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Abstract—This study compares the performances of different
algorithms for coding speech at low bit rates. In addition to
widely deployed traditional vocoders, a selection of recently
developed generative-model-based coders at different bit rates are
contrasted. Performance analysis of the coded speech is evaluated
for different quality aspects: accuracy of pitch periods estimation,
the word error rates for automatic speech recognition, and the
influence of speaker gender and coding delays. A number of
performance metrics of speech samples taken from a publicly
available database were compared with subjective scores. Results
from subjective quality assessment do not correlate well with
existing full reference speech quality metrics. The results provide
valuable insights into aspects of the speech signal that will be used
to develop a novel metric to accurately predict speech quality
from generative-model-based coders.

Index Terms—speech quality assessment, neural speech syn-
thesis, WaveNet, LPCNet, Opus, vocoder.

I. INTRODUCTION

A vocoder system refers to the process that analyzes and
synthesizes human speech for a wide range of applications
such as speech compression, voice transformation, and mul-
tiplexing. It has been studied for decades and many well-
developed algorithms have been introduced [1] [2]. These
algorithms are designed to compress speech signals with low
bit rates and high speech quality. The performance of any
vocoder system is determined by other desirable properties
such as robustness to different speakers/languages, robustness
to channel errors, computational complexity and memory
aspects, and minimizing the coding delay [3].

Recently, several deep neural network (DNN) speech syn-
thesis algorithms that contain a generative model have been
proposed for text-to-speech synthesis and low bit-rate coding
(compression) [4] [5] [6] [7]. WaveNet [8], a deep neural
network for generating raw audio waveforms, was the first
method of these algorithms. It was originally designed for text-
to-speech synthesis and has since been used for parametric
coding [6], in which the speech signal is represented as a
sequence of parameters extracted at the encoder. To improve
memory efficiency, SampleRNN [9] uses a sparse recurrent
neural network (RNN) instead of the convolutional networks.
It has been shown to be useful for speech coding [10] as
it is able to overcome the problem of modeling extremely

high-resolution temporal data. WaveRNN [11] also focused on
finding more efficient models in order to reduce the complexity
of speech synthesis compared to WaveNet. Furthermore, the
LPCNet model [12] has shown be able to provide lower com-
plexity and real-time operation by combining linear prediction
with WaveRNN. It achieved significantly higher quality than
WaveRNN for the same network size. All of the models
generate samples by sampling from a distribution, and most
are autoregressive. This means the number of waveforms that
are likely for a given sequence of conditioning input increases
with the model’s uncertainty. The typical errors generated by
model failures are incorrect mappings on the speech manifold,
such as phoneme mismatches or slurred speech, as opposed to
non-speech artifacts introduced by traditional coders.

The neural-based generative networks have recently been
adopted to improve the performance of other types of coders
(waveform and parametric coders). For example, a backward-
compatible way of improving the quality of the low bit rate
Opus coder [13] by re-synthesizing speech from the decoded
parameters using two different neural generative models,
WaveNet (high complexity, and high-latency architecture) and
LPCNet (low-complexity, low-latency RNN-based generative
model) was proposed in [14]. The two systems were used to
extract conditioning features from the Opus bit stream coded at
6 kb/s. These conditioning features represent the spectral shape
and the pitch of the signal for performing signal decoding and
reconstruction. According to the subjective tests, synthesized
speech using LPCNet outperformed the output of the standard
Opus decoder for the same 6 kb/s bit stream.

The speech quality assessments summarised in Section II
rated the neural-based coders highly. However, in Section III
we observe that traditional full reference objective speech
quality metrics such as PESQ (Perceptual Evaluation of
Speech Quality) measure [15] fail to provide accurate quality
scores for the speech signals processed by this kind of speech
coders. Therefore, a new quality measure is needed that is
robust enough to work with different types of coders. As a
first step, making meaningful comparisons between the per-
formance of the most recent neural-based coders is necessary
to determine the related factors that need to be taken into
account when designing a new quality measures.

Consequently, in Section IV of this study, the quality of978-1-7281-5965-2/20/$31.00 ©2020 IEEE
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TABLE I
CODERS ADOPTED IN THIS STUDY.

