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1. Introduction

Fix p > 2 a prime, and let K/Qp be a finite extension with ring of integers O, 
uniformiser π, residue field k.

1.1. Background

Let G be a compact p-adic Lie group, and recall that we define the completed group 
algebra of G over O as:

OG := lim←−−O[G/N ] (1)

where the limit is taken over all open normal subgroups N of G. Continuous, O-linear 
representations of G are closely related to OG-modules.

This paper is part of an ongoing project to classify the prime ideal structure of OG, 
towards which much progress has been made in [7], [2], [6], [16] and [15]. In the same 
vein as those works, we aim to prove that all prime ideals in OG can be reduced to a 
particular standard form. Specifically, recall the following definition [15, Definition 1.1]:

Definition 1.1. We say that a prime ideal P of OG is standard if there exists a closed, 
normal subgroup H of G such that:

• G0 := G is torsionfree.
H
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• H = (P + 1) ∩G.
• The image of P in OG0 is centrally generated.

We say that P is virtually standard if P ∩ OU is a finite intersection of standard prime 
ideals of OU for some open normal subgroup U of G.

The essence of this definition is that P is standard when it can be constructed using 
only augmentation ideals of the form (H − 1)OG, for H a closed subgroup of G, and 
centrally generated ideals, i.e. the obvious prime ideals.

In our case, we will assume further that G is a uniform pro-p group in the sense of 
[12, Definition 4.1]. This is a safe reduction since all compact p-adic Lie groups have an 
open, uniform normal subgroup.

Let us recall the main conjecture within the study of two-sided ideals in non-
commutative Iwasawa algebras, first proposed in [4, Question N], and stated in [15, 
Conjecture 1.1]:

Conjecture 1.2. Let G be a solvable, uniform pro-p group, and let P be a prime ideal in 
OG. Then P is virtually standard, and moreover if p ∈ P then P is standard.

Note: There is a version of this conjecture for non-solvable groups, which requires us to 
exclude the case where OG/P is a finitely generated O-module, but this will not concern 
us here.

When the prime ideal P contains p, we can reduce to studying the mod-p Iwasawa 
algebra:

kG := OG
(π) = lim←−− k[G/N ].

We know that Conjecture 1.2 holds for all prime ideals P of kG whenever G is nilpotent 
by [2, Theorem A], and also when G is abelian-by-procyclic by [16, Theorem 1.4].

In the case where the prime ideal P does not contain p, however, the picture is 
very different. Define the rational Iwasawa algebra or Iwasawa algebra of continuous 
distributions as

KG := OG ⊗O K.

This is a Noetherian, topological K-algebra, and the prime ideals of OG not containing 
p are in bijection with prime ideals in KG, via the map P �→ P ⊗O K. We aim to prove 
the analogue of Conjecture 1.2 for prime ideals in KG.

Note: 1. This conjecture is trivially true for G abelian.
2. Definition 1.1 still makes sense if we replace O with k or K at each occurrence, so 

we may also talk about prime ideals in kG or KG being standard or virtually standard. 
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Indeed, a prime ideal in OG containing (resp. not containing p) is (virtually) standard 
if and only if the corresponding prime ideal in kG (resp. KG) is (virtually) standard.

3. The requirement that prime ideals in KG are only virtually standard is necessary, 
since they are not all standard. For example, if G = Zp, and K contains a p’th root 
of unity ζ, then there is a continuous group homomorphism G → K×, r �→ ζr, which 
extends to a ring homomorphism KG → K. If we let P be the kernel of this map, then 
P is a prime ideal of KG and P is not standard, since (P + 1) ∩ G = Gp and G/Gp is 
not torsionfree.

In this paper, we prove a version of Conjecture 1.2 for KG, in the case where G is 
nilpotent.

1.2. Alternative formulation

There is an alternative way of describing standard prime ideals in OG and KG, and 
thus formulating Conjecture 1.2, which will be of more practical use:

Firstly, for any two-sided ideal I of OG, recall from [2, Definition 5.2] that we define

I† := {g ∈ G : g − 1 ∈ I} = (P + 1) ∩G,

a closed, normal subgroup of G, and we say that I is faithful if I† = 1, i.e. if the natural 
map G →

(OG
I

)×
, g �→ g + I is injective.

Setting GI := G
I† , the kernel of the natural surjection OG → OGI is the augmentation 

ideal (I† − 1)OG, and the image of I under this surjection is a faithful ideal of OGI .

Note: If I is prime and p ∈ I, it follows from [2, Lemma 5.2] that GI is torsionfree, but 
this need not be true if p /∈ I. Roughly speaking, this is why we can only generally assert 
that prime ideals not containing p are virtually standard, and not standard.

If P is a faithful, prime ideal of OG, then to prove that P is standard, we see using 
Definition 1.1 that it is only required to prove that P is centrally generated. Using [1, 
Corollary A], we know that Z(OG) = OZ(G), so P is centrally generated precisely when 
P = (P ∩ OZ(G))OG.

More generally, if I is a right ideal of OG and H is a closed subgroup of G, we say 
that H controls I if I = (I ∩ OH)OG, i.e. I is generated as a right ideal by a subset 
of OH. Define the controller subgroup of I by Iχ :=

⋂{U ≤o G : U controls I}, and it 
follows from [3, Theorem A] that a closed subgroup H of G controls an ideal I � OG if 
and only if Iχ ⊆ H, so in particular Iχ controls I.

If I is a two-sided ideal, then Iχ is a closed, normal subgroup of G by [2, Lemma 
5.3(a)], and to prove that I is centrally generated, all that is required is to prove that I
is controlled by Z(G), i.e. Iχ ⊆ Z(G).

So, to summarise, given a prime ideal P of OG, to prove that P is standard, we need 
only to prove that the quotient GP = G

† is torsionfree, and that the image of P under 

P
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the surjection OG → OGP is controlled by Z(GP ). Therefore, we deduce the following 
alternative formulation for Conjecture 1.2:

Alternative Formulation: Let G be a solvable, uniform pro-p group. We conjecture that 
every faithful prime ideal of OG is controlled by Z(G).

Note that we could replace O with K at any point in this subsection without affecting 
the sensibility of any definitions or conclusions.

1.3. Main results

When studying Iwasawa algebras, rather than studying general prime ideals, we may 
be interested specifically in classifying primitive ideals, i.e. the annihilators of simple 
OG-modules.

However, since G is a pro-p group, the Iwasawa algebra OG has a unique maximal 
left ideal m = (G − 1, π), which is in fact two-sided. Therefore m is the only primitive 
ideal in OG. The rational Iwasawa algebra KG, on the other hand, has many simple 
modules and primitive ideals.

Theorem A. Let G be a nilpotent, uniform pro-p group. Then every primitive ideal of 
KG is maximal and virtually standard. Moreover, every faithful, primitive ideal of KG

is standard.

As explained above, we see that to prove Theorem A, it suffices to show that all 
faithful, primitive ideals in KG are controlled by Z(G).

Now, recall from [19, III 2.1.2] the definition of a p-valuation ω : G → R ∪ {∞}. We 
recap the key properties of p-valuations in section 2, but for now, just recall that if G is 
uniform, then G carries a complete p-valuation given by ω(g) := sup{n ∈ N : g ∈ Gpn+1}, 
so this concept gives rise to a larger class of torsionfree compact p-adic Lie groups which, 
in particular, contains the class of all closed subgroups of uniform groups.

If we assume that (G, ω) is a complete, nilpotent p-valued group of finite rank, then it 
follows from [2, Theorem A] that all faithful prime ideals in the mod-p Iwasawa algebra 
kG are controlled by Z(G). One might think that these techniques could be generalised 
to the characteristic 0 case to prove the same result. Unfortunately, the author showed in 
[15] that these techniques fail in characteristic 0, and they can only be used to establish 
a much weaker control theorem for primitive ideals ([15, Theorem 1.2]).

However, in this paper, we adapt the argument given in [15] with some new techniques, 
and prove the following much stronger control theorem for general prime ideals:

Theorem B. Let G be a nilpotent, complete p-valued group of finite rank. Then there 
exists an abelian normal subgroup A of G such that A controls every faithful prime ideal 
in KG.
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Of course, if we could show that this subgroup A is central, then Theorem A would 
follow immediately, and would remain true for prime ideals as opposed to just primitive 
ideals. But unfortunately, this need not always be the case.

For example, if G = H �Zp for H abelian and (G, H) � Z(G), then the subgroup A
given by Theorem B is H, which is not central. We prove Theorem B in section 3.

Theorem B is the strongest result we have obtained to date concerning general prime 
ideals in KG, but all subsequent results require the additional assumption that our prime 
ideals are primitive.

The key idea is that we want to define a class of KG-representations M whose annihi-
lator ideals completely describe the primitive ideal structure of KG. Using [25, Theorem 
5.2], we have a dense, faithfully flat embedding of KG into the locally analytic distri-
bution algebra D(G, K) as defined in [26, Definition 2.1, Proposition 2.3], so it makes 
sense to restrict to the class of coadmissible D(G, K)-modules, which naturally have the 
structure of KG-modules. However, since D(G, K) is non-noetherian, this may present 
difficulties, so instead we restrict our attention to larger, Noetherian completions of KG:

Returning to the case where G is uniform, let LG = log(G) be the Zp-Lie algebra of 
G as defined in [12, Theorem 4.30], and set L := 1

pLG. Recall from [17, Definition 1.2]
that we define the affinoid enveloping algebra of L with coefficients in K to be:

Û(L)K :=
Ç

lim←−−
n∈N

U(L)/πnU(L)
å

⊗O K (2)

This is a Noetherian, Banach K-algebra, and recall from [5, Theorem 10.4] that there 
exists a continuous, dense embedding of K-algebras:

KG ↪−→ Û(L)K , g �→ exp(log(g)). (3)

Unlike the embedding KG → D(G, K), this map is not faithfully flat, but we can still 
use it to study the representation theory of KG via the representation theory of L.

In section 2, we recall from a previous work [17] how we define the Dixmier module
D̂(λ) of Û(L)K , corresponding to a linear form λ ∈ HomZp

(L, O). It follows from [17, 
Theorem A] that using the annihilators of these modules, we can completely describe 

the primitive ideal structure of Û(L)K .
So now, we are interested in the restricted action of KG on D̂(λ), and the key result 

we need in the proof of Theorem A is the following:

Theorem C. Let G be a nilpotent, uniform pro-p group such that L is powerful, let F/K
be a finite extension, and let λ ∈ HomZp

(L, OF ) such that λ|Z(L) is injective. Then P :=
AnnKGD̂(λ)F is controlled by Z(G).

Note: To say that L is powerful just means that [L, L] ⊆ pL.
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We prove this result in section 4. The key idea is that we know that the annihilator 
P := AnnKGD̂(λ) is controlled by an abelian normal subgroup A of G by Theorem B, 
so we consider the action of KA on D̂(λ), and prove that the kernel of this action is 
controlled by Z(G).

In section 5, we apply [17, Theorem A], to prove that it suffices to know that Dixmier 
annihilators are controlled by Z(G) to establish the same result for all primitive ideals, 
and Theorem A follows immediately from Theorem C.

Acknowledgments

I am very grateful to Konstantin Ardakov for many helpful comments, and also to 
the anonymous referees at Advances in Mathematics. I would also like to thank EPSRC 
and the Heilbronn Institute for Mathematical Research for funding and supporting me 
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2. Preliminaries

Notation: For g, h ∈ G, we denote the group commutator by (g, h) := ghg−1h−1. More-
over, we write H �i

c G to mean that H is a closed, isolated normal subgroup of G, i.e. 
G
H is torsionfree.

2.1. Non-commutative valuations

Let us first recap some basic notions of ring filtrations and valuations. Throughout, 
let R be any ring.

Definition 2.1. A filtration on R is a map w : R → Z ∪{∞} such that w(0) = ∞ and for 
all r, s ∈ R:

• w(r + s) ≥ min{w(r), w(s)}.
• w(rs) ≥ w(r) + w(s)

We say that w is separated if w(r) = ∞ if and only if r = 0, and w is a valuation if 
w(rs) = w(r) + w(s) for all r, s ∈ R.

For each n ∈ Z, we define FnR := {r ∈ R : w(r) ≥ n}, and define the associated graded 
ring grw R to be ⊕

n∈Z
FnR

Fn+1R
with multiplication (r+Fn+1R)(s +Fm+1R) = rs +Fn+m+1R.

Note that w is a valuation if and only if grw R is a domain.
If r ∈ R and w(r) = n then we denote gr(r) := r + Fn+1R ∈ gr R.
Recall from [21, Ch. II Definition 2.2.1] that a filtration w : R → Z ∪{∞} is Zariskian

if the Rees ring R̃ := ⊕
n∈Z

FnR is Noetherian, and F1R ⊆ J(F0R). We will not use this 
definition very often, but we will usually always assume that our filtrations are Zariskian.
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Note that if w is Zariskian, then it is separated and both R and grw R are Noetherian, 
since they arise as quotients of the Rees ring.

Example. 1. If R carries a filtration w, then the matrix ring Mn(R) carries a filtration 
wn(A) = min{w(ai,j) : i, j = 1, · · · , n} – the standard matrix filtration.

2. If I is a two-sided ideal of R and R carries a filtration w, then the quotient ring RI
carries the quotient filtration given by w(r + I) = sup{w(r + y) : y ∈ I}. Note that grw
R
I = grw R

gr I , and if w is Zariskian then w is Zariskian.

Now, recall the following definition ([16, Definition 3.1])

Definition 2.2. Let Q be a simple artinian ring, and let v : Q → Z ∪ {∞} be a filtration. 
We say that v is a non-commutative valuation if the completion “Q of Q with respect to 
v is isomorphic to a matrix ring Mn(Q(D)), where:

• Q(D) is the ring of quotients of some non-commutative DVR D with uniformiser ν,
• the extension of v to “Q is given by the standard matrix filtration corresponding to 

the ν-adic filtration on Q(D).

Note that if v is a non-commutative valuation on Q, then for all z ∈ Z(Q), q ∈ Q, 
v(qz) = v(q) + v(z), a property which will be very useful to us in section 3.

The following construction allows us to define a non-commutative valuation on the 
artinian ring of quotients Q(R) of a Zariskian filtered ring R. This construction was 
derived in [2, Section 3], and we state it fully since we will need it for some proofs in 
section 3.

Construction 2.3. Let R be a prime, Noetherian ring with a Zariskian filtration w such 
that grw R is commutative and the graded ideal (grw R)≥0 is non-nilpotent. Then for 
each minimal prime ideal q of grw R, we can construct a non-commutative valuation on 
Q(R) using the following data:

• S := {r ∈ R: gr(r) /∈ q} – an Ore set in R such that S−1R = Q(R)
• w′ – a Zariskian filtration on Q(R) such that w′(r) ≥ w(r) for all r ∈ R, and 

w′(s−1r) = w′(r) − w(s) for all s ∈ S. The associated graded grw′ Q(R) is the 
homogeneous localisation of grw R at q.

• Q′ – the completion of Q(R) with respect to w′, an artinian ring.
• U – the positive part of Q′, a Noetherian ring.
• z – a regular, normal element of J(U) such that znU = Fnw′(z)Q

′ for all n ∈ Z.
• vz,U – the z-adic filtration on Q′, topologically equivalent to w′.
• “Q – a simple quotient of Q′.
• V – the image of U in “Q.
• z – the image of z in V .
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• vz,V – the z-adic filtration on “Q.
• B – a maximal order in “Q, equivalent to V , satisfying B ⊆ z−rV for some r ≥ 0, 

isomorphic to Mn(D) for some non-commutative DVR D.
• vz,B – the z-adic filtration on B.
• vq – the J(B)-adic filtration on “Q, topologically equivalent to vz,B.

Then v = vq defines a non-commutative valuation on Q(R), whose completion is “Q, and 
the natural map R → Q(R) is continuous. Moreover, if w(x) ≥ 0 then v(x) ≥ 0.

2.2. Crossed products

Given a ring R and a group H, recall from [23] that a crossed product of R with H, 
denoted R ∗ H, is a ring extension R ⊆ S, free as a left R-module with basis {h : h ∈
H} ⊆ S× in bijection with H such that for each g, h ∈ H:

• gR = Rg and
• gRhR = ghR.

Furthermore, given a sequence H1, · · · , Hr of groups, we denote an iterated crossed prod-
uct R ∗H1 ∗H2 ∗ · · · ∗Hr inductively to mean a crossed product of R ∗H1 ∗ · · · ∗Hr−1

with Hr.
Let us recap some properties of crossed products that we will use throughout.

