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Abstract 21 

Wearable accelerometers can be used to quantify movement during swimming, enabling 22 

objective performance analysis. This study examined arm acceleration during front crawl 23 

swimming, and investigated how accelerometer-derived features change with lap times. 24 

Thirteen participants swam eight 50m laps using front crawl with a tri-axial accelerometer 25 

attached to each upper arm. Data were segmented into individual laps; lap times estimated and 26 

individual strokes extracted. Stroke times, root mean squared (RMS) acceleration, RMS jerk 27 

and spectral edge frequencies (SEF) were calculated for each stroke. Movement symmetry was 28 

assessed as the ratio of the minimum to maximum feature value for left and right arms. A 29 

regularized multivariate regression model was developed to estimate lap time using a subset of 30 

the accelerometer-derived features. Mean lap time was 56.99±11.99s. Fifteen of the 42 derived 31 

features were significantly correlated with lap time. The regression model included 5 features 32 

(stroke count, mean SEF of the X and Z axes, stroke count symmetry, and the coefficient of 33 

variation of stroke time symmetry) and estimated 50m lap time with a correlation coefficient of 34 

0.86, and a cross-validated RMS error of 6.38s. The accelerometer-derived features and 35 

developed regression model may provide a useful tool to quantitatively evaluate swimming 36 

performance. 37 

Introduction 38 

Wearable inertial sensors allow for unobtrusive, low cost and objective analysis of human 39 

movement in any environment. This is particularly useful when comparing movements over 40 

time, such as a prescribed clinical test [1-3], or as a sports training tool [4, 5], where subtle 41 

changes in movement patterns may not be obvious to the human eye. In swimming, waterproof 42 

wearable accelerometers facilitate quantitative assessment of swimming technique, within a 43 

training session and between different training sessions.  44 

Previous studies have reported methods to distinguish stroke types, and to estimate standard 45 

training measures such as stroke count, stroke rate, number of laps, swimming duration and 46 

distance [6-9]. Sensor location determines what measures may be extracted from the recorded 47 

data. Most research in this field has used accelerometers on the lower back, due to lower 48 

variation of axes orientation during swimming compared to sensor worn on the limbs. Lower 49 

back mounted accelerometers have been used to examine stroke rate and duration [6], to 50 

identify swimming strokes and turns, count strokes and estimate swimming intensity [11], and 51 

to investigate symmetry of stroke times [12, 13]. Wristmounted accelerometers have previously 52 

been used to examine stroke phase characteristics [10]. Sensor placement on the arms may 53 

enable detailed and accurate assessment of arm movement during each swimming stroke.  54 
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Front crawl swimming velocity has previously been estimated using accelerometer data 55 

recorded at the sacrum [7, 14, 15]. Dadashi, et al. [15] proposed a method for drift-free 56 

integration of forward acceleration to estimate swimming velocity, and reported RMS error in 57 

instantaneous velocity of 11.3 cm/s, and a Spearman’s correlation coefficient of 0.94. Dadashi, 58 

et al. [16] later presented an updated method, and reported a swimming velocity root mean 59 

square (RMS) error of 9.0 cm/s and high linear correlation compared to a commercial tethered 60 

reference system. Stamm, et al. [17] estimated instantaneous swimming velocity by integrating 61 

total acceleration and using a correction based on recorded lap times and pool length, and 62 

reported good agreement compared with a tethered velocity meter. However, armmounted 63 

accelerometers have not yet been used to estimate swimming times or velocities.  64 

The aim of this study was to quantitatively examine arm movement during front crawl 65 

swimming. To quantify changes in swimming technique with lap times, a range of 66 

accelerometer-derived features were examined for each stroke. The relationship between lap 67 

times and each feature was examined. Regularized multivariate linear regression was then used 68 

to estimate lap time.   69 
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Methods 70 

A. Participants  71 

Thirteen healthy subjects (7 male, 6 female; aged: 26.38±9.53 years; height: 1.76±0.09 m; BMI: 72 