Abbreviation Coder Name Bit rate Type Database Notes Reference

LPCNetUnquant Unquantized LPCNet — Generative-model-based coder Set 1 [16] LPCNet operating on Opus unquantized features [16]

Opus9.0 Opus 9 kb/s Hybrid waveform-maching coder Set 1 [16], Set 2 [14] Wideband vocoder (SILK mode) [13] [14]

WaveNet6.0 WaveNet 6 kb/s Generative-model-based coder Set 2 [14] WaveNet operating on Opus quantized features [14]

LPCNet1.6 LPCNet 1.6 kb/s Generative-model-based coder Set 1 [16] WaveRNN + linear prediction [12] [16]

LPCNet6.0 LPCNet 6 kb/s Generative-model-based coder Set 2 [14] LPCNet operating on Opus quantized features [14]

MELP2.4 MELP 2.4 kb/s Source-filter coder Set 1 [16] Narrowband vocoder [17]

Opus6.0 Opus 6 kb/s Hybrid waveform-matching coder Set 2 [14] Narrowband vocoder (SILK mode) [13] [14]

Speex4.0 Speex 4 kb/s Hybrid waveform coder? Set 1 [16], Set 2 [14] Wideband vocoder (wideband quality 0) [18]

speech coders is evaluated in terms of multi-dimensional
aspects. The coded speech signals obtained from most recent
coders are evaluated in terms of the following quality aspects:
subjective listening scores with a MUSHRA-inspired method-
ology [19], accuracy of pitch period estimation, word error
rate for automatic speech recognition, robustness to speaker
gender, and robustness to coding delays.

II. SPEECH QUALITY DATASETS FOR CODED SPEECH

In this study, we employed the same speech materials with
their subjective listening scores that were used to test the
quality of the LPCNet coder at 1.6 kb/s in [16] and the
modified Opus coder at 6 kb/s in [14]. As stated in [16], 16
samples from 3 male and 3 female speakers (Set 1) were used
in the testing stage. On the other hand, the speech database
employed to test the quality of the modified Opus coder in
[14] consists of 16 samples from 3 male and 3 female speakers
(Set 2). For the two studies, all samples are part of the NTT
Multi-Lingual Speech Database for Telephonometry database
[20]. In addition, all samples from the selected speakers for
the test were excluded from the training set. The subjective
listening tests with a MUSHRA-inspired methodology [19]
were conducted on 100 listeners for each test.

Table I lists the speech coders that were employed for
performance analysis in this study. The coders are sorted in
descending order according to their MUSHRA scores. Fig. 1
shows these scores as a function of coder type. It can be seen
that the best results were obtained by the LPCNet coder oper-
ating on unquantized features (LPCNetUnquan). The 9 kb/s
Opus (Opus9.0) and 6 kb/s WaveNet (WaveNet6.0) coders
achieved comparable results. The RNN-based coder at 1.6 kb/s
(LPCNet1.6) outperformed the same coder operating on Opus
quantized features at 6 kb/s (LPCNet6.0). Both WaveNet6.0
and LPCNet6.0 at provided higher quality results than that of
the standard Opus decoder for the same 6 kb/s bit stream.
The quality of MELP coder (source-filter coder) at 2.4 kb/s
obtained better results than that of the Speex coder at 4 kb/s.

III. OBJECTIVE SPEECH QUALITY EVALUATION

In order to evaluate the quality of the speech signals coded
by different coders, PESQ [15] scores were computed for
the reference speech samples and their corresponding coded
(synthesized) samples. Results were averaged by coder type
and compared to the average MUSHRA scores per coder type.
Fig. 2 shows the PESQ scores as a function of MUSHRA
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Fig. 1. Subjective listening results of different types of coders taken from
the LPCNet [16] and OpusNet [14] studies. Note that the 9 kb/s Opus and 4
kb/s Speex coders were used in both studies.
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Fig. 2. Objective PESQ measure against subjective MUSHRA scores for
different coders. Results were averaged by coder type and compared to the
corresponding average MUSHRA scores.

scores. In the plot, the relationship points are highlighted in
two different colors. The points highlighted in green represent
the results for the parametric coders (Opus9.0, MELP2.4,
Opus6.0 and Speex4.0) whereas the points highlighted in red
are the results for the generative-model-based coders (LPCNe-
tUnquan, WaveNet6.0, LPCNet1.6 and LPCNet6.0). It can be
seen that the PESQ scores of the parametric coders obtained
good correlation with the subjective listening results. On
the other hand, the generative-model-based coders provided
poor correlation in terms of PESQ against MUSHRA scores



