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A WAVELET-BASED DAMAGE DETECTION ALGORITHM BASED ON
BRIDGE ACCELERATION RESPONSE TO A VEHICLE

D. Hester! and A. GonzaleZ
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Belfield, Dublin 4, Ireland

Abstract

Previous research based on theoretical simulatiaashown the potential of the
wavelet transform to detect damage in a beam blysing the time-deflection response
due to a constant moving load. However, its appbicao identify damage from the
response of a bridge to a vehicle raises a nunflgrestions. Firstly, it may be difficult
to record the difference in the deflection signetMeen a healthy and a slightly damaged
structure to the required level of accuracy andh Isicanning frequencies in the field.
Secondly, the bridge is going to have a road grafiid it will be loaded by a sprung
vehicle and time-varying forces rather than a camdbad. Therefore, an algorithm
based on a plot of wavelet coefficients versus tiongetect damage (a singularity in the
plot) appears to be very sensitive to noise. Thjgep addresses these questions by: (a)
using the acceleration signal, instead of the dedfla signal, (b) employing a vehicle-
bridge finite element interaction model, and (cyeleping a novel wavelet-based
approach using wavelet energy content at eachdsdgtion which proves to be more
sensitive to damage than a wavelet coefficientilo¢ at a given scale as employed by
others.
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wavelet energy content per strip interval

vector of corrupted accelerations

vector of noise-free accelerations

mass related Rayleigh damping coefficient

stiffness related Rayleigh damping coefficient

global damping matrix

ratio of crack height to overall beam depth

level of noise added to the signal

wavelet pseudo frequency corresponding to scale ‘s
wavelet centre frequency

vector of applied forces

global stiffness matrix

bridge span

consistent global mass matrix

Number of vanishing moments
standard normal distribution vector with zemzean value and unit standard
deviation

wavelet scale

wavelet transform

distance of the load from the left hand suppdtime t
normalised position of the load on the lged
Transformed quantity of y

vector of vertical displacement and rotatioriref model nodes
sampling period used to record the signal

damping ratio

standard deviation dhe noise-free accelerations

1% bridge natural frequency

2" bridge natural frequency



1. INTRODUCTION
1.1 Main Aims

The objective of this paper is to investigate tbegiility of using the bridge acceleration
signal due to a vehicle crossing the bridge, temeihe whether or not the bridge is
damaged. It has been shown by Zhu and Law [1]theatvavelet transform could be
employed to detect damage in a beam using theadisplent response to a moving
constant load. They showed that a plot of waveletfcients versus time at an
appropriate scale allowed them to identify a siagty that was associated to the location
of the damaged section. This paper builds on theik to further develop a wavelet-
based damage detection algorithm in more complemasts such as the response of a
bridge to a moving vehicle. In the latter, it isju@ed to address a number of issues:

(a) The technique proposed by Zhu and Law uses deftextis the input signal. On a
bridge site, it may not be easy to record defledtito the required level of
accuracy and at high scanning frequencies. Thereifiis paper investigates the
use of accelerations as the input signal.

(b) The previous work was based on the response dodrm b2 a moving load applied
as a constant force. In this paper, the moving Isadodelled as a rigid sprung
vehicle model with 4 degrees of freedom (DOFs)velhg for axle hop and frame
bounce and pitch. A road profile is also includedhe analysis. The vehicle-
bridge dynamic interaction (VBI) problem is therv&al using a Wilsor$
integration scheme. The results of the VBI simoladi provide the input for the
wavelet-based damage detection algorithm. Typigdblke and vehicle properties
are employed.

(c) In Zhu and Law [1], some small cracks were detebtddnost of their
investigation focused on large cracks, typicallyhia order of a crack height to
beam depth ratio of 0.5. The beam used in thettyshad a span of 50 m and the
speed of the load ranged from 0.5 m/s to 4 m/thipaper, it is intended to
reliably detect cracks with a height to beam degtio smaller than 0.2 in the
presence of noise. In order to achieve this lef/ekasitivity to damage, the
authors propose a novel technique that uses was@ficient versus scale plots
at different points in time, rather than waveleteficients versus time/space plots
usually found in the literature [1,2]

1.2 Detecting Damage using the Wavelet Transform

1.2.1 Background

Fig. 1 shows the mid-span acceleration responaeheflthy 40 m beam (delta =
0.0) as it is traversed by a constant load of hdés moving at 3 m/s. In this paper, delta
refers to the ratio of crack height to overall bedepth, so delta = 0.0 indicates that the
section is uncracked, whereas delta=0.5 impliets50% of the section is cracked. The
x-axis in the figure shows the normalised positibthe load (x(t)) on the bridge with
respect to the bridge length (L) (O and 1 whendhd is at the start and end of the bridge
respectively). The properties of the 40 m beantlarse typical of a 15 m wide bridge



consisting of 10 No SY6 precast concrete beamsesiaicl.5 m centres with a 195 mm
thick deck slab [3], resulting in an inertia of B.61", a Young’s modulus of 3.5x10
N/m?, and a total cross sectional area of 0 Fhe figure also shows the acceleration
signal when the same bridge has a crack at the ploint of the span (delta = 0.5). This
damaged has been introduced following recommenuatg Sinha et al. [4], where it is
assumed that damaged is extended over a regibmesaf times the beam depth. This
region has a gradual reduction in stiffness dowa tainimum at the cracked section.

(Approximate location of Figure 1)

Damping is assumed to be negligible and the fiastiral frequencies of the
healthy and damaged bridges, which responsedastated in Fig. 1, are 2.88 Hz and
2.5 Hz respectively. When the Fourier transforragplied to a signal, it defines the
different frequencies present in the signal bghies no time information. It does not
show if a given frequency is present for the fultation of the signal or if it is present for
just for a short period. Although the Short-timeuRer transform addresses this
limitation, resolution problems remain. Waveletlgtais was developed to give better
frequency-time information about a signal. Houldbhgives some informative
examples that demonstrate the capacity of the watr@insform to capture frequency-
time information. The mathematical definition oétivavelet transform and a description
of the most common wavelets is illustrated in ttexadture [6,7,8]. A wavelet is a
waveform of effectively limited duration that has average value of zero:

‘ W(x)dx=0 (1)

v —oo

wherey(X) is the mother wavelet and it is from this fuootthat the analysing wavelets,
W (%)=, can be obtained by scalingx) by s and translating(x) by x :

B
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where s is the scaling parameter ahid the translation parameter. The wavelet mother

can be a real or complex function, however, in ¢higly only real wavelets are used, and

the Continuous Wavelet Transform (CWT) correspogdma signay(x) is given by the
following Equation:

