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Abbreviations:  
A-Raf - v-raf murine sarcoma 3611 viral oncogene homolog, Raf - Rapidly accelerated 

fibrosarcoma, MAPK - Mitogen-activated protein kinases, MST2 - Mammalian sterile 

20-like kinase 2, HNSCC - Head and Neck Squamous Cell Carcinoma, MEK - Mito-

gen-activated protein kinase kinase, ERK - Extracellular-signal-regulated kinase, 

KSR2 - Kinase Suppressor of Ras 2, FKBP - FK506 binding protein, EGFP - En-

hanced Green Fluorescent Protein, EGF - Epidermal growth factor, HRG - Heregulin, 
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Abstract  

A-Raf belongs to the family of oncogenic Raf kinases that are involved in mitogenic 

signaling by activating the MEK–ERK pathway. Low kinase activity of A-Raf toward 

MEK suggested that A-Raf might have alternative functions. We recently identified A-

Raf as a potent inhibitor of the proapoptotic mammalian sterile 20-like kinase (MST2) 

tumor suppressor pathway in several cancer entities including head and neck, colon, 

and breast. Independent of kinase activity, A-Raf binds to MST2 thereby efficiently 

inhibiting apoptosis. Here, we show that the interaction of A-Raf with the MST2 path-

way is regulated by subcellular compartmentalization. While in proliferating normal 

cells and tumor cells A-Raf localizes to the mitochondria, differentiated non-

carcinogenic cells of head and neck epithelia express A-Raf at the plasma membrane. 

The constitutive or induced re-localisation of A-Raf to the plasma-membrane compro-

mises its ability to efficiently sequester and inactivate MST2 thus rendering cells sus-

ceptible to apoptosis. Physiologically, A-Raf re-localizes to the plasma membrane up-

on epithelial differentiation in vivo. This re-distribution is regulated by the scaffold 

protein Kinase Suppressor of Ras 2 (KSR2). Downregulation of KSR2 during mamma-

ry epithelial cell differentiation or siRNA-mediated knockdown re-localizes A-Raf to 

the plasma membrane causing the release of MST2. Using the MCF7 cell differentia-

tion system, we could demonstrate that overexpression of A-Raf in MCF7 cells induc-

es differentiation. Our findings offer a new paradigm to understand how differential 

localization of Raf complexes affects diverse signaling functions in normal cells and 

carcinomas. 
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Introduction 

A-Raf is a member of the Raf family of serine-threonine protein kinases, which com-

prises A-Raf, B-Raf, and Raf-1. Raf kinases are at the apex of the 3-tiered 

Raf/MEK/ERK (MAPK) kinase pathway regulating fundamental cellular functions, 

including differentiation, transformation, apoptosis, proliferation, and metabolism (1, 

2). Activation of Ras GTPases at the cell membrane initiates Raf kinase activation and 

sequential phosphorylation and activation of the serine/threonine kinases MEK1/2 and 

ERK1/2 (3, 4). In comparison to Raf-1 and B-Raf, A-Raf is only weakly activated by 

oncogenic H-Ras and Src (5) and is a poor MEK kinase (5-8), which is due to unique 

non-conserved amino acid substitutions in the N-region (9). Only recently, the first 

somatic oncogenic mutations of A-Raf were identified in lung adenocarcinomas (10) 

and Langerhans cell histiocytosis (11, 12). We  recently showed that A-Raf and Raf-1, 

independent of their kinase activity, bind the pro-apoptotic mammalian sterile 20-like 

kinase (MST2) thereby suppressing MST2 activation and MST2 induced apoptosis 

(13-17). MST2 employs several mechanisms to induce apoptosis including the tran-

scriptional induction of PUMA (14), a BH3 domain protein that causes mitochondrial 

depolarization and subsequent cell death (18). While Raf-1 counteracts MST-2-

mediated apoptotic signaling by suppressing the activation of MST2 only in quiescent 

cells or upon apoptotic stimulation (14, 15), A-Raf binds constitutively to MST2 (16). 

This anti-apoptotic role may explain why A-Raf levels are elevated in a variety of ma-

lignancies (16, 19-21). Both A-Raf and MST2 were shown to localize to the mitochon-

dria in tumor cell lines as well as primary tumors (16). A-Raf was reported to associate 

with the mitochondrial transport system proteins hTOM and hTIM (22), but the physi-

ological significance of this interaction is still unknown.   
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A-Raf mRNA expression levels were shown to be upregulated during adipocyte differ-

entiation (23). DA-Raf1 and DA-Raf2, two alternative splice forms of A-Raf, which 

contain the amino-terminal Ras-binding domain, but lack the kinase domain, act as 

dominant-negative antagonists of activated Ras and positive regulators of myogenic 

differentiation (24).  

MAPK signalling is regulated and organized by a group of molecular scaffolds, coor-

dinating the efficient interaction of MAPK components, forming functional subcom-

plexes and signalling nodes thereby regulating signal intensity and specificity (2, 25). 

In addition, scaffolds are crucial for the spatial regulation of signaling events by target-

ing their clients to different localizations thereby increasing the variety of signals regu-

lated by the cascade (26, 27). Among the best-studied MAPK scaffolds are the kinase 

suppressors of Ras proteins (KSR1 and KSR2), which were initially identified as a 

suppressor of an activated Ras phenotype in D. melanogaster (28) and C. elegans (29-

31). KSR1 and KSR2 bind to Raf, MEK, and ERK thereby controlling their phosphor-

ylation and activation (32, 33). In C. elegans KSR1/2 have overlapping but also iso-

type specific interactions and functions (34). In mammalian cells KSR1 is crucial for 

oncogenic Ras signalling by binding to Raf-1 and B-Raf (35-37), whereas KSR2 re-

cruits A-Raf rather than Raf-1 or B-Raf in response to TNFalpha (38). In addition to 

