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Abstract. Algorithms for detecting communities in complex networks
are generally unsupervised, relying solely on the structure of the network.
However, these methods can often fail to uncover meaningful groupings
that reflect the underlying communities in the data, particularly when
those structures are highly overlapping. One way to improve the use-
fulness of these algorithms is by incorporating additional background
information, which can be used as a source of constraints to direct the
community detection process. In this work, we explore the potential of
semi-supervised strategies to improve algorithms for finding overlapping
communities in networks. Specifically, we propose a new method, based
on label propagation, for finding communities using a limited number
of pairwise constraints. Evaluations on synthetic and real-world datasets
demonstrate the potential of this approach for uncovering meaningful
community structures in cases where each node can potentially belong
to more than one community.

Keywords: overlapping community finding, semi-supervised learning

1 Introduction

In many real-world application involving machine learning, the tasks do not
neatly correspond to the standard distinction between supervised and unsuper-
vised learning. Rather, a limited degree of background knowledge or user anno-
tation time will be available. Tasks such as community detection can potentially
benefit from the introduction of “lightweight” supervision originating from do-
main experts or crowdsourced annotations, where this knowledge might be en-
coded as constraints indicating that a pair of nodes should always be assigned
to the same community or should never be assigned to the same community. For
instance, we might be interested in grouping users on a social media platform
such as Twitter, based primarily on their follower connections, in order to dis-
cover communities of individuals with shared ideologies. To improve our ability
to achieve this, and go beyond simply looking at connections, we could present
pairs of user profiles to a human annotator (the “oracle”), to ask whether two
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users should be assigned to the same community or different communities. By
harnessing this kind of knowledge, we can potentially uncover communities of
nodes which are difficult to identify with unsupervised methods.

Initial work in community detection focused on the development of algo-
rithms to produce disjoint groups [3]. However, in many real-world networks
we observe pervasive overlap, where nodes belong to many highly-overlapping
groups [1]. More recently, overlapping community finding algorithms have been
developed for application to these networks [1, 14]. However, this work has fo-
cused only on the unsupervised case. In contrast, work on semi-supervised com-
munity finding continues to focus on cases where communities are strictly re-
quired to be disjoint [17].

In this paper, we propose a semi-supervised method for overlapping commu-
nity finding based on a label propagation strategy, which has previously been
applied in a purely unsupervised context [21]. The proposed method, referred
to as Pairwise Constrained SLPA (PC-SLPA), involves a speaker-listener infor-
mation propagation process. To encode external supervision, we use pairwise
constraints to influence the community finding process. Since the choice of con-
straints in semi-supervised learning has been shown to be highly important [15],
we further propose a strategy for selecting constraint pairs for which an ora-
cle should be queried. This strategy is specifically designed for the case where
communities overlap in a network. The experiments described later in Section
4, which involve synthetic and real networks, show that the introduction of a
relatively small number of constraints with PC-SLPA can improve our ability to
correctly uncover the underlying communities.

2 Related Work

2.1 Community Finding

Finding non-overlapping communities. Algorithms in this context can be
broadly grouped into three types. (1) Hierarchical algorithms construct a tree of
communities based on the network topology. These can be one of two types:
divisive algorithms [7] or agglomerative algorithms [4]. (2) Modularity-based
algorithms optimize the well-known modularity objective function to uncover
communities in a network [20]. (3) Other algorithms which include those based
on label propagation approaches [21], spectral methods that make use of the
eigenvectors of a graph’s adjacency matrix, and methods based on statistical
modeling [6].

Finding overlapping communities. Existing algorithms in this context can
be classified into four main categories. (1) Node seeding and local expansion al-
gorithms detect communities by starting from a node or a small group of nodes,
then expanding them into a community using some fitness function. OSLOM [13]
is an example of such an algorithm, which expands communities based on a
fitness function measuring the statistical significance of communities with re-
spect to random variations. (2) Clique expansion methods use a group of fully-
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connected nodes, called a clique, as the starting point for building larger com-
munities. Greedy Clique Expansion (GCE) [14] is an example of this type of
algorithm. (3) Link clustering algorithms detect communities by splitting the
network edges rather than the nodes [2]. (4) Label propagation algorithms at-
tempt to group each node into a community based on its neighboring nodes’
affinities.