Lemma 2.4. Let R be a Noetherian Q-algebra, F a finite group. Then if P is a prime 
ideal of a crossed product S = R ∗ F , then:

i. P ∩R is semiprime in R.
ii. J := (P ∩R) · S is semiprime in S, and P is a minimal prime above J .
iii. S/J = (P/P ∩R) ∗ F .

Proof. We will prove that P ∩ R is an F -prime ideal, i.e. it is F -invariant and for any 
F -invariant ideals A, B of R, if AB ⊆ P ∩R then A ⊆ P ∩R or B ⊆ P ∩R.

Having established this, part i follows from the fact that all minimal primes above 
P ∩ R form a single F -orbit by [23, Lemma 14.2(ii)], part iii is obvious since J =
⊕

g∈F
(P ∩ R)ḡ, and part ii is part iii together with [22, Proposition 10.5.8] and [23, 

Theorem 4.4].
So, suppose A, B � R are F -invariant, i.e. for all g ∈ F , ḡA = Aḡ and ḡB = Bḡ, and 

suppose that AB ⊆ P ∩R. Then AS, BS are two-sided ideals of S, and (AS)(BS) ⊆ P . 
So since P is prime, we can assume without loss of generality that AS ⊆ P .

So since AS = ⊕
g∈F

Aḡ, it follows that A ⊆ P ∩ R, and hence P ∩ R is F -prime as 

required. �
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Lemma 2.5. Let R be a Noetherian ring, F a finite group. Then if P is a primitive ideal 
of a crossed product R ∗ F , then P ∩R is semiprimitive.

Proof. Let S = R ∗ F , then since P is primitive, P = AnnSM for some irreducible 
S-module M . Since F is finite, M is finitely generated over R, so since R is Noetherian, 
we can choose a maximal R-submodule U of M .

For each g ∈ F , ḡ · U is a maximal R-submodule of M , so set Mg := M/ḡ · U , 
an irreducible R-module, and let Qg := AnnRMg, a primitive ideal of R. Clearly if 
r ∈ P ∩R = AnnRM then rNg = 0 for all g ∈ F , so P ∩R ⊆ ∩

g∈F
Qg.

Also, ∩
g∈F

ḡ · U is an S-submodule, so by simplicity of M , ∩
g∈F

ḡ · U = 0. So if r ∈ ∩
g∈F

Qg

then rMg = 0 for all g, so rM ⊆ ḡ · U for all g, i.e. rM ⊆ ∩
g∈F

ḡ · U = 0 and hence 

r ∈ AnnRM = P ∩R. Hence:

P ∩R = ∩
g∈F

Qg

Hence P ∩R is semiprimitive as required. �
2.3. p-valued groups

Let G be a group. Recall from [19, III 2.1.2] that we define a p-valuation on G to be 
a map ω : G → R ∪ {∞} such that for all g, h ∈ G:

• ω(g) = ∞ if and only if g = 1.
• ω(g−1h) ≥ min{ω(g), ω(h)}.
• ω((g, h)) ≥ ω(g) + ω(h).
• ω(gp) = ω(g) + 1.
• ω(g) > 1

p−1 .

Note that if (G, ω) is a p-valued group then G is torsionfree, and carries a topology 
defined by the metric d(g, h) := c−ω(g−1h) for some c > 1. We will always assume 
that G is complete with respect to this topology, in which case we can define p-adic 
exponentiation in G, i.e. for all g ∈ G, α ∈ Zp, if α = lim

n→∞
αi for αi ∈ Z, we define 

gα := lim
n→∞

gαi ∈ G.
Given d ∈ N, we say that G has finite rank d if there exists a subset g := {g1, · · · , gd} ⊆

G such that for every g ∈ G, there exists a unique α ∈ Zd
p such that g = gα := gα1

1 · · · gαd

d , 
and ω(g) := min{vp(αi) + ω(gi) : i = 1, · · · , d}. We call such a subset g an ordered basis
for (G, ω).

Remark. We say that a topological group G is p-valuable if there exists a p-valuation ω
on G such that (G, ω) is a complete p-valued group of finite rank.



A. Jones / Advances in Mathematics 403 (2022) 108371 11
Example. If G is uniform, and ω(g) := sup{n ∈ N : g ∈ Gpn+1}, then (G, ω) is a complete 
p-valued group, and any minimal topological generating set for G is an ordered basis for 
(G, ω).

Definition 2.6. We say that a p-valuation ω : G → R ∪ {∞} is abelian if:

• There exists n ∈ N such that ω(G) ⊆ 1
nZ.

• For all g, h ∈ G, ω((g, h)) > ω(g) + ω(h).

Using [27, Lemma 26.13], if (G, ω) is any integer valued p-valued group of finite rank 
(e.g. a uniform group), then we can choose c > 0 such that ωc(g) := ω(g) −c is an abelian 
p-valuation on G.

Now, suppose that (G, ω) is a complete p-valued group of rank d, with ordered basis 
g = {g1, · · · , gd} then the Iwasawa algebra OG is isomorphic to the power series ring 
O[[b1, · · · , bd]] as an O-module (and as a ring if G is abelian), where each variable bi
corresponds with gi − 1.

Moreover, if ω is an abelian p-valuation, taking values in 1
nZ for some n ∈ N, then 

recall from [15, Section 2.2] that we can define a filtration w on OG via:

w(
∑

α∈Nd

λαb
α1
1 · · · bαd

d ) = inf{vπ(λα) +
∑
i≤d

enαiω(gi) : α ∈ Nd},

where e is the ramification index of K/Qp.
We call w the Lazard filtration on OG. Using [25, Theorem 4.5], we see that grw

OG ∼= k[t, t1, · · · , td], where k is the residue field of K, t = gr(π) and ti = gr(bi), and 
hence is commutative. Note that for any g ∈ G, w(g − 1) ≥ enω(g), with equality if 
g = gi for some i.

Furthermore, since OG is complete with respect to w and grw OG is Noetherian, it 
follows from [21, Ch. II Theorem 2.1.2] that w is a Zariskian filtration. Hence for any 
two-sided ideal I of OG, the quotient filtration w on OG/I is Zariskian.

In particular, if I is a prime ideal then we can use Construction 2.3 to define a non-
commutative valuation v on the Goldie ring of quotients Q(OG/I) such that the natural 
map τ : (OG, w) → (Q(OG/I), v) is continuous.

2.4. Prime ideals in KG

Fixing (G, ω) a complete p-valued group of finite rank, we will now examine some 
basic properties of prime ideals in KG. First of all, the following lemma allows us to 
simplify the statement of Theorem C to remove reference to the finite extension F/K:

Lemma 2.7. Let F/K be a finite extension, and let I ′ a right ideal of FG. Setting I :=
I ′ ∩KG, we have that if I ′ is controlled by U ≤c G then I is controlled by U .
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Proof. We will first suppose that U is open in G. Then given r ∈ I, choose a complete 
set of coset representatives {g1, · · · , gr} for U in G, then r =

∑
1≤i≤r

rigi for some ri ∈

KU ⊆ FU .
So since I = I ′ ∩KG and I ′ is controlled by U , it follows that ri ∈ I ′ ∩ FU ∩KG =

I ′ ∩KU = I for each i, and hence I is controlled by U .
So, let Iχ be the controller subgroup of I, i.e. the intersection of all open subgroups 

of G controlling I. So since this includes all open subgroups of G controlling I ′, we have 
that Iχ ⊆ I ′χ, hence any closed subgroup controlling I ′ also controls I. �

Now, recall that a two-sided ideal P of a ring R is completely prime if the quotient 
R
P is a domain. The following result is the characteristic 0 analogue of [2, Theorem 8.6], 
and it uses a similar argument.

Theorem 2.8. Let P be a prime ideal of KZ(G). Then PKG is a completely prime ideal 
of KG, and if P is faithful then PKG is faithful.

Proof. Let Z := Z(G). Then Z is a closed, isolated subgroup of G by [2, Lemma 8.4(a)], 
and hence G/Z is a p-valuable group by [19, IV.3.4.2]. We will prove that if P is a prime 
ideal of OZ with p /∈ P then POG is completely prime, and it is faithful if P is faithful. 
The result for the rational Iwasawa algebra follows immediately.

Let Q be the field of fractions of OZ/P . If we let w be the Lazard filtration on OZ, 
then since w is a Zariskian filtration and the associated graded is a commutative, infinite 
dimensional k-algebra, it follows from Construction 2.3 that there exists a valuation v′

on Q such that the natural map τ : OZ → Q is continuous, and if w(x) ≥ 0 then 
v′(τ(x)) ≥ 0.

Furthermore, if v′(τ(z−1)) = 0 for some z ∈ Z then v′(τ(z−1)n) = 0 for all n since v′

is a valuation, which is a contradiction since (z−1)n converges to zero in OG, and hence 
in Q by continuity of τ . Therefore v′(τ(z−1)) > 0 for all z ∈ Z(G), and after choosing an 
ordered basis {z1, · · · , zn} for Z and an integer M such that Mv′(τ(zi − 1)) ≥ w(zi − 1)
for all i, then we obtain an equivalent valuation v := Mv′ on Q such that v(τ(x)) ≥ w(x)
for all x ∈ OZ.

Recall that if we fix an ordered basis {g1, · · · , ge} for GZ , then every element of OG has 
the form 

∑
α∈Ne

μαc
α for some μα ∈ OZ where ci = gi−1. Define a map u : OG → Z ∪{∞}

via:

u : OG → Z ∪ {∞},
∑
α∈Ne

μαc
α �→ inf{v(τ(μα)) + w(cα) : α ∈ Ne}. (4)

Since v is a separated valuation, it is clear that u(
∑

α∈Ne

μαc
α) = ∞ if and only if μα ∈ P

for all α, i.e. if and only if 
∑

α∈Ne

μαc
α ∈ POG. Therefore u−1(∞) = POG. So following 

the proof of [2, Theorem 8.6], we will prove that u is a valuation on OG, from which it 
will follow that POG = u−1(∞) is a completely prime ideal.
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Firstly, it is clear from the definition that u(r + s) ≥ min{u(r), u(s)}, u(μ) = v(τ(μ))
and u(μr) = u(μ) +u(r) for all r, s ∈ OG, μ ∈ OZ. It is also clear that if r1, r2, · · · ∈ OG

with ri → 0 as i → ∞ then u(r1 + r2 + · · · ) ≥ inf{u(ri) : i ≥ 1}, therefore to prove that 
u is a filtration it remains to prove that u(cαcβ) ≥ u(cα) + u((c)β) for all α, β ∈ Nr.

Write cαcβ =
∑

γ∈Ne

λα,β
γ cγ , then by the definition of the Lazard filtration, w( 

∑
γ∈Ne

λα,β
γ cγ)

= inf{w(λα,β
γ ) + w(cγ) : γ ∈ Nd}. So since u(x) ≥ w(τ(x)) for all x ∈ OZ, we have:

u(cαcβ) = inf{v(τ(λα,β
γ )) + w(cγ) : γ ∈ Ne} ≥ inf{w(λα,β

γ ) + w(cγ) : γ ∈ Ne} =
w(cα) + w(cβ) = u(cα) + u(cβ).

So u is a filtration on OG, and to verify that it is a valuation, we will show that the 
associated graded gru OG is a domain. First note that the definition of u gives rise 
to a natural inclusion of graded rings grv OZ/P → gru OG, and this gives rise to an 
isomorphism of graded rings grv (OZ/P )[Y1, · · · , Ye] → gru OG where Yi is sent to 
gr(ci). Therefore gru OG is a domain and u is a valuation as required.

Finally, if P is faithful, then suppose g ∈ G and g − 1 ∈ POG. Then write g =
zgα1

1 · · · gαe
e for some z ∈ Z, αi ∈ Zp, and it follows that:

h − 1 = (z − 1) + (z − 1)
∑

0	=γ∈Ne

(
α
γ

)
cα +

∑
0	=γ∈Ne

(
α
γ

)
cα.

Therefore, we see that z − 1 ∈ P and hence z = 1 since P is faithful. It also follows 
that for each 0 �= γ ∈ Ne, 

(
α
γ

)
∈ P , and hence 

(
α
γ

)
= 0 since P ∩ O = 0. This is only 

possible if α = (α1, · · · , αe) = 0, and hence h = zgα1
1 · · · gαe

e = 1 and POG is faithful as 
we require. �

In particular, it follows from this result that standard prime ideals in KG are com-
pletely prime.

2.5. Completions of KG

For the rest of this section, fix G a uniform pro-p group, let L := 1
p log(G) be its 

Zp-Lie algebra of G, and let g = L ⊗Zp
Qp.

To reiterate, we aim to study the action of KG on certain Û(L)K-modules using 

the dense embedding KG → Û(L)K . However, this embedding is not faithfully flat, so 

representation theoretic information is lost when passing from KG to Û(L)K .
Perhaps a better choice for a completion of KG would be the distribution algebra

D(G, K) of G with coefficients in K in the sense of [25]. In this case, the natural dense 
embedding KG → D(G, K) is faithfully flat by [25, Theorem 4.11], but unfortunately 
D(G, K) is not Noetherian, so it would be difficult in practice to extract general ring-
theoretic information from D(G, K).

However, for each n ≥ 0, consider the crossed products
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Dpn = Dpn(G) := Û(pnL)K ∗ G
Gpn

as defined in [5, Proposition 10.6], which arise as Banach completions of KG with respect 
to the extension of the dense embedding KGpn → Û(pnL)K to KG = KGpn ∗ G

Gpn . These 
algebras give rise to an inverse system:

KG → D(G, K) → · · ·Dp3 → Dp2 → Dp → D0 = Û(L)K .

i.e. D(G, K) = lim←−−
n→∞

Dpn , so since D(G, K) is faithfully flat over KG, we want to ap-

proximate D(G, K) using the Noetherian Banach algebras Dpn , and thus limit how much 
information we lose. Indeed, using [5, Proposition 10.6(e), Corollary 10.11], we see that 
for all KG-modules M , Dpn ⊗KG M �= 0 for all sufficiently high n.

Lemma 2.9. Let A be a free abelian pro-p group of rank d, A := 1
p log(A). Then A

Ap =
C1×· · ·×Cd where each Ci = 〈ci〉 = 〈giAp〉 is a cyclic group of order p, and Dp = Dp(A)
is an iterated crossed product:

Dp = Û(pA)K ∗ C1 ∗ · · · ∗ Cd.

where for each i = 1, · · · , d ci
r = cri for 0 ≤ r < p, and cip = gpi .

Proof. Firstly, it is clear that since A = Zd
p that A

Ap = Zd
p

(pZp)d = ( Zp

pZp
)d = C1 × · · · × Cd

as required.
For the second statement, it suffices to prove that KA = KAp ∗C1 ∗ · · · ∗Cd, and that 

this decomposition satisfies the same properties, since it will be preserved after passing 
to the completion.

Choose a Zp-basis {g1, · · · , gd} for A, and we may assume that Ci = 〈ci〉 where 
ci = giA

p. Then every element r ∈ KA has the form 
∑

α∈[p−1]d
rαg

α1
1 · · · gαd

d for some 

rα ∈ KAp, and r is sent to 
∑

α∈[p−1]d
rαc

α1
1 · · · cαd

d under the isomorphism KA → KAp∗ A
Ap .

So, since gi, gj and gigj are sent to ci, cj and cicj respectively, it follows that cicj =
ci · cj for each i, j. Hence KA = KAp ∗ C1 ∗ · · · ∗ Cd.

Finally, for 0 ≤ r < p, gri is sent to cri , and hence cir = cri , and gpi ∈ KAp is sent to 
gpi , so cip = gpi as required. �
2.6. Dixmier modules

Recall from [17, Definition 2.3] the following definition:

Definition 2.10. Let λ : g → K be a Qp-linear form such that λ(L) ⊆ O (i.e. λ ∈
HomZp

(L, O)).
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• A polarisation of gK = g ⊗Qp
K at λ is a solvable subalgebra b of gK such that for 

any subspace b ⊆ V ⊆ gK , λ([V, V ]) = 0 if and only if V = b.
• Given a polarisation b of gK at λ, let B := b ∩ (L ⊗Zp

O), and let Kλ be the one-
dimensional b-module induced by λ. Define the affinoid Dixmier module of Û(L)K
induced by λ to be D̂(λ) = D̂(λ)

b
:= Û(L)K ⊗

̂U(B)K
Kλ

Note: If it is unclear what the base field K is, we may sometimes write D̂(λ)K .

So, fixing λ ∈ HomZp
(L, O), let b be a polarisarion of g at λ, and we see that KG

acts on D̂(λ)
b

via the embedding KG → Û(L)K . Set P := AnnKGD̂(λ), and using [17, 
Theorem 4.4], we see that this does not depend on the choice of polarisation.