22.34±2.42 kg/m2 ) gave their informed consent and participated in this study. Ethical approval 73 

was obtained from University College Dublin. Four participants (1 male, 3 female; aged: 74 

23.50±0.58 years; height: 1.73±0.11 m; BMI: 21.20±2.32 kg/m2 ) had previously swam at a 75 

competitive level. All of these participants reported that they currently swim once monthly. The 76 

remaining nine participants (6 male, 3 female; aged: 27.67±11.40 years; height: 1.77±0.08 m; 77 

BMI: 22.84±2.42 kg/m2 ) had always been purely recreational swimmers. Six of these 78 

participants reported that they currently swam less than once per month, one participant swam 79 

once per month, and two participants reported that they swam twice per week. 80 

B. Protocol  81 

A waterproof, wearable sensor (BiostampRC, MC10 Inc., Fig. 1) was attached to the left and 82 

right upper arms (on the belly of the biceps brachii muscles) of each subject, secured to the skin 83 

using double sided adhesive stickers. Additional taping was used to ensure the sensors stayed in 84 

place during the protocol. The sensors were programmed to record triaxial accelerometer data 85 

sampled at 31.25 Hz (±4g).  86 

The flexible sensor measured 6.6 cm in length, 3.4 cm in width and 0.45 cm in height. The X 87 

axis of the sensor was positioned along the humeral line; the Y axis was then perpendicular to 88 

the X axis, aligned with the medial-lateral anatomical axis, and the Z axis was perpendicular to 89 

both the X and the Y axes, Fig. 1.  90 

After performing their usual warm up, participants were asked to complete eight laps (total: 400 91 

m) of an indoor 50 m pool using front crawl stroke. Each participant was asked to perform the 92 

first seven laps at their normal pace, followed by one final lap at their maximum pace. Rest 93 

periods were taken between lengths if desired. 94 

C. Data analysis  95 

Data for each subject were captured as one recording which included all 8 laps and rest periods. 96 

Data were stored locally on the sensor. After the test they were downloaded and exported to 97 

MATLAB (The MathWorks, Inc, Natick, MA) for offline analysis.  98 

1) Lap detection  99 
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A lap was defined here as one length of the swimming pool, 50 m in this case. To detect turns 100 

between laps with no rest periods, a Butterworth low pass filter with cut off frequency 0.2 Hz 101 

was applied to the Y axis acceleration signal, and the peaks corresponding to turns were 102 

detected. Similar methods were previously reported [9].  103 

To detect start and end points of laps which preceded or followed by a rest period, an algorithm 104 

based on peak to peak amplitude was developed. A subject-specific threshold was applied to the 105 

peak to peak amplitude of the X axis acceleration, with limits applied to reflect the minimum 106 

and maximum plausible lap times.  107 

Lap start and end times were verified by visual inspection of the data. Lap times were then 108 

calculated as the time between the start and end points. These values were then used as 109 

reference measures for further analysis.  110 

2) Stroke identification  111 

A stroke was defined here as a complete cycle for one arm, with data for each arm examined 112 

individually. For each lap, individual strokes were extracted from the X axis acceleration using 113 

a peak detection algorithm. The minimum acceleration in each stroke was detected, which may 114 

correspond to the point when the arm entered the water [10]. Subject-specific thresholds for 115 

peak amplitude, prominence, and distance between consecutive peaks were applied.  116 

3) Feature extraction  117 

In total, 42 accelerometer-derived features were extracted from the data for each stroke. These 118 

features are as follows:  119 

Standard features (3): Stroke count was calculated as the sum of all strokes for the left and 120 

right arms. The mean and coefficient of variation (CV) of stroke time were calculated for each 121 

lap as the mean of results for all left and right arm strokes.  122 

Detailed features (18): For each stroke, root mean squared (RMS) acceleration, RMS jerk and 123 

spectral edge frequency (95% power frequency, SEF) [1] were calculated for each axis. These 124 

features were selected to provide quantitative temporal- and frequency-based measures of 125 

movement smoothness. For each lap, the mean and CV of each feature across all strokes for 126 

both arms was computed.  127 

Symmetry features (21): For all standard and detailed features, the lower value between the 128 

left and right arms, was divided by the higher value. A resultant value of one would therefore 129 

indicate a perfectly symmetrical feature, with increasing asymmetry for lower values.  130 
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4) Statistical analysis  131 

