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ABSTRACT 12 

 13 

The objective of this study was to assess the suitability of statistical and the k-C* models 14 

to projecting treatment performance of constructed wetlands by applying the models to 15 

predict the final effluent concentrations of a pilot field-scale constructed wetlands system 16 

(CWs) treating animal farm wastewater. The CWs achieved removal rates (in g/m
2
.d) ranging 17 

from 7.1-149.8 for BOD5, 49.8-253.8 for COD and 7.1-47.0 for NH4-N. Generally, it was 18 

found that the statistical models developed from multiple regression analyses (MRA) were 19 

stronger in predicting final effluent concentrations than the k-C* model. However, both 20 

models were inadequate in predicting the final effluent concentrations of NO3-N. The first-21 

order area-based removal rate constants (k, m/yr) determined from the experimental data 22 

were 200.5 for BOD5, 80.1 for TP and 173.8 for NH4-N and these indicate a high rate of 23 

pollutant removal within the CWs.   24 
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 32 

INTRODUCTION  33 

Constructed wetlands systems (CWs) are treatment modules systems designed to mimic 34 

natural processes involving wetland vegetation, soils, and their associated microbial 35 

assemblages in treating wastewater. In recent times, the need to enhance or achieve specific 36 

treatment objectives which are often more stringent has led to the emergence of engineered 37 

wetland systems. These systems are essentially CWs, but with a more controlled 38 

environment.
[1]

 Constructed and engineered wetland systems have gained widespread 39 

popularity as a wastewater treatment technology due to the fact that they are low-cost, easy-40 

to-operate, efficient and robust.
[2]

 They have been utilized globally for the treatment of 41 

various types of wastewaters including municipal wastewater from small communities, 42 

industrial and high-strength wastewater from agricultural activities. Contaminants in these 43 

systems are removed through a combination of physical, chemical, and biological processes 44 

including sedimentation, precipitation, adsorption to soil particles or specialized substrates, 45 

assimilation by plant tissue and microbial transformations and interactions.  46 

The basis of design for these systems is usually first-order reaction model integrated with 47 

a plug-flow (PF) assumption. Although the flow in CWs is generally intermediate between 48 

PF and completely mixed, it is acknowledged that the first-order model with PF assumptions 49 

provides a conservative design estimate.
[3]

 However, while this model is simple and widely 50 

used, it fails to adequately characterize the complex processes that occur in CWs.
[4]

  For 51 

instance, the findings of numerous tracer studies in literature indicate that CWs typically do 52 

not possess ideal PF hydraulics. Furthermore, it is noted that current design procedures fail to 53 

incorporate atmospheric interactions such as precipitation, evaporation, and transpiration and 54 

these variables produce a secondary hydraulic regime that may influence retention times and 55 

invalidate steady state theoretical models.
[5, 6, 7]

 56 



Several researchers have proposed more sophisticated CWs performance models, which 57 

simulate non-ideal hydraulics, either using a tanks in series (TIS) or plug flow with 58 

dispersion (PFD) approach.
[6]

  These models, however, have not been adopted by 59 

practitioners due to their complexity and amount of data required to properly use them. In 60 

addition, the proposed models still do not incorporate unsteady external hydraulic loading, 61 

which can have large effects on CWs performance. Recently, Rousseau et al.
[8]

 reviewed 62 

current CWs design approaches and concluded that the first-order PF model remains the best 63 

available method, despite its obvious deficiencies. This agrees with the submissions of Stein 64 

et al.
[9]

 who noted that first-order models are the most widely used for CWs design. 65 

Furthermore, Son et al.
[7]

 remarked that data availability and applicability have meant that 66 

simple regression and kinetic models have continued to be used to demonstrate CWs 67 

performance. In recent times, a modified first-order kinetic model often called the k-C* 68 

model was proposed by Kadlec and Knight 
[10]

 and the model has been widely applied in 69 

CWs design. The k-C* model allows for a background or residual concentration (C*), a non-70 

zero lower limit that is approached asymptotically in lieu of the first-order model approach to 71 

zero 
[9].

  72 

On the other hand, statistical models including those derived from multiple regression 73 

analyses (MRA) have also been found useful for simplified description and analysis of CWs 74 

performance, and their accuracy in predicting such performances has been demonstrated. 
[11, 

75 

12, 13]
 They are widely used in assessing CWs performance as they provide a means of 76 

understanding their treatment process/mechanism although this is limited. In this study, we 77 

evaluated the fit of statistical models developed from multiple regression analyses and the k-78 

C* models in projecting the treatment performance of a pilot field-scale CWs treating animal 79 

farm wastewater by comparing the predicted final effluent concentrations using these models 80 

with those observed from the field trial. The CWs reported here, which has been developed in 81 

our research group, is unique in that it employs a by-product, alum sludge (the most widely 82 



generated aluminium-coagulated drinking water treatment residual worldwide), as the main 83 

substrate primarily to enhance phosphorus (P) removal and also for biofilm 84 

attachment.
[14,15,16]