I g [T o 1 X — X\
Y(x,s)y = v(x) — [ | dx (3)
v —oo VE 5 !
Y (x,S)w refers to the transformed quantity of y(x) using waveletws(x). .. In practical
terms, the way a wavelet transform works is a®¥ail The waveletls (=) _is compared
to a portion of the original time series sigg@d), and the wavelet coefficient Y (xyg)s
calculated. Y(x,s) represents how closely the wavelet is correlatilal this portion of
the signal. The entire length of the signal is &eécresulting in a plot of the wavelet
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coefficients versus time. Then the wavelet is stéle., stretched) and the process is
repeated. Ultimately, the wavelet transform retingavelet coefficient for each scale at
each point in time. When the wavelet transformpigli@d to a continuous time series
signal, the result is a 3-dimensional surfacehis plot, time and scale can be
represented on the two mutually perpendicular boital axes, and wavelet coefficient

on the vertical axis. However, it is more commomgpresent the 3D wavelet surface as a
2D contour plot. Fig. 2 shows the result of a watv&lansform performed on the healthy
signal shown in Fig. 1. In this figure, the horitaraxis gives the normalised position of
the load on the bridge (x(t)/L is the distance leswthe load and the left hand support at
any time, divided by the length of the bridge). Megtical axis shows the range of scales
used in the wavelet transform. The magnitude oftisolute value of the wavelet
coefficient at a given scals, for a particular location of the load in timanslicated

using a lighter colour for higher values of Y(s)

(Approximate location of Figure 2)

A high scale implies stretched wavelet, thereféoevly changing features, and
the coefficients associated to a high scale wiltegpond to a low frequency content.
Conversely a low scale implies a high frequencyeré&fore, it is possible to relate the
wavelet scale to a pseudo frequency, and a higleleaeoefficient at a particular scale
will be an indication of the frequency contentloé signal at this time. Equation (4)
relates the scale of a wavelet to pseudo frequériosrefore by looking at the wavelet
transform and identifying the scales giving higlues of wavelet coefficients, it is
possible to estimate the frequencies that are pras¢he signal.

F,=— (4)

where Ekis the pseudo-frequency corresponding to scaldHz, R is the centre
frequency of the wavelet in Hz (Centre frequendgatively means the frequency of a
periodic signal that most closely resembles theeled); s is the scale of the wavelet, and
A is the sampling period used to record the signdfig. 2, which has been generated
using the Mexican Hat wavelet, it is evident thizd acale of approximately 173, there is
a series of dominant peak values for the wavelefficeents. For the Mexican Hat
wavelet, E= 0.25 Hz, and\ = 0.0005 seconds, which for a scale of 173 regutibsa
pseudo-frequency of 2.89 Hz. The latter is tH@datural frequency of the bridge.

1.2.2 How wavel ets detect damage

Damage in a structure can lead to localised sarii@s in the response
signal of the structure. In terms of why there dtidne a singularity in the acceleration
response, it is useful to distinguish three différ@mponents: 'static’, ‘damage’ and
‘dynamic’. Here, the ‘static’ component refers be response that would be experienced
at the measurement location if the load was monecmentally across the ‘healthy’
structure without considering the contribution rértial forces of the bridge (i.e., null
vibration). The ‘damage’ component is the incremerhe 'static’ response experienced
at the measurement location due to the damagepaiftthe beam. It must be noted
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that the ‘damage’ component will be relatively shirarelation to the ‘static’ component
and the maximum value of the ‘damage’ componeritagtur when the load is located
over the damaged location. The ‘dynamic’ compoiesimply the part of the total
response that can be attributed to the vibraticdh@bridge. The ‘static’ and the
‘damage’ components of the acceleration signalarg small compared to the
‘dynamic’ component. However, in a frequency rafageaway from the main mode of
vibration of the bridge, the ’static’ and ‘damagedmponents of acceleration become
more visible compared to the ‘dynamic’ componerd agavelet analysis demonstrates.
While the ‘static’ component increases continuodiglyn zero to a maximum at the
measurement location and then decreases lineasktbaero, the ‘damage’ component
is zero everywhere except around the damaged pastithe bridge. These non-zero
values associated to the ‘damage’ component aregiise of the singularity being sought
here.

A significant advantage of the wavelet transfasrits ability to capture
frequency- time information and to analyze a |laedi portion of a larger signal. Many
authors have used the wavelet transform to ideiittfyere were singularities present in
the response signal and thereby locate damage [2]J16ou et al [5] detect damage in a
structure using the Discreet Wavelet Transform (DWhe DWT splits the input signal
into ‘approximations’ (low frequency componentsilagetails’ (high frequency
components). The structure in question is a sidglgee of freedom mass-damper-spring
system with multiple parallel springs. Each spiimghe system has a threshold value and
if the structural response exceeds this threshaligevthe spring will break. It is shown
that if the acceleration signal of the system lysed using a wavelet transform the
instant of spring failure can be correctly idewtifi A number of authors were able to
identify the location of damage in a beam by anatygs mode shape using the CWT
[8,9,12]. Douka et al [13] analyse the mode shagia df a cantilever beam using the
CWT to locate the damage and to estimate its dgvdbouka et al [14] use a similar
approach to detect damage in a plate with an alt part through crack, (i.e. plate is
cracked across its full width). The mode shapeshferdamaged plate are generated using
a numerical model. These mode shapes are thensadalging a wavelet transform and
the location and severity of the damage are estidnRuka and Wilde [15] successfully
detect a localised area of damage in a plate blyiagpa 2-dimensional wavelet
transform to the fundamental mode shape of theplat

Haung et al [16] used the 2-dimensional waveletsi@m to detect multiple
damaged locations in a plate. The displacemenbrespof the damaged plate to a static
load was simulated using a numerical model and kedye of the healthy displacement
response was assumed. Individual damage locatierss identified by subtracting the
displacement of the healthy plate from the dispteaat of the damaged plate, and then,
analysing the displacement variation with a 2-digi@mal wavelet transform. A number
of authors have combined wavelet analysis with alewgtworks in an attempt to develop
more reliable structural health monitoring techmisjuSun and Chang [17] use wavelet
analysis and neural networks to detect damagesiruature. Reda Taha et al [18] use a
combination of neural networks and the discreetedetransform to detect damage in a
bridge, where the response of the bridge is modiellanerically. A similar approach was



used by Reda Taha to detect damage in the ASCEiamk structure using phase Il
experimental data [19]. In [18] and [19] it is shothat using the energy of wavelet
decomposed acceleration signals as a damage féatsteuctural health monitoring is
an effective approach. Azarbayejani et al [20] algsocessfully use the energy of an
acceleration signal as a damage feature for dachetgetion. The impact of
measurement noise has also been investigated §d 8]is generally reported that the
singularity due to damage is difficult to establistscenarios with small damage and/or
the interference of noise.

Much of the previous work on detecting damagleeams and plates using
dynamic measurements has focused on mode shapandbtehere accurate mode shape
data was available, the wavelet technique wastabtéentify and locate damage.
However, noise, spectral leakage, an inability emsure at all desired locations and/or a
limitation in the number of measurements due tocths#/time involved in the testing may
prevent the extraction of accurate mode shape data

The question of which wavelet base to use in a dendatection analysis is
addressed by [9] and [13], who point out that theneer is related to the concept of
vanishing moments. A wavelet is said to have mskang moments when Equation (5)
holds:

‘ xF(x)dx = 0, k=0123...,m—1 (5)

v —oo

It follows that each wavelet will have at least samishing moment (Equation (1)).
When a wavelet is characterised by fast decay amdmshing moments, Mallat [7]
shows the existence of a functie{x) such that

d™8(x)
=)= (-1"—— (8)
“ 4 dscrm L

Following on from Equation (6), Mallat also showsat Equations (7) and (8) hold.