Definition 2.11. Define the λ-scalar ideal of g to be aλ, the largest ideal a of g such 
that λ(a) = 0. Also, set Aλ := aλ ∩ L, and define the λ-scalar subgroup of G, Aλ :=
exp(pAλ) �i

c G.

Note: For any choice of polarisation b of g ⊗Qp
K at λ, it follows from [17, Lemma 2.3]

that aλ ⊆ b.

Lemma 2.12. Let Aλ be the λ-scalar subgroup of G. If P = AnnKGD̂(λ), then Aλ =
P † = {g ∈ G : g − 1 ∈ P}. In particular, P is faithful if and only if the restriction of λ
to Z(g) is injective.

Proof. Firstly, since aλ ⊆ b, we see that aλD̂(λ) = aλÛ(L)K ⊗
̂U(B)K

Kλ =

Û(L)Kaλ ⊗
̂U(B)K

Kλ = 0.

So since Aλ − 1 ⊆ aλÛ(L)K , it is clear that Aλ − 1 ⊆ P , i.e. Aλ ⊆ P †.
Now, since T = P † is a closed, normal subgroup of G, T := 1

p log(T ) is an ideal of L, 
and it contains 1

p log(Aλ) = Aλ. Also, since (T − 1)D̂(λ) = 0, it follows that T D̂(λ) = 0. 
This is only possible if T ⊆ B and λ(T ) = 0.

Setting t := T ⊗Zp
Qp, t is an ideal of g, aλ ⊆ t and λ(t) = 0. So by the definition of 

aλ, this means that aλ = t.
So, for any u ∈ T , there exists i ∈ N such that πiu ∈ Aλ = aλ ∩ L, and this means 

that u ∈ Aλ. So Aλ = T , and it follows immediately that Aλ = T .
Finally, since G is nilpotent, L is nilpotent, and thus if Aλ �= 0, then it must have 

non-trivial intersection with Z(g). So since P is faithful if and only if Aλ = 1 (i.e. if and 
only if aλ = 0), and any subspace of Z(g) is an ideal of g, it follows that P is faithful 
precisely when nothing in Z(g) is sent to zero under λ, i.e. λ|Z(g) is injective. �

This lemma is useful to know, because it implies that for any Dixmier annihilator P , 
P † is a closed, isolated normal subgroup of G, and hence we can replace G by GP = G

† , 

P
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which is still a nilpotent, uniform group, and P0 = P
(P †−1)KG

becomes a faithful Dixmier 
annihilator.

Note that this lemma explains why we need the assumption that λ|Z(g) is injective in 
the statement of Theorem C, since it is generally untrue that non-faithful prime ideals 
in KG are controlled by Z(G).

3. The logarithm of automorphisms

In this section, we will study general prime ideals within the rational Iwasawa algebra 
KG of a p-valuable group G. This is of course equivalent to studying prime ideals in OG

that do not contain p.
The methods we use are inspired by those used in [2] to prove that faithful prime ideals 

in the mod-p Iwasawa algebra kG are standard, namely the study of Mahler expansions 
of G-automorphisms. Unfortunately, these methods do not work in characteristic 0, as 
demonstrated in [15, Section 3.3], and the best result they can be used to obtain is a 
weak control theorem for faithful primitive ideals ([15, Theorem 1.2]).

The methods we consider in this section involve the logarithm of a G-automorphism, 
which in many ways is the characteristic 0 version of the Mahler expansion. While these 
methods are not yet sufficient to prove standardness in full generality, we can employ 
them together with techniques from [2, Section 7] to adapt the argument used in [15, 
Section 3.4] and ultimately reprove the weak control theorem [15, Theorem 1.2] for all 
faithful prime ideals, rather than just primitive ideals. This culminates in the proof of 
Theorem B, given at the end of the section.

3.1. Bounded ring automorphisms

Let R be a ring carrying a complete Zariskian filtration w. Recall from [2] that a 
function f : R → R is bounded if inf{w(f(r)) − w(r) : r ∈ R} > −∞, in which case we 
define the degree of f to be the number degw(f) := inf{w(f(r)) − w(r) : r ∈ R}.

If we set B(R) as the space of bounded, additive maps f : R → R, then B(R) is a ring 
with pointwise addition and composition as multiplication, and degw defines a complete 
separated filtration on B(R).

Lemma 3.1. If f : R → R is an additive map such that degw(f) > 0, and I is a two-
sided ideal of R such that f(I) ⊆ I. Then if w is the quotient filtration on R/I, and 
f : R/I → R/I is the map induced from f , then degw(f) > 0.

Proof. Let μ := degw(f) > 0. Then given r ∈ R, w(f(r)) − w(r) ≥ μ, we want to prove 
that w(f(r + I)) − w(r + I) > 0:

By definition, w(r + I) = sup{w(r + y) : y ∈ I}, so let us suppose for contradiction 
that w(r+I) ≥ w(f(r+I)), and hence there exists y ∈ I such that w(r+y) ≥ w(f(r) +u)
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for all u ∈ I. In particular, since f(I) ⊆ I, w(r + y) ≥ w(f(r) + f(y)) = w(f(r + y)) ≥
w(r + y) + μ > w(r + y) – contradiction.

Therefore w(f(r+ I)) > w(r+ I) for all r ∈ R, so since w is integer valued, it follows 
that degw(f) ≥ 1 > 0. �

Now, suppose that R is a Zp-algebra, with p �= 0 and w(p) > 0. The following lemma 
will be useful to us several times in this section:

Lemma 3.2. Given m ∈ N, a, b ∈ R such that w(a) = 0, w(b) ≥ 1, and a and b commute:

• vp
(
pm

k

)
= m − vp(k) for all 0 < k < pm.

• min{m − vp(k) + (pm − k)w(b) : 0 < k < pm} → ∞ as m → ∞
• w((a + b)pm − ap

m) ≥ min{pmw(b), m − vp(k) + (pm − k)w(b) : 0 < k < pm}, and 
thus (a + b)pm − ap

m → 0 as m → ∞.

Proof. Firstly, if k = a0 + a1p + · · · + atp
t for some 0 ≤ ai < p, we define s(k) :=

a0 + a1 + · · · + at. Then using [19, III 1.1.2.5] we see that vp(k!) = k−s(k)
p−1 . Therefore, 

vp
(
pm

k

)
= vp

Ä
pm!

k!(pm−k)!

ä
= pm−s(pm)−k+s(k)−(pm−k)+s(pm−k)

p−1 = s(k)+s(pm−k)+1
p−1 .

But since k < pm, we may assume that t = m −1, i.e. k = a0 +a1p + · · ·+am−1p
m−1. 

And since k �= 0, let i be maximal such that am−i �= 0, so k = am−ip
m−i+· · ·+am−1p

m−1

and hence vp(k) = m − i.
Now, pm = (p − 1)pm−i + (p − 1)pm−i+1 + · · · + (p − 1)pm−1 + pm−i, and thus 

pm − k = (p − am−i)pm−i + (p − am−i+1 − 1)pm−i+1 + · · ·+ (p − am−1 − 1)pm−1 and we 
deduce that s(pm − k) = ip − s(k) − (i − 1) = i(p − 1) − s(k) + 1.

Therefore, vp
(
pm

k

)
= s(k)+s(pm−k)−1

p−1 = i(p−1)
p−1 = i = m − vp(k) as required.

To prove the second statement, we just need to prove that for any k, m − vp(k) +
(pm − k)w(b) → ∞ as m → ∞:

If vp(k) ≤ m
2 then m − vp(k) + (pm − k)w(b) ≥ m

2 → ∞.
If vp(k) > m

2 then k = pvp(k)y with vp(y) = 0, so m − vp(k) + (pm − k)w(b) ≥
pvp(k)(pm−vp(k) − y)w(b)

≥ p
m
2 → ∞ as required.

Finally, (a + b)pm − ap
m =

∑
0≤k<pm

(
pm

k

)
akbp

m−k, so w((a + b)pm − ap
m) ≥

min{pmw(b), w(
(
pm

k

)
akbp

m−k) : 0 < k < pm}, and w(
(
pm

k

)
akbp

m−k) ≥ vp
(
pm

k

)
w(p) +

kw(a) + (pm − k)w(b) ≥ m − vp(k) + (pm − k)w(b) as required. �
Now, fix a ring automorphism ϕ : R → R such that degw(ϕ − 1) > 0.

Lemma 3.3. The sequence ϕn − 1 converges to 0 in B(R) as vp(n) → ∞.

Proof. We just need to prove that degw(ϕn − 1) → ∞ as vp(n) → ∞. Since degw(ϕn −
1) > 0 for all n, it suffices to prove that degw(ϕpm − 1) → ∞ as m → ∞.
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Now, ϕpm −1 = ((ϕ −1) +1)pm −1 =
∑

0≤k<pm

(
pm

k

)
(ϕ− 1)pm−k. But since degw defines 

a ring filtration on B(R) and degw(ϕ − 1) ≥ 1, it follows from Lemma 3.2 that if k > 0
then

degw(
(
pm

k

)
(ϕ −1)pm−k) ≥ w

(
pm

k

)
+(pm−k) degw(ϕ −1) ≥ m −vp(k) +(pm−k) degw(ϕ −

1) → ∞ as m → ∞, and clearly if k = 0 then degw(
(
pm

k

)
(ϕ −1)pm−k) ≥ pm degw(ϕ −1) →

∞ as required. �
Now, let us suppose that R is a prime, Noetherian ring, grw R is commutative, and 

that the positively graded ideal (grw R)≥0 is not nilpotent. Then the simple, artinian 
ring Q(R) carries a non-commutative valuation v, which we can describe using Construc-
tion 2.3. Clearly any automorphism ϕ of R extends to Q(R).

The following theorem allows us to pass from (R, w) to (Q(R), v) without difficulty. 
The proof is similar to that of an analogous result in a characteristic p setting, namely 
the proof of [16, Proposition 3.5].

Theorem 3.4. If ϕ ∈ Aut(R) and degw(ϕ −1) > 0, then there exists n ∈ N with degv(ϕn−
1) > 0.

Proof. Using Construction 2.3, we see that we have a sequence of filtrations w′, vz,U , vz,V ,
vz,B, v on Q(R), and our strategy is to prove that ϕn − 1 has positive degree for some n
with respect to each of these in turn. Let us first consider w′.

Since degw(ϕ − 1) > 0, i.e. w(ϕ(r) − r) > w(r) for all r ∈ R, it follows that the 
induced graded automorphism ϕ: grw R → grw R, r + FnR �→ ϕ(r) + FnR is just the 
identity. Therefore, since grw′ Q(R) = (gr R)q, it follows that the induced morphism ϕ:
grw′ Q(R) → grw′ Q(R) is also the identity, and hence degw′(ϕ − 1) ≥ 1.

So, using Lemma 3.3, we can choose n1 ∈ N such that degw′(ϕn1 − 1) ≥ w′(z). But 
since znU = Fnw′(z)Q(R), it follows that if r ∈ znU then w′((ϕn1 − 1)(r)) ≥ w′(r) +
w′(z) ≥ nw′(z) + w′(z) = (n + 1)w′(z), and hence (ϕn1 − 1)(znU) ⊆ F(n+1)w′(z)Q(R) =
zn+1U , and hence degvz,U (ϕn1 − 1) ≥ 1.

Now, recall that “Q is a simple quotient of the completion Q′ of Q(R) with respect to 
vz,U , i.e. a quotient of Q′ by a maximal ideal m. But since Q′ is artinian, all maximal 
ideals are minimal prime ideals, and hence there are only finitely many of them. Since 
ϕn1 is continuous, ϕn1(m) is also a minimal prime ideal of Q′, i.e. ϕn1 permutes the set 
of minimal prime ideals of Q′. Since this set is finite, all permutations have finite order, 
so there exists m such that ϕmn1(m) = m.

Therefore, there exists n2 such that ϕn2 induces an automorphism ϕn2 : “Q → “Q, and 
since Q(R) is simple, the composition Q(R) ↪−→ Q′ � “Q must be injective. Therefore, we 
can think of ϕn2 as an extension of ϕn2 to “Q, so sometimes we may just call it ϕn2 for 
convenience.

Now, if r ∈ znV , then r is the image of zns in “Q, for some s ∈ U . So since degvz,U (ϕn2−
1) ≥ 1, it follows that (ϕn2−1)(zns) ∈ zn+1U , and hence (ϕn2−1)(r) ∈ zn+1V . Therefore 
degv (ϕn2 − 1) ≥ 1.
z,V
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Now, B is a maximal order in “Q, equivalent to V , and B ⊆ z−rV . So let I := {x ∈
V : Bx ⊆ V }, then I is a two-sided ideal of V with zrV ⊆ I. Since degvz,V (ϕn2 − 1) > 0, 
it follows from Lemma 3.3 that we can choose m ∈ N such that (ϕmn2 − 1)(V ) ⊆ zrV , 
and hence there exists n3 ∈ N such that (ϕn3 − 1)(V ) ⊆ I.

In particular, ϕn3(I) ⊆ I, and it follows from Noetherianity of V that ϕn3(I) = I, 
and hence I = ϕ−n3(I).

Therefore, given x ∈ ϕn3(B), x = ϕn3(b) for some b ∈ B, and given c ∈ I, xc =
ϕn3(b)c = ϕn3(bϕ−n3(c)), and since ϕ−n3(c) ∈ I, it follows that bϕ−n3(c) ∈ V , and 
hence xc ∈ V .

So setting O(I) = {b ∈ B : bI ⊆ V }, it follows that O(I) contains B and ϕn3(B). But 
O(I) is an order in “Q, equivalent to V , by [22, Lemma 5.1.12], so since B and ϕn3(B) are 
maximal orders, this means that O(I) = B = ϕn3(B), and hence ϕn3 is an automorphism 
of B.

Also, we can choose n3 such that degvz,V (ϕn3−1) ≥ r+1, and hence (ϕn3−1)(znB) ⊆
(ϕn3 − 1)(zn−rV ) ⊆ zn+1v ⊆ zn+1B. Therefore degz,B(ϕn3 − 1) ≥ 1.

Finally, B = Mn(D) for some non-commutative DVR D, so let ν be a uniformiser 
in D, and it follows that all two-sided ideals of B have the form νnB. Since v is the 
ν-adic filtration on “Q, and v is topologically equivalent to vz,B, we know that there 
exists k ∈ N such that zrB ⊆ ν2B. By Lemma 3.3, we can choose n ≥ n3 such that 
degvz,B(ϕn − 1) ≥ k, i.e. (ϕn − 1)(B) ⊆ zkB ⊆ μ2B.

So, if we assume for induction that (ϕn − 1)(νiB) ⊆ νi+1B for all i < m, then 
(ϕn−1)(νm) = ϕn(νm) −νm = (ϕn−1)(νm−1)ϕn(ν) +νm−1(ϕn−1)(ν). But (ϕn−1)(ν) ∈
ν2B, (ϕn − 1)(νm−1) ∈ νmB and ϕn(ν) ∈ νB, therefore (ϕn − 1)(νm) ∈ νm+1B.

It follows that (ϕn − 1)(νmB) ⊆ νm+1B for all m, and hence degv(ϕn − 1) ≥ 1 as 
required. �

3.2. Bounded group automorphisms

Now, let (G, ω) be a complete, p-valued group of finite rank. We may assume that ω
is an abelian p-valuation as defined in Definition 2.6, and we let w be the corresponding 
Lazard filtration on OG – a complete Zariskian filtration.

Fix an ordered basis g = {g1, · · · , gd} for (G, ω), so that OG is isomorphic to the 
space of power series O[[b1, · · · , bd]] as an O-module, where bi = gi − 1. Recall that for 
any g ∈ G, w(g − 1) ≥ enω(g), with equality if g = gi for some i.

Now, recall the following definition ([2, Definition 4.5]):

Definition 3.5. An automorphism ϕ ∈ Aut(G) is bounded if inf{ω(ϕ(g)g−1) − ω(g) : g ∈
G} > 1

p−1 , and we define the degree of ϕ to be the number degω(ϕ) = inf{ω(ϕ(g)g−1) −
ω(g) : g ∈ G}.

Let Autω(G) be the group of bounded automorphisms of G.
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Lemma 3.6. If ϕ ∈ Autω(G) then ϕ extends to a continuous, O-linear automorphism of 
OG such that degw(ϕ − 1) > 0.

Proof. Clearly ϕ extends to an O-linear automorphism of O[G], so we need only prove 
that degw(ϕ − 1) > 0, and it will follow that ϕ is continuous and extends to OG.

Firstly, for each i = 1, · · · , d, (ϕ − 1)(gi − 1) = ϕ(gi) − gi = (ϕ(gi)g−1
i − 1)gi. But 

since ϕ ∈ Autω(G), we know that ω(ϕ(gi)g−1
i ) > ω(g) + 1

p−1 , so w(ϕ(gi)g−1
i − 1) ≥

enω(ϕ(gi)g−1
i ) ≥ enω(gi) = w(gi − 1). Hence w((ϕ − 1)(gi − 1)) − w(gi − 1) > 0.