 Although MRA and k-C* models have their limitations, the availability 85 

and applicability of data from this unique pilot field-scale CWs were tested and discussed.  86 

 87 

MATERIALS AND METHODS 88 

 89 

Pilot field-scale constructed wetland system 90 

The pilot field-scale CWs is located on an animal farm in Newcastle, Co Dublin, Ireland. 91 

The set-up and operation of the CWs has been described in Zhao et al.
[16]

  In brief, the CWs is 92 

a four-stage equal sized cell system (each 108cm×94cm×105cm) operated in vertical down-93 

flow mode with a hydraulic loading rate of 0.29 m
3
/m

2
.d. The four cells are all interlinked by 94 

submersible pumps. The pumps are connected to a digital electronic timer which regulates the 95 

flow in the CWs according to a programme schedule. Dewatered alum sludge cake was 96 

collected fresh from the industrial filter press of the sludge dewatering unit of a drinking 97 

water treatment plant in South-West Dublin, Ireland where aluminium sulphate is used as 98 

coagulant. The characteristics of the dewatered alum sludge cake and its suitability for use as 99 

a substrate in a CWs has been well studied and reported.
[14]

  The dewatered alum sludge cake 100 

was then used as the main substrate in the CWs. The configuration of the CWs is as follows: 101 

10cm of 10mm gravel at the bottom to serve as base support, 65cm of the dewatered alum 102 

sludge cakes to serve as the main substrate layer and 10cm of 20mm gravel to serve as the 103 

distribution layer. Each cell of the CWs was planted with common reeds, phragmites 104 

australis. The CWs was fed with wastewater collected from the secondary holding tank on 105 

the farm. However, in order to allow the system and the reeds time to establish, the 106 

wastewater from the farm was sometimes diluted with tap water to lower the concentration. 107 

The four-stage CWs was operated in series. Influent and final effluent samples were 108 

collected from the CWs weekly and analysed for COD (both total and soluble COD, 109 



(sCOD)), BOD5 (Lovibond OxiDirect apparatus, Lennox, UK), TP (Ascorbic method, 110 

Clesceri et al.
[17]

), PO4-P, TN (Persulfate method, Clesceri et al.
[17]

), NH4-N, NO3-N, NO2-N, 111 

SS and Turbidity (Hach turbidity meter 2100N IS). Except where indicated, all the water 112 

quality parameters were analysed using a Hach DR/2400 spectrophotometer according to its 113 

standard operating procedures. Furthermore, real time measurements of oxidation-reduction 114 

potential (ORP), temperature and pH were obtained from a YSI multi-parameter probe 115 

inserted in the influent tank and in each stage of the CWs 116 

 117 

Correlation and regression analysis 118 

Prior to the multiple regression analysis, correlation analysis was conducted between the 119 

water quality parameters to investigate any relationships present. This was done to give a 120 

greater understanding of suitable parameters to be used in the MRA. MRA was then 121 

performed to test the relationship between each of BOD5, COD, TP, NH4-N and NO3-N and 122 

other parameters. These parameters were selected based on their relative importance in 123 

assessing water quality and the possibility of being able to predict their concentration in the 124 

final effluent from data obtained in real time, or from other parameters that are cheaper, 125 

easier and/or quicker to analyse. The MRA analysis was performed for each of the dependant 126 

variables using a combination of one to five predictor variables. The aim was to determine 127 

the optimum model for each combination of input variables by estimating BOD5, COD, TP, 128 

NH4-N and NO3-N with as few inputs variables as possible in order to reduce associated 129 

errors and costs. A 95% confidence interval was specified for the regressions. The models 130 

were tested by examining the adjusted R
2
, the significant F value, the p values and the mean 131 

absolute scaled error (MASE), as shown in Eq. (1) & (2). 132 
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where qt is the scaled error of sample point t, et is the residual of sample point t, n is the 134 

sample size and Yi is the observed value at step i.  135 

     tMASE mean q        (2) 136 

Fitting k-C* model to experimental data 137 

Further to the MRA, the k-C* model, as shown in Eq. (3) 
[10]

, was fitted to the 138 

experimental data. First-order area-based removal rate constants (k), assuming removal to 139 

non-zero background concentrations (C*), were estimated for BOD5, COD, TP, NH4-N, NO3-140 

N, TN and SS.   141 
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      (3) 142 

where k is the first order area-based removal rate constant (m/yr), Co is the outlet 143 

concentration (mg/l), Ci is the inlet concentration (mg/l), C* is the irreducible background 144 

concentration (mg/l), q is the hydraulic loading rate (m
3
/m

2
.day), and y is the fractional 145 

distance from inlet to outlet. The equation was rearranged for the fitting procedure, Eq. (4). 146 

 * * expo i

ky
C C C C

q


        (4) 147 

The values of the irreducible background concentrations, C*, were adopted from the lowest 148 

effluent concentration observed for each pollutant in the CWs similar to the approach used by 149 

