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Towards fully instrumented and automated assessment of
motor function tests

Valeria De Luca*1, Amir Muaremi1, Oonagh M. Giggins2, Lorcan Walsh3 and Ieuan Clay1

Abstract— Quantitative assessment of mobility and motor
function is critical to our understanding and treatment of
musculoskeletal and neurological diseases. Instrumented tests
augment traditional approaches by moving from a single, often
subjective, performance metric to multiple objective measures.
In this study, we investigated ways of automatically capturing
motor performance by leveraging data from a network of six
wearable sensors worn at five different locations by 17 healthy
volunteers while performing a battery of motor function tests.
We developed a framework to segment motor tasks, e.g. walking
and standing up, from 3D acceleration and angular velocity
data, and extracted features. Results were compared to clinical
test scores and manual annotations of the data. For the best
performing sensors, we achieved a rate of correct classification
of 82 to 100% and mean temporal accuracy of 0.1 to 0.6 s. We
provided guidelines on sensor placement to maximize accuracy
of the motor assessment, and a better interpretation of the data
using our unsupervised subject-specific approach.

Index Terms— Mobility, physical activity, activity monitoring,
wearables.

I. INTRODUCTION

Mobility limitations and declining motor function are
associated with reduced independence and disability [17],
longer hospital stays [2], nursing home placement [18], and
mortality [17]. Measuring physical activity, and particularly
mobility, allows clinicians to understand a patient’s func-
tional ability in order to decide upon treatment or prognosis.
Clinical practice for assessing motor function has tradition-
ally relied on subjective questionnaires, non-granular sur-
veys, non-quantitative activity diaries or performance testing
with observational scoring. More precise and fine grained
instrumented measures are poised to enable better charac-
terization of motor function. Wearable inertial measurement
unit (IMU) sensors offer an objective, quantitative, portable,
flexible and moderately-priced alternative to expensive and
large laboratory systems such as walkway (e.g. GAITRite,
CIR Systems, Inc., USA [6]) or vision-based systems (e.g.
Vicon motion capture system, Vicon Industries, Inc., UK
[21]). Significant work has been undertaken to instrument
standard physical tests (gait [14], [16], timed up and go
(TUG) [15], balance and sit to stand (STS) [8]) using
specifically positioned sensors and associated algorithms to
quantify motor function through summary statistics or quan-
tifying performance in test subcomponents. Such approaches
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represent an entry point into deploying similar instrumented
assessments outside of the clinic, in the patients everyday
life, further increasing our ability to characterize how disease
state may fluctuate longitudinally or respond to therapy.

Several reviews have investigated the validity and reli-
ability of physical activity sensors across various condi-
tions including neurological disorders [12], chronic disease
[20], chronic obstructive pulmonary disease [5], chronic
lung disease [7], stroke [11] and Parkinson’s disease [13].
Broadly, these reviews found heterogenous study designs and
methods, inconsistent outcome measures and technologies
(e.g. sensor types, configuration, placement and orientation),
custom algorithms and inconsistent reporting methods, un-
dermining the optimal selection, configuration and placement
of sensors for a given instrumented physical activity test.

In this work, we provide guidelines on sensor placement to
maximize the accuracy and robustness of motor assessment,
based on data simultaneously acquired from six IMU sensors
worn at five different anatomical positions while performing
standardized motor function tests. We propose methods to
segment subtasks in each test, i.e. walking, turning, standing
up and sitting down, and derive clinically-relevant metrics
for motor function assessment. Our approach is unsupervised
and automatically adapts to each subject in order to be easily
extended to different patient cohorts. We will support further
development of research in the field by making our data
and code publicly available at https://github.com/
Novartis.