Now, given a, b ∈ O[G]:

(ϕ −1)(ab) = ϕ(a)ϕ(b) −ab = (ϕ(a) −a)ϕ(b) +a(ϕ(b) −b) = (ϕ −1)(a)ϕ(b) +a(ϕ −1)(b).

If we assume that w((ϕ −1)(a)) −w(a) > 0 and w((ϕ −1)(b)) −w(b) > 0, then it follows 
that w(ϕ(b)) = w(b) and w((ϕ(a) − a)ϕ(b) + a(ϕ(b) − b)) > min{w(a) + w(ϕ(b), w(a) +
w(b)} = w(a) + w(b) = w(ab), therefore w((ϕ − 1)(ab)) − w(ab) > 0.

So since w((ϕ −1)(gi−1)) −w(gi−1) > 0 for each i = 1, · · · , d, it follows that for every 
α ∈ Nd, λ ∈ O, w(λ(ϕ − 1)((g1 − 1)α1 · · · (gd− 1)αd)) −w(λ(g1 − 1)α1 · · · (gd− 1)αd) > 0. 
In particular, since O[G] is generated as an additive group by the monomials λbα1

1 · · · bαd

d , 
it follows that w(ϕ(s)) = w(s) for all s ∈ O[G].

Now, given r ∈ O[G] with w(r) = t, it follows from the definition of w that r =∑
α∈A

λαb
α1
1 · · · bαd

d + s, where A := {α ∈ Nd :
∑

1≤i≤d
αienω(gi) = t} and w(s) > t. Since 

w(ϕ(s)) = w(s), it is clear that w((ϕ −1)(s)) ≥ w(s) > t, so to prove that w((ϕ −1)(r)) >
t, it remains to show that w((ϕ − 1)(

∑
α∈A

λαb
α1
1 · · · bαd

d )) > t.

But w(λαb
α1
1 · · · bαd

d ) = t for all α ∈ A, so we have seen that w((ϕ −1)(λαb
α1
1 · · · bαd

d )) >
t for each α, and it follows immediately that w((ϕ − 1)(

∑
α∈A

λαb
α1
1 · · · bαd

d )) > t as re-

quired. �
Now, fix a prime ideal P of OG such that p /∈ P , and fix an automorphism ϕ ∈

Autω(G) such that P is invariant under the extension of ϕ to OG, i.e. ϕ(P ) = P . Hence 
ϕ induces an automorphism ϕ of OG

P . We will also assume that P �= (G − 1)OG.

Proposition 3.7. If G is nilpotent, p /∈ P and P �= (G − 1)OG, then the quotient ring 
OG/P is infinitely generated over O.

Proof. Let Q := K ⊗O P � KG, and since p /∈ P , Q is a proper ideal of KG, and 
KG/Q ∼= K ⊗O

OG
P , so Q is prime. If OG/P is finitely generated over O then KG/Q is 

a finite dimensional prime K-algebra, and thus it is simple, meaning that Q = AnnKGM

for some finite dimensional simple KG-module M .
If M = KGm for some m ∈ M then M carries a natural filtration given by v(rm) =

sup{wK(r+y) : y ∈ KG and ym = 0}, where wK is the extension of the Lazard filtration 
on OG to KG. Then since M is finite dimensional over K, it is complete with respect 
to v, and hence M has the structure of a simple module over the completion of KG
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with respect to wK , which is isomorphic to the affinoid enveloping algebra Û(L)K . So 

set Q′ := Ann
̂U(L)K

M , a primitive ideal in Û(L)K of finite codimension.

But since L is nilpotent, we see using [17, Theorem A] that Q′ ∩ Û(pnL)K =
Ann

̂U(pnL)K
D̂(λ) for some n ∈ N and some linear form λ ∈ (pnL)∗. Thus Q′ ∩ U(g) =

AnnU(g)D(λ) has finite codimension in U(g), meaning that λ = 0 by [11], and hence 
L ⊆ g ⊆ Q′.

But since G = exp(L), this means that G − 1 ⊆ Q′ ∩OG = P , and hence OG/P is a 
quotient of O = OG/(G −1), meaning that either p ∈ P or P = (G −1)OG, contradicting 
our assumptions. Therefore OG/P is infinitely O-generated as required. �

In light of this proposition, we will also assume from now on that OG/P is infinitely 
generated over O.

Theorem 3.8. There exists a non-commutative valuation v on Q(OG/P ) such that the 
natural map τ : (OG, w) → (Q(OG/P ), v) is continuous, and there exists n ∈ N such 
that degv(ϕn − 1) ≥ v(p).

Proof. Let w be the quotient filtration on OG
P , so that grw OG

P
∼= gr w OG

grw P . So since w

is Zariskian, it follows that grw OG
P is commutative and Noetherian, and since OG

P is 
complete with respect to w, it follows from [21, Theorem 2.1.2] that w is Zariskian.

Moreover, since grw OG ∼= k[t, t1, · · · , td] as a graded ring, the quotients grw OG
P /(grw

OG
P )i≥0 are finite dimensional over k for each i ≥ 1. So if (grw OG

P )≥0 is nilpotent in grw
OG
P then grw OG

P is also finite dimensional over k, and hence OG/P is finitely generated 
over O – a contradicting our assumption. Hence (grw OG

P )≥0 is non-nilpotent.
Therefore, using Construction 2.3, we can define a non-commutative valuation v on 

Q(OG/P ) such that the inclusion (OG/P, w) → (Q(OG/P ), v) is continuous. Since the 
surjection (OG, w) → (OG/P, w) is continuous, it follows that the composition τ is also 
continuous.

Now, since degw(ϕ − 1) > 0 by Lemma 3.6, and (ϕ − 1)(P ) ⊆ P , it follows from 
Lemma 3.1 that degw(ϕ − 1) > 0. Using Theorem 3.4, it follows that there exists n ∈ N

such that degv(ϕn − 1) > 0 as required. �
3.3. The logarithm

Given a complete p-valued group (G, ω) of finite rank, and a faithful prime ideal P of 
OG such that p /∈ P and OG/P is infinitely generated over O, we now want to take steps 
towards proving a control theorem for P . Again, assume that there is an automorphism 
ϕ ∈ Autω(G) with ϕ �= 1 such that ϕ(P ) = P , and let ϕ be the automorphism of OG/P

induced from ϕ.
We will now assume further that there is a closed, central subgroup A of G such that:

• ϕ(g)g−1 ∈ A for all g ∈ G.
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• For all a ∈ A, ϕ(a) = a.

It is straightforward to show that these properties are satisfied for ϕn for all n ∈ N.
Now, using Theorem 3.8, we fix a non-commutative valuation v on Q = Q(OG/P )

such that the natural map τ : (OG, w) → (Q, v) is continuous, and a natural number 
n ∈ N such that degv(ϕn − 1) ≥ v(p). After replacing ϕ by ϕn if necessary, we may 
assume that n = 1.

Let “Q be the completion of Q with respect to v, and clearly ϕ extends continuously 
to “Q.

Also, since A is central in G, P ∩ OA is a prime ideal of OA. Therefore, the field of 
fractions of OA

P∩OA is contained in “Q. So, let F be the closure of this field of fractions in “Q, then F is a central subfield of “Q carrying a complete valuation vF = v|F .

Definition 3.9. Define the logarithm of ϕ to be the derivation of “Q defined by the loga-
rithm series at ϕ. Specifically:

log(ϕ) =
∑
k≥1

(−1)k+1

k
(ϕ− 1)k (5)

Note: 1. This definition never makes sense if p ∈ P , because in this case if p | k then 
k = 0 in “Q.

2. This definition makes sense when p /∈ P because degv(ϕ − 1) ≥ v(p) so degv(ϕ −
1)k ≥ kv(p) for all k and degv(

(−1)k+1

k (ϕ − 1)k) ≥ kv(p) − v(k) = kv(p) − vp(k)v(p) →
0 as k → ∞. So since B(“Q) is complete with respect to degv by [2, Lemma 2.4], it 
follows that the logarithm series must converge to an element of B(“Q), and since ϕ is 
an automorphism, this must be a derivation.

3. See the proof of [24, Theorem 4] for details of why log(ϕ) is a derivation of “Q.

Proposition 3.10. Fix g ∈ G, then:
i. deg(log(ϕ)) ≥ 1.
ii. The series log(ϕ(g)g−1) :=

∑
k≥1

(−1)k+1

k τ(ϕ(g)g−1 − 1)k converges in F .

iii. log(ϕ)(g) = log(ϕ(g)g−1)τ(g).
iv. log(ϕ)(F ) = 0
v. log(ϕ) is a continuous, F -linear derivation.

Proof. i. Since degv(ϕ) ≥ v(p), it follows that deg( (−1)k+1

k (ϕ − 1)k) ≥ kv(p) − v(k) =
(k − vp(k))v(p) ≥ 1, and hence degv(log(ϕ)) ≥ 1.

ii – iii. For any g ∈ G, (ϕ − 1)(g) = τ(ϕ(g) − g) = τ(ϕ(g)g−1 − 1)τ(g), and if we 
suppose for induction that (ϕ − 1)k(g) = τ(ϕ(g)g−1 − 1)kτ(g), then (ϕ − 1)k+1(g) =
(ϕ− 1)(τ(ϕ(g)g−1 − 1)kτ(g)) = ϕ(τ(ϕ(g)g−1 − 1)k)ϕ(τ(g)) − τ(ϕ(g)g−1 − 1)kτ(g).
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But since ϕ(g)g−1 ∈ A, it follows from our assumption that ϕ(τ(ϕ(g)g−1 − 1)k) =
τ(ϕ(g)g−1 − 1)k, and hence (ϕ − 1)k+1(g) = τ(ϕ(g)g−1 − 1)kϕ(τ(g)) − τ(ϕ(g)g−1 −
1)kτ(g) = τ(ϕ(g)g−1 − 1)k+1τ(g).

Therefore, log(ϕ)(g) =
∑
k≥1

(−1)k+1

k τ(ϕ(g)g−1 − 1)kτ(g), so multiplying on the right by 

τ(g)−1 gives that log(ϕ(g)g−1) =
∑
k≥1

(−1)k+1

k τ(ϕ(g)g−1 − 1)k converges to log(ϕ)(g)τ(g)−1, 

and since τ(ϕ(g)g−1 − 1) ∈ τ(OA) ⊆ F , it follows that log(ϕ(g)g−1) ∈ F .
iv. Again, since ϕ(a) = a for all a ∈ A, it follows that (ϕ − 1)(τ(a)) = 0, and hence 

log(ϕ)(a) = 0. So since log(ϕ) is O-linear and continuous, it follows that log(ϕ)(s) = 0
for all s ∈ τ(OA) = OA/OA ∩ P .

Moreover, since F is the completion of the field of fractions of τ(OA), and log(ϕ) is 
a derivation, it follows that log(ϕ)(s) = 0 for all s ∈ F as required.

v. We know that log(ϕ) is a continuous derivation, and since log(ϕ)(F ) = 0 it follows 
that it is F -linear. �
Remark. Without our assumptions that ϕ(g)g−1 ∈ A for all g, and ϕ is trivial when 
restricted to A, this proposition fails.

Fix λ := inf{v(log(ϕ)(ϕ(g)g−1)) : g ∈ G}, and let U := {g ∈ G : v(log(ϕ(g)g−1)) >
λ}. The following lemma depends on the assumption that P is faithful:

Lemma 3.11. 1 ≤ λ < ∞, and U is a proper, open subgroup of G containing Gp and 
(G, G).

Proof. For convenience, set ψ(g) := ϕ(g)g−1. Then since ϕ(g)g−1 ∈ Z(G) for all g ∈ G, 
it follows that ψ : G → A is a group homomorphism.

Using Proposition 3.10, we see that deg(ϕ) ≥ 1, and that log(ϕ)(g) = log(ψ(g))g for 
all g ∈ G. So since v(g) = 0, it follows that v(log(ψ(g))) = v(log(ϕ)(g)) ≥ deg(ϕ) ≥ 1
for all g ∈ G, and hence λ ≥ 1.

If λ = ∞ then v(log(ψ(g))) = ∞ and hence log(ψ(g)) = 0 for all g ∈ G. But the 
function on “Q defined by the logarithm series is injective by [12, Corollary 6.25(ii)], and 
hence τ(ψ(g) −1) = 0 for all g ∈ G, i.e. ψ(g) −1 ∈ P . But P is faithful, so this means that 
ψ(g) = ϕ(g)g−1 = 1 for all g ∈ G, and hence ϕ is trivial – contradicting our assumption.

Therefore 1 ≤ λ < ∞, and clearly λ is an integer, so there exists g ∈ G such that 
v(log(ψ(g))) = λ, and hence U � G.

Furthermore, given g ∈ G, v(log(ψ(gp))) = v(log(ψ(g)p)) = v(p log(ψ(g)) =
v(log(ψ(g))) + v(p) ≥ λ + v(p) > λ, and hence Gp ⊆ U .

Also, if g, h ∈ U then

v(log(ψ(gh))) = v(log(ψ(g)ψ(h))) = v(log(ψ(g)) + log(ψ(h))) ≥
min{v(log(ψ(g))), v(log(ψ(h)))} > λ,
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so since G
Gp is a finite group and U

Gp is closed under the group operation, it follows that 
U is an open subgroup of G.

Finally, if g, h ∈ G, v(log(ψ(g, h))) = v(log((ψ(g), ψ(h)))) = v(log(1)) = ∞ > λ, so 
(G, G) ⊆ U as required. �

So, using [2, Lemma 4.2], choose an ordered basis {g1, · · · , gd} for (G, ω) such 
that {gp1 , · · · , gpr , gr+1, · · · , gd} is an ordered basis for U for some 1 ≤ r ≤ d. Thus 
v(log(ϕ(gi)g−1

i )) = λ for i = 1, · · · , r and v(log(ϕ(gi)g−1
i )) > λ for all i > r.

Now, set a := log(ϕ(g1)g−1
1 ). Then a ∈ F by Proposition 3.10, and v(a) = λ < ∞ so 

a �= 0, thus a is a unit in F . So for each i = 1, · · · , d, set zi := a−1 log(ϕ(gi)g−1
i ) ∈ F .

Since F is central, it follows from the definition of a non-commutative valuation that 
v(zi) = v(log(ϕ(gi)g−1

i )) − v(a) for each i, so v(z1) = · · · = v(zr) = 0, and v(zi) > 0 if 
i > r.

From now on, set δ := a−1 log(ϕ) : “Q → “Q, which is an F -linear derivation of “Q, and using Proposition 3.10 we see that for all g ∈ G, δ(g) = a−1 log(ϕ)(g) =
a−1 log(ϕ(g)g−1)g. But if g = gα := gα1

1 · · · gαd

d for some α ∈ Zd
p then

log(ϕ(g)g−1) = log((ϕ(g1)g−1
1 )α1 · · · (ϕ(gd)g−1

d )αd)) =
α1 log(ϕ(g1)g−1

1 ) + · · · + αd log(ϕ(gd)g−1
d ).

Therefore, δ(gα) = (α1z1 + · · · + αdzd)gα for all α ∈ Zd
p.

Furthermore, since δ is F -linear, it follows that δn(gα) = (α1z1 + · · ·αdzd)ngα for all 
n ∈ N.

3.4. A convergence argument

We will now show how we can study convergence of δpm to prove a control theorem 
for P .

Notation: For any α ∈ Zp, denote by α′ the unique integer in {0, · · · , p − 1} such that 
α ≡ α′ (mod p). Also, let V = {z ∈ F : v(q) ≥ 0}, V+ = {z ∈ F : v(q) > 0}, so that V

V+

is a field extension of Fp.

Lemma 3.12. For all m ∈ N, zp
m

1 , · · · , zpm

r are Fp-linearly independent modulo V+.

Proof. Let us suppose that there exist integers α1, · · · , αr ∈ {0, 1, · · · , p − 1} such that 
α1z

pm

1 + · · · + αrz
pm

r ∈ V+, i.e. v(α1z
pm

1 + · · · + αrz
pm

r ) > 0.
Firstly, note that αpm

i ≡ αi (mod p) by Fermat’s Little theorem, so 0 ≡ α1z
pm

1 + · · ·+
αrz

pm

r ≡ (α1z1 + · · · + αrzr)p
m (mod V+), which implies that α1z1 + · · · + αrzr ∈ V+.