Trang et al.
[18]

 It is noted that very little information exists on suitable values for C* and the 150 

values adopted in this study (shown later on in Table 5) are intermediate. In the literature, a 151 

range of 1.7≤ C*≤18.2 mg/l BOD5 with a mean of 9.9 was reported by Stein et al. 
[9]

 and 152 

Kadlec and Knight
[10]

, respectively, while Shepherd et al.
[19]

 reported a range of 23≤ C*≤450 153 

mg/l COD in a CWs treating winery wastewater. 154 

 155 

 156 



RESULTS 157 

Performance evaluation 158 

The composition of the wastewater varied over time and the range of pollutant 159 

concentration in the influent wastewater to the CWs were BOD5 (31-968 mg/l), COD (124-160 

1634 mg/l), PO4-P (2.8-60 mg-P/l), TN (16-273 mg-N/l) and SS (25-633 mg/l). It is noted 161 

that the characteristics of the source wastewater varied greatly over time in concert with 162 

seasonal changes and farming operations. The mean monthly removal efficiencies achieved 163 

in the CWs was determined to range from 56.6%-83.5%, 35.6%-84.2%, 11.2%-77.5%, 164 

48.5%-92.5%, 75.4%-93.8%, 73.0%-96.5% and 46.3%-83.3% for BOD5, COD, TN, NH4-N, 165 

TP, P and SS respectively. In most cases, the removal efficiencies were generally lowest at 166 

the start-up of the CWs. However, removal efficiencies for TP and PO4-P were high from the 167 

beginning in this study. Table 1 shows the loading and removal rates obtained from the CWs 168 

during the monitoring period. It is particularly noted that the CWs was able to efficiently 169 

remove PO4-P both at low loading rates of 2.8 g-P/m
2
.d when 2.6 g-P/m

2
.d (93%) was 170 

removed, and high loading rates of 9.5 g-P/m
2
.d when 9.2 g-P/m

2
.d (97%) was removed. The 171 

system also performed well at removing BOD5 both at low loading rates of 12 g-BOD5/m
2
.d 172 

when 7.5 g-BOD5/m
2
.d was removed and at high loading rates of 201 g-BOD5/m

2
.d when 173 

149.8 g-BOD5/m
2
.d was removed. However, the removal of COD seemed to be more suited 174 

to higher loading rates. This may suggest that at lower COD loadings, internal release within 175 

the CWs has a more profound effect on COD removal. For instance, at a loading rate of 376.3 176 

g-COD/m
2
.d, 253.8 g-COD/m

2
.d (68%) was removed compared to 49.8 g-COD/m

2
.d (49%) 177 

removed at a lower loading rate of 102 g-COD/m
2
.d. A possible reason could be that the 178 

loading rate is not high enough to treat. A similar observation was made in the case of a CWs 179 

treating piggery wastewater effluent where it was found that the concentration of residual-P 180 

increased along the path of the CWs.
[20]

  However, the exact causes of this observed 181 

phenomenon are still unclear. The same trend was observed for the removal of sCOD where 182 



at higher loading rates of 304.1 g-sCOD/m
2
.d, 234.8 g-sCOD/m

2
.d was removed compared to 183 

14.1 g-sCOD/m
2
.d removed at a lower loading rates of 57 g-sCOD/m

2
.d. The removal of TN 184 

fluctuated greatly but it appeared to perform better as the CWs became more established. The 185 

system was able to efficiently remove NH4-N both at low loading rates of 11 g-NH4-N/m
2
.d 186 

when 7.1 g-NH4-N/m
2
.d was removed, and high loading rates of 51.1 g-NH4-N/m

2
.d when 47 187 

g-NH4-N/m
2
.d was removed. 188 

 189 

[INSERT TABLE 1 HERE] 190 

 191 

Correlation analysis 192 

The results of the correlation analysis are presented in Table 2. It shows that the effluent 193 

concentrations of BOD5 are strongly related to the influent concentrations of BOD5 with a 194 

correlation coefficient, R, of 0.794. This suggests that although the CWs was efficient in 195 

BOD5 removal, the influent BOD5 loading impacts on the final effluent BOD5 concentration 196 

that is obtained. The influent concentrations of COD and sCOD also correlate well with the 197 

effluent concentrations of BOD5 with R values of 0.715 and 0.634, respectively. The effluent 198 

concentrations of COD are closely related to both the influent sCOD and SS with R values of 199 

0.636 and 0.667, respectively. This also shows that both the influent concentrations of sCOD 200 

and SS impacts on the final effluent concentration of COD that is obtained. The concentration 201 

of TP in the effluent correlates very well with other water quality parameters such as influent 202 

concentrations of BOD5, COD and sCOD which produced R values of 0.795, 0.802 and 203 