Fig. 3. Example of pitch (fundamental frequency) plots for a reference speech sample with its corresponding synthesised sample. In this example the speech
signal was processed by the LPCNet6.0 coder. The spectrogram frequencies are shown up to 2 kHz only.

relationship. This suggests that the traditional speech quality
metrics may not be suitable for evaluating the performance
of generative-model-based coders. Standard objective speech
quality measures such as PESQ are unable to reflect the distor-
tions in the speech signals of these coders. Similar behaviour
was observed by the authors with other full reference quality
metrics (e.g. POLQA [21] and ViSQOL [22]) motivating this
study and more comprehensive experiments to design a new
quality measure for these kind of coders.

IV. COMPARATIVE ANALYSIS OF CODER QUALITY

It is important to investigate how speech coders, especially
the generative-model-based coders, behave in terms of other
quality aspects as illustrated in the following subsections.
Having an idea about the effect of these aspects on coded
speech, it is useful to improve the performance of the current
coders and to develop more robust coders in the future.

A. Accuracy of pitch estimation

As an example of how the pitch (fundamental frequency)
looks like, Fig. 3 shows the plots of the pitch sequence as a
function of time for a reference speech sample taken from
the NTT database with its corresponding speech obtained
from a generative-model-based coder. The pitch frequencies
were computed using Praat software [23]. The spectrogram
representation of the two signals are also shown in Fig. 3.

The mir eval [24] python package was used to compute
pitch accuracy given two pitch sequences. The results are com-
pared in terms of two measures [25] [26]: raw pitch accuracy
(RPA) and raw chroma accuracy (RCA) with a threshold of
50 cents. Fig. 4 shows the RPA and RCA results against coder
type. It can be seen that the best results were obtained by the
Opus coder at 9 kbps. The other parametric coders (MELP2.4,
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Fig. 4. Pitch accuracy scores as a function of coder types.

Opus6.0 and Speex4.0) also outperformed by the generative-
model-based coders. Among these coders, the LPCNetUnquan
and LPCNet6.0 achieved comparable accuracies in terms of
pitch estimation, whereas the WaveNet6.0 obtained the lowest
RPA and RCA scores. Furthermore, the RPA results averaged
by coder were plotted as a function of the average MUSHRA
scores as shown in Fig. 5. Again, the neural-based coders
obtained poor correlation compared to that of the other coders.

B. Word error rates for automatic speech recognition

In this analysis, the speech signal obtained from each
speech coder was fed as an input to the speech recognition
library [27] with the Google speech-to-text API [28]. The word
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Fig. 5. Pitch accuracy scores against subjective MUSHRA scores for
different coders. Results were averaged by coder type and compared to the
corresponding average MUSHRA scores.

error rate (WER) between the ground-truth transcript and the
hypothesis transcript of the API was then computed. Fig. 6
shows the plot of WER results for all coders. As expected, the
Opus9.0 and LPCNetUnquan coders achieved the best results.
The neural-based coders at low bit rates (WaveNet6.0, LPC-
Net1.6 and LPCNet6.0) outperformed the traditional paramet-
ric coders (MELP2.4, Opus6.0 and Speex4.0). The MELP2.4
coder obtained the worst error rates whereas the Opus6.0
and Speex4.0 coders achieved comparable results. The WER
versus MUSHRA scores relationship is shown in Fig. 7. The
overall trend is an inverse correlation of WER to quality
with the parametric coders (except Opus9.0) displaying higher
WERs than the generative-model-based coders.

The pitch tracking results highlighted that while there are
differences in pitch tracking observed from the neural-based
coders, these do not influence perceived quality and a new
objective quality metric needs to take this into account. From
the WER results, a similar trend is observed for intelligibility.
Fig. 7 highlights that there is a strong inverse correlation
between WER and the MUSHRA scores, i.e. WER is a better
predictor of quality than the objective quality metric results
seen in Fig. 2. This points to the potential to use utomatic
speech recognition (ASR) as part of an objective quality metric
solution although as the ASR model is language dependant,
any such solution would be less flexible than the current
objective speech quality models that are not language specific
in design.