MAPK components, KSR2 was shown to interact with AMPK thereby regulating en-

ergy intake and fatty acid oxidation (39, 40). In humans mutations of KSR2 are associ-

ated with obesity and insulin resistance (41). In addition, KSR2 regulates genes 

controlling adipocyte differentiation in white adipose tissue (39) and is crucial for 

1,25-dihydroxyvitamin D3-mediated monocytic differentiation of myeloid leukemia 

HL60 cells (42). 
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Non-keratinized stratified squamous epithelium lines the external surface of tissues 

such as oral cavity, esophagus, rectum and cervix, forming a protective barrier. During 

epithelial differentiation, epithelial progenitor cells of the highly proliferative basal 

membrane give rise to various cell types as they move upwards to build the multi-

layered epithelium. Commitment and terminal differentiation not only involves regula-

tion of specific genes and epigenetic control, but also induction of the apoptotic ma-

chinery for controlled caspase cleavage, enculeation, and internucleosomal DNA 

cleavage (43-45).  

We could show recently, that normal epithelia of the head and neck, colon, and liver 

show decreased levels of A-Raf in comparison to corresponding tumours (16, 21) (46) 

and that this feature is regulated via A-Raf splice form selection involving the splice 

factors hnRNP A2 and H. While in tumours, splicing is shifted towards enhanced ex-

pression of the full-length A-Raf protein that sequesters MST2, normal epithelia, 

where hnRNP H and hnRNP A2 are low, express the alternatively spliced, truncated 

isoform A-Rafshort, which fails to control MST2. In addition, A-Rafshort functions as a 

dominant negative mutant due to its ability to bind to activated Ras activation and sup-

press MAPK activation. Thus, alternative A-Raf splicing acts as a safeguard against 

oncogenic transformation in normal epithelia. 

Here, we report that A-Raf undergoes spatial regulation upon epithelial differentiation, 

re-localizing from the cytoplasm to the plasma membrane. We show that A-Raf cyto-

plasmatic localization is crucial for sequestration and inhibition of MST2 controlling 

the MST2 apoptotic pathway. We show that the MAPK scaffold protein KSR2 is cru-

cial for the integrity of the A-Raf/MST2 complex and regulation of differentiation. We 
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furthermore find that perturbation of either A-Raf localization or KSR2 expression 

causes apoptosis via MST2.   

Results 

A-Raf localizes to the plasma membrane during epithelial differentiation.  

We recently demonstrated that A-Raf strongly interacts with MST2 and inhibits MST2 

mediated apoptosis (16, 21). Both A-Raf and MST2 were localized at the mitochondria 

and cytoplasm in tumour cell lines as well as primary tumours (16).   First, we con-

firmed our previously published data by immunohistochemistry showing a cytoplasmic 

expression of A-Raf in primary head and neck squamous cell carcinomas (Fig. 1A). 

However, in non-malignant stratified, non-keratinized squamous epithelia of the same 

tissue origin (Fig. 1B, S1A), A-Raf was differentially localized. While in proliferating 

normal cells of the basal cell layer A-Raf was cytosolic, it moved to the plasma mem-

brane during differentiation (Fig. 1B). Interestingly, this re-localization coincides with 

the physiological nuclear pyknosis that takes place in the stratum spinosum. This dif-

ferentiation associated pyknosis involves activation of caspase-14, which like MST2 

(15) can be activated by Fas and TNFα signaling  (47).  These data suggest, that A-Raf 

changes localization in normal cells upon epithelial differentiation suggesting that A-

Raf has different functions depending on its localization.   

Plasma membrane-localized A-Raf loses its ability to inhibit MST2-mediated apopto-

sis. 

We next determined whether A-Raf localization was important for inhibition of MST2-

mediated apoptosis. We stably expressed two versions of A-Raf, wild type (wt) A-Raf 

which is localized in the cytoplasm, and A-Raf-CAAX which constitutively localises 
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to the plasma membrane due to fusion with the CAAX motif from KRas4b (48) (49) 

(Fig. 2A, B, C). MST2 readily bound to wt A-Raf, but poorly to A-Raf-CAAX (Fig. 

2D). As expected from our previous studies (14, 15), the interaction of Raf-1 with 

MST2 was disrupted by growth factors, while the interaction between wt A-Raf and 

MST2 was largely resistant (Fig. 2D). These data indicate that A-Raf localization con-

trols MST2 binding. 

A-Raf is overexpressed in a variety of malignancies, including colon (16) (21), head 

and neck (21), pancreatic ductal carcinomas (20), and astrocytic tumors (19) suggest-

ing that tumor cells maintain high-level expression of A-Raf to prevent apoptosis by 

antagonizing the proapoptotic kinase MST2. We therefore examined, whether overex-

pression of plasma membrane based A-Raf preserved this function, by activating 

MST2 using etoposide (16, 50). While overexpression of wt A-Raf inhibited MST2 

activation (Fig. 2E) and reduced apoptosis induced by etoposide (Fig. 2F), A-Raf-

CAAX could neither prevent activation of MST2 nor etoposide-triggered apoptosis 

(Fig. 2E, F). In addition, expression of neither wild type nor membrane targeted A-Raf 

influenced proliferation (Fig. S2A), ERK activation (Fig. 2E, S2B, S2C, S2D), or on-

cogenic transformation (Fig. S2E), indicating that the localization specific regulation 

by A-Raf selectively affects the MST2 but not the ERK pathway. 