0.791, respectively. The effluent concentrations of NH4-N did not correlate well with other 204 

water quality parameters, but did exhibit negative correlation with both influent temperature 205 

and pH with R values of -0.624 and -0.561, respectively. It is known that both pH and 206 

temperature affect NH4-N removal processes, and this is also the case in CWs.
[21]

  207 

The correlation between influent BOD5 and effluent PO4-P and effluent BOD5 and 208 

influent PO4-P is 0.420 and 0.594 respectively, while the correlation between influent COD 209 



and effluent TP and effluent COD and influent TP is 0.802 and 0.511 respectively. Except for 210 

the correlation between influent COD and effluent TP, all the correlations are of medium 211 

strength. Although in the system, different processes account for the removal of organics 212 

(BOD5 and COD- through microbial degradation) and P and TP (mainly through adsorption 213 

but not exclusively), the significance of the correlations found is that it can indirectly indicate 214 

the loading on the system. For instance, the strength of the wastewater used was characterized 215 

from its BOD5 values based on which appropriate dilution was carried out to generate the 216 

influent into the system. Consequently, a medium correlation between influent BOD5 and 217 

effluent PO4-P would suggest that at high influent BOD5 values (which would imply 218 

comparatively higher organic loading rate on the system since the hydraulic loading rate is 219 

fairly constant), a high value of effluent PO4-P value can be expected as the system is 220 

considerably loaded. Similar explanation can be given for the correlation between COD and 221 

TP. 222 

Nitrification, which is usually defined as the biological oxidation of ammonium-nitrogen 223 

to nitrate-nitrogen with nitrite-nitrogen as an intermediate in the reaction sequence, is 224 

favoured at high values of both temperature and pH and this could explain the negative 225 

relationship observed. Effluent concentrations of NO3-N displayed strong correlations with 226 

TN and NH4-N concentrations in the influent with R values of 0.621 and 0.632, respectively. 227 

The effluent PO4-P concentrations did not show any strong associations with any other 228 

parameters. In the CWs understudy, P is primarily removed by adsorption onto the alum 229 

sludge substrate through the ligand exchange mechanism and this has been shown in our 230 

previous study.
[22]

  231 

 232 

[INSERT TABLE 2 HERE] 233 

 234 

 235 

 236 

 237 



MRA for predicting final effluent concentration of selected pollutants 238 

The results of the optimization of input variables for predicting final effluent 239 

concentrations for the selected pollutants are presented in Table 3 while regression models 240 

adjudged to be the best in predicting the final effluent concentrations for the selected 241 

pollutants are presented in Table 4. The results are presented below as they relate to each 242 

specific pollutant.  243 

  244 

BOD5 245 

From the regression analysis (see Table 3), it was found that the combination of predictor 246 

variables that returned the best adjusted R
2
 of 0.86 and the lowest MASE of 0.783 was that of 247 

influent BOD5, NH4-N, PO4-P and COD. From the significant F value of 3.1 10
-8

 it can be 248 

seen that the null hypothesis can be rejected as the value is less than the 0.05 confidence 249 

interval set during regression. All the p values for the predictor variables are also below the 250 

threshold value of 0.05. The model is shown in Table 4. Except for the model constructed 251 

using an input combination of three independent variables (i.e. influent concentration of 252 

BOD5, NH4-N and PO4-P) which gave an adjusted R
2
 value of 0.837 and a MASE value of 253 

0.994, all the other models had MASE values above 1 even though their adjusted R
2
 values 254 

ranged from 0.760-0.857. It is worth noting that the model constructed for predicting final 255 

effluent BOD5 effluent concentrations using just one predictor variable, which was the BOD5 256 

of the influent, gave the least adjusted R
2
 of 0.76 and the worst MASE value of 1.628. This 257 

suggests that although there may be reasonable correlation between the influent and effluent 258 

BOD5 concentrations, the latter cannot be solely used to predict the former and they may be 259 

sources of organic matter release within the CWs.  260 

 261 

COD 262 



The most efficient model developed for predicting final effluent concentrations of COD 263 

consists of four input variables (see Table 3). The model gave an adjusted R
2
 value of 0.711. 264 

This model also has a significant statistical relationship as the F test provides a significant F 265 

value of 1.5x10
-08

 which rejects the null hypothesis. The p values for the model shown in 266 

Table 3 can be seen to be satisfactory. However, although the MASE value for the model is 267 

1.825 which is greater than 1, it was the lowest compared to the MASE values obtained for 268 

the other models. The model is presented in Table 4. 269 

 270 

TP 271 

The most efficient model for predicting influent TP concentrations consisted of two input 272 

variables as shown in Table 3. Of all the models constructed for predicting the final effluent 273 

concentration of TP, it gave the highest adjusted R
2
 value of 0.801 and the lowest MASE 274 

value of 1.620. The model is presented in Table 4. 275 

 276 

[INSERT TABLE 3 HERE] 277 

[INSERT TABLE 4 HERE] 278 

NH4-N 279 

The model developed using a combination of three input variables was adjudged to be the 280 

best in predicting final effluent concentrations of NH4-N (see Table 3). The model gave an 281 

adjusted R
2
 value of 0.696 and had the lowest MASE of 1.111 compared to the other models. 282 