But zi = a−1 log(ϕ(gi)g−1
i ), so αizi = a−1 log((ϕ(gi)g−1

i )αi). But since g �→ ϕ(g)g−1

defines a group homomorphism, it follows that αizi = a−1 log(ϕ(gαi
i )g−αi

i ), and hence 
α1z1 + · · · + αrzr = a−1 log(ϕ(gα1

1 )g−α1
1 · · ·ϕ(gαr

r )g−αr
r ) = a−1 log(ϕ(gα)g−α) ∈ V+.
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Therefore, it follows that v(log(ϕ(gα)g−α)) > v(a) = λ, and hence gα ∈ U by the 
definition of U . But we know that {gp1 , · · · , gpr , gr+1, · · · , gd} is an ordered basis for U , 
which means that p | αi, i.e. αi = 0, for all i as required. �
Lemma 3.13. For any m ∈ N, α ∈ Zd

p, δp
m(gα) = (α′

1z
pm

1 + · · · + α′
rz

pm

r )gα + z(m,α)gα

for some z(m,α) ∈ V+.

Proof. Firstly, we know that δpm(gα) = (α1z1 + · · · + αdzd)p
m

gα, and we know that 
v(αr+1zr+1+· · ·+αdzd) > 0. Also, using Lemma 3.12, we see that v(α1z1+· · ·+αrzr) = 0
if p � αi for some i. Therefore:

(α1z1 + · · · + αdzd)p
m ≡ (α1z1 + · · · + αrzr)p

m ≡ αpm

1 zp
m

1 + · · · + αpm

r zp
m

r (mod V+).

Since αpm

i ≡ αi ≡ α′
i (mod p) for all m, it follows that αpm

1 zp
m

1 + · · · + αpm

r zp
m

r ≡
α′

1z
pm

1 + · · · + α′
rz

pm

r (mod V+).
Therefore, (α1z1 + · · ·+αdzd)p

m = α′
1z

pm

1 + · · ·+α′
rz

pm

r +z(m,α) for some z(m,α) ∈ V+, 
and hence δp

m(gα) = (α′
1z

pm

1 + · · · + α′
rz

pm

r )gα + z(m,α)gα as required. �

Now, define T :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1 z2 · · · zr
zp1 zp2 · · · zpr
. . · · · .

. . · · · .

. . · · · .

zp
r−1

1 zp
r−1

2 · · · zp
r−1

r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. Then using Lemma 3.13, we see 

that: â
δ(gα)

.

.

.

δp
r−1(gα)

ì
= T

â
α′

1g
α

.

.

.

α′
rg

α

ì
+

â
z(0,α)gα

.

.

.

z(r−1,α)gα

ì
. (6)

But T is a matrix of Vandermonde type, in the sense of [7, Section 1.1], and the entries 
of T all lie in V and are Fp-linearly independent modulo V+ by Lemma 3.12, so it follows 
from [7, Lemma 1.1] that det(T ) has value zero. Therefore T is invertible, and its inverse 
has value 0, i.e. the minimum value over all the entries of T−1 is zero.

Define u : “Qr → “Q, (s1, · · · , sr)T �→ s1 + · · · + sr, and define:

ι : “Q → “Q, s �→ uT−1

â
δ(τ(s))

.

.

.

δp
r−1(τ(s))

ì
(7)
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Note that ι is continuous and F -linear. Also for any α ∈ Zd
p, using (6) we see that:

ι(gα) = uT−1

â
δ(gα)

.

.

.

δp
r−1(gα)

ì
= u 

â
α′

1g
α

.

.

.

α′
rg

α

ì
+ uT−1

â
z(0,α)gα

.

.

.

z(r−1,α)gα

ì
.

But the entries of T−1 all have value at least 0, so we deduce that ι(gα) = (α′
1 + · · · +

α′
r)gα + z(α)gα for some z(α) ∈ V+.
For each m ∈ N, define ιm : “Q → “Q, q �→ ιp

m(p−1)(q), which is also continuous and 
F -linear. Also, for each k ≥ 0, define “Qk := {q ∈ Q : v(q) ≥ k}.

Proposition 3.14. Given m ∈ N:

• The composition ιmτ : OG → “Q is continuous and O-linear.
• There exists km ∈ N such that km → ∞ as m → ∞, and for all α ∈ Zd

p,

ιm(gα) ≡
{
gα if vp(α1 + · · · + αr) = 0
0 if vp(α1 + · · · + αr) > 0

(mod “Qkm
).

Moreover, choose a sequence of integers m1 < m2 < · · · such that km1 < km2 < · · · , 
then for every s ∈ OG, i ∈ N, (ιmi

− ιmi+1)(τ(s)) ∈ “Qkmi
.

Proof. The first statement is obvious, since τ and ιm are both continuous and O-linear.
Now, we know that ι is F -linear, and for any α ∈ Zd

p, ι(gα) = (α′
1 + · · ·+α′

r + z(α))gα
for some z(α) ∈ F with v(z(α)) ≥ 1. Therefore, ιm(gα) = ιp

m(p−1)(gα) = (α′
1 + · · ·+α′

r +
z(α))pm(p−1)gα.

But if vp(α′
1 + · · ·+α′

r) = 0 then (α′
1 + · · ·+α′

r)p−1 ≡ 1 (mod p), so (α′
1 + · · ·+α′

r +
z(α))p−1 = 1 + y(α) for some y(α) ∈ F with v(y(α)) ≥ 1, and ιm(gα) = (1 + y(α))pm

gα.
On the other hand, if vp(α′

1 + · · · + α′
r) > 0 then v(ιm(gα)) ≥ pm(p − 1).

Let γ := inf{v(y(α)) : α ∈ Zd
p, v(α1 + · · · + αr) = 0} ≥ 1, and for each m ∈ N, define 

tm := min{pmγ, m − vp(k) + (pm − k)γ : 0 < k < pm}. Then since γ = v(y(α)) for some 
α ∈ Zd

p, it follows from Lemma 3.2 that tm → ∞ as m → ∞.
Furthermore, also using Lemma 3.2, we see that:
v((1 +y(α))pm −1) ≥ min{pmv(y(α)), m −vp(k) +(pm−k)v(y(α)) : 0 < k < pm} ≥ tm.
Hence v(ιm(gα) − gα) ≥ tm for all m whenever v(α1 + · · · + αr) = 0.
So, let km := min{pm(p − 1), tm} → ∞ as m → ∞, then v(ιm(gα)) ≥ km if v(α1 +

· · · + αr) > 0, and v(ιm(gα) − gα) ≥ km if vp(α1 + · · · + αr) = 0 as required.
In particular, if km1 < km2 < · · · , then for every g ∈ G, ιmi

(g) ≡ ιmi+1(g) (mod “Qkmi
)

for all i, i.e. (ιmi
− ιmi+1)(g) ∈ “Qkm

. So since ιm is O-linear for every m, it follows that 

i
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(ιmi
− ιmi+1)(τ(s)) ∈ “Qkmi

for every s ∈ O[G], and since (ιmi
− ιmi+1)τ is continuous, 

this means that (ιmi
− ιmi+1)(τ(s)) ∈ “Qkmi

for every s ∈ OG as required. �
Using this proposition, it follows that there exists a continuous, O-linear map ι :

OG → “Q such that ι(P ) = 0, ι(s) ≡ ιm(τ(s)) (mod “Qkmi
) for every i, and for every 

α ∈ Zd
p:

ι(gα) =
{
gα if vp(α1 + · · · + αr) = 0
0 if vp(α1 + · · · + αr) > 0

(8)

Finally, since U contains (G, G) and Gp by Lemma 3.11, the quotient GU has the struc-
ture of an Fp-vector space, with basis {g1U, · · · , grU}. Therefore, the map χ : G

U →
Z
pZ , g

αU �→ α1 + · · · + αr + pZ is a non-zero Fp-linear map, so ker(χ) = V
U for some 

proper open subgroup V of G, and it follows that for all g ∈ G:

ι(g) =
{
g if g /∈ V

0 if g ∈ V
(9)

Now we are ready to prove a control theorem. Firstly, let C∞(G, O) be the space of 
locally constant functions f : G → O, and recall from [3, Proposition 2.5 and Lemma 
2.9] that there is a natural action ρ : C∞(G, O) → EndOOG such that for any open 
subgroup U of G, if f ∈ C∞(G, O) is constant on the cosets of U then the action of f
on OG can be described explicitly:

If x ∈ OG and x =
∑
g∈C

xgg, where C is a set of coset representatives for U in G and 

xc ∈ OU , then

ρ(f)(x) =
∑
g∈C

f(g)xcg

In particular, define f : G → O, g �→
{

1 if g /∈ V

0 if g ∈ V
. Then clearly f ∈ C∞(G, O) is 

constant on the cosets of V , so ρ(f)(g) =
{
g if g /∈ V

0 if g ∈ V
.

Therefore, it follows from (9) that ι(g) = τρ(f)(g) for all g ∈ G, so since ι, τ and 
ρ(g) are continuous and O-linear, it follows that ι = τρ(f). Therefore, since ι(P ) = 0, it 
follows that ρ(f)(P ) ⊆ P .

Proposition 3.15. P is controlled by V .

Proof. This is now identical to the proof of [15, Theorem 1.4]. Firstly, suppose that 
C = {x1, · · · , xt} is a complete set of coset representatives for V in G, then for all 
r ∈ OG, r =

∑
rixi for some ri ∈ OV .
i≤t
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Suppose we can choose C such that if r ∈ P then r1 ∈ P ∩OV . Then since rx−1
1 xi ∈ P

for all i = 1 · · · , t and rx−1
1 xi has x1 component ri, it follows that ri ∈ P ∩OV for each 

i, and hence P is controlled by V .
It remains to prove that we can choose such a set C of coset representatives such that 

if 
∑
i≤t

rixi ∈ P , then at least one of the ri lies in P ∩ OV .

Since Gp ⊆ V , it follows that V has ordered basis {gp1 , · · · , gps , gs+1, · · · , gd} and thus 
C = {gb11 · · · gbrs : 0 ≤ bi < p} is a complete set of coset representatives for V in G.

So for each b ∈ [p − 1]s, let gb = gb11 · · · gbrr (here [p − 1] = {0, 1, · · · , p − 1}).
Then if r =

∑
b∈[p−1]s

rbgb ∈ P , then ρ(f)(r) =
∑

b∈[p−1]s
f(gb)rbgb, and since ρ(f)(P ) ⊆ P

this also lies in P . But f(gb) = 1 if b �= 0, and f(g0) = 0 hence ρ(f)(r) =
∑

b∈[p−1]s\{0}
rbgb ∈

P .
Therefore, r0g0 = r − ρ(f)(r) ∈ P , and thus r0 ∈ P ∩ OU as required. �
So, since prime ideals in OG not containing P correspond bijectively with prime ideals 

in KG, altogether we have now prove the following theorem:

Theorem 3.16. Let (G, ω) be a complete, p-valued group of finite rank, and let P be a 
faithful, prime ideal of KG such that KG/P is infinite dimensional over K. Also, let 
ϕ ∈ Autω(G) be an automorphism of G, and let A be a closed, central subgroup of G
such that:

• ϕ �= 1.
• ϕ(P ) = P .
• ϕ(g)g−1 ∈ A for all g ∈ G.
• ϕ(a) = a for all a ∈ A.

Then P is controlled by a proper, open subgroup of G.

This result is, in essence, the characteristic 0 version of [2, Theorem B]. This result 
was sufficient to fully prove Conjecture 1.2 in characteristic p for G nilpotent in [2], but 
unfortunately our additional assumption that ϕ(g)g−1 is fixed by ϕ for all g ∈ G restricts 
the usefulness of this result, which is why, as we will see, we cannot assume that the 
subgroup A described in the statement of Theorem B is central.

3.5. Control theorem for prime ideals

Now we are ready to prove Theorem B, and the remainder of the argument is similar 
to the proof of [15, Theorem 1.2], as given in [15, Section 3.5].

Firstly, recall that a prime ideal P of KG is non-splitting if for any closed subgroup 
H of G that controls P , P ∩KH is a prime ideal of KH. Furthermore, a right ideal I of 
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KG is virtually non-splitting if I = PKG for some non-splitting prime ideal P of KU , 
where U is some open subgroup of G.

The following theorem, analogous to [2, Theorem 5.8] and partially proved in [15, 
Theorem 4.8], essentially proves that establishing a control theorem for virtually non-
splitting ideals is sufficient to establish it for all primes.

Theorem 3.17. Let (G, ω) be a complete p-valued group of finite rank, let A be a closed 
subgroup of G, and suppose that all faithful, virtually non-splitting right ideals of KG

are controlled by A. Then all faithful, prime ideals of KG are controlled by A.

Proof. Let P be a faithful, prime ideal of KG, and let P = I1 ∩ · · · ∩ Im be an essential 
decomposition for P in the sense of [22, Definition 5.6], with each Ij virtually prime, and 
I1, · · · , Im forming a single G-orbit.

Setting m = 1, I1 = P , it is clear that such a decomposition exists, so we will assume 
that m is maximal such that a decomposition of this form exists. We know that m
is finite because KG/P has finite uniform dimension in the sense of [22]. So, by [15, 
Proposition 4.4], each Ij is a virtually non-splitting right ideal of KG. Furthermore, 
since P is faithful, it follows from [15, Lemma 4.2] that each Ij is faithful.

Therefore, by assumption, Ij is controlled by A, so Ij = (Ij ∩KA)KG for each j. So 
since P = I1 ∩ · · · ∩ Ir, we have that

(P ∩KA)KG = ((I1 ∩KA) ∩ · · · ∩ (Ir ∩KA))KG

= (I1 ∩KA)KG ∩ · · · ∩ (Ir ∩KA)KG = I1 ∩ · · · ∩ Ir = P by [15, Lemma 4.1(i)].

Thus P is controlled by A as required. �
Now, in [15], we defined the closed, normal subgroup CG(Z2(G)) of G to be

CG(Z2(G)) := {g ∈ G: if (h, G) ⊆ Z(G) then (g, h) = 1}.

Note that CG(Z2(G)) is isolated in G because if g ∈ G and gp
n ∈ CG(Z2(G)) for 

some n ∈ N then (gpn

, h) = 1 whenever (h, G) ⊆ Z(G), and hence ω((gpn

, h)) = ∞. 
But ω((gpn

, h)) = ω((g, h)) + n by [27, Proposition 25.1], and hence ω((g, h)) = ∞, so 
(g, h) = 1 and g ∈ CG(Z2(G)).

The main result in that paper ([15, Theorem 1.2]) was that all faithful, primitive 
ideals in KG are controlled by CG(Z2(G)). With the results proved in this section, we 
can now generalise this result to all prime ideals.

Theorem 3.18. Let (G, ω) be a nilpotent, complete p-valued group of finite rank, and let 
P be a faithful prime ideal of KG. Then P is controlled by CG(Z2(G)).

Proof. First, suppose that P is non-splitting, and let H := Pχ be the controller subgroup 
of P :
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Then Q := P ∩KH is a faithful, prime ideal of KH by the definition of non-splitting, 
and since H is nilpotent KH/Q is infinite dimensional over K by Proposition 3.7. Since 
H is the smallest subgroup of G controlling P by [3, Theorem A], Q is not controlled by 
any proper subgroup of H. Also, note that H is a normal subgroup of G by the proof of 
[2, Lemma 5.2], so for any g ∈ G, (g, H) ⊆ H.

Now, choose g ∈ G such that (g, G) ⊆ Z(G), and let A := Z(G) ∩ H. Let ϕ be the 
automorphism of H induced by conjugation by g. Then clearly ϕ(Q) = Q, and for all 
h ∈ H, ϕ(h)h−1 = (g, h) ∈ Z(G) ∩H = A. Moreover, since A is central in G, it follows 
that ϕ(a) = a for all a ∈ A. So applying Theorem 3.16 gives that if ϕ �= 1, then Q is 
controlled by a proper subgroup of H – contradiction.

Therefore ϕ = 1, i.e. g centralises H.
Therefore, if g ∈ G and (g, G) ⊆ Z(G), then (g, H) = 1, and hence H is contained in 

CG(Z2(G)) as required. Thus P is controlled by CG(Z2(G)).
Now suppose that I �r KG is a faithful and virtually non-splitting right ideal of KG. 

Then I = PKG for some open subgroup U of G, and some faithful, non-splitting prime 
P of KU .

We have proved that P is controlled by CU (Z2(U)), and CU (Z2(U)) = CG(Z2(G)) ∩U

by [15, Lemma 4.9], and hence I is controlled by CG(Z2(G)).
So, using Theorem 3.17, it follows that every faithful, prime ideal of KG is controlled 

by CG(Z2(G)) as required. �
Now we can finally complete the proof of Theorem B. So suppose that (G, ω) is a 

nilpotent, p-valued group of finite rank.