A dynamic recruitment of Raf proteins from the cytoplasm to the plasma membrane is 

well described upon activation of Ras (51-54). We therefore examined, whether dy-

namic changes of A-Raf localization impact on MST2 binding. For this purpose, we 

used the rapalogue (AP21967)-inducible heterodimerization system, which permits the 

efficient and selective crosslinking of FRB and FKBP-tagged proteins (55, 56), We co-

expressed a flag-tagged FRB A-Raf fusion (FRB-A-Raf-flag) with a tandem FKBP 
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domain construct (Myr.-2xFKBP-HA) that was targeted to the plasma membrane by an 

N-terminal myristoylation tag  (Fig. 3A,B). While FRB-A-Raf-flag localized to the 

cytoplasm in HeLa cells, addition of AP21967 led to membrane recruitment of A-Raf 

due to heterodimerization with Myr.-2xFKBP-HA (Fig. 3C, S3). The heterodimeriza-

tion and membrane recruitment of A-Raf occurs over a wide concentration range and is 

stable for at least 8 hours allowing co-immunoprecipitation of the FRB-A-Raf-flag and 

Myr.-2xFKBP-HA proteins (Fig. S3). In contrast, MST2 localisation does not change 

upon AP21967-induced re-localisation of A-Raf (Fig. 3C). Dynamic membrane re-

cruitment of A-Raf leads to the disruption of the A-Raf-MST2 complex (Fig. 3D). We 

next asked whether dynamic A-Raf relocalisation was important for inhibition of 

MST2-mediated apoptosis (Fig. 3E). Cytoplasmic A-Raf fully counteracts etoposide-

induced MST2 activation and apoptosis as shown by cleavage of Caspase 3 and PARP, 

and the activation of PUMA expression. In contrast, when A-Raf was re-localised to 

the membrane by AP21967 treatment, it failed to inhibit MST2 activation and down-

stream apoptosis. Again, localisation of A-Raf did not impact on bulk ERK activation. 

Taken together, these results suggest that A-Raf cytoplasmic localisation is crucial for 

MST2 binding, inhibition, and regulation of MST2-mediated apoptosis.  

A-Raf relocalizes at the plasma membrane during mammary differentiation. 

We next investigated the mechanism underlying re-localisation of A-Raf and regula-

tion of MST2-mediated apoptosis during differentiation processes in an in vitro differ-

entiation system. MCF-7 cells, derived from breast adenocarcinoma, can undergo 

phenotypic changes including lipid accumulation, which can be quantified as a 

measure of differentiation (Fig. 4A)(57-62). We therefore stably overexpressed A-Raf 

fused to EGFP in MCF7 cells and induced differentiation by serum starvation and 
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concomitant stimulation with Heregulin (57, 62) using EGF as control. While EGFP 

alone localizes ubiquitously in the cell and independently of the stimulus (Fig.4B 

upper panel), EGFP-A-Raf localizes to the cytoplasm under growing conditions 

(10%FCS) (Fig. S4A), or in cells treated with EGF (Fig. 4B). Stimulation with Her-

egulin induces an accumulation of EGFP-A-Raf at the plasma membrane (Fig. 4B, C) 

at regions reminiscent of tight junctions. Again, stable overexpression of EGFP-A-Raf 

inhibits activation of MST2 (Fig. 4D), but has no impact on bulk ERK activation (Fig. 

4D), cell proliferation (Fig. S4B), AKT and ERK signaling dynamics except that ERK 

activation at 5 minutes is dampened (Fig. S4C).  

To confirm the imaging data and quantify the subcellular redistribution of endoge-

nouA-Raf upon differentiation of MCF7 cells, cytosolic and membrane fractions were 

isolated. While in control and EGF-treated cells, EGFP-A-Raf-EGFP and MST2 were 

found in the cytoplasmic fraction, stimulation with Heregulin increased A-Raf in the 

membrane fraction (Fig. 5A). Endogenous A-Raf and MST2 showed the same changes 

in distribution (Fig. 5B), corroborating the re-distribution of endogenous A-Raf to the 

membrane during differentiation. The re-localisation of A-Raf during Heregulin-

mediated differentiation of MCF7 cells resulted in activation of MST2 (Fig. 4C, 5C) 

and activation of Caspase 8 (Fig. 5C), which could be reduced by A-Raf overexpres-

sion (Fig. 5C). 

Taken together, these data suggest that A-Raf relocalises to the plasma membrane dur-

ing Heregulin-induced differentiation of MCF7 cells, resulting in activation of MST2 

and Caspases.   

 

A-Raf enhances Heregulin-mediated differentiation of MCF7 cells. 
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In an independent study, we identified A-Raf among other factors in a proteomic 

screen designed to probe for changes in protein expression in Epithelial to Mesenchy-

mal Transition (EMT) of MDCK cells (63). We could demonstrate that inhibiting the 

MST2 pathway by overexpression of A-Raf promotes HGF-induced EMT. 

Based on these data, we hypothesized that A-Raf function might be instrumental for 

the differentiation process. Therefore, we used the MCF7 cells, which stably 

overexpress EGFP-A-Raf or EGFP alone and quantified differentiation in response to 

Heregulin. While no difference in lipid accumulation could be detected between 

control cells and cells expressing EGFP, A-Raf overexpression increased differentia-

tion as measured by lipid droplet accumulation by 33% (Fig. 6A). Decreasing A-Raf 

expression by transfection with specific siRNA modestly, but significantly, reduced 

differentiation (Fig. 6B) indicating that the effect is indeed mediated by A-Raf. In or-

der to corroborate that the measured effects are not due to clonal selection of the stable 

cell line overexpressing EGFP-fused A-Raf, we repeated the experiments with a differ-

ent plasmid set (pcDNA3-based) and transient transfection. Transient overexpression 

of wild type A-Raf or a kinase-dead version of A-Raf (K336M) increased Heregulin-

mediated differentiation by 18% and 29%, respectively (Fig. 6C). These data suggest 

that A-Raf promotes differentiation independently of A-Raf kinase activity suggesting 

that this effect is not mediated through the ERK pathway but through inhibition of 

MST2, which does not require A-Raf kinase activity.   