The significant F value for the model was found to be 5.4 10
-6

, which is lower than the 283 

threshold value of 0.05. Both the predictor variables of influent temperature and SS recorded 284 

p values that were low enough to be considered significant. The model is presented in Table 285 

4. 286 

 287 

NO3-N 288 



The models developed for the prediction of final effluent concentrations of NO3-N were 289 

not as strong as models developed using other parameters as dependant variables such as 290 

BOD5 as can be seen from the adjusted R
2
 values in Table 3. Although the models gave 291 

adjusted R
2
 values ranging from 0.613-0.669, the MASE values were quite high. The best 292 

adjudged model based on the adjusted R
2
 and MASE value is presented in Table 4.  293 

 294 

k–C* model 295 

Using Eq. 3, the k values (in m/yr) for each pollutant were calculated to be 200.5, 271.8, 296 

80.1, 173.8, 618.5, 271.4 and 223.2 for BOD5, COD, TP, NH4-N, NO3-N, TN and SS 297 

respectively (see Table 5). The data was then fitted to Eq. 4, which yielded estimates with R
2
 298 

values of 0.574, 0.350, 0.368, 0.005, 1.6x10
-4

, 0.390 and 0.682 for BOD5, COD, TP, NH4-N, 299 

NO3-N, TN and SS respectively. The MASE values for these models can also be seen in 300 

Table 5. The results show that the k–C* model fitted well for predicting final effluent 301 

concentration of BOD5, COD, TN TP and SS but performed poorly for NH4-N and NO3-N.   302 

 303 

[INSERT TABLE 5 HERE] 304 

Table 4 – First-order area-based removal rate constants 305 
( 306 

 307 

Residual analysis 308 

Fig. 1(a & b) shows the residual analysis from predicting final effluent BOD5 309 

concentrations using the MRA and the k–C* model, respectively. For Fig. 1(a), it can be seen 310 

that the data points are randomly dispersed about zero for all concentrations, therefore, no 311 

pattern is discernable and so the model is reliable. However, in the case of Fig. 1(b), there is a 312 

definite positive skew observed and so the model assumptions are not correct. It can therefore 313 

be said that the model for predicting the final effluent BOD5 concentrations using MRA is 314 

more reliable than that of the k–C* model. Fig. 1(c & d) shows the residual analysis for 315 

estimating final effluent COD concentrations using the MRA and k–C* model, respectively. 316 



From Fig. 1(c), it can be seen that the MRA model has uniform dispersion about the line 317 

R=0. This indicates that the model is acceptable.  318 

However, similar to the performance of the k–C* model in predicting final effluent BOD5 319 

concentrations, the performance of k–C* model in predicting final effluent COD 320 

concentrations displayed a definite positive skew as can be seen in Fig. 1(d). This arises when 321 

the model assumptions are not met, indicating that the model is not as suitable for predicting 322 

the final effluent concentrations of COD as the MRA model. The residual analysis for the 323 

prediction of final effluent TP concentrations using the MRA and the k–C* model is 324 

presented, respectively, in Fig. 1(e & f). Fig. 1(e) shows that the MRA model again displays a 325 

random scattering of points above and below the line R=0 signifying that the model is 326 

adequate for predicting final effluent TP concentrations. However, the residual plot for k–C* 327 

model (Fig. 1(f)) displays a negative skew, again indicating that it is not as appropriate as the 328 

MRA model. Fig. 1(g) shows the residual analysis for the prediction of final effluent NH4-N 329 

concentrations using MRA. This plot shows a random scattering of residuals about the line 330 

R=0 and so indicates that model is adequate in predicting the final effluent NH4-N 331 

concentrations. However, for the kinetic model (Fig. 1(h)), it shows a definite positive to 332 

negative skew.  333 

[INSERT FIG 1 HERE] 334 

 335 

This pattern indicates that the model is not as accurate in predicting final effluent NH4-N 336 

concentrations as the MRA model. In the case of NO3-N, the residual plots for the MRA and 337 

k–C* models as shown in Fig. 1 (i & j) respectively, indicate that both models cannot be 338 

considered accurate enough to predict final effluent concentrations of NO3-N. However, the 339 

reason why both models failed in predicting NO3-N is still unclear. The MRA model shows a 340 

definite pattern in that as the predicted value increases, the residuals increase in magnitude in 341 

both the positive and negative directions, creating the cone shape. On the other hand, the k–342 