Speaker-listener label propagation. A representative example of this strat-
egy is the Speaker Label Propagation Algorithm (SLPA) [21]. Here every node
is associated with a corresponding memory to store the frequencies of labels
received from other nodes. Each node can take the role of either a listener or a
speaker, and the roles are switched based on the state of the node – i.e.whether
a node is providing information or consuming it. In the listener state, a node
accepts labels from its neighbors, based on certain rules. In the speaker state,
the node chooses a label from its own memory according to certain rules and
sends it to neighboring listener nodes. Initially each node is assigned its own
unique label. Then an iterative evaluation stage is repeatedly applied:

1. Randomly select one node as a listener.
2. Each neighbor of the listener randomly chooses a label from its own memory

with a probability proportional to the frequency of occurrence of this label,
and sends the label to the listener.

3. The listener chooses the most popular label among the received labels, and
then adds it to its own memory.

A subsequent post-processing stage converts each node’s memory into a proba-
bility distribution of labels. If the probability of the frequency of a certain label
is less than a user-specified threshold, the label is removed from a node’s mem-
ory. After this thresholding step, all nodes having the same label are grouped
into one community. Nodes that have more than one label naturally belong to
multiple communities

2.2 Semi-Supervised Learning in Community Finding

Several forms of prior knowledge have been used to guide community detection.
The most widely-used strategy has been that of pairwise constraints involving
“must-link” and “cannot-link” relations. These relations indicate that either two
nodes must be in the same community or must be in different communities. Such
constraints have been implemented in several algorithms, including a modularity-
based method [17], a spectral analysis method [9, 23], and methods based on
matrix factorization [23]. Instead of constraints, some authors have proposed the
use of node labels to encode prior knowledge for community detection [15]. In [18],
the authors propose a method that uses a semi-supervised label propagation
algorithm based on node labels and negative information, where a node is deemed
to not belong to a specific community.

The vast majority of semi-supervised algorithms in this area aim solely at
detecting disjoint communities, whereas many real-world social networks contain
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overlapping structures [1]. In [5], a small set of nodes called seed nodes was used,
whose affinities to a community is provided as prior knowledge to infer the rest
of the nodes affinities in the network. However, to the best of our knowledge,
no work has been done in the context of finding overlapping communities using
supervision encoded as pairwise constraints.

3 Methods

3.1 Pairwise Constraints for Overlapping Communities

Before describing the proposed methods for semi-supervised community find-
ing, we firstly discuss the issue of selecting appropriate pairwise constraints for
networks containing overlapping communities.

Given a network that contains a set of nodes V , semi-supervised pairwise
constraints typically take two possible forms:

1. A must-link constraint specifies that two nodes should be in the same com-
munity. Let CML be the must-link constraint set: ∀ vi, vj ∈ V where i 6= j,
(vi, vj) ∈ CML indicates that two nodes vi and vj must be assigned to the
same community.

2. A cannot-link constraint specifies that two nodes should be in different com-
munities. Let CCL be the cannot-link constraint set: ∀ vi, vj ∈ V where i
6= j, (vi, vj) ∈ CCL indicates that vi and vj must be assigned to separate
communities.

These constraints are provided by the oracle, typically an individual expert
or committee of annotators. The simplest approach for selecting pairwise con-
straints to present to the oracle is to näıvely select a pair of nodes (vi, vj) at ran-
dom, and query the oracle about whether the pair share a must-link or cannot-
link relationship. This process is typically repeated until some supervision budget
is exhausted.

In non-overlapping community finding, must-link constraints have a transitive
property, such that a third must-link relationship can be inferred from two other
associated must-link constraint pairs. So, if (vi, vj) ∈ CML, and (vi, vk) ∈ CML,
then we can also infer that (vj , vk) ∈ CML (see Fig. 1(a)).

However, incorporating constraints into the context of overlapping commu-
nities is more challenging. This is because the transitive property does not hold
here (see the second example in Fig. 1). Specifically, if (vi, vj) ∈ CML, and (vi, vk)
∈ CML, there are two possible scenarios for the pair (vj , vk). It can be the case
that either (vj , vk) ∈ CML or (vj , vk) ∈ CCL. This is because an overlapping
node vj can have a must-link constraint with both vi and vi, yet these two nodes
could belong to two different communities. However, it is also possible that all
three nodes are in fact in the same community. Unless we explicitly inform the
algorithm about whether a must-link or cannot-link constraint exists for the pair
(vj , vk), the algorithm cannot reliably distinguish between the two cases.