T oo
B(x)dx=K=#0 (7)
o —oo
Y(x8)y | d7y() .
lim — =K (8)
2—0 m+= dxm o

g

A table showing the properties of a number of défe wavelet bases is given in
[15]. Gentile and Messina [8] and Pakrashi et hlrf9estigate how the performance of
different wavelet families relates to the numbdrgamishing moments in damage
detection problems. [8] highlight the significarafeEquation (8) by pointing out that
when scale, s, has been fixed to a comparably sralaié, Y(X,s) is likely to be a good
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approximation of K&"2times the M derivative of the signal y(x) Therefore, for the
lowest values of scals, a wavelet with only one vanishing moment will giguish
features in y(x) that are related to the first dative of the signal. More vanishing
moments are required to capture higher order dires& [8] and [9] found that when the
Haar wavelet (only one vanishing moment) was usdbe analysis, a local jump in the
wavelet coefficients was observed at the locatiioih@ damage, rather than the local
extremum observed for wavelets with a greater nurmbeanishing moments. In most
cases the order of the derivatives to be deteaatbtexceed 2, so typically wavelets
with 2 vanishing moments will suffice [13] In thewiew by Reda Taha et al [11], it is
observed that there is no unique wavelet that atiefg all structural health monitoring
requirements and that some wavelets perform biettgrtain situations than others.
Therefore, the choice of wavelet is generally gonedrby a desire to maximise the
damage feature being used to detect damage. Vistintmind the dynamic response of a
damaged beam was analysed using a number of differe/elet bases (Daubechies 2
(m=2), Symlets 2 (m=2), Coiflets 2 (m=2), Gaus2aim=2), and Mexican Hat (m=2).

It was found that Gaussian 2 and Mexican Hat wheeentost successful at identifying the
type of damage investigated in this paper. AlthotighGaussian 2 and Mexican Hat
wavelet had a similar level of performance, ultietait was decided to use the Mexican
Hat wavelet throughout the paper, given its proadeitity to identify damage in similar
problems [1,21,22].

Fig. 3 shows a contour plot of the wavelet coediits obtained when the
continuous wavelet transform is applied to the dgedaacceleration signal shown in Fig.
1. There is a local increase in the absolute vafube wavelet coefficients as the load
passes over the crack. However, this increaselysemident at scales appreciably greater
than the scale corresponding to the first natuesjuency.

(Approximate location of Figure 3)

A coefficient line plot shows how the wavelet cagéints vary with time at a
particular scale. Fig. 4 shows the coefficient jphet at a scale of 700 (pseudo-frequency
of 0.71 Hz) for both the healthy and damaged sggn&hen there is no damage in the
beam (delta = 0.0), a practically horizontal lin@btained. However, in the damaged
case (delta = 0.5), there is a clear peak in theelgacoefficients at 0.33 which is the
location of the damage.

(Approximate location of Figure 4)

It is important to note the figures shown soder somewhat simplified in the
sense that the signals were produced using a simpééng constant load model, the
cracks modelled were large and no noise was addée tsignal. However, they are used
here to demonstrate the fundamental principlesnoktiie detection of damage using
wavelets. In the following sections, the technigulk be tested in more realistic



situations that increase the difficulty of detegtdamage, i.e. noisy signals, smaller
damage and simulated signals from VBI models.

2. TESTING WITH SIMULATED BEAM ACCELERATIONS DUE TO THE
CROSSING OF A CONSTANT LOAD

2.1 Mathematical Model of the Vehicle-Bridge System
The dynamic response of a bridge subject to a ngoload is solved using the
second order matrix differential equation giverkEguation (9).

{220+ {29 + K1 (9} = (F (D) ©)

where y contains the vertical displacement andiostaf the model nodes, [M] is the
consistent global mass matrix, [C] is the globahgang matrix, [K] is the global

stiffness matrix and {F(t)} is the vector of appliéorces. The first step is to populate the
global stiffness and mass matrices of the bridgpe. flementary stiffness and mass
matrices for 1D beam elements are well establi§h@[d It is considered that the global
mass matrix of the structure is unaffected by ttesgnce of a crack. However, the
presence of a crack will result in a localised liosBending stiffness in the vicinity of the
crack and the global stiffness matrix for the dinue needs to reflect this. Crack
modelling approaches try to represent the lossffiness due to the crack [24,25]. If
using beam elements to model the structure, threr8 aommon approaches to modelling
the crack that are examined in [9]. Spring cradklets represent the crack using a
rotational spring [26,27]. Smeared crack modelsaggnt the loss in stiffness by
uniformly reducing the moment of inertia over aamivlength [28]. Continuous crack
models try to allow for the continuous reductiorsiiifness as the crack is approached
[4,29] and this is the modelling approach adoptethis paper. The specific continuous
crack technique used was that proposed by Sinala [@f, which it is based on the work
of Christides and Barr [30]. For a notched rectdagibeam, Christides and Barr
described the fall of in bending stiffness as gomgreached the notch as having an
exponential profile, approximated with a straighelby Sinha. Sinha assumes the
distance either side of the crack that experieadess in stiffness to be 1.5 times the
depth of the beam. Then, using these values ofibgstiffness in the vicinity of the
crack, the elemental stiffness matrices of the dgdalements were calculated and the
global stiffness matrix for the structure was papedi. Sinha’s approach was developed
for rectangular beams, where a given ratio of craight to beam depth implies a certain
loss of stiffness, e.g., when the crack heighO% bf the total section depth the inertia at
the damaged location can be shown to be 71% oh#rga at a healthy location. In this
paper, other types of sections are employed, ajtinaihe traditional notion of crack
height to beam depth is maintained as a measwtamége severity to be consistent with
previous published work allowing meaningful compan of results.

(Approximate location of Figure 5)



A constant load P crosses the structure at a gipead and {F(t)} defines the
distribution of P to the DOFs nearby at each tithgF(t)} is calculated by determining
the position of the load (b(t)) at every time séeywl using the hermitian shape functions
to apportion the applied load to the nodes of g element where the load is located.
Fig. 5 shows the arrangement of the model. In ail@eerform a dynamic simulation of a
load crossing the bridge it is necessary to cortherequilibrium equations of motion
into a discrete time integration scheme. This séhensolved using the Wilsdhmethod
which is described in [31]. The results of the beasponse to the moving load were
found to be in agreement with those published byiiaud [26] for different crack
depths of a 50 m simply supported beam. Measurenfienrh a field test will contain
noise, which is added here to the simulated actber using the additive model
proposed by [1], as given by Equation (10).

{a} ={acad + Ex{N} o 10

where {a} is a vector of corrupted acceleratioregaf} is a vector of noise-free
accelerations, Hs the noise level (3% is adopted in this pad#t),is a standard normal
distribution vector with zero mean value and utanglard deviation, andl is the

standard deviation afhe noise-free accelerationAcceleration signals were simulated at
mid-span for a scanning frequency of 2000 Hz, wischithin the operative range of
modern accelerometers. The damage levels beinglladdere could be detected using
lower scanning frequencies, however, the impaGadssian noise on damage
identification may result significant if the numbefravailable measurements is reduced.