C* model displays an obvious positive skew which is unacceptable as it implies that the 343 

model assumptions are false. 344 

 345 

DISCUSSION 346 

 347 

Generally, the performance of the CWs in removing key pollutants in the wastewater can 348 

be considered as excellent. In all cases, the treatment efficiency obtained was comparable to, 349 

or higher than, the performances obtained in conventional and other CWs. The system under 350 

trial was able to efficiently remove PO4-P at both high and low loading rates. The removals 351 

of SS, BOD5 and COD were also generally efficient with a trend of gradual improvement in 352 

removal rates as the system matures. This would indicate that the system was emerging from 353 

the start-up stage and that the biomass was maturing. However, the reason that the system is 354 

so efficient in P removal is due to the abundance of aluminium ions in the dewatered alum 355 

sludge which enhances P adsorption from the wastewater through the ligand exchange 356 

mechanism.
[22]

  In relative terms, these removal efficiencies can be considered as excellent 357 

and showing good promise. Vymazal
[21]

 reported that average removal efficiencies in vertical 358 

subsurface flow CWs were 44.6% for TN and 59.5% for TP. Therefore, it can be seen that the 359 

respective performance efficiencies obtained in this study are considerably higher than the 360 

reported averages and this indicates the potential of the CWs described in this study for 361 

providing enhanced wastewater treatment by CWs. Furthermore, an interesting feature of the 362 

performance worth noting is the ability of the CWs to achieve, concurrently, high-rate 363 

removal of organics (BOD5, COD) and nutrients (emphasis on P). It is well known that it is 364 

often a challenge to achieve concurrent high removal efficiencies for P and organic matter in 365 

CWs. CWs are usually efficient in organics (BOD5, COD) reduction, but the corresponding 366 

removal efficiencies for nitrogen (N) and P are often low.
[2].

 The four-stage pilot field-scale 367 



CWs described in this study has demonstrated that by using alum sludge as substrate, high P 368 

removal efficiency can be achieved alongside high removal efficiency for organics.  369 

 The statistical models developed for predicting final effluent concentrations of selected 370 

key water quality parameters using MRA were found to be promising. The MRA model for 371 

predicting final effluent BOD5 concentrations was exceptionally good and this is reiterated by 372 

the p values of each predictor variable and their asterisks as can be seen in Table 4 coupled 373 

with the fact that the MASE < 1. This indicates that the model is quite good for predicting the 374 

final effluent BOD5 concentrations and also, the predictions are reliable. However, in the case 375 

of COD, although the best MRA model for predicting final effluent COD concentrations gave 376 

an adjusted R
2
 of 0.711, the MASE >1 and this suggests that while the model is strong at 377 

predicting final effluent COD concentrations, it may contain some errors. This is also the case 378 

for the MRA model for predicting final effluent TP concentration which gave an adjusted R
2
 379 

of 0.801, indicating that over 80% of all possible outcomes are covered by the model. 380 

However, the MASE >1 also indicates that the prediction may contain some errors. Similar 381 

performance was also observed in the MRA model for predicting final effluent concentration 382 

of NH4-N in the CWs. An adjusted R
2 

of 0.696 was obtained but the MASE >1 (1.111) which 383 

indicates that the model is strong at predicting the final effluent concentration, but it may 384 

contain some errors. In the case of NO3-N, the model seems unreliable with a MASE of 5.419 385 

The values of the first order area-based removal rate constant, k (in m/yr), obtained in the 386 

study are high and they compare very well with the range of values found in the scientific 387 

literature. In vertical flow CWs treating high-strength synthetic wastewater in Thailand, 388 

Kantawanichkul et al.
[23]

 found k values of 49.8, 30.1 and 13.5 m/yr for COD, TKN and TP, 389 

respectively. Other k values (in m/yr) reported in literature range from 8–95 (BOD5), 22–30 390 

(COD), 3.6–24 (TN and TKN) and 4.9–84 (TP).
[3, 24, 25, 26]

 However, it is the opinion of the 391 

authors that these values have limited use for comparison and caution is urged in drawing 392 

firm conclusions from them. The estimated removal rate constants and apparent background 393 



concentrations have been shown to depend strongly on input water quality as well as 394 

hydraulic loading rates (HLR)
[4, 27]

   For instance, the k values reported by Kantawanichkul et 395 

al.
[23]

 were obtained at an HLR of 80 mm/d which is two orders of magnitude lower than the 396 

HLR used in this study. Also, Stein et al.
[9]

  stated that C* is relatively more important than k 397 

when using the k–C* model and it was suggested that the rate parameter k may be less 398 

important than the residual concentration, particularly when predicting effluent organic 399 

matter values. However, as previously noted, very little information exists in literature 400 

regarding suitable values for C* particularly for different types of wastewater. Nonetheless, 401 

the k values obtained in this study imply the high rate of pollutant removal in the CWs. 402 

However, the k value obtained for nitrate-nitrogen is quite high and cannot be relied upon. 403 

Similar observation has been made by Kadlec and Wallace.
[1]

  404 

From Table 5, it can be seen that the k-C* model was best fitted to BOD5 and SS removal 405 

in the CWs with R
2
 values of 0.574 and 0.682 and MASE values of 0.644 and 0.680 406 

respectively, indicating that the values obtained are quite reliable. The MASE values for 407 