Proof of Theorem B. Consider the following sequence of subgroups, A0 = G and for 
each i ≥ 0, Ai+1 = CAi

(Z2(Ai)). Since G is nilpotent, each Ai must also be nilpotent.
Therefore, if Ai is non-abelian then there must exist g ∈ Ai with g /∈ Z(Ai) such that 

(g, Ai) ⊆ Z(Ai) (i.e. g ∈ Z2(Ai)). But by definition, if h ∈ Ai+1 = CAi
(Z2(Ai)) then 

(g, h) = 1, so since g is not central, this means that Ai+1 �= Ai.
Moreover, if Ai is abelian, then clearly Ai+1 = Ai, and hence Aj = Ai for all j > i. 

But since Ai+1 is a closed, isolated normal subgroup of Ai, the chain G = A0 ⊇ A1 ⊇
A2 ⊇ · · · must terminate, i.e. there exists i ≥ 0 such that Aj = Ai for all j ≥ i, and 
hence Ai is abelian. Let A := Ai, and we will prove that all faithful, prime ideals in KG

are controlled by A.
Let P be a faithful, non-splitting prime ideal of KG, and let us suppose for contra-

diction that P is not controlled by A. But trivially, P is controlled by G = A0, so let 
0 ≤ j < i be maximal such that P is controlled by Aj .

Since P is non-splitting and Aj is a closed subgroup of G, Q := P ∩ KAj is a 
faithful prime ideal of KAj , so it follows from Theorem 3.18 that Q is controlled by 
CAj

(Z2(Aj)) = Aj+1, and hence P = QKG = (Q ∩KAj+1)KAjKG = (P ∩KAj+1)KG

is controlled by Aj+1 – contradiction.
Therefore, every faithful, non-splitting prime ideal of KG is controlled by A.
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Now suppose that I �r KG is a faithful and virtually non-splitting right ideal of KG. 
Then I = PKG for some faithful, non-splitting prime P of KU , where U is some open 
subgroup of G.

Again, let B0 = U and for j ≥ 0 let Bj+1 := CBj
(Z2(Bj)). Then using [15, Lemma 

4.9], Bj ⊆ Aj for each j, and hence Bi is abelian. So since P is a faithful, non-splitting 
prime ideal of KU , it follows that P is controlled by Bi ⊆ A, and hence I = PKG =
(P ∩KBi)KUKG ⊆ (I ∩KA)KG is controlled by A. So using Theorem 3.17, it follows 
that every faithful, prime ideal of KG is controlled by A. �
4. Dixmier annihilators

In this section, we will study the action of the rational Iwasawa algebra KG on the 
affinoid Dixmier module D̂(λ), and ultimately prove Theorem C.

Throughout, fix G a nilpotent, uniform pro-p group, L = 1
p log(G), and g = L ⊗Zp

Qp. 
We will assume further that L is powerful, i.e. [L, L] ⊆ pL.

4.1. Faithful dixmier annihilators

Let λ : g → K be a Qp-linear map such that λ(L) ⊆ O and λ|Z(g) is injective. Let b
be a polarisation of gK := g ⊗Qp

K at λ, and let B := b ∩ LK , where LK := L ⊗Zp
O.

Fix P := AnnKGD̂(λ), which does not depend on the choice of polarisation by [17, 
Theorem 4.5].

Lemma 4.1. P is a faithful, completely prime ideal of KG.

Proof. Since λ|Z(g) is injective, it follows from Lemma 2.12 that P is a faithful ideal of 
KG.

Furthermore, since LK is powerful, it follows from [17, Corollary 3.4] that if I :=
Ann

̂U(L)K
D̂(λ) then 

̂U(L)K
I is a domain. So since P = I ∩KG, this means that KG

P is a 

domain, and hence P is completely prime ideal as required. �
Therefore, using Theorem B, it follows that P is controlled by an abelian subgroup 

A of G. Let A := 1
p log(A), and let a := A ⊗Zp

Qp. Then a is an abelian ideal of g, so 
since P is independent of the choice of polarisation, we may assume that a ⊆ b. In other 
words, we may assume that the subgroup A acts by scalars on the submodule Kλ of 
D̂(λ) = Û(L)K ⊗

̂U(B)K
Kλ.

Our approach will be to study the action of KA on D̂(λ), and prove that the kernel 
of this action is centrally generated.

Now, following [8], we define the Tate algebra over a complete valued field Ω in d
variables t1, · · · , td to be the subring of the power series ring Ω[[t1, · · · , td]] defined by:
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Ω〈t1, · · · , td〉 :=
® ∑

α∈Nd

λαt
α1
1 · · · tαd

d ∈ Ω[[t1, · · · , td]] : λα → 0 as α → ∞
´

Let {x1, · · · , xr} be an O-basis for LK/B, then using [17, Lemma 3.3], we see that D̂(λ)
is isomorphic as a K-vector space to K〈x1, · · · , xr〉.

Lemma 4.2. There exists an O-basis {x1, · · · , xr} for LK/B such that if we let ∂i := d
dxi

∈
EndKD̂(λ), then each u ∈ a acts on D̂(λ) by a polynomial fu ∈ K[∂1, · · · , ∂s] for some 
s ≤ r where fu(0) = λ(u). Moreover, if u ∈ A then fu ∈ O[∂1, · · · , ∂s].

Furthermore, s = 0 if and only if A is central, and for each i = 1, · · · , s, ∂i lies in 
the image of U(a) under the action.

Proof. Firstly, let a⊥ = {u ∈ gK : λ([u, a]) = 0}, and let s := dimK
g

a⊥ . Then fix a 
basis {u1, · · · , ur} for LK/B such that {us+1, · · · , ur} is a basis for (a⊥ ∩ LK)/B. Then 

it follows from [17, Proposition 3.5] that each u ∈ a acts on D̂(λ) by a polynomial 
fu ∈ K[∂1, · · · , ∂s], and that ∂1, · · · , ∂s lie in the image of U(a) under this action.

Furthermore, we see using [17, Proposition 3.3] that

fu =
∑

α∈Ns

1
α1! · · ·

1
αs!λ(ad(us)αr · · · ad(u1)α1(u))∂α1

1 · · · ∂αs
s ,

so clearly the constant term is λ(u). Moreover, if u ∈ A then since L is powerful,
ad(ur)αr · · · ad(u1)α1(u) ∈ pα1+···+αrL, and hence λ(ad(ur)αr · · · ad(u1)α1(u)) ∈

pα1+···+αrO for all α ∈ Nr.
So since vp(αi!) ≤ αi for each i, it follows that 1

α1! · · ·
1

αr!λ(ad(ur)αr · · · ad(u1)α1(u)) ∈
O as required.

Finally, if s = 0 then a acts by scalars on D̂(λ), and hence [a, g] ⊆ P and λ([a, g]) = 0. 
So since P is faithful, it follows from Lemma 2.12 that [g, a] = 0, and hence A is central. 
Conversely, if a is central then clearly Û(A)K acts by scalars on D̂(λ), so since ∂1, · · · , ∂s
lie in the image of this action, and do not act by scalars, it follows that s = 0. �
Note: It follows from this lemma that the image of Û(A)K in EndKD̂(λ) is contained in 
K〈∂1 · · · , ∂s〉.

4.2. Results from rigid geometry

We will now prove some technical results using techniques from rigid geometry. A 
detailed introduction to the theory of rigid geometry and its applications can be found 
in [8] and [9], whose results we will often use in this section.

First, recall from [8, Definition 3.1.1] that an affinoid algebra over K is a quotient of 
the Tate algebra K〈t1, · · · , tr〉 for some r ∈ N. It follows from [8, Proposition 3.1.5] that 
any affinoid algebra R carries a complete, separated filtration wR.
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Lemma 4.3. Let φ : K〈u1, · · · , ud〉 → R be a map of affinoid algebras, and let a1, · · · , ar ∈
R lie in the image of φ. Then there exists m ∈ N such that the image of φ inside R
contains the affinoid K-subalgebra topologically generated by πma1, · · · , πmar.

Proof. For each i, we know that ai = φ(ri) for some ri ∈ K〈u1, · · · , ud〉, so choose 
m ∈ N such that winf(πmri) ≥ 0 and wR(πmai) ≥ 0 for all i.

Then there exist K-algebra maps Θ1 : K〈X1, · · · , Xr〉 → K〈u1, · · · , ud〉 and Θ2 :
K〈X1, · · · , Xr〉 → R sending Xi to πmri and πmai respectively, and it is clear that 
Θ2 = φΘ1. Therefore, the image of φ must contain the image of Θ2, which is precisely 
the affinoid K-algebra topologically generated by πma1, · · · , πmar as required. �

Now, let K be the algebraic closure of K. Recall that for each ε ∈ R, we define the 
d-dimensional disc of radius ε to be the space

Dd
ε := {α ∈ K

d : vπ(αi) ≥ ε for each i}

This is an affinoid space, in the sense of [8, Definition 3.1.1], isomorphic to Sp 
K〈u1, · · · , ud〉. Thus all discs are isomorphic, regardless of the radius.

Moreover, the Tate algebra K〈u1, · · · , ud〉 can be realised as the space of analytic 
functions on Dd

0 , i.e. the set of all power series in u1, · · · , ud converging on the unit disc, 
while for each n ∈ N, the subalgebra K〈πnu1, · · · , πnud〉 is precisely those functions 
which converge on Dd

−n.
Following [20, 5.1.2], for each non-constant polynomial g(t) := b0 + b1t + · · ·+ bnt

n ∈
K[t] with b0 ∈ O, define

χ(g) := max
1≤j≤n

−vπ(bj)
j .

Lemma 4.4. Let g(t) ∈ K[t] be a polynomial with g(0) ∈ O, and let β ∈ K with vπ(β) > 0. 
Then χ(βg) < χ(g).

It follows that if f1(t), · · · , fd(t) ∈ K[t] are polynomials with fi(0) ∈ O for each i, 
and v(β) > 0 then setting μi := max

1≤j≤d
χ(βifj) for each i ≥ 0, we have that μ0 > μ1 >

μ2 > · · · .

Proof. Suppose g(t) = b0 + b1t + · · · + bnt
n, with b0 ∈ O, bn �= 0. Then by definition;

χ(βg) = max
1≤j≤n

−vπ(βbj)
j = max

1≤j≤n
−vπ(bj)

j − vπ(β)
j

So since vπ(β) > 0, this maximum is strictly less than max
1≤j≤n

−vπ(bj)
j = χ(g).

To prove the second statement, it suffices to prove that μ0 > μ1 and apply induction. 
So suppose μ1 = χ(βfi) and μ0 = χ(fj), then we have that μ1 = χ(βfi) < χ(fi) ≤
χ(fj) = μ0. �

Recall from [20, Theorem 5.1.2] that if we assume b0 �= 0, then the set
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X(g) := {α ∈ K : vπ(g(α)) ≥ 0}

is an affinoid subdomain of A1,an
K := K, whose G-connected component about 0 is the 

disc D1
χ(g) = {α ∈ K : vπ(α) ≥ χ(g)}.

Furthermore, if b0 = 0, it is clear that χ(g) = χ(1 + g), and that X(g) = {α ∈
K : vπ(g(α)) ≥ 0} = {α ∈ K : vπ(1 + g(α)) ≥ 0} = X(1 + g), so we reach the same 
conclusion.

Lemma 4.5. Suppose that K contains a (p − 1)’st root of p. Then given polynomials 
f1, · · · , fr ∈ O[t], there exist α ∈ K, k ∈ {1, · · · , r} such that vp(fi(α)) ≥ −1 for all i
and vp(fk(α)) < 1

p−1 − 1.

Proof. If ω ∈ K and ωp−1 = p then vp(ω) = 1
p−1 . So for each j ≥ 0 let

Yj := {α ∈ K : vπ(ωjfi(α)) ≥ 0 for all i},

and set μj := max
i=1,··· ,d

χ(ωjfi). Then using [20, Theorem 5.1.2] we see that Yj is an affinoid 

subdomain of Aan
1 and the G-connected component of Yj about zero is the closed disc 

D1
μj

is the.
We want to find α ∈ K such that vp(fi(α)) ≥ −1 for all i, i.e. vp(pfi(α)) ≥ 0, and 

since ωp−1 = p, this just means that α ∈ Yp−1. So it remains to find an element α in 
the connected component D1

μp−1
of Yp−1 such that vp(fk(α)) < 1

p−1 − 1 for some k, i.e. 
vπ(fk(α)) < vπ(p)( 1

p−1 − 1).
For each j ≥ 0, fix ij = 1, · · · , d such that χ(ωjfij ) = μj . Using Lemma 4.4 we see 

that μ0 > μ1 > μ2 > · · · , and we know that for each j, the G-connected component of 
X(ωj−1fij−1) about zero is D1

μj−1
.

In particular, since μj−1 > μj we have that D1
μj−1

� D1
μj

, so since D1
μj

is G-
connected, this means that D1

μj
� X(ωj−1fij−1). So for each j, we may choose 

αj ∈ D1
μj
\X(ωj−1fij−1).

But X(ωj−1fij−1) = {α ∈ K : vπ(fij−1(α)) ≥ −(j − 1)vπ(ω)}, so this means that 
vπ(fij−1(αj)) < −vπ(ω)(j − 1). But vp(ω) = 1

p−1 so vπ(ω) = vπ(p)
p−1 , thus vπ(fij−1(αj)) <

−vp(π) j−1
p−1 = vp(π)( 1

p−1 − j
p−1 )

So, finally, choose j = p − 1, and let k := ij−1. Then αj ∈ D1
μp−1

⊆ Yp−1 and 
vπ(fk(αj)) < vp(π)( 1

p−1 − 1) as required. �
Corollary 4.6. Suppose that K contains a (p − 1)’st root of p. Then given polynomials 
f1, · · · , fr ∈ O[t1, · · · , tm], there exists α ∈ K

m, k ∈ {1, · · · , r} such that vp(fi(α)) ≥ −1
for all i and vp(fk(α)) < 1

p−1 − 1.

Proof. If m = 1, this is precisely Lemma 4.5, so assume that m > 1 and choose 
(α1, · · · , αm−1) ∈ Om−1. For each i = 1, · · · , r, let gi(t) := fi(α1, · · · , αm−1, t) ∈ O[t].
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Then using Lemma 4.5, there exists αm ∈ K, k ∈ {1, · · · , r} such that −1 ≤
vp(gi(αm)) for all i and vp(gk(αm)) ≤ 1

p−1 − 1. So let α = (α1, · · · , αm) ∈ K
m, and 

it follows that −1 ≤ vp(fi(α)) for all i, and vp(fk(α)) ≤ 1
p−1 − 1. �

4.3. Almost-polynomial maps

Now we will further explore the action of the abelian lattice A on the Dixmier module 
D̂(λ) ∼= K〈x1 · · · , xs〉.

Definition 4.7. A morphism φ : K〈u1, · · · , ud〉 → K〈t1, · · · , tr〉 of K-algebras is called 
an almost-polynomial map if

• φ(ui) ∈ O[t1, · · · , tr] for each i,
• t1, · · · , tr are contained in the image of φ.

Using Lemma 4.3, we see that if φ is an almost-polynomial map then there exist 
m ∈ N such that im(φ) contains K〈πmt1, · · · , πmtr〉.

Example. 1. Since A is abelian, we know that Û(A)K ∼= K〈u1, · · · , ud〉 by [17, Lemma 

2.1], and using Lemma 4.2 we see that the action ρ : Û(A)K → EndKD̂(λ) has image 
contained in K〈∂1, · · · , ∂s〉, and the map K〈u1, · · · , ud〉 → K〈∂1, · · · , ∂s〉 is an almost-
polynomial map.

2. If φ : K〈u1, · · · , ud〉 → K〈t1, · · · , tr〉 is an almost-polynomial map then so is the 
restriction K〈pu1, · · · , pud〉 → K〈t1, · · · , tr〉. Moreover, if F/K is a finite extension, then 
the scalar extension φF : F 〈u1, · · · , ud〉 → F 〈t1, · · · , tr〉 is also an almost polynomial 
map.

Lemma 4.8. Let φ : K〈u1, · · · , ud〉 → K〈t1, · · · , tr〉 be an almost-polynomial map, and 
let fi := φ(ui) ∈ K[t1, · · · , tr] for each i. Then setting Y := {α ∈ K

r : vπ(fi(α)) ≥ 0 for 
each i}, we have that:

i. Y is an affinoid subdomain of Ar,an
K .

ii. The image of φ is contained in the set of all functions in K〈t1, · · · , tr〉 converging
on Y .

Proof. Set A := im(φ), then t1, · · · , tr ∈ A by Definition 4.7. Since K〈t1, · · · , tr〉 is 
affinoid, it follows from Lemma 4.3 that there exists m ∈ N such that A contains 
T = K〈πmt1, · · · , πmtr〉, we may of course choose m to be arbitrarily large.