2.2 The use of the Coefficient Line Plot as Damgection Tool

The signals in Section 1 were chosen primarityilfostration purposes as there
was no noise and the cracks modelled were largey $howed that the wavelet
transform could only detect damage at scales tbat wignificantly higher than the scale
corresponding to the™natural frequency of the bridge. At scales nedratow the first
natural frequency of the bridge, there will typlgdde much interference derived from
the vibrations of the main mode of vibration of tirelge and noise that will prevent the
identification of a singularity. Fig. 6 shows thedfthy and damaged mid-span
acceleration signal of the 40 m bridge describeSdation 1.2, that is subject to a 10
tonne constant load moving at 3 m/s with 3% nodk#ed to both signals. In the damaged
case, the bridge has a crack at the 1/3 pointeo§plan with delta = 0.3. Thé& hatural
frequency of the healthy bridge is 2.88 Hz. TRenatural frequency of the bridge is 2.68
Hz when there is a delta = 0.3 crack at the 1/8tgake., a 6.9% decrease with respect to
healthy structure). Damages of delta = 0.1 andbtBe 1/3 point of the span result ifh 1
natural frequencies of 2.82 Hz (2.1% decreaseRar®lHz (4.2% decrease) respectively.

(Approximate location of Figure 6)
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The singularity in the damaged acceleration signabt visible to the naked eye,
but when a wavelet transform is carried out onsilgeal there is a series of high wavelet
coefficients evident at the 1/3 point (Fig. 7(&)ig. 7(b) shows the coefficient line plot
when delta = 0.1 at the 1/3 point. Both coefficime plots correspond to a scale of 700.
It can be seen that the presence of noise resudtsar less smooth coefficient line than
when the acceleration signal contained no noisg @i Therefore, when the damage is
small (Fig. 7(b)), the singularity due to the damagay appear masked by noise, and the
coefficient line approach will result insufficient.

(Approximate location of Figure 7)

2.3 The use of Vertical Sections of the 3-D Wav8latface to Detect Damage

It has been shown a coefficient line plot (a hamiabsection of the 3-D wavelet
surface) may result inefficient for detecting sntElmages in the presence of noise.
However, it can be seen in Fig. 3 that the singylaxerts its influence not only at one
scale but across a broad range of scales from sppaitely 500 to 1200 (pseudo-
frequencies of 1 Hz and 0.416 Hz respectively)sTeidemonstrated in Fig. 8 by taking a
series of vertical sections through the 3-D wavelgface. This increase in wavelet
coefficient across a range of scales is exploddprove the sensitivity of the algorithm
to small damages. Fig. 8(a) shows the waveletfisamssurface obtained when the
bridge has a delta = 0.2 crack at the 1/3 poithefspan. Fig. 8(b) shows five different
vertical sections through the wavelet transfornfesier from scales 1-1200. At each
section a peak occurs at a scale of approximaiy(dcale corresponding to the 1st
natural frequency) and low value of wavelet coédfits are obtained at scales greater
than 500. Fig. 8(c) shows a magnified view of trevelet coefficients for the range of
scales between 500-1200.

(Approximate location of Figure 8)

From the point of view of damage detection it is fitales 500 to 1200 that prove
to be most useful. It can be seen that the waeelefficients at x(t)/L = 0.3 (which is the
closest to the damaged section at 0.33 of alleadrtiections under investigation) are
significantly higher across this range of scalestht any of the other locations. If the
area under each of the curves shown in Fig. 8(s)aakculated, the area under the 0.3
curve would be significantly larger than the araeder any of the other curves. However,
calculating the area under individual sections iadieregular intervals could be very
sensitive to noise for low levels of damage, scoaensystematic approach is necessary.
So, the 3D wavelet surface is broken up into aesesf strips at different points in time.
Each of these strips corresponds to a particutation of the load on the bridge. For
example, a strip A of the wavelet transform surfiacassumed to correspond to a load
location between 0.2L and 0.3L, strip B correspaids load location between 0.3L and
0.4L and so on (Fig. 9). The average area unddr &&p is determined by first
calculating the average wavelet coefficient ofghr@ at each of the scales used in the
wavelet analysis (these average values are maokeddtrip C as grey dots in Fig. 9 and
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they have the benefit of reducing the influenceafte across the strip) and then, finding
the area under curve C defined by the average ebeeéfficients (4). The sensitivity

of the algorithm can be further improved usingshaare of the wavelet coefficient (also
known as wavelet energy spectrum [32]) for eactihefgrey dots to compute the area A

(Approximate location of Figure 9)

There will be one value of wavelet energy contetgtrip interval, (i.e., the area
under the wavelet spectral energy curve). If tlvgaie damage in a particular interval of
travel on the bridge, the wavelet energy contenttfe damaged strip interval should be
the largest. If Figures 2 and 3 are examined, tappears a series of high wavelet
coefficients across all scales at the edges dditireal. These edge effects prevent the
coverage of those portions of the bridge closééosupports. However, in a simply
supported span if flexural cracking is to occurs inost likely to develop in the middle
third of the span where stresses are higher, thereinly the portion of the 40 m bridge
between 0.2L to 0.8L is analysed. In the figures follow the load is applied as a
constant 10 tonne load travelling at 3 m/s with 138ise added to the acceleration signal.
The bridge has a crack with delta = 0.1 at 1/3 {p&iig. 10 shows the total wavelet
energy content between scales of 500 and 1500iat=thto consecutive strips, 0.5 m
long each. In this figure, there is a peak asdhd passes over the damage at the 1/3
point of the span and there is also a peak, sligitifted to the right, related to the
passage of the load over the sensor positioneddaspan. The individual wavelet energy
values are sensitive to noise (larger values fgelalevels of noise), so it is
recommended to subtract the mean energy from theidual energies computed in Fig.
10. The resulting relative energy plot is showirig. 11. This figure also shows the
results obtained when the mid-span acceleratiarasigom a healthy bridge is analysed
which exhibits only the peak at the sensor locatigsing this wavelet energy content per
strip procedure, the damaged response revealsiactlige peak that the coefficient line
plot was unable to appreciate (Fig. 7(b)).

