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Abstract Amodel based clustering procedure for data of mixed type, clustMD,
is developed using a latent variable model. It is proposed that a latent variable,
following a mixture of Gaussian distributions, generates the observed data of
mixed type. The observed data may be any combination of continuous, binary,
ordinal or nominal variables.

clustMD employs a parsimonious covariance structure for the latent vari-
ables, leading to a suite of six clustering models that vary in complexity and
provide an elegant and unified approach to clustering mixed data.

An expectation maximisation (EM) algorithm is used to estimate clustMD;
in the presence of nominal data a Monte Carlo EM algorithm is required. The
clustMD model is illustrated by clustering simulated mixed type data and
prostate cancer patients, on whom mixed data have been recorded.

Keywords Latent variables · Mixture model · Mixed Data · Monte Carlo
EM

1 Introduction

Clustering mixed data has received increasing attention in the literature for
some time. Early work involved the use of mixture models (Everitt, 1988;
Muthén and Shedden, 1999), with the location mixture model (Lawrence and
Krzanowski, 1996; Hunt and Jorgensen, 1999; Willse and Boik, 1999) providing
an alternative approach. The use of copula models for clustering mixed data
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has also received very recent attention (Marbac et al, 2015; Kosmidis and
Karlis, 2015).

Latent factor models have also been employed to model mixed data. Quinn
(2004), Gruhl et al (2013) and Murray et al (2013) use factor analytic models
to analyse mixed data but not in a clustering context. Latent variable mod-
els for clustering categorical or mixed data have been proposed by Cai et al
(2011); Browne and McNicholas (2012); Morlini (2011); Cagnone and Viroli
(2012) and Gollini and Murphy (2013). However none of these can analyze the
combination of continuous, nominal and ordinal variables without transform-
ing the original variables. The mixture of factor analysers model for mixed
data (McParland and Gormley, 2013; McParland et al, 2014a,b) is a finite
mixture model based on a combination of factor models, item response theory
models and ideas from the multinomial probit model, with clustering mixed
data capabilities. While the MFA-MD model can explicitly model the inherent
nature of each variable type directly, it can be computationally expensive.

The proposed clustMD model is a mixture of latent Gaussian distribu-
tions, and provides a parsimonious and computationally efficient approach to
clustering mixed data. The mixture of Gaussian distributions has become a
traditional approach to clustering continuous data and parsimonious versions
of these models were developed by Banfield and Raftery (1993) and Celeux and
Govaert (1995). Fraley and Raftery (2002) provide a detailed overview of such
models which are efficiently implementable through the mclust software (Fra-
ley et al, 2012). A similar parsimony ethos underpins the proposed clustMD
model and a suite of models of varying levels of parsimony are developed.

An expectation maximisation (EM) algorithm (Dempster et al, 1977) is
used for inference. In the presence of nominal data, the expectation step is
intractable so a Monte Carlo EM algorithm is required. The performance of
clustMD is demonstrated by a simulation study and by clustering a group of
prostate cancer patients, on whom variables of mixed type have been recorded.

2 The clustMD model

Mixture models are a very useful clustering tool and much research has been
devoted to their development. Finite mixture models assume the data arise
from a finite number of homogeneous clusters. Detailed explanations of mixture
models may be found in Titterington et al (1985); McLachlan and Peel (2000)
and Frühwirth-Schnatter (2006). The clustMD model employs a mixture of
latent variable models to cluster mixed type data. In brief, the clustMD model
assumes the observed J mixed type variables in each observation vector yi are
a manifestation of an underlying latent continuous vector, zi (for i = 1, . . . , N),
which follows a Gaussian mixture distribution.
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2.1 Modelling continuous data

Under the clustMD model, continuous variables follow a multivariate Gaussian
distribution, i.e. if variable j is continuous, yij = zij ∼ N(µj , σ

2
j ).