C. Robustness to speaker’s gender

In this analysis, we investigate the influence of speakers
gender on the quality of coded speech. Before describing
the outcomes of this experiment, it is necessary to mention
that each speech sample in the employed database contains
two utterances, and each utterance was spoken by a differ-
ent speaker. This approach generated speech samples with
four categories of speaker’s gender: Male-Male, Male-Female,
Female-Male and Female-Female. The Male-Male category
means that the two utterances in the sample were spoken by
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Fig. 6. Results of WER as a distance measure between the ground-truth
transcript and the hypothesis transcript.
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Fig. 7. WER against subjective MUSHRA scores for different coders. Results
were averaged by coder type and compared to the corresponding average
MUSHRA scores.

two male speakers, whereas female-female category contains
speech samples that their utterances were spoken by two
female speakers, and so on for other categories.

The subjective listening results were reported as a function
of speaker’s gender for each coder, and the results are shown
in Fig. 8. The speech samples with Female-Male category
achieved highest subjective scores for Opus coders. For the
generative-model-based coders, the highest subjective scores
were obtained when the first utterance of the speech sample
is spoken by a female speaker, i.e. the speech samples with
Female-Male and Female-Female categories. This behaviour
is consistent with that of the Speex4.0 coder. The Male-Male
speech samples achieved the best results for the MELP2.4
coder. It can be seen that the speaker’s gender has an impact
on the overall subjective listening results as the Mushra scores
seemed to be affected by speaker’s gender. This factor needs
to be further investigated when designing new speech coders
especially for the neural-based models.
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Fig. 9. Results of average coding delays between reference and coded speech
samples.

D. Robustness to coding delays

The effect of coding delay on the quality of different speech
coders was also tested in this study. The cross-correlation was
computed between the reference and coded speech signals,
and the index of the maximum values (argmax) was taken as
time leads or lags. Fig. 9 shows the average coding delays as
a function of coder type. As expected, the generative-model-
based coders incur longer delays in time compared to that
of the other coders. For delays plotted against the subjective
scores as shown in Fig. 10 there is some correlation apparent
(except Speex4.0). Identifying delay characteristics from the
coded speech could be useful for classifying coder behaviour
for data driven objective quality models.

Another experiment was run to show the micro-alignment
time difference between reference speech and its correspond-
ing coded speech. Fig. 11 shows waveform of a reference
speech sample taken form the same database. The same sample
was processed by two coders: the WaveNet6.0 and Speex4.0. A
Mel spectrogram with 64 band to 8 kHz was then computed for
each signal. The 2 dimensional plot of each Mel spectrogram is
shown in the same figure. The dynamic time wrapping (DTW)
algorithm was performed on the two Mel spectrograms to mea-
sure similarity (in terms of temporal information) between the
reference and coded speech waveforms [29]. The optimal path
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Fig. 10. Average coding delays against subjective MUSHRA scores for
different coders. Results were averaged by coder type and compared to the
corresponding average MUSHRA scores.

that has the minimal cost (summation of absolute differences)
was then tracked and plotted. It can be seen that, although the
Speex coder obtained poor subjective scores (see Fig. 1), it
provided very low micro delays as its optimal path is a straight
diagonal. On the other hand, the micro-alignment time shifts
are very apparent for the WavNet6.0 coder.

V. CONCLUSION

In this study, different types of speech coders were com-
pared in terms of several objective measures. Experiments
were conducted using speech samples taken from the NTT
database with its subjective MUSHRA scores. The existing
full reference speech quality metrics failed to provide scores
consistent with subjective quality assessment. Taking into
account the influence of the quality aspects considered in this
study is necessary to design a new quality metric that is robust
enough to work with different coders at different bit rates. One
possible approach is to combine results from the objective
measures employed in this study based on multi modelling
algorithm to design the required speech quality metric.



Fig. 11. Example of 1.5 s of Reference, WaveNet6.0 and Speex4.0 coded speech. The waveforms, Mel spectrogram in dB, and DTW cost matrix plots are
shown to highlight the micro-alignment changes in neural-based vocoded speech.
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[5] S. Ö. Arik, G. F. Diamos, A. Gibiansky, J. Miller, K. Peng,
W. Ping, J. Raiman, and Y. Zhou, “Deep voice 2: Multi-speaker neural
text-to-speech,” CoRR, vol. abs/1705.08947, 2017. [Online]. Available:
http://arxiv.org/abs/1705.08947

[6] W. B. Kleijn, F. S. C. Lim, A. Luebs, J. Skoglund, F. Stimberg, Q. Wang,
and T. C. Walters, “Wavenet based low rate speech coding,” IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 676–680, 2018.