(Approximate location of Figure 10)

(Approximate location of Figure 11)

The fact that the load passing over the sensoltsasua peak at the sensor location can
be misleading, i.e., a peak does not necessadlgate damage if it is associated to the
observation point. This limitation can be overcdmyeaising multiple sensor locations.
Therefore, results can be drastically improvetiéf &cceleration signal was collected at
three locations simultaneously. A wavelet transfgroarried out on each signal
resulting in a relative energy plot for each sigaald then the three relative energy plots
can be averaged to give the final result. Fig.lliBtrates the resulting curves from three
sections located at the ¥4, mid-span and % poititeobridge length. The loading
arrangement and structural conditions are the sentieose used to generate Fig. 10.
There is a number of observations to be made dagui 2, firstly, it can be seen that
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regardless the observation point, the singulatity t the damage is picked up to some
extent. It can be seen that the peak at 0.33Lite gmall for the signal simulated at the
¥ point due to the relatively far distance from tlaenaged section. The closer the sensor
is to the damage the better it is identified (i .span compared to % span). The effect of
averaging the plots of all sensor locations is ieimise those undesired peaks due to the
load passing over the sensors and magnifying thk gethe damaged location (bold line
in Fig. 12). Fig. 13 shows the result obtained waeeraging the results from the quarter
point, mid-span and three quarter point accelenaignals for different levels of
damage. While the healthy bridge has no eviderikpeabridge with a delta = 0.1 crack
at the third point has a small but noticeable paake damaged location, and a bridge
with a delta = 0.2 crack has a very distinctivekpea

(Approximate location of Figure 12)

(Approximate location of Figure 13)

To investigate the impact of scanning frequencgekeration signals were
simulated for scanning frequencies of 500 Hz ar@D18z. It was found that in the
absence of noise a scanning frequency of 500 Hawasiccessful as 2000 Hz in
identifying a clear peak for a damage of delta’x When the acceleration signals
contained 3% noise, scanning frequencies of 50aridz1000 Hz were also able to detect
a delta = 0.2 crack. For a scanning frequency 6018z and 3% noise, it was possible to
identify damage of delta = 0.1. In the latter, preak was less distinct with respect to
other peaks in the processed signal when compar@d¢anning frequency of 2000 Hz.
When a scanning frequency of 500 Hz and 3% noiseusad, the peak associated to a
damage of delta = 0.1 was difficult to distinguisbm other peaks related to noise.
Essentially, it was found that the impact of Gaaissioise becomes more significant
when trying to detect the lowest levels of damagh & lower scanning frequency.

The range of scales used to detect damage in Figgas 500-1500. The lower
scale limit was chosen so as to avoid interferdéroza the main bridge frequency (see
Fig. 8) i.e., at this scale the area of influentthe first natural frequency of the bridge
has disappeared. Essentially, the lower scalé¢ lisgd was 2.89 times the scale
corresponding to theinatural frequency (2.89 x173 = 500). However,ahigh
scales, there is a loss of resolution and as & ré&sss of accuracy in the location of the
singularity associated to damage. The upper scaiefbr damage detection was 1500,
i.e. 8.67 times the scale corresponding to théetiasural frequency (8.67 x 173 = 1500).
These scale ratios were then applied to 10 m armd Bfidge theoretical models to check
if they could be used as reference when detectingage in other spans.

10 m and 20 m bridge models were found to h&leatural frequencies of 10.4
Hz and 6.4 Hz respectively. Acceleration signalsengmulated in the same manner as
for the 40 m bridge, i.e., as a result of a 10 &paint load moving across the bridge at 3
m/s. Acceleration signals were simulated at theolatpmid-span and % point, the
scanning frequency used was 2000 Hz and 3% noisad@ed to all acceleration
signals. Following wavelet transform of the accatien signal, the scale corresponding
to the ' natural frequency of the 10 m bridge was founbea9. If the scale ratios used
to detect damage in the 40 m bridge are appligded 0 m span, lower and upper scale
limits of 140 (2.89 x 49) and 425 (8.67 x 49) ratpely are obtained. The results of
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using these scale limits are shown in Fig. 14 &awdn be seen that the range of scales
140 — 425 are effective at detecting damage iri€hm bridge. After carrying out the
wavelet transform on the acceleration signals ftben20 m bridge the scale
corresponding to thenatural frequency was found to be 79. Lower arpkeugcale
limits of 230 and 680 result from applying the scadtios developed for the 40 m bridge.
Fig. 15 shows how the damage is again accuratetéd using those scale ratios.
Although the scale ratios employed here were fdorak effective for the bridges being
modelled, it is not suggested that they defineojpt@num range of scales for every
bridge and they are only provided as guidance i@asonable range of values to be
selected. Figs. 13, 14 and 15 also demonstrateitbgiroposed damage detection
technique can be successful across a range ofebsjlns.

(Approximate location of Figure 14)

(Approximate location of Figure 15)

2.4 Influence of Damping and Multiple Damage Locas

The case of damage detection in the presence ainymed bridge accelerations
(i.e., [C] = [0] in Equation (9)) has been inveatied in previous sections. Here it is
shown that the damage detection algorithm has gesiperformance when applied to
damped vibrations. Equation (9) gives the secoddramatrix differential equation that
governs the dynamic response of a bridge subjexitoving load. Rayleigh damping is
adopted to calculate the damping matrix as a coatioim of the global mass and stiffness
matrices, as shown in Equation (11).

[C] =ofM] + au[K] (11)

where g=25w102 / (01+®2) , &=28 / (01+®2), & is the damping ratio to be simulated, and
m1andeare the T and 29 bridge frequencies respectively [33]. It is assdrthet only
the first two modes of vibration are significantlahe damping ratictf is the same for
both modes. A typicd value of 0.02 for bridge structures is tested hEig 16 shows
the mid-span acceleration signal with dampibg 0.02) and without damping €

0.00). When the load first enters the bridge, tmplgudes of vibration in the damped
and undamped systems are similar, however substyjtiem amplitudes of vibration in
the damped system fall off rapidly. The dampingrimatas calculated using the healthy
global stiffness matrix and the same damping mateg used for all damage levels.

(Approximate location of Figure 16)

Fig. 17 shows the result of applying the damageddiein technique described in Section
2.3 to damped acceleration signa]s=(0.02). Fig. 17 is analogue to Fig. 13, althotigh
peaks due to the damped acceleration signalsightlgimore pronounced than the ones
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observed in Fig. 13 for the range of scales us¢ddranalysis. The peak heights for delta
= 0.1 and 0.2 are 2.58x¥@nd 16.78x10 respectively in Fig. 13, while these peak
heights for delta = 0.1 and 0.2 are 3.4%H0d 18.75x10 respectively in Fig. 17. Hence,
the inclusion of damping appears to favour damdggtification. The impact of

increased damping and noise is further investighyeidcreasing the damping ratig) o
0.04 and increasing the level of noise to 10%~B.1 in Equation (10)). The results of
this analysis are presented in Fig. 18 for diffetenels of damage. If the plots in this
figure are compared to those in Fig. 17, it casden that the height of the damage peaks
and the shape of the plots for the different danmegels are quite similar. Hence, the
technique does not appear to be particularly seedih changes in damping and is
relatively robust with respect to noise. Dampinduees the dynamic vibrations and this
reduction somehow makes it easier to detect theadarsingularity in a damped signal.
Nevertheless, damage can affect damping in manyplexmvays which are outside the
scope of this paper. Therefore, having establishatthe consideration of viscous
damping does not negatively affect the abilityhs technique to detect damage, it was
decided to run the simulations remaining in thegpapth null damping conditions.