2.2 Modelling ordinal data

In the case of an ordinal variable, it is supposed that the observed response,
yij is a categorical manifestation of the latent continuous variable, zij , as is
typical in item response theory models (Johnson and Albert, 1999; Fox, 2010).

For ordinal variable j with Kj levels let γj denote a Kj + 1 vector of
thresholds that partition the real line. The value of the latent zij in relation
to γj determines the observed ordinal response yij . The threshold parameters
are constrained such that −∞ = γj,0 ≤ γj,1 ≤ . . . ≤ γj,Kj = ∞. If the
latent zij is such that γj,k−1 < zij < γj,k then the observed ordinal response,
yij = k. The latent zij follows a Gaussian distribution i.e. zij ∼ N(µj , σ

2
j ).

Thus the probability of observing level k can be expressed as the difference
between two Gaussian cumulative distribution functions (CDF) denoted by Φ:

P(yij = k) = Φ
(

γj,k−µj

σj

)
− Φ

(
γj,k−1−µj

σj

)
The threshold parameters are invariant under translation and their values

are not of primary interest in clustMD. Thus, for reasons of identifiability and
efficiency, γj,k is fixed such that γj,k = Φ−1(δk), where δk is the proportion of
the observed values of variable J which are less than or equal to level k.

A binary variable can be thought of as an ordinal variable with two levels,

denoted 1 and 2. Thus if variable j is binary, then P(yij = 2) = 1−Φ
(

γj,1−µj

σj

)
.

2.3 Modelling nominal data

Nominal variables are more difficult to model since the set of possible re-
sponses is unordered. In this case, a multivariate latent vector is assumed
to underlie the observed nominal variable. For nominal variable j with Kj

possible responses, the underlying continuous vector has Kj − 1 dimensions,

i.e. zij = (z1ij , . . . , z
Kj−1
ij ) ∼ MVNKj−1(µj , Σj), where MVN denotes the

multivariate Gaussian distribution. The observed nominal response yij is a
manifestation of the values of the elements of zij relative to each other and to
a threshold, assumed to be 0. That is,

yij =


1 if max

s
{zsij} < 0;

k if zk−1
ij = max

s
{zsij} and zk−1

ij > 0 for s = 2, . . . ,Kj .

Binary data can be considered as nominal with two unordered responses. This
model for nominal data is equivalent to the proposed ordinal data model in
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such a case. A similar latent variable approach to modelling nominal data is
the mutinomial probit model (Geweke et al, 1994).

2.4 A joint model for mixed data

Let Y denote a data matrix with N rows and J columns. Without loss of
generality, suppose that the continuous variables are in the first C columns, the
ordinal and binary variables are in the following O columns and the nominal
variables are in the final J − (C + O) columns. The latent continuous data
underlying both the ordinal and nominal data are assumed to be Gaussian, as
are any observed continuous data. Thus the joint vector of observed and latent
continuous data is assumed to follow a multivariate Gaussian distribution zi ∼
MVNP (µ, Σ). Since more than one latent dimension is required to model each

nominal variable P = C + O +
∑J

j=C+O+1(Kj − 1). This model provides a
unified way to simultaneously model continuous, ordinal and nominal data.

2.5 A mixture model for mixed data

The joint model for mixed data is embedded in a finite mixture model, facil-
itating the clustering of mixed data. This model, clustMD, is closely related
to the parsimonious mixture of Gaussian distributions (Banfield and Raftery,
1993; Celeux and Govaert, 1995). In clustMD, it is assumed that zi follows a

mixture of G Gaussian distributions i.e. zi ∼
∑G

g=1 πgMVNP (µg, Σg) where
πg is the marginal probability of belonging to cluster g and µg and Σg denote
the mean and covariance for cluster g respectively.