One way analysis of variance was used to assess differences in lap times between male and 132 

female swimmers, and between previously competitive swimmers and purely recreational 133 

swimmers.  134 

The correlation of lap time and each individual accelerometer-derived feature was then 135 

examined. Additionally, regularized linear least squares regression was used to estimate 50 m 136 

lap time using a combination of accelerometer-derived features. Lasso regularization was used 137 

to reduce the number of features included in the model [18]. The regularization strength 138 

(lambda) was selected using ten-fold cross-validation, balancing low cross-validated mean 139 

squared error with predictor variable sparsity. To assess model performance, cross-validated 140 

RMS error (RMSE) and mean absolute error (MAE) were calculated.  141 

Pearson’s correlation coefficient (R), the lower and upper limits of the 95% confidence interval, 142 

and the significance level (p value) were reported for each individual feature correlation, and the 143 

correlation of the multivariate regression model. P-values less than 0.001 were considered 144 

statistically significant [19]. 145 

Results  146 

Left and right arm tri-axial accelerometer data recorded during all 104 laps were included in the 147 

final analysis. The mean recorded 50 m lap time was 56.99 s with a standard deviation (SD) of 148 

11.99 s, ranging from 38.00 s to 81.00 s. These correspond to swimming velocities in the range 149 

0.62- 1.32 m/s. Lap times did not significantly vary between male and female swimmers 150 

(p=0.50). Previously competitive swimmers were significantly faster than the remainder of the 151 

cohort (p<0.001).  152 

Sample stroke data for a representative subject illustrating a distinctive acceleration pattern in 153 

each axial direction is presented in Fig. 2.  154 

Fifteen features were significantly correlated with lap time, Table 1, with the mean and SD for 155 

the cohort. Correlation coefficients, their lower and upper 95% confidence intervals, and p 156 

values are also reported. Results of the regularized linear least squares regression model are 157 

presented in Fig. 3, and the model features are indicated in Table 1. Lasso regularization 158 

reduced the features included in the final model to 5, Table 1. The final model was significantly 159 

correlated with reference lap time (R = 0.86 (0.80, 0.91), p<0.001. The cross-validated RMS 160 

error was 6.38 s and the MAE was 4.75 s. 161 
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Discussion 162 

In this study, tri-axial accelerometer data were used to quantitatively examine arm movement 163 

during front crawl swimming. In particular, a comprehensive range of features were examined, 164 

their correlations with swimming lap times were investigated, and a regularized regression 165 

model was developed to estimate 50 m lap times using a subset of the derived features. 166 

Superimposed stroke data for a representative lap are presented in Fig. 2, showing a distinctive 167 

acceleration pattern for each arm and each axis. Similar results have been reported previously 168 

by studies which examined the acceleration profile during front crawl swimming [10, 12]. 169 

Fifteen, of the forty-two accelerometer-derived features examined, were significantly correlated 170 

with lap time. Strong significant positive correlations with lap time were observed for stroke 171 

count and mean stroke time. These findings indicate that, in this cohort, lower stroke counts and 172 

faster stroke rates resulted in faster lap times, consistent with the literature [7, 8]. Additionally, 173 

significant negative correlations with lap time were observed for mean RMS acceleration in all 174 

axial directions, mean jerk in all axial directions, and mean SEF for the X and Z axes. This 175 

suggests that higher accelerations, increased rate of change of acceleration and movements with 176 

higher frequency content are features of faster swimming. Previous studies have used similar 177 

detailed accelerometer-derived features to quantify gait, balance and turning, and have applied 178 