COD and TN were also <1. Overall, the MRA models were found to be more apt in 408 

predicting the final effluent concentrations of pollutants in CWs than the   k–C* model. It 409 

should however be noted that the CWs in this study applied alum sludge as substrate, which 410 

could give different treatment characteristics when compared to other CWs particularly in 411 

terms of P removal. Therefore caution is urged in generalising the results.  412 

 413 

 414 

CONCLUSIONS 415 

1. Statistical models developed from multiple regression analyses were found to be 416 

strong in predicting final effluent concentrations for the constructed wetland system in 417 

this study. In particular, the selected model for predicting final effluent concentration 418 



of BOD5 gave an adjusted R
2 

value of 0.860 between predicted and observed data and 419 

a mean absolute scaled error <1 (0.783). 420 

2. The k-C* model was also fitted to the experimental data and the first order area-based 421 

removal rate constant, k (m/yr), for BOD5, COD, TP, TN and SS was calculated to be 422 

200.5, 271.8, 80.1, 271.4 and 223.2 respectively.  423 

3. Comparison of the regression and k-C* models shows that the regression models were 424 

much stronger in predicting final effluent concentrations in the constructed wetland 425 

system.  426 
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FIGURE CAPTIONS 523 

 524 

Figure 1. Residual analysis from estimation of final effluent concentrations for selected 525 

water quality parameters using statistical and the k–C* models  526 

 527 
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Table 1. Performance summary of the constructed wetland system from Feb.-Dec. 2009 

Parameter g/m
2
.d Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

BOD5 loading nd 12.0 13.1 31.9 89.2 69.5 89.1 68.8 119.1 201.4 119.3 

removal  nd 7.5 7.1 21.8 70.6 48.2 64.9 37.9 87.6 149.8 89.0 

             COD loading nd 207.6 140.1 102.0 141.1 109.8 189.3 200.4 285.0 376.3 202.3 

removal  nd 53.7 58.0 49.8 93.0 67.9 151.1 139.3 168.2 253.8 147.3 

             sCOD loading nd 166.8 67.3 57.0 82.9 65.7 109.4 119.9 183.1 304.1 108.6 

removal  nd 36.5 15.3 14.1 46.7 35.9 83.2 78.0 129.9 234.8 82.7 

             SS loading 92.1 72.3 41.7 33.6 29.3 29.8 42.1 49.6 66.7 100.5 78.3 

removal  55.2 37.4 23.7 24.3 22.9 21.4 33.9 40.0 44.0 58.9 38.7 

             TP loading nd 4.8 3.1 nd nd nd nd nd 9.6 8.6 6.4 

removal  3.8 4.2 3.0 2.5 nd 2.6 4.7 6.8 8.9 7.2 4.9 

             PO4-P loading 7.4 3.9 2.8 5.2 4.5 3.8 6.9 7.8 9.5 7.9 5.3 

removal  6.1 3.5 2.6 4.8 4.3 3.5 6.5 7.5 9.2 6.9 3.8 

             TN loading 24.4 nd 25.4 nd 27.7 24.7 58.3 60.9 63.1 38.2 31.4 

removal  2.9 0.9 11.6 4.4 17.4 15.1 38.3 22.8 24.5 27.9 17.0 

             NH4-N loading 23.7 21.0 11.0 13.4 18.6 17.6 37.2 47.1 51.1 31.6 26.5 

removal  16.5 7.5 7.1 11.7 16.6 15.4 33.6 43.5 47.0 24.8 12.9 

nd not determined 

 549 



 

Table 2. Correlation matrix of influent and effluent concentrations for the water quality variables 

 R value 

Influent 

  BOD5 COD sCOD PO4-P TP NH4-N TN SS NO3-N Temp pH ORP 

E
ff

lu
en

t 

BOD5 0.794 0.715 0.634 0.594 0.556 0.452 0.369 0.534 0.156 -0.114 -0.254 -0.369 

COD 0.341 0.581 0.636 0.373 0.511 0.159 0.041 0.667 -0.183 -0.591 -0.541 0.279 

sCOD -0.071 0.266 0.510 0.115 0.229 -0.084 -0.181 0.471 -0.098 -0.552 -0.442 0.236 

PO4-P 0.420 0.365 0.422 0.296 0.114 0.040 -0.045 0.268 0.104 -0.250 -0.379 -0.039 

TP 0.795 0.802 0.791 0.492 0.556 0.277 0.182 0.650 -0.186 -0.399 -0.469 0.031 

NH4-N 0.104 0.259 0.303 0.039 0.033 0.188 -0.118 0.430 -0.001 -0.624 -0.561 0.354 

TN -0.206 0.029 -0.081 0.169 0.084 0.558 0.588 -0.031 0.079 -0.011 -0.122 0.432 

SS 0.499 0.729 0.716 0.538 0.666 0.284 0.032 0.855 -0.208 -0.624 -0.583 0.194 

NO3-N 0.012 0.183 0.023 0.214 0.141 0.632 0.621 0.020 0.010 0.076 -0.046 0.102 

 