2.6 Decomposing the covariance matrix

Gaussian parsimonious mixture models utilise an eigenvalue decomposition
of the cluster covariance matrix Σg = λgDgAgDg where |Ag| = 1. The λg

parameter controls the cluster volume, Dg is a matrix of eigenvectors of Σg

that controls the orientation of the cluster and Ag is a diagonal matrix of
eigenvalues of Σg that controls the shape of the cluster. The decomposed
covariance is constrained in various ways to produce parsimonious models.

The covariance matrix for the clustMD model is assumed to be diago-
nal, meaning that Dg = I, the identity matrix. This assumption imples that
variables are conditionally independent given their cluster membership. Thus
under clustMD Σg = λgAg. These parameters can then be constrained to
be different or equal across groups and A can also be constrained to be the
identity matrix. This gives rise to a suite of 6 clustMD models with varying
levels of parsimony. The 6 clustMD models and corresponding constraints are
detailed in Table 1.
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# Covariance parameters
Model λ A D No nominal variables Nominal variables

EII C I I 1 1
V II U I I G 2G− 1
EEI C C I 1 + P C +O
V EI U C I G+ P 2G+ C +O − 2
EV I C U I 1 +GP G(P − 2) + C +O − P + 2
V V I U U I G(1 + P ) P (G− 1) +O

Table 1 Covariance matrix structures of varying degrees of parsimony. Parameters are
unconstrained (U), constrained (C) to be equal across groups or equal to the identity (I).

2.6.1 Identifying clustMD in the presence of nominal variables

If no nominal variables are present in the data, then the clustMD model is
identified because the threshold parameters are fixed. However, in the pres-
ence of nominal variables, the model as it stands is not identified. Infinitely
many combinations of the model parameters give rise to the same likelihood.
Constraints must be placed on the parameters relating to nominal variables
in order to obtain consistent parameter estimates. As in Cagnone and Viroli
(2012), the constraint

∑
g πgµgp = 0 for each dimension p corresponding to

a nominal variable is applied across the suite of models, which amounts to
insisting that E(zip) = 0 for p = C +O+1, . . . , P . Further, a separate volume

parameter λ̃g which applies only to the latent dimensions corresponding to
nominal variables is also required. The diagonal elements of Σg corresponding

to these dimensions are λ̃gagp, where agp is the pth diagonal element of Ag.

Different constraints on λ̃g are required in the different clustMD models.

For example, the EII model is identified by fixing λ̃ = 1, meaning that the
diagonal elements of Σ corresponding to nominal variables are simply set to 1.
The V II model is identified by insisting that

∑
g λ̃g = 1. This may be accom-

plished by dividing each λ̃g by
∑

g λ̃g after each iteration of the model fitting

algorithm. To identify the EEI model λ̃ is set to 1, as is ap for p corresponding

to nominal variables. The V EI model is constrained so that
∑

g λ̃g = 1 and
ap = 1 for nominal dimensions p. Thus the nominal portions of the EEI and
V EI models are the same as the EII and V II models respectively.

The EV I model is identified by fixing λ̃ = 1 and constraining agp so that∑
g agp = 1 for nominal dimensions p. This constraint on agp is implemented

by dividing each agp term by
∑

g agp after each iteration of the model fitting

algorithm. Finally the V V I model is identified by constraining λ̃g and agp so

that
∑

g λ̃g = 1 and
∑

g agp = 1 for each nominal dimension p. It is possible to
fit all 6 clustMD models, even in the presence of nominal data. However, there
are, in reality, only 4 models for the nominal portion of the clustMD model.
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3 Fitting the clustMD model

The clustMD model is fitted using an EM algorithm. If nominal data are
present then a Monte Carlo approximation is required for the expectation
step and hence the algorithm is a Monte Carlo EM (MCEM) algorithm.