II. DATA

Twenty healthy subjects (11 male, 9 female, 28.6 ± 4.3
years) were recruited by the University College Dublin,
Ireland. Ethical approval was granted by the Human Re-
search and Ethics Committee, University College Dublin and
written consent given by all participants. Each participant
was asked to wear six IMU sensors:

• One actibelt (Trium Analysis Online GmbH, Germany)
centered on the waist (act) (tri-axial accelerometer of
range ±6 g and sample rate of 100 Hz)

• One BioStampRC (MC10, Inc., USA) on the chest
(bst) (tri-axial accelerometer of range ±4 g, tri-axial
gyroscope of ±2000 deg/s and sample rate of 125 Hz)

• Four Shimmer3 (Shimmer, Ireland), each on the waist
(shA), lower back (shP ), left (shL) and right ankle
(shR) (tri-axial low-noise accelerometer of range ±2
g, wide-range accelerometer of range ±8 g and tri-axial
gyroscope of ±2000 deg/s; sample rate of 102.4 Hz)



Under supervision of a clinician and with short breaks in
between each test, the participants performed a sequence of
standardized physical assessment tests, including:

• Short Physical Performance Battery (SPPB) [10] gait
speed, chair stand and repeated chair stand tests (5 times
sit to stand; 5STS)

• Timed Up and Go (TUG) test [3]
• Two minute walking test (2MWT)

Data from three of the 20 subjects were discarded in this
work, due to partial missing data (e.g. data from a subset of
sensors was not recorded).

An Android tablet application time-synced with the
actibelt was used to define start and end times of each test
and synced to the other sensor data post-data collection, see
Sec. III-A. Standard clinical practice measures of time and
distance were also captured using a stopwatch and measuring
tape. Before fitting the subject with IMUs for each data
acquisition, the clinician simultaneously shook all the IMUs.

III. METHOD

For each sensor s ∈ {act; bst; shA; shP ; shL; shR},
subject i ∈ [1, . . . , 17] and time ti,s ∈ [t0,i,s, . . . , Ti,s],
let us denote 3D accelerations as ai,s(ti,s) =
[ax,i,s(ti,s); ay,i,s(ti,s); az,i,s(ti,s)] ∈ R3 and angular veloci-
ties as gi,s(ti,s) = [gx,i,s(ti,s); gy,i,s(ti,s); gz,i,s(ti,s)] ∈ R3,
with Ti,s being the duration of each dataset.

A. Pre-processing

Data was temporally aligned in order to account for
varying sampling rate and internal clocks across the sen-
sors using the following steps. Firstly, accelerations ai,s

and angular velocities gi,s were linearly resampled to
100 Hz. For simplicity, we will use the same notation
for ai,s(ti,s) and gi,s(ti,s) after resampling. Then, at
each time ts, we computed the acceleration magnitude
as āi,s(ti,s) =

√
a2x,i,s(ti,s) + a2y,i,s(ti,s) + a2z,i,s(ti,s). For

each i, we manually selected start and end times of shak-
ing patterns prior to the assessments from āi,act, tstarti,act

and tendi,act, respectively. Alignment was obtained by finding
τi,s ∈ {ti,s} that maximized the correlation coefficient be-
tween the reference actibelt window {āi,act(t∗i )}, with t∗i ∈
[tstarti,act , . . . , t

end
i,act], and a rolling window of the remaining

sensors’ āi,s of step 1 and same length. Finally, we used
annotations of start and end time of each test captured from
the actibelt system to exclude data acquired outside the tests.

B. Euler-Angles calculation

We derived another set of data channels corresponding to
the three Euler angles; roll (φ), pitch (θ) and yaw (ψ), which
describe the orientation of the inertial sensor: ri,s(ti) =
[φi,s(ti); θi,s(ti);ψi,s(ti)] ∈ R3. We based our method on
the open source code of the OpenShoe project available at
http://www.openshoe.org. Starting from an arbitrary position
and heading ψ = 0, the initial φ and θ are calculated from
the acceleration data of the first samples where we assume
that the sensor is stationary (not moving). Then, for each
ti, ai,s(ti) and gi,s(ti) are read and the inertial navigation

Fig. 1: Example of data channels CTUG
17,shA of TUG test from

subject 17 and Shimmer3 sensor worn on the waist (shA).
Vertical lines indicate the different tasks (standing, walking,
turning, walking back and turning to sit).

system: (i) estimates orientation through gyro integration; (ii)
transforms accelerations from sensor frame into navigation
frame; (iii) removes gravity to get linear acceleration and
integrates it to get the velocity; and (iv) integrates velocity
to get the position. We addressed accumulation of position
estimate error due to double integration by applying the
Kalman filter, which is based on the assumption that during
the stance phase the foot is not moving and hence the sensor
velocity is zero [9]. We declare a time segment to be a stance
when the angular rate energy falls below a threshold [19].
An example of the nine data channels Ci,s = {ci,s(ti)} =
{ai,s(ti); gi,s(ti); ri,g(ti)} of a TUG test is shown in Fig. 1.