(Approximate location of Figure 17)

(Approximate location of Figure 18)

To investigate the performance of the technigu#estcting multiple damage
scenarios the bridge is modelled to allow for d#fg damage combinations.
Combination 1 has a delta = 0.1 crack at the 1i8twd the span and a delta = 0.2 crack
at the 2/3 point of the span. Combination 2 hasled 0.2 crack at the 1/3 point of the
span and a delta = 0.1 crack at the 2/3 point@tgan. Combination 3 has a delta = 0.15
crack at the 1/3 point of the span and a deltals 6rack at the 2/3 point of the span. The
acceleration signals from the quarter point, midrsand three quarter point were
analysed to give the plots shown in Fig. 19. Ircalles both damage locations are clearly
identified and the height of the peaks can beedl&d the severity of the damage.

(Approximate location of Figure 19)

3. TESTING WITH SIMULATED BEAM ACCELERATIONS DUE TO THE
CROSSING OF A SPRUNG VEHICLE MODEL

3.1 Vehicle-Bridge Interaction Model

An iterative approach was employed to implementMBé&model [34,35]. The
vehicle was modelled as a planar 2-axle rigid twitk 4 DOFs: the pitch and vertical
displacement of the sprung mass and the displadeshéme two unsprung masses. The
contact forces between the axles of the vehicletla@doad profile are obtained using the
equations of motion of the vehicle [36]. Then, thesentact forces are applied to the
finite element (FE) model of the bridge. The staual model of the bridge is the same as
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that described in Section 2.1, only that this tthrere are two axle loads. Once the force
vector {F(t)} has been generated, the Wildbmethod is used to calculate the
displacement of each of the bridge DOFs at each sit@p. In a preliminary step, the
contact forces applied to the FE model of the lwidge calculated using a ‘stationary’
road profile, i.e., no allowance is made for thet that the axle displacement will change
due to the deflection of the bridge. Using the higam shape functions, it is possible to
calculate the vertical bridge displacement undehexle at each time step. Therefore, a
new profile defined by the road irregularities addion to the displacements of the
bridge is calculated. Then by repeating the proeedaing the latest bridge road profile,
a new set of contact forces can be obtained. T¢edsalations are repeated until
convergence is achieved. The suspension and tgpegies of the truck are similar to
those of a semi-tractor unit with twin wheels ie tiear axle. Table 1 gives a summary of
the different vehicle properties used in the sirtiafes [37,38]. The road profile is an
array of numbers that defines the height of thel ic@gularities at each time step. Cebon
[39] describes how an atrtificial road surface tappy of a given ISO
roughness/classification can be generated forrusme-domain vehicle vibration
simulations. In this paper, only ISO class ‘A’ (fyegood”) profiles, typical of well-
maintained highways, are used.

(Approximate location of Table 1)

3.2 Wavelet Transform of Signal from Interaction débwith Smooth Road Profile

3.2.1 Original input signal

As a sprung vehicle passes over a bridge, thefardes applied to the bridge vary, and
the dynamic response of the structure will be s&seoth than the case of a moving
constant load. This situation will make the detatf a local singularity a more difficult
task. Fig. 20 shows the mid-span acceleration kmfrthe bridge when it is traversed by
a 15 tonne truck moving at 3 m/s on a smooth raafile (Note this signal contains 3%
noise added as described by Equation (10)). Thigéis modelled as having a delta =
0.3 crack at the 1/3 point of the span. It candsnsn Fig. 20 that there is an abrupt
change in the amplitude of the acceleration sigh#tie end of the signal as the front axle
leaves the bridge (time = 13.3 s). There is a @nallange in amplitude at the start of the
acceleration signal as the rear axle of the truntkrs the bridge (time = 1.26 s).

(Approximate location of Figure 20)

Fig. 21(a) shows a contour plot of the wavelet ficehts obtained when the signal
shown in Fig. 20 is analysed between scales ofi11800 using the Mexican hat wavelet.
This plot has similarities with the wavelet transfioof the constant load signal shown in
Fig. 3. The first natural frequency of the bridgeevident at low scales and there is a series
of high wavelet coefficients at 1.26 seconds antBa® seconds. The latter are not due to
damage but as a result of the wavelet transformtiigeng the singularities in the
acceleration signal due to the rear and front aethésring and leaving the bridge
respectively. When modelling multi-axle vehiclesgsilarities at the instants at which
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axles enter or leave the bridge are inevitable. Flgb) zooms into the scales between 500
and 1500. It can be seen that at scales betweearsD0200 there are two peaks in the
wavelet coefficients at 4.5 seconds and 5.8 secoviush are the result of the passing
over the damaged section of the front and reasarigpectively. Then, at scales greater
than 1200 it becomes more difficult to distingulstween both peaks. Initially, when
dealing with signals from the half-car model and-oad profile, the range of scales
between 500 and 1100 offered good resolution iadiely damage. However, the range of
scales 500-1200 became very noisy in the presdreceonigh surface due to the
interference of road frequencies. The existenaroligh surface requires the use of
higher scales to detect damage. One disadvantagmeddting at higher scales is their
lower resolution when determining the exact logatib the damage.

(Approximate location of Figure 21)

3.2.2 Padding of the original input signal

The large singularities in the acceleration sighad to the axles entering and
leaving the bridge generate very high wavelet ¢aefits locally which tend to mask any
damage that might be present close to the suppors attempt to reduce the influence of
these local areas, the simulated acceleratiomlsggm be modified using a padding
technique before carrying out the wavelet transforhre first step of the technique is to
remove the parts of the signal that contain the axigularities. So, only the signal portion
between 1.26 seconds and 13.3 seconds of Fig.@hsdered, and the wavelet transform
associated to the shortened signal is shown inZZigAlthough the axle singularities have
been removed, there are still significant edgectsteThese edge effects typically occur
when a finite length time series is analysed widvelets [40]. Consequently, the
‘window’ for detecting damage becomes quite narrosv, damage could only be detected
in a limited zone around the centre of the briddesrefore, the second step of the
technique is padding the signal to reduce the emibe of edge effects and to increase the
length of the bridge being covered.

(Approximate location of Figure 22)

Meyers et al. [41] suggest using a form of paddivat matches the endpoint
frequency, amplitude and phase. Therefore the ehedtsignal with starting point the
entrance of the" axle on the bridge and ending point the leavintheff' axle off the
bridge can be padded by identifying for examplefitst four cycles of vibration. Then,
the start and end of the signal are extended widipatition series of the first and last
four cycles respectively as shown by Fig. 20. Téwetre portion of the signal in Fig. 20
(solid line) is broadly the same as that shownign B0, except that in Fig. 20 a moving
average filter has been applied to this part ofsigeal. Provided the span of the filter
was small enough, the moving average filter withoxe some of the noise from the
signal without removing the singularity, therebyking it easier to locate the damage
using the wavelet transform. In this analysis theetstep used was 0.0005 seconds and
the moving average filter had a span of 27 (27*096 0.0135 s resulting into a
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frequency of 1/0.0135 = 74 Hz). Fig. 24 shows tlawelet transform of the padded
signal shown in Fig. 23, where only the area betwsetme of 1.26 seconds and 13.3
seconds is relevant. When compared to Fig. 22 @wther true shortened signal is
analysed directly), it can be seen that the edigetsfat 1.26 seconds and 13.3 seconds
have been noticeably reduced by padding. In p@digecms, padding the signal has the
effect of moving the edge effects away from theezohinterest.