 

The scaffold Kinase Suppressor of Ras 2 (KSR2) regulates A-Raf localization and 

MST2 activity. 
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We next investigated the mechanism underlying the re-localization of A-Raf during 

differentiation. A-Raf was shown to interact with a plethora of other proteins (2, 64) 

including scaffold proteins regulating ERK signalling (25). Recently, it was suggested 

that the scaffold Kinase suppressor of Ras 2 (KSR2) mediates A-Raf signalling, while 

a close homolog, KSR1, would facilitate Raf-1-mediated ERK signalling (38). Based 

on these data, we hypothesized that KSR2 may function as a scaffold to control A-Raf 

localization and its ability to regulate MST2 activity. First, we confirmed that KSR2 

can interact with A-Raf and MST2, while no interaction betwen A-Raf and KSR1 

could be observed (Fig. 7A) (38). Then, we determined, if KSR2 expression is regulat-

ed during Heregulin-mediated differentiation of MCF7 cells. KSR2 expression is 

downregulated during differentiation, while the expression of KSR1, A-Raf and its 

upstream regulator hnRNPH (16, 21) is not changed, (Fig.7B). Monitoring KSR2 ex-

pression over a timecourse of differentiation, we found that KSR2 expression is lost 

five days post induction with Heregulin (Suppl. Fig. S5), suggesting that KSR2 loss 

represents a late event during MCF7 differentiation.  

We next determined whether the changes in A-Raf localisation and regulation of 

MST2 are dependent of KSR2 (Fig. 7C).  Knocking-down KSR2 by siRNA induced 

MST2 activation in serum starved MCF7 cells. Interestingly, knocking-down KSR2 

also abolished the interactions between MST2 and A-Raf, suggesting that KSR2 is 

required as a scaffold for the MST2 interaction with A-Raf, or that it directs A-Raf to a 

subcellular compartment that enables this interaction. Importantly, KSR2 depletion 

causes a re-localisation of A-Raf from the cytosol to the membrane as shown by cell 

fractionation (Fig. 7C). In addition, siRNA-mediated knock-down of A-Raf does abol-

ish the interaction between KSR2 and MST2 (Fig. 7D), suggesting that MST2 binds 
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directly to A-Raf and not KSR2 and that A-Raf seems to be crucial to keep the trimeric 

complex intact.  

Taken together these data suggest a model where the scaffold KSR2 is required for the 

sequestration and inhibition of MST2 by A-Raf in tumour and proliferating cells (Fig. 

7E). Loss of KSR2 during differentiation results in A-Raf re-localisation to the plasma 

membrane, the disruption of the anti-apoptotic A-Raf-MST2 complex and activation of 

the MST2 pathway  

Discussion 

Spatial regulation of Raf kinases within the cellular compartments is regulated in a 

highly dynamic and concerted manner (2). In growth factor deprived cells, Raf-1 local-

ises in the cytoplasm in an inactive state. Here, Raf proteins are stabilised in a closed 

conformation by binding to 14-3-3 dimers. Upon activation through growth factors, 

dephosphorylation at the cell membrane by PP2A and PP1 phosphatases releases 14-3-

3 from Raf thereby enabling Ras binding and membrane recruitment (51, 53, 65-67). 

However, due to the exchange of an arginine for a lysine at position 22 in its RBD and 

a non-conserved tyrosine 296 in the N-region, A-Raf is only weakly activated by on-

cogenic H-Ras(9, 68). In addition, several phosphorylation sites between amino acids 

248 and 267 seem to facilitate A-Raf dissociation from the plasma membrane(69). This 

electrostatic destabilisation together with low kinase activity towards MEK seems to 

direct A-Raf to other subcellular compartments. We could demonstrate recently, that 

A-Raf localizes to the mitochondria in tumor cell lines as well as primary tumors, 

where it binds the proapoptotic kinase MST2 and suppresses its activation and MST2 

induced apoptosis (16, 21). Here, we demonstrate that A-Raf localisation is regulated 

upon epithelial differentiation. While in highly proliferating cells of the basal cell layer 
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of non-malignant stratified, non-keratinized squamous epithelia, A-Raf localized to the 

cytoplasm and mitochondria, differentiated non-carcinogenic cells of head and neck 

epithelia expressed A-Raf at the plasma membrane. We observe a sharp demarcation 

between basal cells expressing A-Raf at the cytoplasm or mitochondria and the juxta-

posed suprabasal cells with A-Raf at the plasma membrane. Our results suggest a thor-

ough relocalisation of A-Raf, which correlates with morphological transition from un-

differentiated stem cells to terminal differentiation. Intriguingly, in the cell models 

used, this spatial regulation of A-Raf correlates with its anti-apoptotic function. While 

cytoplasmic and mitochondrial A-Raf keeps anti-apoptotic signaling via MST2 in 

check, plasma-membrane standing A-Raf is not capable of MST2 binding and inactiva-

tion.  

Interestingly, A-Raf expression and anti-apoptotic function is consistent with our pre-

vious reports that the splice factor hnRNP H controlling A-Raf splicing is highly ex-

pressed in basal cells but get lost during epithelial differentiation (70). 

Furthermore, we could demonstrate that the scaffold protein KSR2 is crucial for the A-

Raf-MST2 complex. KSR2 expression is lost during epithelial differentiation thereby 

releasing A-Raf to the plasma membrane leading to activation of MST2 and subse-

quent apoptosis. While previous reports demonstrated interaction between A-Raf and 

KSR2 only in response to TNFalpha (38), we observe interaction also in quiescent 

cells and upon stimulation with EGF. KSR2 is also known to bind AMPK mediating 

its stimulatory effects on glucose uptake and fatty acid oxidation (39) suggesting that 

A-Raf may play a direct role in the cross talk between apoptosis (MST2), energy ho-

meostasis (AMPK), MAPK signaling and glucose metabolism by binding and inhibit-

ing pyruvate kinase M2 (PKM2)(71, 72). 
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In addition to its functional role of regulating MST2-mediated apoptosis in differentia-

tion, A-Raf expression also correlates with the extent of differentiation in the described 

MCF7 cell model. Here, overexpression of A-Raf independent of kinase activity in-

creases differentiation, which is in line with an independent study from our group (63), 

where A-Raf overexpression inhibits the MST2/Hippo pathway thereby promoting 

HGF-induced EMT in MDCK cells. This is also in line with previous reports, where 

A-Raf expression correlated with adipocyte (23) and myogenic (24) differentiation.  