C. Unsupervised classification of subtasks

The aim of the proposed method is to segment sub-
tasks performed during motor function assessment tests, i.e.
walking, turning, standing up and sitting down. We used
k-means clustering [4] on IMU data Ci,s to classify the
aforementioned subtasks implementing two independently
trained two-class k-means clustering representations. 2MWT
data was used to train one k-means clustering representation
for walking and turning, while STS data to train the second
representation for sitting and standing. These two models
were then tested on TUG data for classifying the four tasks
of walking, turning, sitting and standing. Details of our
approach are described below.

2MWT: For each subject i and sensor s independently, we
used two-class k-means clustering to classify each 2MWT
data point ci,s(t) as walking or turning. We extract a set
of features from a sliding window ĉi,s(t) = [ci,s(t −
∆t); . . . ; ci,s(t)] of length Ls and step size Ss. Features
were mean, standard deviation (std), 5th and 95th percentile
of ĉi,s(t). Only std was considered for euler angles. The
final class assignment (walking vs. turning) was based on
the assumption that walking occurs for a longer time than
turning. As a result, the test data C2MWT

i,s = {c2MWT
i,s } was



divided into J2MWT
i,s = Jwalk

i,s + J turn
i,s segments.

STS: The SPPB chair test is divided into two tests, a
single sit-to-stand (STS) and a sequence of five repeated
sit-to-stand transitions (5STS). We considered the single
STS as a template to classify the repeated 5STS. Single
tasks (i.e. standing up in the single STS and standing up
and sitting down in 5STS) were segmented for each i
and s ∈ {bst, shA, shP} independently, by detecting local
minima from the roll channel (φs). We excluded act as
no gyroscope data was available, and shL and shR as no
motion was detected from these sensors in this motor test
as the participants feet are static. We then classified each
segment by using two-class k-means clustering. In this case,
the input of k-means was the Dynamic Time Warping [1]
between the reference stand-up segment from the single STS
test and each segment of all data channels ĉi,s. The class
characterized by the smallest magnitude of its centroid (i.e.
closest to the reference) was labeled as stand-up, sit-down
otherwise. Similarly to 2MWT, C5STS

i,s was finally divided
into J5STS

i,s = Jstand
i,s + Jsit

i,s segments.
TUG: We tested the clustering approaches on the TUG

test, as it is a combination of the aforementioned tasks. For
each i and s we considered the class centroid Γclass

i,s for all
subtasks. Centroids of classes standing-up and sitting-down
were learned from clustering of 5STS, while the ones for
walking and turning from clustering of 2MWT. Similarly to
2MWT, we applied a rolling window ĉi,s(t) of length Ls

and step size Ss to the test data. For each window n, we
projected the data onto the feature space of the two clustering
models and computed the Euclidean distances to all centroids
Γclass
i,s (δΓclass

i,s,n ). For each n, its class was predicted based
on δΓclass

i,s,n being below a thresholds θclasss , derived from
statistics of the distances of all subjects i in the training data
(2MWT and 5STS).

D. Sensor-derived clinical metrics

For tests involving walking, i.e. 2MWT, TUG and SPPB
3-meter gait (SPPB 3m) tests, we calculated the mean gait
speed (vi,s) and distance walked (di,s). We used methods
provided by the actibelt system for act data, and the inertial
pedestrian tracking approach as described in III-B for the
shoe-mounted IMUs.

E. Evaluation Criteria

Subtask segmentation results (see Sec. III-C) were quan-
titatively evaluated for all subjects with respect to the mean
manual annotation of raw data segments of walking shuttles
and standing-up subtasks by three expert raters. For all
segmented motor assessment tests, we calculated three error
metrics, namely:

• Overall classification accuracy (ACCs)
• The number of subjects for which the number of seg-

ments Ji,s matched the ones form the mean annotations
Ĵi (Ωs)

• Duration error DEs = |∆tj,i,s − ∆t̂j,i| for these Ωs

subjects, with ∆t = tendj − tstartj of segment j with
respect to corresponding annotated segments (̂.)