3.1 Deriving the complete data log likelihood

The categorical part of each observation can be thought of as one of a (possibly

large) number, M , of response patterns. Let yβ
i be a binary vector of length

M indicating which response pattern is observed, i.e. if response pattern m is
observed, write yim = 1; all other entries are 0. Thus, yβ

i ∼ Multinomial(1,q)
where q = (q1, . . . , qM ) and qm =

∫
Ωm

f(zi)dzi. The portion of RP−C that

generates pattern m is denoted Ωm. Let zβi denote the latent continuous vec-
tor corresponding to the observed categorical variables and the superscript β
denote the portions of the model parameters corresponding to these data. A
binary latent variable, ℓi is introduced that indicates the cluster membership
of observation i, i.e. ℓig = 1 if observation i belongs to cluster g; all other

entries are 0. Thus the joint density of zβi , y
β
i and ℓi can be written as

f(zβi ,y
β
i , ℓi) = f(zβi |y

β
i , ℓig = 1)f(yβ

i |ℓig = 1)f(ℓi)

where:

– ℓi ∼ Multinomial(1,π), where π = (π1, . . . , πg)

– yβ
i |ℓig = 1 ∼ Multinomial(1,qg) where qg = (qg1, . . . , qgM )

and qgm =
∫
Ωm

f(zβi |ℓig = 1)dzβi =
∫
Ωm

MVN(zβi |µβ
g , Σ

β
g )dz

β
i

– zβi |y
β
i , ℓig = 1 ∼ MVNT (zβi |µβ

g , Σ
β
g ), a truncated multivariate Gaussian

distribution. The points of truncation are those which satisfy the ordinal
and/or nominal conditions detailed in Sections 2.2 and 2.3 given yβ

i .

Thus,

f(zβi ,y
β
i , ℓi) ∝


G∏

g=1

MVN(zβi |µβ
g , Σ

β
g )∏M

m=1 q
yβ
im

gm

ℓig


{
G∏

g=1

M∏
m=1

[
q
yβ
im

gm

]ℓig} {
G∏

g=1

πℓig
g

}

=
G∏

g=1

[
πgMVN(zβi |µ

β
g , Σ

β
g )
]ℓig

.

Let yα
i = zαi denote the observed continuous variables and the superscript α

denote the portions of the model parameters that apply to continuous vari-
ables. Since Σg is assumed to be diagonal, the complete data likelihood is the
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product of the likelihood of the continuous variables and the likelihood of the
latent variables relating to the observed categorical variables:

Lc =

N∏
i=1

G∏
g=1

[
πgMVN(zαi |µα

g , Σ
α
g )×MVN(zβi |µ

β
g , Σ

β
g )
]ℓig

(1)

⇒ logLc =
N∑
i=1

G∑
g=1

[
ℓig log πg +B − ℓig

2
log |Σg| −

ℓig
2

(
zα

T

i Σα−1

g zαi + zβ
T

i Σβ−1

g zβi

)
+ℓig

(
µαT

Σα−1

g zαi + µβT

Σβ−1

g zβi

)
− ℓig

2

(
µαT

Σα−1

g µα + µβT

Σβ−1

g µβ
)]

where B denotes a constant.

3.1.1 The expectation step

The expectation step (E-step) of the EM algorithm consists of computing
the expectation of the complete log likelihood with respect to the latent data
zβi and the latent cluster labels ℓig. Three expectations E(ℓig|yi,µg, Σg, πg),

E(ℓigzβi |yi,µ
β
g , Σ

β
g , πg) and E(ℓigzβ

T

i zβi |yi,µ
β
g , Σ

β
g , πg) are therefore required.

For the first expectation, since ℓig takes the values 0 or 1, then:

E(ℓig| . . .) =
πgMVN(zαi |µα

g , Σ
α
g )

∫
Ωm

MVN(zβi |µβ
g , Σ

β
g )dz

β
i∑G

g′=1 πg′MVN(zαi |µα
g′ , Σα

g′)
∫
Ωm

MVN(zβi |µ
β
g′ , Σ

β
g′)dz

β
i

= τig (2)

Since the covariance matrix Σβ
g is assumed to be diagonal, the integrals in (2)

can be expressed as a product of probabilities. The probabilities corresponding
to ordinal variables are easily approximated given the threshold parameters.