While our results demonstrate a causal role and spatial regulation of A-Raf during epi-

thelial differentiation, its target MST2 is stably localised in the cytoplasm. The MST2 

tumour suppressor pathway is a master regulator of proliferation, cell death and cellu-

lar differentiation controlling normal tissue development, organ size and cancer (73-

75). Activation of the MST2/Hippo pathway leads to the activation and cytoplasmic 

retention of the transcriptional coactivators YAP/TAZ, the subsequent formation junc-

tion formation in epithelial cells through interaction with members of the angiomotin 

(AMOT) family (76-78). The involvement of the Hippo/MST2 pathway in epithelial 

behaviour and downstream processes were recently reviewed in (79). MST2 itself and 

its closest isoform MST1 were shown to be crucial for 1,25-dihydroxyvitamin D3-

mediated monocytic differentiation of myeloid leukemia HL60 cells (42), control the 

downstream kinase YAP to control pancreatic acinar differentiation mice (80), regulate 

trophoblast differentiation via the transcription factor Mash2 in the placenta (81), and 

are required for embryonic stem cell differentiation (82). In addition, MST1/2 play a 

role in differentiation of hematopoietc and endothelial progenitor cells in Xenopus  

(83) and MST1 was identified as a crucial caspase-3 effector in myoblast differentia-

tion (84). 
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For epithelial differentiation, proliferating cells of the basal cell layer withdraw from 

the cell cycle, progressively differentiate towards the surface of the epithelium, flatten 

and lose their nucleus, before they are finally shed from the surface. This commitment 

and terminal differentiation also involves induction of the apoptotic machinery for con-

trolled caspase cleavage, enculeation, and internucleosomal DNA cleavage as demon-

strated in human keratinocyte differentiation (43-45). Relocalisation of A-Raf in our 

model systems led to activation of MST2 and subsequent activation of Caspase 3, 

cleavage of PARP and transcriptional activation of PUMA, suggesting a direct in-

volvement of A-Raf in epithelial differentiation. 

In summary, our data and previous reports suggest that A-Raf is a crucial signalling 

hub controlling cellular processes such as proliferation, apoptosis, and glucose metabo-

lism. In addition, our data suggest a potential link towards energy homeostasis control 

via KSR2 and AMPK, which warrants further validation. The fine-tuning of such di-

verse signalling events is controlled by adjusting A-Raf expression levels in normal 

cells and disease, alternative splice form selection, phosphorylation, and interaction 

with specific proteins. Here, we describe for the first time how ARAF spatial regula-

tion through interaction with the scaffold protein KSR2 regulates MST2-mediated 

apoptosis and differentiation. 

Materials and Methods 

Immunohistochemistry 

Healthy tissue and carcinoma specimen were obtained during routine biopsy or surgery 

after informed consent, snap frozen, cryopreserved, and processed to generate serial 

sections (4 µm). Polyclonal goat anti-human A-Raf antibody (Santa Cruz Biotechnolo-

gy) was used for immunohistologic staining and antigen-antibody complexes were 
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visualized using the avidin-biotin-peroxidase method (85). Counterstaining was 

achieved with haematoxylin (blue). 

Cell lines  

HEK293 (human embryonic kidney 293 cells), NIH3T3 (mouse fibroblast cells), and 

MCF7 (human breast cancer cells) cells were cultured in standard DMEM containing 

10% fetal calf serum (FCS).  

DNA constructs, siRNAs, Transfections 

For membrane targeted A-Raf (Flag-A-Raf-CAAX), human full-legth A-Raf was fused 

N-terminal with a flag-tag and C-terminal with a CAAX motif (20 C-terminal amino 

acids of KRas4b) (48, 49) and inserted into NheI/BamHI sites of pcDNA3.1(+)-hyg 

(Invitrogen). 

For the rapalogue-induced recruitment of A-Raf to the plasma membrane we used 

plasmids containing the tandem FK506-binding protein domain (2xFKBP) and the 

mutant FRB domain (FRB) of the ARGENT Regulated Heterodimerization Kit pro-

vided by ARIAD (now: iDimerize Inducible Heterodimer System; Clontech) (55, 56). 

To generate the A-Raf recruitment fusion construct (FRB-A-Raf-flag), human full-

length A-Raf was amplified and subcloned into SpeI/BamHI sites of pC4-RHE of the 

ARGENT Regulated Heterodimerization Kit (now: pHet-1, Clontech). As a plasma 

membrane target construct we used the plasmid pC4M-F2E of the original ARGENT 

Regulated Heterodimerization Kit (now: pHet-Mem1, Clontech) coding for an N-

terminal myristoylated tandem FK506-binding protein domain (Myr.-2xFKBP-HA).     

For Flag-A-RafWT, amplified human full-length A-Raf was fused N-terminal with a 

flag-tag and inserted into NheI/BamHI sites of pcDNA3.1(+)-hyg (Invitrogen). Site-
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directed mutagenesis was used to produce a kinase-dead version of A-Raf (K336M; 

Flag-A-RafKD).  

For EGFP-A-Raf, A-Raf was fused C-terminal to EGFP into XhoI/HindIII of pEGFP-

C3 (Clontech).  For V5-A-Raf, A-Raf from pDONR223-ARAF (Addgene Plasmid 

23725; (86)) was fused N-terminal with a V5-tag of pcDNA6.2/V5-DEST using Gat-

way technology.  

For transient knockdown of A-Raf expression, we used Silencer Validated siRNA 151 

(Ambion, Austin, US) as described previously (21). For knockdown of KSR2 expres-

sion, ON-TARGETplus SMARTpool Human KSR2 (Dharmacon) was used. 

Transient transfections were conducted with Lipofectamine 2000 reagent  (Invitrogen) 

according to the manufacturer’s instructions.  