these features to classify movement disorders [1, 2]. However, to our knowledge, these features 179 

have not previously been examined in relation to swimming. 180 

Two symmetry measures (both based on RMS acceleration along the Y axis) were also found to 181 

be significantly correlated with 50 m lap time, indicating that these features may provide a 182 

useful method to measure arm movement symmetry during front crawl swimming. Two 183 

additional symmetry features (stroke count symmetry, and variation in stroke time symmetry) 184 

were included in the regularized regression model, selected by lasso regularization, despite not 185 

being significantly correlated with lap time, see Table 1. Their inclusion indicates that, when 186 

combined with the other model features, they add value to the ability of the model to estimate 187 

lap time.  188 

Previous studies have estimated instantaneous swimming velocity using integration-based 189 

methods and sacrum mounted sensors, reporting Spearman’s Rho of 0.94 [16]. The model 190 

presented here estimated 50 m lap time with a Pearson’s correlation coefficient (R) of 0.86. 191 

However, by using upper arm acceleration and a range of descriptive features this method 192 

provides insights into arm movement patterns and the underlying reasons for changes in 193 

swimming velocity.  194 
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The final regression model included stroke count, mean stroke time, and mean SEF Z. The 195 

associations between stroke count and swimming speed, and stroke time and swimming speed 196 

are well established. However, frequencybased measures of movement have not previously been 197 

shown to vary with swimming speed. Identifying accelerometer-derived features which are 198 

strongly correlated with swimming velocity may help to develop a useful training tool, allowing 199 

training analysis to move beyond simple measures such as stroke number, stroke rate and stroke 200 

time. Using such features, arm acceleration patterns could be objectively analyzed during a 201 

training session, and compared between training sessions.  202 

A limitation of the current study is the low sampling rate used, 31.25 Hz. This was a constraint 203 

of the sensors which were simultaneously collecting electromyography data at 500 Hz. 204 

Sampling above 100 Hz would be recommended, and may identify changes in features 205 

associated with higher frequency components of the acceleration signals. This study did not 206 

account for breathing patterns, which may have influenced symmetry measures [13, 20].  207 

This study did not control for the duration of rest periods between laps, or the method used to 208 

turn. Methods to detect events at the pool wall using low pass filtering of wrist worn 209 

accelerometer data have been reported previously [9], and a similar approach to detect turns 210 

with no rest periods was implemented here. Classification methods have also been used to 211 

detect turns using wrist or upper-back worn accelerometer data [11]. The method proposed here 212 

detects swimming laps with an undefined rest period between laps, and would be suitable to 213 

monitor unstructured protocols.  214 

The accelerometer-derived features and regularized linear regression model developed in this 215 

study to estimate lap times based on three of these features. The reported method has potential 216 

for use in swimming performance analysis by providing insights into subtle changes in 217 

movement at different swimming speeds, thereby providing a novel method to track 218 

improvements in swimming technique. 219 

  220 
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Figures 276 

 277 

Figure 1: Left: Sensor placement, Right: Sensor axes. 278 

 279 

 280 

Figure 2: Superimposed raw data for each stroke are presented from one lap performed by a 281 

previously competitive female swimmer (age = 23 years; height = 1.81 m; BMI = 20.3 kg/m2 ). 282 

283 
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 284 

Figure 3: Reference time to complete 50 m swim versus the time estimated by the regression 285 

model. 286 

 287 

Tables 288 

TABLE 1. THE MEAN AND SD OF FEATURES WHICH WERE SIGNIFICANTLY 289 

CORRELATED WITH LAP TIME, ALONG WITH ADDITIONAL FEATURES INCLUDED 290 

IN THE REGRESSION MODEL (*). PEARSON’S CORRELATION COEFFICIENT (R), 291 

THE LOWER AND UPPER BOUNDS OF THE 95% CONFIDENCE INTERVAL, AND THE 292 

SIGNIFICANCE LEVEL (P) ARE PRESENTED 293 
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