(Approximate location of Figure 23)

(Approximate location of Figure 24)

3.2.3 Performance of the algorithm

To detect damage in a bridge loaded with a halfroadel the same process used
when analysing signals from a constant load madetrployed. Again the acceleration
signal is generated at three locations simultarigdggearter point, mid-span and three
quarter point) as the truck passes over the brigigg each of the three signals are
shortened and padded before being analysed usngabelet transform. Then, the
results from the three measuring locations areamest. Scales between 1200 and1500
are employed in this analysis. Fig. 25 shows tkalte obtained for different levels of
damage at different locations. The x-axis in tigeife shows the normalised position of
the mass centre of gravity of the vehicle on theda.

(Approximate location of Figure 25)

Fig. 25 shows that when using scales of 1200-1B8Qdchnique can successfully
detect damage and as expected, the magnitude #létre wavelet energy for a given
strip increases with more severe damage. HoweMernoticeable that when analysing
acceleration signals from the halfcar model at lsighles, it is more difficult to precisely
locate the damaged section than when using si@roatsa single P-load model, which
could be analysed at lower wavelet scales. For phaihthe plot for delta = 0.2 in Fig.
13 was examined, there is a narrow peak just dbttaion of the damaged section. In
Fig. 25, the delta = 0.2 crack is located at Olalt,instead of getting a narrow peak at
just 0.5L a broad peak extending from approx 0.4b0Q.55L results. If Fig. 21(b) is
examined, the reason for getting a broad peakgnZ4 can be understood. Essentially,
as each axle passes over the damage there islessrgalarity in the acceleration signal.
At scales of between 500 and 1000 the waveletsharg enough that they can detect
each singularity individually so there is a peakhie wavelet coefficients per axle.
However, at scales greater than 1200 and low lefelamage (i.e., delta 0.1 at 0.33L in
Fig. 25), the length of the wavelet being usechaadnalysis is too long to be able to
separate two small singularities that are so dlogether, and consequently, they are in
effect interpreted as one broad singularity. Fonages of delta = 0.2 and delta = 0.3, the
influence of the individual axles is not completkdgt and the top of the peaks have twin
crests.
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3.3 Wavelet Transform of Signal from Interactiond#! with Road Profile

Here the road profile has an ISO class ‘A’ (Fig(&@&hows the portion of the road
profile on the bridge) and a crack of delta = @.&nodelled at the 1/3 point of the span.
Fig. 26(b) shows the mid-span acceleration sighdiebridge when it is traversed by a
15 tonne truck moving at 3 m/s (3% noise has bededto this signal). If the
acceleration signal shown in Fig. 26(b) was congbarih the one shown in Fig. 20, it is
noticeable that the road irregularities can leaihterferences in the acceleration signal
which have a greater effect than a singularity dugamage.

(Approximate location of Figure 26)

Fig. 27 shows a contour plot of the wavelet coédfits obtained when the signal
shown in Fig. 26(b) is analysed using the Mexicahvmavelet between scales of 1 and
1500. This wavelet transform surface presents aiti¢s with the one shown in Fig.

21(a) for a half-car travelling over a smooth pfThe influence of the®Inatural
frequency of the bridge is evident at lower scaled the singularities due to the axles
entering/leaving the bridge are also present agétlyes of the surface. However, the
difference between the two figures lies in the zohscales between 500 and 1100. Here,
this zone has become full of high wavelet coeffitsedue to the interference of the road
profile, thereby hindering any damage singulatigttcould be detected at these scales
before. For this reason, the use of scales grdearl100 becomes necessary.

(Approximate location of Figure 27)

The acceleration signal is simulated at the samee tlocations used in Section 3.2.3.
Again, each of the three signals is shortenedeftoove the axle singularities), smoothed
(to remove some noise) and padded (to reduce thadhof the edge effects). Fig. 28
shows the results obtained for different leveldafiage at different locations. Again the
x-axis in the figure shows the normalised posittbthe mass centre of gravity of the
vehicle. Similarly to Fig. 25, the height of theggs in Fig. 28 increases as damage gets
larger, although the peaks are slightly highehmpresence of a road profile. The
inclusion of a road profile brings a larger diffiece in the magnitude of the peaks
associated to each axle. For example, the damadgtaf= 0.2 at mid-span of Fig. 25,
the height of the peak is approximately 4XEnhd there is only a small undulation at the
top of the peak due to a merging of the effectsath axles. In Fig. 28 for the same mid-
span damage, there is a broad peak between ap@tekynd.45L and 0.55L. However, at
the top of this peak there are individual crest6xdf0°>when the front axle crosses the
damage and 2x10when the rear axle crosses the damage. This efifferin the height
of the axle crests is more pronounced for delta3=a0the % point, leading to values of
4x10° and 12x10 for the passage of each axle on the road clas3/fien there was a
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smooth road profile and delta = 0.3 at the % p@tig. 25), the height of the crests at the
top of the peak were 5xF@nd 7x10. A rough road profile increases the magnitude and
variability of axle forces and also the variabilitythe height of the axle crests associated
to a damaged location. To further investigateittiqgact of road profile the bridge is
modelled as having a class ‘B’ road profile. Fi§.shows the average relative energy for
various damage levels at different locations whemkating the effects of a ‘B’ road

class. Comparing Fig. 29 to Fig. 28, it can be ghanhthe plot for delta = 0.0 is far
rougher so that in itself makes damage identifacatnore difficult. The plot for delta =

0.1 at 0.33L of Fig. 29 is not sufficiently differeto the delta = 0.0 plot to be able to
identify damage. When increasing the damage tadel.2, two twin axle crests
(similarly to Figures 22 and 25) can be distingatslround the damaged location. The
delta = 0.3 crack at 0.66L produces a plot withhaall peak between 0.6L and 0.75L in
Fig. 29. However, rather than getting twin crestha top of the peak, it is more a case
that there is a point of inflection at 0.63L andrast at 0.7L due to the front and rear
axles respectively crossing the damage.

(Approximate location of Figure 28)

(Approximate location of Figure 29)

Figures 22, 25 and 26 show that the performantleeoélgorithm falls off as the
roughness of the road surface increases, partigiitarlow levels of damage. The road
profile increases the amplitude and the randomokettse induced vibrations, and it can
hinder the effect of the singularity due to damage.

3.4 Influence of Vehicle Speed

The speed of the vehicle is a very important patantbat influences the amplitude
of bridge vibration and the length of the availabteeleration signal. When increasing
the speed of the vehicle, the impact of edge &ffiecthe wavelet transform should be
considered. As the speed of the vehicle is incretis® acceleration signal is shortened in
the time domain. In practical terms this meansreomang of the ‘window’ of the
wavelet transform surface that can be used for dardatection. To counteract this
narrowing of the window it is very important to pté signal to minimise the impact of
edge effects. Fig. 30 shows the results obtainezhwihe speed of the vehicle was 7 m/s.
A random class ‘A’ road profile was used to gereethe accelerations signals processed
in this figure. The analysis technique was the sasnnat used to produce Fig. 28, where
the speed of the truck was 3 m/s. In Fig. 30, it lsa seen that damages of delta = 0.2 and
0.3 could be detected, however, it was not possibtketect a damage of delta = 0.1. The
length of the acceleration signal is significarghorter at 7 m/s than at 3 m/s, leading to a
shorter singularity that is more difficult to detelcower wavelet scales able to catch
higher frequencies would have been more effectivketecting short singularities.
Nevertheless, the presence of high frequency coemisrdue to the rough road profile
prevents the use of low scales. When the sizeeo$itigularity due to damage becomes
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sufficiently large compared to those singularitieduced by the road profile (i.e., delta =
0.2 and 0.3), then it becomes possible to detesetiveakened sections at 7 m/s. When
vehicle speeds greater than 7 m/s were testedalgbathm lost effectiveness due to the
singularity becoming shorter, vibrations oftentigef larger and preventing to
distinguish the singularity, and the increasingact of edge effects that padding can
only partially mitigate.