For each sensor s, DEs was summarized by mean (MDEs)
and std, considering Ωs subjects as a single distribution.
Mean errors were also computed for each i and the range
for all subjects reported.

Sensor-derived clinical metrics (Sec. III-D) were compared
to metrics captured by standard clinical practice (vi,clin and
di,clin) for each gait assessment. Results are summarized by
mean and std of ∆vi,s = |vi,s − vi,clin| and ∆di,s = |di,s −
di,clin| for all i.

IV. RESULTS

A. Subtask segmentation

In this study, we are deliberately ”oversensing” and our
first key observation was to define the optimal parameter sets
and input channels in order to inform future study designs.

For the segmentation of the 2MWT, we selected optimal
methods parameters (window length Ls and step size Ss)
and combinations of input data channels Cinput

i,s per sensor
s using a grid search on

• Ls ∈ [50, 60, . . . , 300] samples (i.e. [0.5, 0.6, . . . , 3] s),
• Ss ∈ [1, 10, . . . , Ls] samples and
• Cinput

i,s ∈ [Ci,s,ai,s,gi,s, ri,s, {ai,s; gi,s}, {gi,s; ri,s},
{ai,s; ri,s}]

to simultaneously maximize Ωs and minimize MDEs. Fig.
2 shows the error metrics per sensor for all considered
grid points. For all sensors, good results were obtained
for window length Ls ∈ [150, . . . , 250] samples and small
Ss ∈ [1, . . . , 40]. Using only acceleration data as model input
led to poor results, especially when considering Ωs. The
selection of Lopt

s and Sopt
s parameters and optimal input data

is illustrated in Fig. 3 and related results are summarized in
Tab. I. The best results were achieved when considering all
data channels C2MWT

i,s or angular velocities g2MWT
i,s . The

worst performance was obtained for results based on only
a2MWT
i,s , with reduction in Ωs (ACCs) from 66.7 to 88.2%

(7.9 to 21.6%) for all sensors. The best performing sensor is
the one placed on the waist (shA) with all subjects correctly
classified and an overall mean error of the segments’ duration
MDEshA = 0.5 s, while the worst sensor was act, mainly
due to this sensor collecting only acceleration data.

Results of 5STS segmentation are summarized in Tab. II,
with shA being the sensor with highest accuracy ACCshA =
98.01% and MDEshA = 0.13 s over all 17 subjects.

Additionally, we compared k-means to Gaussian Mixture
Models (GMM) clustering. Following the same parame-

TABLE I: Results of 2MWT subtask segmentation for all
subjects. The best results are highlighted in bold font.

Parameters ACC Ω DE [s]

SensorLopt Sopt Cinput [%] [%] Mean Std Range
act 260 140 a 76.20 17.65 1.36 1.15 [1.05, 1.51]
bst 160 10 g 91.11 94.12 0.50 0.58 [0.31, 0.80]
shA 190 1 g 91.25 100 0.50 0.54 [0.34, 0.71]
shP 190 10 C 91.17 100 0.52 0.58 [0.33, 0.68]
shL 210 40 g 89.17 94.12 0.62 0.68 [0.42, 1.00]
shR 190 1 C 90.33 88.24 0.60 0.61 [0.40, 0.82]



Fig. 2: Results of 2MWT segmentation. Ωs (left) and MDEs (right, log-scale) for different values of Ls and Ss and Cinput
s .

Fig. 3: Parameter search of 2MWT classification via joint maximization of Ωs and minimization of MDEs for different
values of Ls and Ss and Cinput

s . The selected optimal points per sensor s are circled in red.

TABLE II: Results of subtask segmentation for 5STS test and
all subjects. The best results are highlighted in bold font.