If the network has highly-overlapping communities (i.e. each node typically
belongs to many communities), then this problematic situation will occur more
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Fig. 1: In the non-overlapping case (a), the transitive property allows us to infer a third
must-link constraint from two existing must-link constraints. However, this does not
automatically apply in the overlapping case (b), where two possible situations exist.

frequently. Therefore, if we attempt to incorporate pairwise constraints into over-
lapping community finding without taking this situation into account, the quality
of the resulting communities can potentially decrease, even as more constraints
are added. Next we introduce a strategy to resolve this issue.

3.2 Semi-Supervised Overlapping Community Finding

We now propose a new semi-supervised label propagation procedure for finding
overlapping communities, which consists of two distinct phases:

1. Select and pre-process constraints, to resolve the problem of the lack of the
transitive property for must-link constraints.

2. Apply label propagation-based community finding, in a manner that takes
into account information provided by the selected constraints.

Phase 1: Selecting and pre-processing constraints. After selecting an ini-
tial set of pairwise constraints by querying an oracle, we can view the set of
pairwise constraints as a new graph, where an edge exists between two nodes
from the original network if they share a pairwise constraint (either must-link
or cannot-link). Then we look for all possible forbidden triads among the nodes
involved in the must-link set. Given three nodes A, B, C, a forbidden triad (some-
times referred to as an open triad) occurs when A is connected to B and C, but
no edge exists between B and C. In our pre-processing step, we look for such
cases — i.e.where we do not know whether a must-link or cannot-link exists
between a pair of nodes B and C. To control the size of the constraints set, we
greedily expand it until we reach a pre-defined maximum size. The complete
constraint selection strategy can be summarized as follows (see also Fig. 2):

1. Select a small random set of both must-link and cannot-link constraints.
2. Find all possible forbidden triads in the must-link set, to identify pairs to

query the oracle about their relationship.
3. For each resulting pair, if their relationship is must-link, then add the pair

to the must-link set. Otherwise, add the pair to the cannot-link set.
4. Repeat all steps until the maximum number of selected constraints is reached.
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Fig. 2: An illustration of all steps in the overlapping constraint selection process.
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Fig. 3: An illustration of Steps 1-4 involved in the PC-SLPA algorithm.

At the end of this process, the pairwise constraints are ready to be supplied to
the community detection algorithm, which we describe next.

Phase 2: Pairwise Constrained SLPA (PC-SLPA). We incorporate the
selected pairwise constraints as follows (see also Fig. 3):

1. In the initialization step:
(a) Give a unique label to each node in the network.
(b) For each pair of nodes having a must-link relationship, the two nodes

exchange labels (i.e.update each node’s memory with the other node’s
label).

2. The evaluation step broadly follows a similar process as unsupervised SLPA
(see Section 2.1). However, we account for the pairwise constraints as follows:
(a) Randomly select one node as a listener, and identify the set of speakers

(i.e. the neighbours of the listener).
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(b) Augment the set of speakers by adding all nodes that have must-link
relationship with the listener and removing all nodes that have cannot
link relationship with the listener. Then each speaker sends out a label
according to the rule defined in standard SLPA.

(c) Each listener accepts the sent labels, unless sent by a node which shares
a cannot-link constraint with the listener. Since all nodes that hold the
same label will be grouped together as a community at the end of the
process, this avoids grouping together pairs of nodes having a cannot-link
relationship.

3. The constraint processing step considers both sets of pairwise constraints:
(a) For each must-link pair, compare the memories of the two nodes to ensure

they both share the same highest occurrence frequency label. If they do
not, both nodes exchange their most frequently-occurring labels with
each other under a condition that each node does not has a cannot link
relationship with any node assign to that label.

(b) For each cannot-link pair, compare the memories of both nodes. If both
nodes have a common label, remove this label from the node that has
the lowest label occurrence frequency.

4. In the post-processing step, convert each node’s memory into a probability
distribution of labels. If the node’s probability of a certain label is less that
a threshold r ∈ [0, 1], the label is removed from the node’s memory. Then all
nodes having the same label are grouped into one community. Nodes that
have more than one label correspond to overlapping cases which belong to
multiple communities.

4 Evaluation

4.1 Experimental Setup

We now evaluate the performance of PC-SLPA to determine the extent to which
introducing varying levels of constraints can improve community detection.