However, in the presence of nominal variables, calculating the probabil-
ities is more challenging, due to the way in which the latent data generate
a nominal response, detailed in Section 2.3. Thus, for each cluster, a Monte
Carlo approximation of the probability of each possible response is obtained
by simulating a large number of continuous vectors from a multivariate Gaus-
sian distribution with mean µj

g and covariance Σj
g , where µj

g and Σj
g are the

portions of the mean vector and covariance matrix for cluster g, corresponding
to nominal variable j. The probability of each response is approximated by
the proportion of these simulations that generate each response. The Monte
Carlo approximations can then be used to estimate τig above.

Similar to Karlis and Santourian (2009), the second expectation is

E(ℓigzβi |y
β
i ,µ

β
g , Σ

β
g , πg) = P(ℓig = 1|µβ

g , Σ
β
g , πg)E(zβi |ℓig = 1,µβ

g , Σ
β
g , πg) = τigmig

and the third expectation is

E(ℓigzβ
T

i zβi |µ
β
g , Σ

β
g , πg) = P(ℓig = 1|µβ

g , Σ
β
g , πg)E(zβ

T

i zβi |ℓig = 1,µβ
g , Σ

β
g , πg)

= τig
∑
p

E(z2ip|ℓig = 1, . . .) = τig
∑
p

sigp.
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The computation ofmigp and sigp corresponding to ordinal variables is straight-
forward: given the relevant threshold parameters, they are simply the first and
second moments of a truncated Gaussian distribution. In the case of dimen-
sions relating to nominal variables, migp and sigp are also related to the first
and second moments of a truncated multivariate Gaussian, but they are diffi-
cult to calculate given the truncations outlined in Section 2.3. A Monte Carlo
approximation again is used in these cases. Suppose that yij = k for nominal

variable j, then E(zji |yij = k, ℓig = 1,µg, Σg, πg) and E(zj
T

i zji |yij = k, ℓig =
1,µg, Σg, πg) must be calculated. The Monte Carlo samples generated to cal-
culate the probabilities τig for the first expectation can be reused to this end.
For each possible response k and each cluster g the first moment can be approx-
imated by calculating the sample mean of those Monte Carlo samples which
generate response k. The second moment can be approximated by calculating
the inner product of the vectors that generate response k and then calculating
the sample mean of these inner products. The second expectation can then be
approximated by summing the elements of this sample mean vector.

3.1.2 The maximisation step

The maximisation (M-step) of the algorithm maximises the expected value, Q,
of the complete log likelihood based on the current values of the model param-
eters. The M-step in the case of the V V I model is derived below, other model
derivations are provided in the Supplementary Material. The V V I model is the
most general of the 6 clustMD models i.e. Σg = λgAg. The M-step maximises

Q =
∑
g

log πg

∑
i

τig −
C +O

2

∑
g

log λg

∑
i

τig −
P − C −O

2

∑
g

log λ̃g

∑
i

τig

−1

2

∑
g

∑
p

log agp
∑
i

τig −
1

2

∑
g

C∑
p=1

∑
i

z2ipτig

λgagp
− 1

2

∑
g

C+O∑
p=C+1

∑
i

sigpτig
λgagp

−1

2

∑
g

P∑
p=C+O+1

∑
i

sigpτig

λ̃gagp
+

∑
g

C+O∑
p=1

∑
i

µgpz
∗
igpτig

λgagp
+

∑
g

P∑
p=C+O+1

∑
i

µgpz
∗
igpτig

λ̃gagp

−1

2

∑
g

C+O∑
p=1

∑
i

µ2
gpτig

λgagp
− 1

2

∑
g

P∑
p=C+O+1

∑
i

µ2
gpτig

λ̃gagp
+R

where R denotes a constant and z∗ig = (zαi ,mig)
T . Maximising Q with respect

to λg yields

λ̂g =

∑C
p=1

∑
i

z2
ipτig
agp

+
∑C+O

p=C+1

∑
i
sigpτig
agp

−
∑C+O

p=1
µgp

agp

[
2
∑

i z
∗
igpτig − µgp

∑
i τig

]
(C +O)