Immunblot analysis 

Protein lysates or immunoprecipitates were resolved by SDS PAGE (10–15%) and 

blotted on polyvinylidene difluoride membrane (Millipore). Protein visualization was 

performed using the following antibodies in combination with horseradish peroxidase–

conjugated secondary antibodies and the enhanced chemiluminescence system (GE 

Healthcare): Polyclonal goat anti-human A-Raf antibody sc-30703 (Santa Cruz), mon-

oclonal mouse anti-human A-Raf antibody (12C9, sc-100420)(Santa Cruz Biotechnol-

ogy), polyclonal rabbit anti-human MST2 antibody (Stratagene), monoclonal rabbit 

anti-human MST2 (N terminus) antibody (Epitomics, Inc.), monoclonal mouse anti-

flag antibody M2 (Sigma), monoclonal mouse anti-human tubulin antibody (Santa 

Cruz Biotechnology), monoclonal mouse anti-human alpha 1 Sodium Potassium 

ATPase (ATP1A1) antibody (plasma membrane marker) (Abcam), polyclonal rabbit 
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anti-human MEK-1/2 antibody (12-B, sc-436) (Santa Cruz Biotechnology), monoclo-

nal rabbit anti-human phosphorylated Mst1 (pT183)/Mst2 (pT180) (Epitomics), mono-

clonal mouse anti-HA tag antibody 3F10 (Roche Diagnostics), polyclonal rabbit anti-

human Puma antibody (Sigma), polyclonal rabbit anti-human caspase-3 antibody (San-

ta Cruz Biotechnology), monoclonal rabbit anti-human caspase-3 antibody (8G10; 

Santa Cruz Biotechnology), monoclonal mouse anti-human poly(ADP-ribose) poly-

merase (PARP) antibody (Becton Dickinson), polyclonal rabbit anti-human hnRNP H 

antibody, polyclonal rabbit anti-human mitogen-activated protein (MAP) kinase [extra-

cellular signal-regulated kinase (ERK) 1 and ERK2] antibody (Sigma), monoclonal 

mouse anti-human MAP kinase activated (diphosphorylated ERK1 and ERK2) anti-

body (Sigma), monoclonal rabbit anti-GFP antibody (D5.1) (Cell Signaling Technolo-

gy), monoclonal rabbit anti-human KSR1 antibody (Epitomics, Inc.), mouse monoclo-

nal anti-human KSR2 antibody (K75, sc-100421) (Santa Cruz Biotechnology), poly-

clonal rabbit anti-human AKT antibody (Cell Signalling), polyclonal rabbit anti-human 

activated Akt (phosphorylated at Ser473) antibody (Cell Signalling), and monoclonal 

mouse anti-human Caspase 8 (1C12) (Cell Signaling Technology) 

Immunoprecipitation 

Immunoprecipitations were conducted as described previously (21) with the following 

immobilized antibodies: Monoclonal mouse anti-HA tag antibody 3F10 (Roche Diag-

nostics), monoclonal mouse anti-flag antibody M2 (Sigma), polyclonal goat anti-

human MST2 antibody sc-6211 (Santa Cruz), polyclonal goat anti-human A-Raf anti-

body sc-30703 (Santa Cruz), monoclonal mouse anti-V5 tag antibody (Invitrogen). 

Apoptosis Assays 
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Apoptosis levels were determined as described previously (16) by measuring subge-

nomic DNA. 

Subcellular fractionation 

Subcellular fractionation of cytoplasmatic and plasma membrane-associated proteins 

was conducted with Subcellular Protein Fractionation Kit for Cultured Cells (Thermo 

Scientific) according to the manufacturer’s instructions. 

Cell Differentiation Assay 

For differentiation of MCF7 breast carcinoma cells, we used a modified protocol of a 

published method (62).  MCF7 cells were seeded in standard 24-well plates 

(0.4x106/well) and serum-starved (1% FCS) 24 hours prior to stimulation with  either 

10nM Epidermal Growth Factor (EGF) (#11376454001, Roche) or 2nM recombinant 

Human NRG1-beta 1/Heregulin1-beta 1 EGF Domain (Heregulin) (#396-HB-050/CF, 

R&D). Following stimulation, media were changed after 2-3 days, and cells grown for 

5-6 days, before fixation with 10% paraformaldehyde in Phosphate Buffered Saline 

(PBS) for at least 1 hour. Cells were washed once with water, once with 60% 

isopropanol, and stained with Oil Red O solution for one hour followed by three 

washes with water. Oil Red O (Sigma-Aldrich) stock solution was prepared by 

dissolving dye in isopropanol (0.35% w/v), and filtered through 0.22 µm filter and kept 

at room temperature. For cell staining, Oil Red stock solution was mixed with water in 

6:4 ratio, and filtered through 0.22 µm filter one hour after precipitates were formed.  

Lipid accumulation in MCF7 cells was quantified by extraction of the Oil Red dye 

with 100% isopropanol and measuring light absorbance of extracted dye at 500 nm by 

a standard plate reader.  
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Focus Formation Assays 

Focus assays were conducted as described previously (21). NIH 3T3 cells were trans-

fected with Lipofectamine (Invitrogen) and allowed to grow to confluence. The plates 

were incubated for 21 days, fixed, stained with Giemsa, and the foci were counted. 

Immunofluorescence and confocal microscopy 

HeLa cells were plated on coverslips and co-transfected the next day with FRB-A-Raf-

flag and Myr.-2xFKBP-HA. 24 h post transfection, cells were treated with 500nM 

AP21967 for 1 h and fixed with 4% paraformaldehyde for 10 min at room temperature. 