ACC Ω DE [s]

Sensor [%] [%] Mean Std Range
bst 64.01 94.12 0.13 0.16 [0.05, 0.26]
shA 98.01 100 0.13 0.16 [0.02, 0.39]
shP 96.77 82.35 0.13 0.13 [0.04, 0.36]

ter search and selection, for the 2MWT, overall ACCs of
GMM was 80.14 to 91.49%, Ωs ∈ [29.41, 70.59]% and
MDEs ∈ [0.53, 1.16] s for all sensors. Consistently to the
k-means results, the best performing sensor was shA, with
Lopt = 150, Sopt = 60 and Cinput = C. Generally, the
performance of GMM was poorer than the one of k-means
for Shimmer3 and BioStampRC sensors, especially when
considering Ωs. Yet ACCact and Ωs of GMM were 5.2%
and 66.6% higher, respectively, and MDEact 14.7% lower.
Compared to the mean accuracy of k-means, for the 5STS
test, the one of GMM was 4.4% and 1.4% higher for bst
and shA, respectively, and 4.2% lower for shP . Run-time
of GMM clustering was significantly higher.

We tested the classification of TUG data from shA, as shA

has shown to have high accuracy in classifying both 2MWT
and 5STS data. As a result, we achieved ΩshA = 76.47%
and balanced overall accuracies ACCshA of 84.17, 66.92 and
72.30% for standing up, walking and turning, respectively.

B. Clinical assessment

Table III shows the summary (mean and std) of clinical
metrics errors for gait tests. For long walking (2MWT) act is
better than shR, whereas for short tests, vshR comes closer to
the clinically evaluated speed. By considering only data from
the segmented walking shuttles, the distance errors improved
for both 2MWT and TUG.

V. CONCLUSIONS

Incorporating sensors into established clinical motion as-
sessment and hence perform instrumented tests, enables
teams to vastly increase the amount of objective motor func-
tion performance data collected, with only a small increase in
burden to clinicians and patients. We presented an approach
to derive quantitative parameters from motor function tests
and their subtasks by capturing, segmenting and analyzing
IMU data. Compared against expert annotations, our method
is device agnostic, automated and unsupervised, and achieved
an accuracy of 91% (98%) when segmenting walking vs.



TABLE III: Mean (std) of clinical metrics errors, with shR∗ based on only segmented walking data.

SPPB 3m TUG 2MWT

act shR act shR shR∗ act shR shR∗

∆v [m/s] 0.39 (0.10) 0.16 (0.11) 0.62 (0.12) 0.19 (0.17) 0.58 (0.26) 0.06 (0.05) 0.13 (0.10) 0.12 (0.11)
∆d [m] 0.74 (0.34) 1.14 (1.52) 3.02 (0.99) 2.44 (1.36) 0.83 (0.63) 6.79 (5.95) 29.50 (23.97) 16.16 (21.12)

turning (standing vs. sitting) and time errors lower than
0.5 s. Classification accuracy on the TUG test was above
67% for all subtasks. We also extracted clinical metrics
from segmented data. Such segmented parameters were in
agreement with traditional scores.

In addition to establishing feasibility of these approaches
and demonstrating added value for assessing motor function,
our results have a number of practical consequences for
clinical teams. We recommend to use sensors with gyroscope
functionality, worn close to the body center of pressure
(waist) when performing chair raise and at the lower ex-
tremities or waist for gait tests. In this work, we considered
each sensor independently. Future work will investigate on
finding an optimal combination of wearable sensors in terms
of accuracy of motor function assessment, while still being
a practical solution to be deployed into clinics.

Interesting results come from demonstrating the feasibility
of deriving tasks from TUG tests by combining segmented
subtask models trained on 5STS and 2MWT data. These
results could enable removing TUG from batteries of motor
tests, reducing site burden, while maintaining captured in-
formation. Better combinations of classifiers could improve
TUG testing accuracy. We plan on applying this method to
assess physical performance to data from patients with gait
impairment, such as frail, elderly and post-surgery popula-
tions. For these, temporal changes of subtask performance
are of clinical interest and lead to a more complete and
granular understanding of patient mobility, e.g. assessing
balance during the stand-up subtask of 5STS. We believe that
experience gained in relatively controlled clinical settings
will enable deployment of sensor-based monitoring of motor
function in the home environment.
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