(Approximate location of Figure 30)

4.0 DISCUSSION

This paper has shown that it is possible to detestage in a 40 m simply
supported bridge beam model by analysing its ac@@ response to a moving load.
Initially, signals from a moving constant load mbaere examined and it was found that
the coefficient line plot (which uses only one wWatscale) was effective at detecting
large cracks, however, it was unreliable when trytmdetect small levels of damage. To
overcome this limitation a technique which utilisedange of scales was developed and
it was found to be more sensitive to damage thargysst a single scale. This technique
used the acceleration signal obtained at one bimggion to calculate the average
wavelet energy content for equally spaced stripssacthe bridge. This wavelet
representation revealed that those damaged saipa higher wavelet energy content
than the undamaged strips when the appropriateeraingcales was considered (i.e.,
away from the natural frequency of the bridge). Tike of multiple sensor locations gave
significantly better results than using just onesse location.

Using the bridge acceleration due to a half-cat MBdel as input signal posed
two significant challenges not present in the aaregion signal from a model based on
constant loads: (1) there were sharp singulaiti¢lse acceleration signal due to the
vehicle axles passing on and off the bridge; (2)dresence of a road profile led to a
significantly rougher acceleration signal than tpaterated by a moving constant load
model. The problem of having singularities at ttaetsand at the end of the acceleration
signal was addressed by trimming the simulatedlacation signal to remove these
singularities, and padding the remainder of thaaitp reduce the impact of edge
effects. The problem of a rougher accelerationai¢pue to the road profile) required a
reduction in the range of scales at which it issgie to detect damage. As the speed of
the vehicle was increased, the algorithm lost seitgito a damaged-related singularity.
Essentially higher wavelet scales need to be usdd@ansequently some accuracy is lost
when determining the damaged location. Even althdhg exact location could not be
provided for some cases, it was still possiblertaljet a relatively narrow portion of the
bridge where damage could be contained. Therefdren the acceleration signal due to
a 2-axle vehicle was simulated at the quarter paird-span and three quarter point of a
beam model in the presence of a class ‘A’ roadilerahd 3% noise, a crack as small as
10% of the total section depth could still be teljadetected at 3 m/s using the proposed
technique based on wavelet energy content.
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‘igure Captions
>lick here to view linked References

Fig. 1 Mid-span acceleration of a 40 m bridge traversed by a constant load moving at 3 m/s.

Fig. 2 Wavelet transform of the healthy signal shown in Fig. 1.

Fig. 3 Wavelet transform of the damaged acceleration signal shown in Fig. 1.

Fig. 4 Coefficient line plot for the healthy and damaged signals shown in Fig. 1.

Fig. 5 Sketch of beam discretized model subject to a moving force.

Fig. 6 Corrupted mid-span acceleration signal of healthy and damaged bridges.

Fig. 7 Coefficient line plot of acceleration signal for crack at the one third point: (a) delta= 0.3
(b) delta=0.1.

Fig. 8 Vertical sections through wavelet transform surface: (a) Wavelet transform surface when
delta = 0.2 at the 1/3 point, (b) Absolute value of wavelet coefficients for vertical sections at
different positions of the moving load, (c¢) Absolute value of wavelet coefficients at different
positions of the moving load for scale range between 500 and 1200.

Fig. 9 Sketch showing strip C of the 3D wavelet surface.

Fig. 10 Total wavelet energy content associated with different strips when delta = 0.1 at 1/3
point.



Fig. 11 Relative energy associated with different strips for a healthy condition (delta = 0.0) and
a low level of damage (delta=0.1).

Fig. 12 Relative energy for bridge acceleration signal simulated at three locations simultaneously
and average of the three locations.

Fig. 13 Average relative energy when acceleration simulated at 3 locations simultaneously for
different damage levels.

Fig. 14 Average relative energy when acceleration signals from a 10 m bridge were analyzed
between scales of 140 and 425.

Fig. 15 Average relative energy when acceleration signals from a 20 m bridge were analyzed
between scales of 230 and 680.

Fig. 16 Damped and undamped mid-span acceleration signals for healthy bridge.

Fig. 17 Average relative energy when damped acceleration simulated at 3 locations
simultaneously for different damage levels.

Fig. 18 Average relative energy for different damage levels when the acceleration signal contains
10% noise and are simulated with a damping ratio & = 0.04.

Fig. 19 Average relative energy when acceleration simulated at 3 locations simultaneously for
bridge with 2 damages.

Fig. 20 Mid-span acceleration signal of bridge damaged at the one 1/3 point (delta = 0.3).



Fig. 21 Wavelet transform of signal shown in Fig. 17: (a) scales 1-1500, (b) scales 500-1500.

Fig. 22 Wavelet transform of shortened acceleration signal.

Fig. 23 Shortened signal padded at both ends.

Fig. 24 Wavelet transform of signal shown in Fig. 20.

Fig. 25 Average relative energy for various damage levels at different locations (smooth road
profile, speed = 3 m/s, noise 3%).

Fig. 26: (a) Road profile on the bridge, (b) Mid-span acceleration signal with road profile on
bridge including 3% noise.

Fig. 27 Wavelet transform of signal shown in Fig. 23(b) for scales between 1 and 1500.

Fig. 28 Average relative energy for various damage levels at different locations (class ‘A’ road
profile, speed = 3 m/s, 3% noise).

Fig. 29 Average relative energy for various damage levels at different locations (class ‘B’ road
profile, speed = 3 m/s, 3% noise).

Fig. 30 Average relative energy for various damage levels at 0.33L (class ‘A’ road profile, speed
=7 m/s, 3% noise).



"able 1

Dimensional Data (m)

Wheel base 3.78
Dist from centre of mass to front axle 1.94
Dist from centre of mass to rear axle 1.84
Overall length of truck 6.00
Mass and Inertia Parameters
Mass Parameters (kg) Front axle mass 700
Rear axle mass 1,100
Sprung body mass 13,300
Inertia Parameters (kgm?) Pitch moment of inertia of truck 41,008
Suspension Parameters
Spring Stiffness (kN/m) Front axle 400
Rear axle 1,000
Damping Coeffs (kNs/m) Front axle 10
Rear axle 10
Tyre Stiffness (kN/m) Front axle 1,750
Rear axle 3,500

Table 1. Parameters for truck model.
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Figure 5 Sketch of beam discretized model subject to a moving force.
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