs. 3(b,d,f,h,j) for each of the respec-
tive precisions. We see that at low precision the method
overestimates the temperature. This is because the shift
of the qumode momentum during the interaction is much
smaller than the finite width of the initial distribution,
and so a significant portion of the tails of the distribution
are erroneously assigned to the wrong eigenvalue, creat-
ing the illusion of a more balanced population of the two
states. We also observe that generally the accuracy is
lower at high temperature (low β); this is because the
exponential dependence of the state probabilities on β
renders a high degree of sensitivity in the deduced β with
respect to the measured probabilities at high temperature
(where P0 ≈ P1). Indeed, when the measured probability
for the excited state is greater than 1/2 (even if only to
an arbitrarily small degree), the deduced temperature is
negative. Ultimately, this can be ameliorated by using a
larger number of shots that reduce the magnitude of the
fluctuations in the measured probabilities. We remark
that further numerical study (not shown) indicates that
the number of shots is the limiting factor in the accuracy
(rather than precision) for the shown plots at larger pre-
cision, and a visibly tighter clustering around the exact
temperatues is observed for the measured temperatures
at α = 10 when the number of shots is increased to 104.

V. CONCLUSION

Properties of quantum systems may be imprinted onto
continuous variable qumode ancillae, allowing for non-
destructive probing of the system. For an appropriate
choice of interaction operator and initial qumode state,
the occupation probabilities of the desired observable’s
eigenstates with respect to the system state are mapped
directly on to the qumode state. The qumode state then
behaves according to the same statistics as this opera-
tor, and thus measurement of the qumode reproduces
the same result as a direct measurement of the system
would, while avoiding particular drawbacks associated
with direct measurements of practical implementations of
quantum technologies. We have shown that this method
of probing has a strong potential for use in probing the
thermodynamics of quantum systems, allowing access to
many quantities of interest, particularly in the context of
cold atom quantum simulators.

For systems in equilibrium, qumode probing can be

used for thermometry of the system temperature, as well
as reconstruction of the partition function, from which
many other thermodynamical quantities of interest can
be deduced. Moreover, for systems outside of equilib-
rium, qumodes can be used to probe work and free en-
ergy differences under evolutions of the system and its
Hamiltonian. As the basic form of the interaction is al-
most synonymous with the form of quantum light-matter
interactions, there is a significant scope of applicability
of these results, particularly given that the necessary pa-
rameter regimes can be achieved in current experiments.
Indeed, we remark that while several of our results re-
quire the system component of the interaction Hamilto-
nian to be proportional to the thermalising Hamiltonian
of the system, this is not an unrealistic challenge partic-
ularly in systems driven by their interactions with light
or other similar environments, especially in the strong-
coupling regime. With the high degree of tunability of
the specific form of the interaction offered by optical se-
tups, qumode probing promises to be a valuable tool in
the experimental characterisation of many-body quan-
tum systems.
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