∑
i τig

and, if nominal variables are present, maximising Q with respect to λ̃g yields

ˆ̃
λg =

∑P
p=C+O+1

∑
i
sigpτig
agp

− 2
∑P

p=C+O+1
µgp

agp

∑
i z

∗
igpτig +

∑P
p=C+O+1

µ2
gp

agp

∑
i τig

(P − C −O)
∑

i τig
.
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Maximising Q with respect to agp yields

âgp =
ζgp − 2µgp

∑
i z

∗
igpτig + µ2

gp

∑
i τig

λgξg
∑

i τig

where λg = λ̃g if p > (C + O), ζgp =
∑

i z
2
ipτig if p ≤ C and ζgp =

∑
i sigpτig

if p > C, ξg = (
∏C+O

p=1 agp)
1

C+O if p ≤ C +O and ξg = 1 if p > C +O.
The (Monte Carlo) E and M steps are iterated until convergence is reached.

Convergence is guaranteed even though a Monte Carlo approximation is used.
However, the monotone increase in the likelihood at each iteration, which
a standard EM algorithm guarantees, does not apply here. The example of
Wei and Tanner (1990) is followed and the algorithm is terminated when a
plot of the parameter estimates against the iteration number show that the
process has stabilised. For more detail on convergence and the Monte Carlo
EM algorithm see McLachlan and Krishnan (2008).

The algorithm is initialised by obtaining an initial clustering and estimating
model parameters based on that clustering. To avoid local minima a number of
different intitialisations are used; namely K means, hierarchical and random
clustering. The sensitivity of the EM algorithm to initialising values is a known
problem. Recent work on this issue includes that of O’Hagan et al (2012).
However, for the data sets analysed in this paper, the (MC)EM algorithm has
not displayed particular sensitivity.

3.2 Model Selection

The best fitting covariance structure and number of components, is selected
using an approximation of the Bayesian Information Criterion (BIC) (Schwarz,
1978; Kass and Raftery, 1995). The BIC cannot be evaluated for clustMD
models since the observed likelihood relies on the calculation of intractable
integrals. However, the observed likelihood may be estimated as follows. The
observed data vector yi = (yα

i ,y
β
i ) where yα

i = zαi ∼
∑G

g=1 πgMVN(µα
g , Σ

α
g )

and yβ
i ∼ Multinomial(1,q). Treating these random variables as independent,

the joint density can be approximated as the product of their marginals:

f(yi) ≈

[
G∑

g=1

πgMVN(zαi |µα
g , Σ

α
g )

][
M∏

m=1

q
yβ
im

m

]
(3)

The first term in (3) is easily evaluated but the second term requires the
probability of the observed categorical response pattern for observation i. i.e.

qm =

∫
Ωm

∑
g

πgMVN(zβi |µ
β
g , Σ

β
g )dz

β
i =

∑
g

πg

∫
Ωm

MVN(zβi |µ
β
g , Σ

β
g )dz

β
i

=
∑
g

πg

 O∏
j=C+1

∫
Ωmj

N(zij |µgj , σ
2
gj)dzij

 J∏
j=C+O+1

∫
Ωmj

MVN(zji |µgj , Σgj)dz
j
i

(4)
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The products in (4) consist of probabilities which were estimated in order to
calculate τig during the model fitting process. The products in the first term
in (4) are easily obtained from a normal distribution while the probabilities
in the second are obtained by the Monte Carlo approximation described in
Section 3.1.1. It should be noted that qm need only be estimated for the
observed response patterns and not all M possible response patterns. Thus
the observed likelihood is approximated by:

L̂ =
N∏
i=1

[
G∑

g=1

πgMVN(zαi |µg, Σg)

][
M∏

m=1

q̂
yβ
im

m

]

The approximated BIC is then B̂IC = 2L̂−ν log(N) where ν is the number of
free parameters in the model. This approximation has been found to perform
well, as illustrated through the simulation study detailed in Section 4.1.