Data. Firstly, we evaluate on synthetic data created using the widely-used LFR
generator [12], which can produce networks with properties similar to real-world
networks, with overlapping ground truth communities. The selection of network
parameters shown in Table 1(a) is based on those used to evaluate the original
algorithm SLPA [21] and other works in the literature. We generate two different
groups of synthetic networks with different sizes, each containing small and large
communities and mixing parameter µ varies from 0.1 to 0.3. Small communities
have 10–50 nodes, while large communities have 20–100 nodes. Each group con-
sists of 16 networks with different combinations of the parameter Om, which
controls the number of communities per node. For the first network in each set,
all nodes belong to two communities (Om = 2). For each successive network,
this parameter value is incremented by 1 until Om = 8 is reached.

Secondly, we consider three real-world networks which have previously been
used in the community finding literature [16]: 1) a co-purchasing network from
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Amazon.com; 2) a friendship network from YouTube; 3) a scientific collaboration
network from DBLP. These networks contain annotated ground truth overlap-
ping communities. For each network, we include only the 5,000 largest such
communities, as per [22]. We then perform filtering as per [10] – the remain-
ing communities are ranked based on their internal densities and the bottom
quartile is discarded, along with any duplicate communities. Finally, as an ad-
ditional step, we eliminated extremely small communities. For the Amazon and
YouTube networks, communities of size < 5 nodes are removed, while for the
DBLP network communities with < 10 nodes are removed. Details of the result-
ing networks are listed in Table 1(b).

Baselines. To the best of our knowledge, no work has been conducted in
the literature regarding pairwise constrained algorithms for finding overlapping
communities. Therefore, for the sake of comparison, the PC-SLPA results are
compared with outputs of the following popular unsupervised overlapping com-
munity detection algorithms: SLPA [21], OSLOM [13], MOSES [19], and CO-
PRA [8]. For OSLOM and MOSES, we use the default parameters recommended
by the original authors. For COPRA, we use the settings recommended in [21]. To
evaluate the performance of these algorithms relative to the ground truth group-
ings, we use the overlapping form of Normalized Mutual Information (NMI) [11].
Since SLPA and COPRA are non-deterministic, we average the NMI values over
20 runs.

Experiments. We conducted two experiments in our evaluation. The first aims
to assess the performance of the unsupervised algorithms, which provides a base-
line for evaluating the performance of our proposed method. For both SLPA and
PC-SLPA we use the default parameters values T = 100 and r ∈ [0, 1], as sug-
gested in [14]. The second experiment evaluates the performance of PC-SLPA
with increasing numbers of constraints, from 1% to 5% of the total number of
possible pairs in each network. Since the initial pairwise constraints are selected
at random, we repeat the semi-supervised process for 20 runs and average the
resulting NMI scores.

Table 1: The first table lists parameters used for the generation of LFR synthetic
networks. The second table summarizes details of the real-world networks.

Parameter Description Value Parameter Description Value

N Number of nodes 1000-5000 t1 Degree exponent 2
k Average degree 10 t2 Community exponent 1

Kmax Max degree 50 µ Mixing parameter 0.1-0.3
Cmin Min community size 10/20 Om Communities per node 1-8
Cmax Max community size 50/100

Real-world Networks Amazon YouTube DBLP
#Nodes - # Edges - #Communities 7411 - 21214 - 876 6426 - 23226 - 31 7233 - 33045 - 613
Max community size 27 31 38
Min community size 5 5 10
Max communities per node 4 11 8
#Overlapping nodes 1394(18%) 865(13%) 214 (3.3%)
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4.2 Results and Discussion

Synthetic networks. For most of the 32 networks, PC-SLPA achieves con-
sistently higher NMI scores than the standard SLPA algorithm, except where
µ = 0.1. Here PC-SLPA attains lower NMI values than SLPA, until the number
of constraints increases towards 5%. In general, as the percentage of pairwise con-
straints being used increases, the accuracy of PC-SLPA improves significantly.

When evaluating on LFR-generated networks, different factors can affect
algorithm performance, such as the mixing parameters, and the size of both
networks and embedded communities. The larger the value of µ, the poorer the
communities detected algorithms due to the weaker intra-community connectiv-
ity. As we see from Fig.4, the performance of SLPA drops as µ increases from
0.1 to 0.3. However, PC-SLPA shows more stability with higher values of µ. For
instance, in the case of small networks of big communities with µ = 0.3, the
NMI score of the standard SLPA is 0.82 at Om = 2 and drops to 0.50 when
Om increased to 8. In contrast, the PC-SPLA algorithm shows a more moderate
decrease in accuracy as the value of Om increases. As for the size of network,
both algorithms show better performance when the network increases from 1,000
to 5,000 nodes, with PC-SLPA achieving the best performance on the networks
with larger communities.