If we set B := T 〈ζ1, · · · , ζd〉/(ζi − fi(t1, · · · , tr) : i = 1, · · · , d), then there is a natural 
surjection from B to A, identical on T , which sends ti to fi(t). This gives rise to a closed 
embedding of affinoid varieties Sp A ↪−→ Sp B.
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i. Since each fi is a polynomial, it is clear that there exists N > 0 such that if α ∈ K
r

and vπ(α) < −N then vπ(fi(α)) < 0 for all i. So by choosing m > N we may assume 
that

Y = {α ∈ Dr
−m : vπ(fi(α)) ≥ 0}.

Hence using [8, Lemma 3.3.10(i)] and the proof of [8, Proposition 3.3.11], we see that 
Y = Sp B and that Y is an affinoid subdomain of Ar,an

K .
ii. Notice that K〈u1, · · · , ud〉 is precisely the set of functions converging on the open 

unit disc Dd
0 , so it follows that the image of K〈u1, · · · , ud〉 under φ is contained in the set 

of functions converging on {α ∈ K
r : (f1(α), · · · , fd(α)) ∈ Dd

0} = {α ∈ K
r : vπ(fi(α)) ≥

0 for all i} = Y as required. �
The following result will be essential later when proving a control theorem.

Proposition 4.9. Let φ : K〈u1, · · · , ud〉 → K〈t1, · · · , tr〉 be an almost-polynomial map, 
and let fi := φ(ui) ∈ K[t1, · · · , tr] for each i. Then there exists k ∈ {1, · · · , d} such that 
exp(pfk(t)) does not lie in φ(K〈pu1, · · · , pud〉).

Proof. We may assume that K contains a p − 1’st root of p. If we prove the result in 
this case, then it follows generally, since if K ′ := K( p−1

√
p) and we can find k such that 

exp(pfk) does not lie in the image of K ′〈pu1, · · · , pud〉 under the scalar extension of φ, 
then it will also not lie in the image of K〈pu1, · · · , pud〉 under φ.

Let Y := {α ∈ K
r : vπ(pfi(α)) ≥ 0 for all i}. Then using Lemma 4.8 we see that Y is 

an affinoid subdomain of A1,an
K , and that φ(K〈pu1, · · · , pud〉) is contained in the set of 

all functions in K〈t1, · · · , tr〉 converging on Y . So it remains to prove that for some k, 
exp(pfk) does not converge on Y , and thus cannot lie in the image of K〈pu1, · · · , pud〉.

Using [18, Example 0.4.1], the disc of convergence for exp is {λ ∈ K : vp(λ) > 1
p−1}, 

so it remains only to find α ∈ Y such that vp(pfk(α)) ≤ 1
p−1 for some k, i.e. vp(fk(α)) ≤

1
p−1 − 1.

But f1, · · · , fd ∈ O[t1, · · · , tr], so using Corollary 4.6 we know that there exists α ∈
K

r such that vp(fi(α)) ≥ −1 for all i and vp(fk(α)) < 1
p−1 − 1 for some k. Hence 

vπ(pfi(α)) ≥ 0 for all i, and hence α ∈ Y , and vp(pfk(α)) ≤ 1
p−1 . �

Now we will explore more closely the image of the Tate algebra under an almost 
polynomial map.

Theorem 4.10. Suppose that φ : K〈u1, · · · , ud〉 → K〈t1, · · · , tr〉 is an almost-polynomial 
map, and let S := φ(K〈u1, · · · , ud〉). Then S is an integrally closed domain of Krull 
dimension r.

Proof. First, we will prove that S has Krull dimension r, and this is very similar to the 
proof of [17, Proposition 7.5]:
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Since t1, · · · , tr ∈ S, it follows from Lemma 4.3 that S contains K〈πmt1, · · · , πmtr〉
for some m ≥ 0. Therefore we have inclusions of commutative affinoid algebras, 
K〈πmt1, · · · , πmtr〉 ↪−→ S ↪−→ K〈t1, · · · , tr〉, which gives rise to a chain of open 
embeddings of the associated affinoid spectra: Sp K〈t1, · · · , tr〉 ↪−→ Sp S ↪−→ Sp 
K〈πmt1, · · · , πmtr〉.

The notion of the analytic dimension dim X of a rigid variety X is defined in [14], 
where it is proved to be equal to the supremum of the Krull dimensions of every affinoid 
algebra R such that Sp R is an affinoid subdomain of X. In particular, if Sp B is 
an affinoid subdomain of Sp A in the sense of [8, Definition 3.3.9], then K.dim(B) ≤
K.dim(A).

Therefore, since the Tate algebras K〈t1, · · · , ts〉 and K〈πmt1, · · · , πmtr〉 both have 
dimension r, it remains to prove that the embeddings Sp S → Sp K〈πmt1, · · · , πmtr〉
and Sp K〈t1, · · · , tr〉 → Sp S define affinoid subdomains.

For convenience, set D := Sp K〈t1, · · · , tr〉 and D1 := Sp K〈πmt1, · · · , πmtr〉. Then 
D can be realised as the unit disc in r-dimensional rigid K-space, while D1 is a deformed 
disc containing D, so fixing coordinates, D = {(x1, · · · , xr) ∈ D1 : vπ(xi) ≥ 0 for all i}.

But since Sp S contains D, we could instead write D = {(x1, · · · , xr) ∈ Sp S :
vπ(xi) ≥ 0 for all i}, and this is a Weierstrass subdomain of Sp S in the sense of [8, 
Definition 3.3.7], and hence D is an affinoid subdomain of Sp S by [8, Proposition 3.3.11]. 
Therefore K.dim(S) ≥ dim(D) = r.

Now, set T := K〈πmt1, · · · , πmtr〉, and let fi(t1, · · · , tr) = φ(ui) ∈ T for each i. 
Define

B := T 〈ζ1, · · · , ζd〉/(ζi − fi(t1, · · · , tr) : i = 1, · · · , d)

then B is an affinoid algebra which naturally surjects onto S = φ(K〈u1, · · · , ud〉), where 
each a ∈ T is sent to a, and each ζi is sent to φ(ui). Therefore, K.dim(S) ≤ K.dim(B).

But clearly there is a map T → B, inducing a morphism of affinoid varieties Sp 
B → Sp T , and the proof of [8, Proposition 3.3.11] shows that this corresponds to the 
embedding of the Weierstrass subdomain Y = {x ∈ Sp T : vπ(fi(x)) ≥ 0 for all i} into 
Sp T , and hence Sp B is an affinoid subdomain of Sp T = D1 by [8, Proposition 3.3.11], 
and hence K.dim(B) ≤ dim(D1) = r.

Therefore r ≤ K.dim(S) ≤ K.dim(B) ≤ r, forcing equality, so K.dim(S) = r as 
required. Moreover, this implies that S and B have the same Krull dimension, and hence 
S is a quotient of B by a minimal prime ideal.

To prove that S is integrally closed, we will prove that the affinoid variety Y = Sp 
B is normal, i.e. at every point p ∈ Y , the ring of germs of affinoid functions OY,p (as 
defined in [8, Definition 4.1]) is reduced and integrally closed. Using this, it will follow 
from [9, Proposition 7.3.8] that the localisation Bq of B at every prime ideal q of B is 
reduced and integrally closed.

Since S is a minimal prime quotient of B, it will follow that S is an integrally closed 
domain as required.
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Using [10, Theorem 5.1.3], we see that since the affine variety Ar
K is smooth, and hence 

normal, its analytification Ar,an
K is also normal. So since Y = {x ∈ Ar,an

K : vπ(fi(x)) ≥ 0
for all i} is an affinoid subdomain of Ar,an

K by Lemma 4.8(ii), it follows that OAr,an
K ,p =

OY,p for every point p ∈ Y . Hence OY,p is reduced and integrally closed as required. �
4.4. Using the crossed product

In this subsection, we will prove a control theorem for kernels of almost-polynomial 
maps. Throughout, we will assume that K contains a p’th root of unity ζ.

Fix A a free abelian pro-p group of rank d, let A := 1
pLA be the associated Zp-Lie 

algebra of A, and let φ : Û(A)K → K〈t1, · · · , ts〉 be an almost-polynomial map.
Consider the crossed product Dp = Dp(A) = Û(pA)K ∗ A

Ap defined in Section 2.5. 
This is a Banach completion of KA with respect to the extension of the dense embedding 
ι : KAp → Û(pA)K to KA, and there is a natural map τ : Dp → Û(A)K . Define 
φ′ : Dp → K〈t1, · · · , ts〉 and φA : KA → K〈t1, · · · , ts〉 making the following diagram 
commute:

Dp Û(A)K

KA K〈t1, · · · , ts〉

τ

φ′

φι

φA

From now on, set I = ker(φ′), and let Q := ker(φA) = I ∩KA, and define:

U := {a ∈ A : φ(a) ∈ φ(Û(pA)K)}.

Proposition 4.11. U is a proper open subgroup of A containing Ap.

Proof. Since φ is a ring homomorphism, it is clear that for all a, b ∈ U , ab ∈ U , and 
since KAp is a subalgebra of Û(pA)K , it is clear that Ap ⊆ U . Therefore, since A

Ap is a 
finite group, and U

Ap is closed under multiplication, it follows that U is a subgroup of A
containing Ap, and hence it is open.

Finally, since φ is an almost polynomial map, it follows from Proposition 4.9 that there 
exists u ∈ A such that exp(pφ(u)) = φ(exp(pu)) does not lie in the image of Û(pA)K
under φ. But a := exp(pu) ∈ A and hence a /∈ U . Therefore U is a proper subgroup of 
G. �

Using this proposition, we can fix a Zp-basis {a1, · · · , ad} for A such that {a1, · · · , ar,
apr+1, · · · , a

p
d} is a Zp-basis for U , so a1, · · · , ar ∈ U and ar+1, · · · , ad /∈ U .

Since A is a free abelian pro-p group, we have that A
Ap is a direct product of d copies 

of the cyclic group of order p, where the i’th copy is generated by the image of ai in A
Ap . 

Setting ci := aiA
p, it follows from Lemma 2.9 that:
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Dp = Û(pA)K ∗ 〈c1〉 ∗ · · · ∗ 〈cd〉 (10)

where cit = cti for 0 ≤ t < p and cip = api .
From now on, let S := φ(Û(pA)K) ⊆ K〈t1, · · · , ts〉, and let B := Û(pA)K ∗ 〈c1〉 ∗ · · · ∗

〈cr〉 ≤ Dp. Then since a1, · · · , ar lie in U , the image of B under φ is S by the definition 
of U . Furthermore, since KU = KAp ∗ U

Ap = KAp ∗ 〈c1〉 ∗ · · · ∗ 〈cr〉, it is clear that 
KU ⊆ B.

Let J := I ∩B � B be the kernel of the restriction of φ′ to B, and let I ′ := JDp – an 
ideal of Dp contained in I.

Lemma 4.12. I is a prime ideal of Dp, minimal prime above I ′.

Proof. Since Dp/I ∼= im(φ′) ≤ K〈t1, · · · , ts〉, it is clear that I is a prime ideal of Dp.
Since Dp is a crossed product of B with a finite group, it follows from Lemma 2.4(ii) 

that I is minimal prime above I ′ = (I ∩B)Dp. �
Now, we will need the following small result from Galois theory [28]:

Lemma 4.13. Let F be a field of characteristic 0, containing a p’th root of unity ζ. Let 
r ∈ F , and suppose that r has no p’th root in F . Choose a p’th root α ∈ F of r, and let 
F ′ := F (α). Then if β ∈ F ′ and βp ∈ F then β = cαm for some c ∈ F , 0 ≤ m < p.

Proof. Since F ′ is the splitting field for the polynomial xp − r over F , it is clear that F ′

is a Galois extension of F . So since [F ′ : F ] = p this means that Gal(F ′/F ) has order p.
In fact, if we consider the element σ ∈ Gal(F ′/F ) sending α to ζα, then Gal(F ′/F )

is cyclic of order p, generated by σ.
The result is clear if β ∈ F , so assume β /∈ F and βp ∈ F . Then β is a root of the 

polynomial xp − βp ∈ F [x], and hence σ(β) is also a root. Therefore σ(β) = ζmβ for 
some 0 ≤ m < p, so σ(α−mβ) = ζ−mα−mζmβ = α−mβ.

But since σ generates Gal(F ′/F ), it follows that α−mβ is fixed by the Galois group, 
so since F ′/F is a Galois extension, this means that c := α−mβ ∈ F , and hence β = cαm

as required. �
For clarity, we will introduce/recall the following data:

• I = ker(φ′) � Dp.
• Q = I ∩KA � KA.
• U = {a ∈ A : φ(a) ∈ φ(Û(pA)K)} = 〈a1, · · · , ar, apr+1, · · · , a

p
d〉.

• B = Û(pA)K ∗ 〈c1〉 ∗ · · · ∗ 〈cr〉 ≤ Dp.
• S = φ(Û(pA)K) = φ′(B) ≤ K〈t1, · · · , ts〉.
• J = I ∩B � B.
• I ′ = JDp � Dp.
• R := Dp/I

′
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Proposition 4.14. R is a domain.

Proof. Since Dp = B ∗ 〈cr+1〉 ∗ · · · ∗ 〈cd〉 and I ′ = JDp, it follows from Lemma 2.4(iii) 
that R ∼= S ∗ 〈cr+1〉 ∗ · · · ∗ 〈cd〉, where c̄pi = φ(api ) for each i. So using [23, Theorem 4.4]
we see that R is reduced. Therefore, we may consider the usual semisimple artinian ring 
of quotients Q(R) of R, which has the form:

Q(R) = Q(S) ∗ 〈cr+1〉 ∗ · · · ∗ 〈cd〉,

where Q(S) is the field of fractions of S. Note that since S = φ(Û(pH)K) is the image 
of a Tate algebra under an almost-polynomial map, it follows from Theorem 4.10 that 
S is an integrally closed domain. It remains to prove that Q(R) is a field.

Let T0 := Q(S), and for each i = 1, · · · , d − r, define Ti := Ti−1 ∗ 〈cr+i〉, so that 
Td−r = Q(R).

Clearly T0 is a field, so we will use induction to show that Ti is a field for each i, so 
in particular, Q(R) is a field. So assume that for some j > 0, T0, · · · , Tj−1 are all fields:

Then since Tj = Tj−1 ∗ 〈cr+j〉 where c̄pr+j = φ(apr+j) ∈ S, it follows that

Tj = Tj−1[x]/(xp − φ(apr+j))

So we only need to show that the polynomial xp − φ(apr+j) ∈ Tj−1[x] is irreducible over 
the field Tj−1.

Since K contains a p’th root of unity, we see using standard Galois theory that this 
just means we need to show that this polynomial has no root in Tj−1, i.e. that there is 
no b ∈ Tj−1 such that bp = φ(apr+j).

Let us suppose for contradiction that bp1 = φ(apr+j) for some b1 ∈ Tj−1 = Tj−2 ∗
〈cr+j−1〉. Then since φ(apr+j) ∈ S ⊆ Tj−2 and Tj−2 is a field containing K, it follows 
from Lemma 4.13 that b1 = b2c̄

k1
r+j−1 for some b2 ∈ Tj−2, 0 ≤ k1 < p.

Therefore, bp2 = φ((ar+ja
−k1
r+j−1)p) ∈ S, so applying a second induction, for each 

i > 0, we can find integers 0 ≤ k1, · · · , ki−1 < p and bi ∈ Tj−i such that bpi =
φ((ar+ja

−k1
r+j−1a

−k2
r+j−2 · · · a

−ki−1
r+j−i+1)p) ∈ S.

Taking i = j we have that bj ∈ T0 = Q(S) and bpj ∈ S. So since S is integrally closed, 
it follows that bj ∈ S ⊆ K〈t1, · · · , ts〉.

Now, (bjφ(a−1
r+ja

k1
r+j−1 · · · a

kj−1
r+1 ))p = 1, so it follows that there is a p’th root of unity 

ζ ∈ K such that:

ζbj = φ(ar+ja
−k1
r+j−1a

−k2
r+j−1 · · · a

−kj−1
r+1 ).

Therefore, since bj ∈ S, this means that φ(ar+ja
−k1
r+j−1a

−k2
r+j−1 · · · a

−kj−1
r+1 ) ∈ S =

φ(Û(pA)K), or in other words ar+ja
−k1
r+j−1a

−k2
r+j−1 · · · a

−kj−1
r+1 ∈ U by the definition of 

U .
This is the required contradiction since {a1, · · · , ar, apr+1, · · · , a

p
d} is a Zp-basis for U , 

and each ki is less than p. �
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Theorem 4.15. Let φ : Û(A)K → K〈t1, · · · , ts〉 be an almost-polynomial map. Then the 
kernel Q of the restriction of this map to KA is controlled by U .