 

 

 

 



Table 3. Optimal input variables combination for predicting final effluent concentrations 

  

Input 

Variables Adj R
2
 Sig F P Values MASE 

BOD5 

1 0.760 2.1x10
-10

 2.2x10
-10

         1.628 

1+2 0.857 7.6x10
-11

 8.9x10
-10

 0.004       1.09 

1+2+3 0.837 1.9x10
-09

 3.8x10
-08

 0.003 0.209     0.994 

1+2+3+4 0.860 3.1x10
-08

 0.001 0.013 0.039 0.046   0.783 

1+2+3+4+5 0.849 1.9x10
-09

 0.006 0.021 0.053 0.149 0.993 1.352 

COD 

6 0.574 7.5x10
-11

 7.5x10
-11

         5.043 

5+8 0.707 2.4x10
-08

 0.002 0.001       2.172 

1+7+8 0.679 6.6x10
-08

 2.9x10
-06

 8.9x10
-07

 0.223     1.934 

1+7+9+11 0.711 1.5x10
-08

 2.6x10
-05

 3.7x10
-09

 4.7x10
-04

 0.168   1.825 

1+6+7+9+11 0.702 1.3x10
-07

 2.9x10
-04

 0.210 3x10
-05

 0.600 0.297 1.899 

TP 

7 0.615 3.5x10
-09

 3.5x10
-09

         3.350 

6+7 0.801 6.4x10
-10

 0.107 1.7x10
-10

     1.620 

1+7+9 0.718 1.2x10
-07

 0.069 0.052 0.102     2.545 

1+4+6+7 0.668 2.2x10
-05

 0.491 0.205 0.104 0.845   2.436 

1+4+6+7+8 0.682 3.6x10
-05

 0.917 0.147 0.096 0.338 0.181 2.310 

NH4-N 

6 0.604 3.9x10
-08

 3.9x10
-08

         3.038 

6+7 0.649 1.5x10
-09

 7.0x10
-09

 0.136       3.308 

6+7+8 0.696 5.4x10
-6

 0.001 0.512 0.006     1.111 

6+7+8+9 0.739 1.4x10
-05

 0.057 0.202 0.005 0.805   1.331 

6+7+8+9+4 0.682 4.9x10
-04

 0.078 0.704 0.028 0.760 0.965 1.446 

NO3-N 

2 0.613 2.9x10
-11

 2.9x10
-11

         8.625 

2+10 0.650 3.2x10
-08

 6.4x10
-04

 0.053       5.861 

2+3+10 0.670 6.5x10
-07

 0.002 0.222 0.045     5.419 

2+3+6+10 0.652 1.7x10
-06

 0.001 0.759 0.241 0.053   6.550 

2+3+6+10+11 0.669 8.6x10
-05

 0.011 0.593 0.221 0.312 0.372 8.950 
                        1-BOD5 inf; 2-NH4-N inf; 3-PO4-P inf; 4-COD inf; 5-TP eff; 6-Temp inf; 7-sCOD inf; 8-SS inf; 9-pH inf; 10-TN inf; 11-TP inf. Underline indicates  

                                best mean absolute scaled error (MASE). inf = influent; eff = effluent 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Optimum models for predicting final effluent concentrations from multiple regression 

analysis 

BOD5 0.153(BOD5 Inf)*** + 0.252(NH4-N Inf)* - 1.872(PO4-P Inf)* + 0.058(COD Inf)* + 2.940 

COD -0.326(BOD5 Inf)*** + 0.529(sCOD Inf)*** - 119.198(pH Inf)*** + 0.842(TP Inf) + 1019.043 

TP -0.078(TEMP Inf) + 0.005(sCOD Inf)*** + 0.147 

NH4-N -1.866(TEMP Inf)*** - 0.004(sCOD Inf) + 0.065(SS Inf)** + 29.533 

NO3-N 1.020(NH4-N Inf)** + 0.980(PO4-P Inf) - 0.513(TN Inf)* - 7.256 
*
 = p≤0.05, 

** 
= p≤0.01 and 

*** 
= p≤0.001 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. First-order area-based removal rate constants (k),  background concentration 

(C*) and coefficients of determination  (R
2
) for BOD5, COD, TP, NH4-N,  NO3-N, TN 

and SS removal in the constructed wetland system based on the k–C* model 

Parameter C* (mg/L) k (m/yr) R
2
 MASE 

BOD5 15 200.504 0.574 0.644 

COD 60 271.753 0.350 0.929 

TP 0.3 80.134 0.368 6.216 

NH4-N 1.5 173.758 0.005 2.324 

NO3-N 0.5 618.504 1.6×10
-4

 2.090 

TN 10 271.440 0.390 0.693 

SS 5 223.184 0.682 0.680 



 

Figure 1 
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