When comparing PC-SLPA to the baseline algorithms, we observe that CO-
PRA and MOSES show the lowest performance on all synthetic networks. As for
OSLOM, it shows slightly better performance than PC-SLPA for networks with
a low level of community overlap. However, as the number of communities per
node increases, PC-SLPA starts to out-perform all of the baseline algorithms,
indicating that it is effective in highly-overlapping contexts.

Table 2 summarizes the performance of all algorithms as win-loss records.
Each table entry shows the number of wins of an algorithm (on the rows) over
another algorithm (on the columns). To compare two algorithms, we subtract
the sum of wins and losses from the total number of synthetic networks. The last
column reports rank scores based on the total number of “wins” by each algo-
rithm across all synthetic networks. According to the total number of wins, we
rank the highest number as the best algorithm. Then, we order the algorithms
from best to worst. As we can see from Table 2, PC-SLPA with 5% pairwise
constraints is the top-ranked algorithm, and performs better than the compet-
ing benchmark algorithms on 90% of the networks. OSLOM is the next best
alternative, followed by SLPA.

Table 2: Win-loss table of NMI performance for all algorithms on 32 synthetic networks.

Loser Rank-score
OSLOM MOSES COPRA SLPA PC-SLPA Total wins Ranking

Winner

PC-SLPA 22 32 32 29 0 115/128 (90%) 1
OSLOM 0 32 32 22 10 96/128 (75%) 2
SLPA 10 32 32 0 3 77/128 (60%) 3
MOSES 0 0 16 0 0 22/128 (12.5%) 4
COPRA 0 16 0 0 0 10/128 (12.5%) 4
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Fig. 4: Performance of all algorithms on 32 synthetic networks, containing both small
and large communities, with mixing parameter µ ∈ [0.1, 0.3]. NMI values are plotted
against the number of communities per node (Om), with 4 networks in each plot.
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Table 3: NMI scores of all algorithms on three real-world networks.

OSLOM MOSES COPRA SLPA PCSLPA%1 PCSLPA%2 PCSLPA%3 PCSLPA%4 PCSLPA%5

Amazon 0.9668 0.9084 0.96228 0.9568 0.9612 0.9650 0.9678 0.9709 0.9723

YouTube 0.4490 0.4209 0.1907 0.6296 0.6011 0.6130 0.6241 0.6338 0.6439

DBLP 0.8485 0.7707 0.9136 0.8972 0.9059 0.9156 0.9231 0.9278 0.9326

Real-world networks. Next we discuss our experiments on the three real-world
networks. We compare the NMI performance of our proposed semi-supervised
method with increasing numbers of pairwise constraints, relative to the bench-
mark algorithms. For the non-deterministic algorithms, 20 runs were executed
and NMI scores were averaged. From Table 3, we see that PC-SLPA algorithm
achieves high NMI scores (> 0.9) on the Amazon and DBLP networks. However,
PC-SLPA shows moderate performance on YouTube network, which may be due
to the poor separation between the ground truth groups in this network. The
addition of < 4% of constraints does not yield an improvement over the unsu-
pervised approach. The effect of high inter-community overlap is far more pro-
nounced in the cases of the OSLOM, MOSES, and COPRA algorithms. Overall,
PC-SLPA outperforms the four alternative algorithms in most cases on these
networks, with small but consistent increases as the number of provided con-
straints is increased from 1% to 5%. We would expect this trend to continue as
more constraints are added, although it may be impractical to generate larger
numbers of constraints in real-world scenarios.

5 Conclusion

We have proposed a new algorithm, PC-SLPA, for detecting overlapping com-
munities, based on the use of a label propagation strategy that is informed by the
addition of external information encoded as pairwise constraints. We explored
the nuances around the selection of constraints, which are specific to contexts
where the communities in the data naturally overlap. Based on extensive exper-
iments, the results show that overlapping community finding algorithms with
constraints can considerably out-perform their unconstrained counterparts on
both synthetic and real-world networks. As one might expect, their performance
improves with increasing number of pairwise constraints. In general, the results
show the potential of using semi-supervised strategies for finding overlapping
communities. In our future work we will aim to apply ideas from active learning
for selecting informative pairwise constraints, in order to reduce the annotation
burden on the oracle, while maintaining or even improving the effectiveness of
community detection.
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