Proof. If I = ker(φ′) � Dp, then using Proposition 4.14 we see that R = Dp/(I ∩B)Dp

is a domain. But we know that I is minimal prime above (I ∩B)Dp by Lemma 4.12, so 
it follows that I = (I ∩B)Dp.

So, if r ∈ Q = I∩KA then since KA = KU∗A
U , r =

∑
a∈A//U

saa for some sa ∈ KU ⊆ B. 

So since r ∈ I = (I∩B)Dp it follows that sa ∈ I∩B∩KU = Q ∩KU for each a, and hence 
r ∈ (Q ∩KU)KA. Since our choice of r was arbitrary, this means that Q = (Q ∩KU)KA, 
i.e. Q is controlled by U . �
4.5. Control theorem for dixmier annihilators

Now we can finally conclude our proof of Theorem C. Again, G is a nilpotent, uniform 
pro-p group, whose Zp-Lie algebra L = 1

p log(G) is powerful.
Fix a linear form λ : L → O such that the restriction of λ to Z(g) is injective, then 

P := AnnKGD̂(λ) is a faithful prime ideal of KG by Lemma 4.1, and KG
P is a domain.

Proof of Theorem C. Firstly, for any finite extension F/K, if we let I = AnnFGD̂(λF ), 
where λF is the scalar extension of λ, then clearly I ∩KG = P . So if we prove that I
is controlled by Z(G), then it will follow from Lemma 2.7 that P is controlled by Z(G). 
Therefore, we may pass to field extensions of K without issue. In particular we may 
assume that F = K contains a p’th root of unity.

Since P is a faithful, prime ideal of KG, it follows from Theorem B that P is controlled 
by an abelian subgroup of G. So let A = Pχ be the controller subgroup of P , then A is 
an abelian normal subgroup of G, so if we let A := 1

p log(A) then A is an abelian ideal 
of L. We want to prove that A is central in G, or equivalently that A is central in L.

Using Lemma 4.2, we see that the image of Û(A)K in EndKD̂(λ) is contained in a Tate 

algebra K〈∂1, · · · , ∂s〉 such that if s > 0 then the morphism Û(A)K → K〈∂1, · · · , ∂s〉 is 
an almost polynomial map. Moreover, s = 0 if and only if A is central, so let us assume 
that s > 0.

Then using Proposition 4.11 and Theorem 4.15, we can find a proper, open subgroup 
U of G such that the kernel Q of the restriction of φ to KA is controlled by U . But 
clearly Q = P ∩ KA, so this is a contradiction since A is the controller subgroup of 
P . �
5. Primitive ideals

The aim of this section is to prove our main result Theorem A. The essence of our 
argument is to compare general primitive ideals in KG to Dixmier annihilators.
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5.1. Weakly rational ideals

Fix G a uniform, nilpotent pro-p group, and as usual let L := 1
pLG, and g := L ⊗Zp

Qp.

Definition 5.1. Given a prime ideal P of KG, we say that P is weakly rational if Z(KG/P )
is a finite field extension of K.

It follows from [13, Theorem 1.1(1)] that any primitive ideal of KG is weakly rational.

Lemma 5.2. Let P ⊆ Q be weakly rational ideals of KG, and suppose that P is faithful. 
Then Q is faithful.

Proof. Let F1 = Z(KG/P ), F2 = Z(KG/Q), then F1, F2 are finite field extensions of K, 
and clearly the natural surjection KG/P � KG/Q reduces to a field extension F1 ↪−→ F2.

Since Q† = {g ∈ G : g−1 ∈ Q} is a normal subgroup of G, using nilpotence of G we see 
that if Q† �= 1, then there exists z ∈ Q†∩Z(G) with z �= 1. Thus z+P, 1 +P ∈ F1 ⊆ F2, 
and z + Q = 1 + Q, which implies that z + P = 1 + P and hence z − 1 ∈ P . So since P
is faithful, z = 1 – contradiction.

Therefore, Q† = 1, and hence Q is faithful. �
Now, recall from Section 2.5 the definition of the Banach completions Dpn =

Û(pnL)K ∗ G
Gpn of KG for each n ∈ N.

Proposition 5.3. Let P be a primitive ideal of KG, then for all sufficiently high n ∈ N, 
there exists a primitive ideal Qn of Dpn = Û(pnL)K ∗ G

Gpn such that Qn ∩KG = P .

Proof. Since P is primitive, P = AnnKGM for some irreducible KG-module M . Using [5, 
Proposition 10.6(e), Corollary 10.11], we see that for n sufficiently high, M̂ := Dpn ⊗KG

M �= 0.
Since M is irreducible and M̂ �= 0, the natural map M → M̂, m �→ 1 ⊗m is injective. 

And since Dpn is a Banach completion of KG with respect to some filtration w, it 
follows that M̂ is a completion of M = KGm with respect to the filtration v(rm) =
sup{wn(r + y) : y ∈ KG and ym = 0}.

Therefore, if r ∈ P , i.e. rM = 0, then taking limits shows that rM̂ = 0, so P ⊆
AnnKGM̂ = (AnnDpn

M̂) ∩KG.
Now, since Dpn is Noetherian and M̂ is a finitely generated Dpn-module, we can 

choose a maximal submodule U ≤ M̂ , and let M ′ := M̂/U – an irreducible Dpn-module.
Since M is irreducible, the composition M ↪−→ M̂ � M ′ is either injective or zero. If 

it is zero then M ⊆ U , and hence M̂ ⊆ U and M ′ = 0. This contradiction implies that 
the composition is injective.

Finally, let Qn = AnnDpn
M ′, then Qn is a primitive ideal of Dpn , and P ⊆

AnnKGM̂ ⊆ AnnKGM
′ = Qn ∩ KG. Also, if r ∈ Qn ∩ KG then rM ′ = 0, so since 

M ⊆ M ′, rM = 0 and r ∈ P . Thus P = Qn ∩KG as required. �
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5.2. Reduction from KG to KGpn

Now we begin to explore how we can relate primitive ideals in Iwasawa algebras to 
Dixmier annihilators:

Proposition 5.4. Given a primitive ideal P of KG, there exists m ∈ N with m ≥ 1, finite 
extensions F1, · · · , Fr/K and Qp-linear maps λi : g → Fi with λi(pmL) ⊆ OFi

for each 
i = 1, · · · , r, such that:

P ∩KGpm = AnnKGpm D̂(λ1)F1
∩ · · · ∩ AnnKGpm D̂(λr)Fr

Proof. Using Proposition 5.3, if P is primitive, then for any sufficiently high n ≥ 1, 
there is a primitive ideal Q of Dpn = Û(pnL)K ∗ G

Gpn such that Q ∩KG = P , and hence 
Q ∩KGpn = P ∩KGpn .

Let I = Q ∩ Û(pnL)K , then using Lemma 2.5 we see that I is a semiprimitive ideal of 
Û(pnL)K , so choose primitive ideals J1, J2, · · · , Jr of Û(pnL)K such that I = J1 ∩ J2 ∩
· · · ∩ Jr.

Since each Ji is primitive, it follows from [17, Theorem A] that there exists m ≥ n

such that for each i, Ji ∩ ̂U(pmL)K = Ann
̂U(pmL)K

D̂(λi)Fi
for Fi/K a finite extension, 

λi : g → Fi Qp-linear with λi(pmL) ⊆ OFi
. Thus:

P ∩KGpm = Q ∩KGpm = I∩KGpm = (J1∩ ̂U(pmL)K) ∩· · ·∩(Jr∩ ̂U(pmL)K) ∩KGpm

is an intersection of Dixmier annihilators as required. �
Now, we want to show that all faithful, primitive ideals of KG are centrally generated, 

which we know is true for Dixmier annihilators by Theorem C. Proposition 5.4 allows 
us to compare general primitive ideals to Dixmier annihilators, and the following result 
uses this to prove a reduced version of Theorem A:

Theorem 5.5. Let G be a nilpotent, uniform pro-p group with centre Z, and let P be 
a faithful, primitive ideal of KG. Then there exists N ∈ N such that for all n ≥ N , 
P ∩KGpn is controlled by Zpn .

Proof. Using Proposition 5.4, we see that for some m ≥ 1, there are finite extensions 
F1, · · · , Fr and Qp-linear maps λi : g → Fi with λ(pmL) ⊆ OFi

such that P ∩KGpm =
AnnKGpm D̂(λ1)F1

∩ · · · ∩ AnnKGpm D̂(λr)Fr
.

For each i = 1, · · · , r, set Ji := AnnKGpm D̂(λi)Fi
for convenience, clearly these are 

prime ideals of KGpm , thus P ∩ KGpm is semiprime and J1, · · · , Jr are the minimal 
primes above P ∩ KGpm , hence they are all G-conjugate by the proof of [2, Lemma 

5.4(b)]. Note that for all n ≥ m, Ji ∩KGpn = AnnKGpn D̂(λ)Fi
for each i.

Also, since P is faithful, P ∩KGpm is faithful, so J†
1 ∩ · · · ∩ J†

r = P † = 1. But since 
J†

1 , · · · , J†
r are G-conjugate and G is orbitally sound by [2, Proposition 5.9], this means 
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that the subgroup 1 must have finite index in J†
i for each i, which means that they are 

finite. But G is torsionfree, thus J†
i = 1 for all i, i.e. J1, · · · , Jr are faithful.

So since Ji = AnnKGpm D̂(λi)Fi
is faithful, it follows from Lemma 2.12 that λi is 

injective when restricted to Z(g).
Now, since m ≥ 1, note that for all n ≥ m, 1

p log(Gpn) = pn−1 log(G) is a powerful 
Lie lattice. Therefore, using Theorem C, we see that Ji ∩KGpn = AnnKGpn D̂(λi)Fi

is 
controlled by Z(Gpn) for each i, and using [2, Lemma 8.4(a)], Z(Gpn) = Z(G) ∩Gpn =
Zpn .

Therefore, setting Bi,n := Ji ∩KGpn = AnnKGpn D̂(λi), Bi,n = (Bi,n ∩KZpn)KGpn

for each i, so using [15, Lemma 4.1(a)]:

P ∩KGpn

= B1,n ∩ · · · ∩Br,n = (B1,n ∩KZpn

)KGpn ∩ · · · ∩ (Br,n ∩KZpn

)KGpn

= (B1,n ∩ · · · ∩Br,n ∩KZpn

)KGpn

= (P ∩KZpn

)KGpn

Hence P ∩KGpn is controlled by Zpn as required. �
5.3. Extension from KGpn to KG

The results of the previous subsection show that we can establish Theorem A after 
passing to Gpn for sufficiently high n. We now just need to extend to KG.

Lemma 5.6. Let P be a weakly rational ideal of KG. Then P ∩KZ(G) is a maximal ideal 
of KZ(G).

Proof. Since P is prime in KG, Q := P ∩KZ(G) is prime in KZ(G). So setting F :=
Z(KG/P ), it is clear that KZ(G)/Q ↪−→ F . So since KZ(G)/Q is a domain containing 
K, and F is a finite extension of K, it follows that KZ(G)/Q is a field, and hence Q is 
maximal. �
Proposition 5.7. Let G be a nilpotent, uniform pro-p group, and let P1 ⊆ P2 be faithful, 
primitive ideals of KG. Then there exists n ∈ N such that P1 ∩KGpn = P2 ∩KGpn . It 
follows that if P is a faithful, primitive ideal of KG then P is maximal.

Proof. Using Theorem 5.5, we see that there exist N1, N2 ∈ N such that for all n1 ≥ N1, 
n2 ≥ N2, Pi ∩KGpni is controlled by Z(G)pni for each i. So choose n ≥ max{N1, N2}
and we have that P1 ∩KGpn

, P2 ∩KGpn are controlled by Z(G)pn .
Since P1 is primitive, it is weakly rational, so using Lemma 5.6 we see that P1∩KZ(G)

is a maximal ideal of KZ(G). So since P1 ∩ KZ(G) ⊆ P2 ∩ KZ(G), we have that 
P1 ∩KZ(G) = P2 ∩KZ(G), and hence P1 ∩KZ(G)pn = P2 ∩KZ(G)pn . Therefore:

P1 ∩KGpn = (P1 ∩KZ(G)pn)KGpn = (P2 ∩KZ(G)pn)KGpn = P2 ∩KGpn .
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Finally, given a faithful, primitive ideal P of KG, let Q be a maximal ideal of KG

containing P . Since P and Q are primitive, they are weakly rational, so since P is 
faithful, Q is faithful by Lemma 5.2. Thus, by the above, there exists n ∈ N such that 
P ∩KGpn = Q ∩KGpn is controlled by Z(G)pn .

But P ∩KZ(G) is prime in KZ(G), so P ∩KGpn = (P ∩KZ(G)pn)KGpn is prime 
in KGpn by Theorem 2.8. So since P ∩KGpn = Q ∩KGpn , it follows from [23, Theorem 
16.6(iii)] that P = Q, and hence P is maximal. �
Theorem 5.8. Let G be a nilpotent, uniform pro-p group. Then all faithful, primitive 
ideals of KG are controlled by Z(G).

Proof. Let P be a faithful, primitive ideal of KG, and let Z = Z(G). We want to prove 
that P is controlled by Z.

Using Theorem 5.5, we know that there exists n ∈ N such that P ∩KGpn is controlled 
by Zpn , and hence is prime in KGpn by Theorem 2.8. So let J := (P ∩KGpn)KG, then 
using Lemma 2.4 we see that J is a semiprime ideal of KG, and P is minimal prime 
above J .

Let Q := P ∩KZ, then Q is prime in KZ, so QKG is prime in KG by Theorem 2.8. 
And since P ∩KGpn = (P ∩KZpn)KGpn , we have that:

J = (P ∩KGpn)KG = (P ∩KZpn)KG ⊆ QKG.

But clearly QKG ⊆ P , so since QKG is prime and P is minimal prime above J , it 
follows that P = QKG = (P ∩KZ)KG, and hence P is controlled by Z as required. �

Now we can finally prove our main result. First, we just need a small Lemma:

Lemma 5.9. Let G be a uniform pro-p group, let N be a closed, normal subgroup of G. 
Then there exists an open, uniform normal subgroup U of G such that N ∩U is a closed, 
isolated normal subgroup of U .

Proof. Recall from [29, Definition 1.6] the definition of the isolater iG(N) of N in G, 
and recall from [29, Proposition 1.7, Lemma 1.8] that iG(N) is a closed, isolated normal 
subgroup of G, and N is open in iG(N).

Therefore, there exists n ∈ N such that if g ∈ iG(N) then gp
n ∈ N . So if g = hpn ∈

U := Gpn and gp = hpn+1 ∈ N ⊆ iG(N), then h ∈ iG(N), so g = hpn ∈ N . Hence N ∩U

is isolated in U as required. �
Proof of Theorem A. Let P be a primitive ideal of KG, and we want to prove that P is 
virtually standard, i.e. that P ∩KU is a finite intersection of standard ideals for some 
open, normal subgroup U of G.

Firstly, if P is faithful, then it follows from Theorem 5.8 that P is controlled by Z(G), 
and hence is standard, and using Proposition 5.7 we see that P is maximal. So we can 
assume that P is not faithful.



46 A. Jones / Advances in Mathematics 403 (2022) 108371
Let N := P † = {g ∈ G : g− 1 ∈ P}. Then N is a closed, normal subgroup of G, so by 
Lemma 5.9, there exists an open, uniform normal subgroup U of G such that N ∩ U is 
isolated in U . Let Q := P ∩KU , then Q is a semiprimitive ideal in KU by Lemma 2.5, 
and Q† = N ∩ U is a closed, isolated normal subgroup of U .

Let U1 := U
Q† , and let Q1 := Q

(Q†−1)KU
. Then U1 is a nilpotent, uniform pro-p group 

and Q1 is a faithful semiprimitive ideal of KU1. Therefore, it follows that Q is a finite 
intersection of faithful, primitive ideals in KU1. Since all faithful primitives in KU1 are 
maximal and standard, this means that Q1 is a finite intersection of maximal standard 
ideals.

Therefore, since Q1 is a homomorphic image of Q, this means that Q is a finite 
intersection of maximal, standard ideals, and it follows from Definition 1.1 that P is a 
virtually standard prime ideal of KG. Therefore, it remains to show that P is maximal.

Using Lemma 2.4(ii), we see that P is minimal prime above the semiprime ideal 
(P ∩ KU)KG. So since P ∩ KU is semimaximal in KU , it follows from [23, Theorem 
16.6(iii)] that P is maximal in KG as required. �
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