[7] R. Prenger, R. Valle, and B. Catanzaro, “Waveglow: A flow-based
generative network for speech synthesis,” in ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2019, pp. 3617–3621.

[8] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “WaveNet:
A generative model for raw audio,” in Arxiv, 2016. [Online]. Available:
https://arxiv.org/abs/1609.03499

[9] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. C.
Courville, and Y. Bengio, “SampleRNN: An unconditional end-to-end
neural audio generation model,” ArXiv, vol. abs/1612.07837, 2016.

[10] J. Klejsa, P. Hedelin, C. Zhou, R. Fejgin, and L. Villemoes, “High-
quality speech coding with sample RNN,” in ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), May 2019, pp. 7155–7159.

[11] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury, N. Casagrande,
E. Lockhart, F. Stimberg, A. van den Oord, S. Dieleman, and
K. Kavukcuoglu, “Efficient neural audio synthesis,” CoRR, vol.
abs/1802.08435, 2018. [Online]. Available: http://arxiv.org/abs/1802.
08435

[12] J. Valin and J. Skoglund, “LPCNET: Improving Neural Speech Synthesis
through Linear Prediction,” in ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), May
2019, pp. 5891–5895.

[13] J.-M. Valin, K. Vos, and T. Terriberry, “Definition of the Opus
Audio Codec,” RFC 6716, Sep. 2012. [Online]. Available: https:
//rfc-editor.org/rfc/rfc6716.txt

[14] J. Skoglund and J.-M. Valin, “Improving Opus low bit rate quality with
neural speech synthesis,” ArXiv, vol. abs/1905.04628, 2019.

[15] ITU, “Perceptual Evaluation of Speech Quality (PESQ): an objective
method for end-to-end speech quality assessment of narrow-band tele-
phone networks and speech codecs,” in ITU-T Rec. P.862, 2001.

[16] J.-M. Valin and J. Skoglund, “A Real-Time Wideband Neural Vocoder
at 1.6kb/s Using LPCNet,” in Proc. Interspeech 2019, 2019, pp.
3406–3410. [Online]. Available: http://dx.doi.org/10.21437/Interspeech.
2019-1255

[17] A. McCree, Kwan Truong, E. B. George, T. P. Barnwell, and
V. Viswanathan, “A 2.4 kbit/s MELP coder candidate for the new U.S.
Federal Standard,” in 1996 IEEE International Conference on Acoustics,
Speech, and Signal Processing Conference Proceedings, vol. 1, May
1996, pp. 200–203 vol. 1.

[18] J.-M. Valin, The Speex codec manual, Xiph.Org Foundation, 2007.
[Online]. Available: https://speex.org/docs/manual/speex-manual.pdf

[19] ITU-R, “Recommendation BS.1534-1: Method for the subjective assess-
ment of intermediate quality level of coding systems,” in International
Telecommunications Union, 2001.

[20] NTT Advanced Technology, Multilingual Speech Database for Tele-
phonometry, CD-ROM, 1994.

[21] ITU, “Perceptual objective listening quality assessment,” Int. Telecomm.
Union, Geneva, Switzerland, ITU-T Rec. P.863, 2018.

[22] A. Hines, J. Skoglund, A. C. Kokaram, and N. Harte, “ViSQOL: An
objective speech quality model,” EURASIP Journal on Audio, Speech,
and Music Processing, vol. 2015, no. 1, p. 13, 2015.

[23] P. Boersma and D. Weenink, “PRAAT, a system for doing phonetics by
computer,” Glot international, vol. 5, pp. 341–345, 01 2001.

[24] C. Raffel, B. McFee, E. J. Humphrey, J. Salamon, O. Nieto, D. Liang,
and D. P. W. Ellis, “MIR-EVAL: A Transparent Implementation of
Common MIR Metrics.” in Proc. of the 15th International Society for
Music Information Retrieval Conference ISMIR, 2014.

[25] G. E. Poliner, D. P. W. Ellis, A. F. Ehmann, E. Gomez, S. Streich,
and B. Ong, “Melody Transcription From Music Audio: Approaches
and Evaluation,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 15, no. 4, pp. 1247–1256, May 2007.
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