After fixation, cells were permeabilized with 0.1% Triton X-100 in PBS/1% BSA for 2 

min. Nonspecific binding was blocked by incubation with PBS/1% BSA for 30 min at 

room temperature. Incubation with flag antibody (M2, 1:200) (Sigma Aldrich) was 

done at room temperature for 1 h followed by extensive washes in PBS. Coverslips 

were incubated with Alexa-488-conjugated secondary antibody (Molecular Probes) for 

30 min followed by several washes in PBS. The coverslips were mounted on glass 

slides using Vectashield containing DAPI. Cells were imaged on a Zeiss confocal la-

ser-scanning microscope (LSM 510 META). Images were acquired following excita-

tion with 364 and 488 lasers followed by 385-470 and 505-530 nm BP (Band Pass) 

filters for DAPI and Alexa488, respectively, with a Plan-Neoflur 40X/0.5 or 63X NA 

objective.  

MCF7 cells stably expressing either EGFP or A-Raf-EGFP were imaged on a Zeiss 

confocal laser-scanning microscope (LSM 510 META). Images were acquired follow-

ing excitation with the 488 laser followed by 505-530 nm BP (Band Pass) filters for 

EGFP, respectively, with a Plan-Neoflur 40X/0.5 or 63X NA objective.  
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Statistical analysis 

Significance levels were determined by two-tailed Student t-test analyses.  

 

 

Supplementary Materials 

Fig. S1. A-Raf localizes to the plasma membrane during epithelial differentiation. 

Fig S2.  A-Raf localisation does not influence proliferation, MAPK signaling dynam-

ics, and oncogenic transformation. 

Fig. S3.  Rapalogue-mediated dynamic re-localization of A-Raf. 

Fig S4.  Stable overexpression of A-Raf does not influence proliferation and 

MAPK/AKT signaling dynamics. 

Fig S5.  Expression of he scaffold KSR2 is lost during Heregulin-mediated differentia-

tion of MCF7 cells. 
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Figure Legends 

Figure 1: A-Raf localizes to the plasma membrane during epithelial differentia-

tion.  

(A) A-Raf expression was detected in carcinoma tissues of HNSCC, and (B), non-

malignant stratified, non-keratinized squamous epithelia of the same tissue origin. Im-

munohistochemistry was performed on cryosections of human tissue specimens.  

 

Figure 2: Plasma membrane-localized A-Raf loses its ability to inhibit MST2-

mediated apoptosis.  
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(A, B) HeLa cells were transfected with either wildtype A-Raf or A-Raf fused with the 

CAAX motif from KRas4b.  

(C) Subcellular fractionation demonstrated the localisation of A-Raf and MST2 by 

western blot. MEK1/2 and ATPase were used as subcellular markers for the cytoplasm 

(C) and membrane (M) fractions, respectively.  

(D) Flag-tagged A-Raf or Raf-1 constructs were expressed in HeLa cells. Following 

serum-starvation or stimulation with FCS, protein complexes were immunoprecipitated 

with anti-flag antibody, and proteins were detected by immunoblotting with anti-flag 

or anti-MST2 antibodies. Tubulin served as a protein loading control. 

 (E) Equal amounts of flag-tagged A-Raf constructs were expressed in HeLa cells. Fol-

lowing serum-starvation, lysates were probed for the indicated proteins by immunob-

lotting. 

(F) Equal amounts of flag-tagged A-Raf constructs were expressed in HeLa cells as in 

(E). Following serum-starvation and treatment with 10µM etoposide 24 h post trans-

fection, the proportion of apoptotic cells was assessed on measuring DNA fragmenta-

tion by flow cytometry 72 h post transfection. Error bars indicate SD of 3 individual 

experiments. 

 

Figure 3: Dynamic re-localization of A-Raf induces MST2-mediated apoptosis. 

(A,B) For rapalogue-induced recruitment of A-Raf to the plasma membrane, HeLa 

cells were co-transfected with the A-Raf recruitment fusion construct (FRB-A-Raf-

flag) and myristoylated tandem FK506-binding protein domain (Myr.-2xFKBP-HA).      

 (C) 24 h post transfection, cells were treated with the 500nM AP21967 as indicated 

for 1h, and subcellular fractionation demonstrated the localisation of A-Raf, MST2, 
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and FKBP by western blot. MEK1/2 and ATPase were used as subcellular markers for 

the cytoplasm (C) and membrane (M) fractions, respectively.  

(D) HeLa cells were co-transfected with FRB-A-Raf-flag and Myr.-2xFKBP-HA and 

24 h post transfection, cells were treated with the 500nM AP21967 as indicated. Pro-

tein complexes were isolated with anti-HA, anti-flag, or anti-MST2 antibodies, respec-

tively, and proteins were detected by immunoblotting with anti-HA, anti-flag, or anti-

MST2 antibodies. Tubulin served as a protein loading control. 

(E) HeLa cells were co-transfected with FRB-A-Raf-flag and Myr.-2xFKBP-HA and 

24 h post transfection, cells were treated with the 500nM AP21967 and 10µM etopo-

side as indicated. Protein complexes were isolated 24 h later with anti-flag antibody 

and proteins detected by immunoblotting with anti-HA and anti-flag antibodies. Ly-

sates were probed for expression of PUMA, MST2, activated MST2 (Thr180), activat-

ed ERK1/2, PARP and Caspase 3 cleavage. Tubulin served as a protein loading con-

trol. 

 

Figure 4: A-Raf relocalizes to the plasma membrane during mammary differenti-

ation. 

(A) Heregulin-mediated differentiation of MCF7 cells. MCF7 cells were seeded in 

standard 24-well plates (0.4x106/well) and serum-starved (1% FCS) 24 hours prior to 

stimulation with either 10nM EGF or 2nM Heregulin. After 6 days, cells were fixed 

and stained with Oil Red. Shown are bright field images of indicated cells. 