4 Applications of the clustMD model

The clustMD model was applied to simulated data and to a group of prostate
cancer patients on whom mixed data have been recorded. Both contain con-
tinuous, ordinal and nominal variables. An application to another mixed data
set is detailed in the Supplementary Material.

4.1 Simulation Study

One hundred data sets consisting of 800 observations of 10 variables was gen-
erated from a 2-cluster V II model. Four of the variables were continuous, 3
were ordinal (with 2, 4 and 3 levels) and 3 were nominal (with 3, 3, and 4
levels). The categorical variables were obtained by transforming continuous
values into categorical values in the manner described in Sections 2.2 and 2.3.

All 6 clustMD models were fitted to each data set with G = 1, . . . , 4. Each
model was fitted using an MCEM algorithm with 1500 iterations. This was
more than enough to reach convergence which was assessed as outlined in
Section 3.1.2. Examples of plots used to assess convegence are give in the Sup-
plementary Material. To fit all 24 models in parallel took approximately 4.75
hours per data set. The algorithm was seeded with different initial partitions
as outlined in Section 3.1.2 and there were very few differences in the results
obtained from each of these initialisations.

The approximated BIC was evaluated for each of the 24 models fitted
on each data set and the VII model with 2 components was chosen 96% of
the time. The median approximated BIC for each model and each value of
G is plotted in Figure 1. If the true cluster labels are compared to those
identified by the clustMD model, it can be seen that the model performs very
well. The mean adjusted Rand index (based on the optimal model using the
approximated BIC) across the 100 data sets is 0.84.
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Fig. 1 Line plot of the estimated BIC values for each of the fitted models for the simulated
data. The criterion was maximised by the V II model with two clusters.

Variable Type Variable Type

Age C Index of tumour stage and histolic grade C
Weight C Serum prostatic acid phosphatase C
Systolic blood pressure C Performance rating O (4)
Diastolic blood pressure C Cardiovascular disease history O (2)
Serum haemoglobin C Bone metastasis O (2)
Size of primary tumour C Electrocardiogram code N (3)

Table 2 Variables analysed in the prostate cancer data set. The type of variable is denoted
by a letter: continuous (C), ordinal (O) and nominal (N). The number in parentheses after
the categorical variables indicates the number of possible responses for that variable.

If the above experiment is repeated, but where the data are generated from
a 2-cluster model with non-diagonal covariance matrices, the approximated
BIC tends to favour models with a larger number of components. These extra
components allow the model to match the shape of the clusters that cannot
be accommodated using diagonal models.

4.2 Prostate Cancer Data

This data set was analysed by Byar and Green (1980) and subsequently by
Hunt and Jorgensen (1999). The data may be found in Andrews and Herzberg
(1985). Twelve mixed type measurements are available for 475 prostate cancer
patients who were diagnosed as having either stage 3 or 4 prostate cancer. Of
the variables, 8 are continuous, 3 are ordinal and 1 is nominal. The variables
analysed are presented in Table 2. The number of categories in the nominal
‘electrocardiogram’ variable was reduced to 3 by combining categories since
the Monte Carlo approximation can be inefficient when there is a small number
of observations in a particular category for a particular cluster. Some other
variables were recorded, such as the post trial survival status of the patients
and the cause of death of those patients who died over the course of the trial.
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(a) Line plot of the B̂IC values for each
of the fitted models for the prostate can-
cer data. Best model is EV I with G = 3.
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Fig. 2 Line plot of B̂IC values and plot of estimated group mean parameters.