 (B, C) MCF7 cells were seeded in standard 24-well plates (0.4x106/well) and serum-

starved (1% FCS) 24 hours prior to stimulation with  either 10nM EGF or 2nM 
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Heregulin. After 6 days, A-Raf fused to EGFP or EGFP alone were visualised in live 

cells using confocal microscopy. Scale bar, 20µm 

(D) Cells from (A) were lysed and probed for expression of A-Raf, EGFP, activated 

ERK1/2, MST2, and activated MST2 using western blot. ERK1/2 served as a protein 

loading control. * endogenous A-Raf, ** EGFP-A-Raf 

 

Figure 5: Re-localization of A-Raf during mammary differentiation induces 

MST2-mediated apoptosis. 

(A) MCF7 cells stably expressing EGFP-A-Raf or EGFP alone were seeded in 

standard 24-well plates (0.4x106/well) and serum-starved (1% FCS) 24 hours prior to 

stimulation with either 10nM EGF or 2nM Heregulin. After 6 days, subcellular frac-

tionation demonstrated the localisation of A-Raf-EGFP, EGFP, and MST2 by western 

blot. MEK1/2 and ATPase were used as subcellular markers for the cytoplasm (C) and 

membrane (M) fractions, respectively. * endogenous A-Raf, ** EGFP-A-Raf 

(B) MCF7 cells were seeded in standard 24-well plates (0.4x106/well) and serum-

starved (1% FCS) 24 hours prior to stimulation with either 10nM EGF or 2nM 

Heregulin. After 6 days, subcellular fractionation demonstrated the localisation of en-

dogenous A-Raf and MST2 by immunoblot. MEK1/2 and ATPase were used as sub-

cellular markers for the cytoplasm (C) and membrane (M) fractions, respectively. 

(C) MCF7 cells stably expressing EGFP-A-Raf or EGFP alone were seeded in 

standard 24-well plates (0.4x106/well) and serum-starved (1% FCS) 24 hours prior to 

stimulation with either 10nM EGF or 2nM Heregulin. After 6 days, lysates were 

probed for expression of A-Raf, MST2, activated MST2 (pMST2), activated ERK1/2, 

and cleavage of Caspase 8  by western blot. * endogenous A-Raf, ** EGFP-A-Raf 
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Figure 6: A-Raf induces Heregulin-mediated differentiation of MCF7 cells. 

 (A) MCF7 cells stably expressing EGFP-A-Raf or EGFP alone or control cells were 

seeded in standard 24-well plates (0.4x106/well), and serum-starved (1% FCS) 24 

hours prior to stimulation with either 10nM EGF or 2nM Heregulin. After 6 days, cells 

were fixed and stained with Oil Red, which was extracted with isopropanol, and 

quantified measuring light absorbance. Error bars indicate SD of 4 individual 

experiments. 

 (B) MCF7 cells stably expressing EGFP-A-Raf or EGFP alone were seeded in 

standard 24-well plates (0.4x106/well), co-transfected with either control siRNA or 

human A-Raf siRNA as indicated, and serum-starved (1% FCS) 24 hours prior to 

stimulation with either 10nM EGF or 2nM Heregulin. After 6 days, cells were fixed 

and stained with Oil Red, which was extracted with isopropanol, and quantified 

measuring light absorbance. Error bars indicate SD of 4 individual experiments. 

 (C) MCF7 cells were seeded in standard 24-well plates (0.4x106/well), transiently 

transfected with control plasmid (pcDNA3), wild type A-Raf or a kinase-dead version 

of A-Raf (KD), and serum-starved (1% FCS) 24 hours prior to stimulation with either 

10nM EGF or 2nM Heregulin. After 6 days, cells were fixed and stained with Oil Red, 

which was extracted with isopropanol, and quantified measuring light absorbance. 

Error bars indicate SD of 4 individual experiments. 

 

Figure 7: The scaffold Kinase Suppressor of Ras 2 (KSR2) regulates A-Raf locali-

zation and MST2 activity. 
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(A) V5-tagged A-Raf was expressed in MCF7 cells. Following serum-starvation or 

stimulation with FCS, protein complexes were immunoprecipitated with anti-V5 anti-

body, and proteins were detected by immunoblotting with anti-V5, anti-MST2, anti-

KSR1, and anti-KSR2 antibodies. Tubulin served as a protein loading control. 

 (B) MCF7 cells were seeded in standard 24-well plates (0.4x106/well) and serum-

starved (1% FCS) 24 hours prior to stimulation with either 10nM EGF or 2nM 

Heregulin. After 6 days, lystaes were probed for expression of hnRNPH, A-Raf, 

KSR1, and KSR2. ERK1/2 served as a protein loading control. 

(C) Left panel - MCF7 cells were transfected with either control siRNA or KSR2 

siRNA as indicated and probed for A-Raf, MST2, pMST2, KSR1, and KSR2 by 

western blot. Tubulin served as a protein loading control. Middle panel - Upon trans-

fection with either control siRNA or human KSR2 siRNA, endogenous A-Raf was 

immunoprecipitated and proteins detected by immunoblotting with anti-A-Raf and 

anti-MST2 antibodies. Right panel - Upon transfection with either control siRNA or 

human KSR2 siRNA, subcellular fractionation demonstrated the localisation of endog-

enous A-Raf and MST2 by immunoblot. MEK1/2 and ATPase were used as subcellu-

lar markers for the cytoplasm (C) and membrane (M) fractions, respectively. 

(D) V5-tagged KSR2 was expressed in MCF7 cells in combination with siRNA-

mediated knock-down of A-Raf. Following serum-starvation, protein complexes were 

immunoprecipitated with anti-V5 antibody, and proteins were detected by immunob-

lotting with anti-V5, anti-MST2, and anti-ARAF antibodies.  

(E) Hypothesis and model for KSR2-mediated regulation of the A-Raf-MST2 

complex. In tumour cells and highly proliferating normal cells, high levels of KSR2 

ensure mitochondrial expression of A-Raf to keep MST2 in an inactive state thereby 
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providing an anti-apoptotic milieu. In contrast, in differentiated normal cells, KSR2 

expression is lost leading to A-Raf localisation at the membrane, disruption of the 

complex with MST2, and induction of MST2-mediated apoptosis. 
