The suite of 6 clustMD models were fitted to the set of prostate cancer pa-
tients with the number of clusters ranging from 1 to 4. Fitting these 24 models
in parallel using a MCEM algorithm with 3000 iterations took approximately
21 hours. No effort has been made to optimise the code and 3000 iterations
are more than was required to reach convergence for all models. A line plot
of the approximated BIC values is presented in Figure 2(a). The model which
maximises this criterion is a 3 cluster model, with the EV I covariance struc-
ture.

Hunt and Jorgensen (1999) sought to identify the cancer stage and only
considered 2 cluster models. It is interesting that a 3 cluster model is chosen
here. A cross tabulation of the cluster labels versus the cancer stage diagnosis
is given in Table 3. It seems reasonable to expect clusters 1 and 3 to be
similar given that both clusters consist primarily of stage 3 patients. However,
comparing the mean vectors for these clusters (Figure 2(b)), it can be seen
that patients in cluster 3 are on average heavier and have higher levels of blood
pressure. They are more likely to have a history of cardiovascular disease and
their electrocardiogram score is more likely to indicate a serious anomaly. This
suggests that a cardiovascular health issue differentiates patients in cluster 3
from those in cluster 1. Indeed, by examining the post trial survival status it
can be seen that 21% of cluster 3 patients are alive at the end of the trial, only
7% died of prostatic cancer but 51% died from heart or vascular disease or a
cerebrovascular accident (stroke). The remaining 21% died from other causes.

Figure 2(b) also shows that patients in cluster 2 have, on average, larger
tumours and higher levels of serum prostatic acid phosphatase than patients in
clusters 1 and 3. They are also more likely to have bone metastases. Analysing
the survival status of clusters 1 and 2 it can be seen that 49% of patients in
cluster 2 died from prostatic cancer (as compared to 10% in cluster 1), 21%
survived until the end of the trial (37% in cluster 1) and 30% died from other
causes (57% in cluster 1).
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Stage 3 Stage 4

Cluster 1 207 14
Cluster 2 21 175
Cluster 3 45 13

Table 3 Cross tabulation of estimated cluster labels versus the diagnosed prostate cancer
stage. The adjusted Rand index is 0.49.

5 Discussion

The clustMD model presented here provides a suite of parsimonious mixture
models for clustering mixed type data. The latent variable framework provides
an elegant unifying structure for clustering this type of data.

Possible future research directions are plentiful. The most obvious defi-
ciency of the proposed clustMD model is the local independence assumption.
It would be very beneficial to allow for full covariance matrices that can model
dependencies between mixed type variables. An intermediate step to achieving
this goal is to consider a block diagonal covariance matrix which would allow
for dependencies between variables of the same type. The associated eigenvalue
decomposition of such a covariance matrix would then need to be considered.

The Monte Carlo approximation used in the E-step of the model fitting
algorithm is a simple and effective solution but it is not without issues. If the
probability of observing a particular response on a nominal variable is very
small for a particular cluster then a large number of Monte Carlo samples may
be required to observe a response in this category. This can slow the model
fitting algorithm or even cause instability. A more efficient way to approximate
the intractable integrals could improve the model fitting efficiency.

Unless a very large number of Monte Carlo simulations are required for
the E-step, due to a sparsely observed nominal variable, the model fitting
algorithm is very computationally efficient. Indeed, if no nominal variables
are present each model is fitted in a matter of seconds. The suite of clustMD
models are available through the R package clustMD (R Core Team, 2013).

Finally, the mixture model proposed here is assumed to consist of Gaus-
sian distributions but this need not be the case. Mixtures of other distributions
could be used instead. Heavier tailed distributions such at the t distribution
or the normal inverse Gaussian distribution may allow for more extreme ob-
servations in both the continuous and categorical variables. This extension
could potentially draw on the work of McLachlan and Peel (1998); Karlis and
Santourian (2009) and O’Hagan (2012).
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